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Abstract

The paper presents a detailed numerical study of an iterative solution to
3-D sound-hard acoustic scattering problems at high frequency considering
the Combined Field Integral Equation (CFIE). We propose a combination
of an OSRC preconditioning technique and a Fast Multipole Method which
leads to a fast and efficient algorithm independently of both a frequency
increase and a mesh refinement. The OSRC-preconditioned CFIE exhibits
very interesting spectral properties even for trapping domains. Moreover,
this analytic preconditioner shows highly-desirable advantages: sparse struc-
ture, ease of implementation and low additional computational cost. We first
investigate the numerical behavior of the eigenvalues of the related integral
operators, CFIE and OSRC-preconditioned CFIE, in order to illustrate the
influence of the proposed preconditioner. We then apply the resolution al-
gorithm to various and significant test-cases using a GMRES solver. The
OSRC-preconditioning technique is combined to a Fast Multipole Method
in order to deal with high-frequency 3-D cases. This variety of tests vali-
dates the effectiveness of the method and fully justifies the interest of such
a combination.
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1. Introduction

In this paper, we consider the problem of high-frequency scattering of
time-harmonic acoustic waves by a bounded sound-hard obstacle in three
dimensions. Integral equation methods are used extensively for numerical
computations of solutions to such homogeneous scattering problems. These
approaches apply the Green’s function formalism to reduce the dimension-
ality of the problem by one. The governing boundary-value problem is then
reduced to an integral equation on the surface of the scatterer. The integral
operators involved in these formulations are nonlocal and the discretization
gives rise to dense matrices. Moreover, one has to consider a sufficient number
of points per wavelength (about 10 points) to capture the oscillatory behavior
of the wave at high frequencies. The solution of these large and dense lin-
ear systems are handled by Krylov-subspaces iterative solvers (e.g. GMRES
[48]). The number of iterations to reach the convergence is strongly linked
to the spectral properties of the underlying integral operators. To be able
to predict the convergence, one therefore needs to investigate the eigenvalue
distribution of the integral formulations for acoustic scattering problems. We
focus on the class of Combined Fied Integral Equations (CFIE) [13, 16, 24, 41]
that share the unique solvability property in appropriate functional spaces.
Recent studies have been achieved to understand the dependence of the con-
dition number of the CFIE formulations in terms of both frequency and
mesh size [11, 12, 26]. For a sound-hard obstacle, the CFIE formulations
involve the boundary Neumann trace of the double-layer potential which is
a pseudodifferential operator of order 1 [49]. Thus, these formulations are
integral equations of the first-kind and a sequence of corresponding eigenval-
ues tends to infinity. The condition number of the CFIE formulations grows
not only with the mesh discretization density but also with the frequency.
Thus, to make possible the use of iterative solvers for scattering problems,
two kind of techniques have been investigated for years: fast methods for the
computation of matrix-vector products and preconditioners to speed up the
convergence of the solver.

On the one hand, for the numerical resolution of integral equations, it
is still of importance to use a fast method for the consideration of the inte-
gral operators of the initial equation. The Fast Multipole Method (FMM)
is such a method that speeds up the calculation of matrix-vector products
where the matrix is obtained by discretization of an integral operator. The
method has been introduced by Rokhlin et al (e.g. [23]) and was adapted
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to integral equations of wave propagation in the 90’s (e.g. [21], [29], [30],
[36], [46]). The discretization of integral operators leads to dense matrices
which correspond to interactions between the degrees of freedom. The FMM
strategy is essentially based on a choice of an expansion of the Green’s kernel
and a distribution of the degrees of freedom into boxes such that the inter-
actions between the degrees of freedom are replaced by interactions between
boxes. For Helmholtz fundamental solution, the most popular expansion is
given from the Gegenbauer series and the Funk-Hecke formula. It leads to
a robust method at high frequency but that suffers from unstabilities in the
low-frequency regimes. However, strategies have been under development for
a new expansion available at any frequency regime (e.g. [31], [40]).

On the other hand, efficient preconditioners have to be prescribed to yield
fast convergence independent of both mesh size and frequency. A first so-
lution is to apply algebraic preconditioning techniques, like SPAI (SParse
Approximate Inverse) [17, 18] or multi-grids methods [19]. However, even if
these preconditioners improve solver performance, slow convergence and con-
vergence breakdown still arise when medium and high frequencies are con-
sidered. Analytic preconditioners offer a very interesting alternative. This
approach uses pseudo-inverse of the hypersingular operators. A judicious in-
tegral representation of the scattered field as a linear combination of single-
and regularized double-layer potentials is considered. The objective is to force
the boundary integral operator arising from this representation to become
a compact perturbation of the identity operator. Several well-conditioned
CFIE have been proposed recently [1, 6, 7, 14]. We consider in this paper a
pseudo-differential operator preconditioning technique developed by Antoine
and Darbas [6, 7]. The so-called regularizing operator is a high-frequency
approximation to the Neumann-to-Dirichlet operator, and is constructed in
the framework of the On-Surface Radiation Conditions method [39, 35, 4, 8].
The implementation of the underlying OSRC-preconditioned CFIE has al-
ready been made, which validates the approach [26]. Moreover, we emphasize
highly-desirable advantages of this technique:

• the Padé-approximation of the regularizing pseudo-differential operator
leads to a sparse matrix involving only the mass and rigidity finite
element matrices which makes its implementation rather easy,

• in the framework of an iterative solver, the additional computational
cost per iteration is thus negligible compared to the one related to the
integral operators,
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• to deal with high-frequencies, the resolution requires fast methods such
as the FMM. Both techniques, the fast method and the preconditioner,
do not interact and are complementary.

This paper is organized as follows. In Section 2, we describe the scat-
tering problem and recall the basic tools to obtain integral equations. In
Section 3, we introduce the classical and OSRC-preconditioned CFIEs that
we use. In Section 4, we present the discretization and the resolution of the
integral equation formulations. In Section 5, we introduce the geometries
considered for the numerical tests. Section 6 is devoted to a numerical inves-
tigation of the eigenvalues of the classical and OSRC-preconditioned CFIEs
operators. Finally, in Section 7, we provide various numerical illustrations
of the efficiency of the method in terms of computation cost and speed of
convergence. They show the adequacy with the spectral analysis (Section 6)
with or without FMM.

2. The Helmholtz exterior problem and integral representation

Let us consider a bounded domain Ω− ⊂ R3 representing an impenetrable
body with Lipschitz continuous boundary Γ := ∂Ω−. We denote by Ω+ :=
R3 \Ω− the associated homogeneous exterior domain of propagation. We are
concerned with the scattering of an incident time-harmonic acoustic wave
uinc by the obstacle Ω−. We consider an incident plane wave of the form

uinc(x) = e−ikξinc·x,

characterized by the wavenumber k := 2π/λ, setting λ as the wavelength of
the signal. The direction of incidence −ξinc is defined by

ξinc = (cos(θinc) sin(ϕinc), sin(θinc) sin(ϕinc), cos(ϕinc))T .

The scattering angles (θinc, ϕinc) are expressed in the spherical coordinates
system. The scattered field u+ satisfies the Helmholtz exterior boundary-
value problem





∆u+ + k2u+ = 0, in Ω+,

∂nu
+|Γ = g = −∂nuinc|Γ, on Γ,

lim
|x|→+∞

|x|
(
∇u+ · x

|x| − iku+
)

= 0.

(1)
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We focus on a sound-hard boundary condition on Γ. Vector n is the unit
normal to Γ outwardly directed from Ω−. The last equation is the Sommerfeld
radiation condition which describes the behavior of the solution at infinity.
We have the following existence and uniqueness result (see for instance [41]).

Theorem 1. We assume that

• Ω− is a bounded region in R3 with Lipschitz continuous boundary Γ,

• g ∈ H−1/2(Γ).

Then, the exterior acoustic boundary-value problem (1) has a unique radiating
solution u+ which belongs to the space

H1
loc(Ω

+) :=
{
v ∈ D′(Ω+)/ψv ∈ H1(Ω+), ∀ψ ∈ D(R3)

}
.

The first main difficulty arising in the numerical solution of the exterior
problem (1) is related to the unboundedness of the computational domain
Ω+. Integral equations method is one of the principal tools to overcome this
concern. This approach is based on the classical potential theory [24]. It
allows to reformulate problem (1) equivalently as an integral equation on
the finite surface Γ. Let us recall the main notions. We first introduce the
functional spaces [44]

H1
−(∆) := H1(∆,Ω−) :=

{
u ∈ H1(Ω−);∆u ∈ L2(Ω−)

}
,

H1
+(∆) := H1

loc(∆,Ω
+) :=

{
u ∈ H1

loc(Ω
+);∆u ∈ L2

loc(Ω
+)
}
.

For u ∈ H1
±(∆), the exterior (+) and interior (−) trace operators of order j

(j = 0 or 1) can be defined by

γ±0 : H1
±(∆) → H1/2(Γ) γ±1 : H1

±(∆) → H−1/2(Γ)
u± 7→ γ±0 u

± = u±|Γ, u± 7→ γ±1 u
± = ∂nu

±|Γ.
(2)

We have the Green’s representation theorem ([24], [41]).

Theorem 2. Let (u−, u+) ∈ H1(Ω−)×H1
loc(Ω

+) satisfying






∆u− + k2u− = 0, in Ω−,
∆u+ + k2u+ = 0, in Ω+,
u+ outgoing wave.
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Then, we have

D(γ−0 u
−)(x) + L(γ−1 u−)(x) =

{
u−(x), x ∈ Ω−

0, x ∈ Ω+ , (3)

−D(γ+0 u
+)(x)− L(γ+1 u+)(x) =

{
0, x ∈ Ω−

u+(x), x ∈ Ω+ , (4)

where the respective single-layer and double-layer potentials L and D are
given by

Lp(x) :=
∫

Γ

G(x,y)p(y)dΓ(y), x /∈ Γ, (5)

Dϕ(x) := −
∫

Γ

∂n(y)G(x,y)ϕ(y)dΓ(y), x /∈ Γ, (6)

for (p, ϕ) ∈ H−1/2(Γ) × H1/2(Γ), and G is the fundamental solution of the
Helmholtz equation in R3

G(x,y) =
1

4π

eik|x−y|

|x− y| , x 6= y.

The Cauchy data (γ+0 u
+, γ+1 u

+) become the new unknowns. The acoustic
wave u+ in Ω+ is uniquely determined from the knowledge of these two surface
fields. To obtain an integral equation on the boundary Γ to find these fields,
we need the trace formulae of the two potentials (see for instance [44]).

Proposition 1. The first and second traces on Γ of the single-layer and the
double-layer potentials L and D are given by





γ−0 ◦ L = γ+0 ◦ L = L

γ−1 ◦ L = −I
2
+N

γ+1 ◦ L =
I

2
+N





γ−0 ◦ D = −I
2
+M

γ+0 ◦ D =
I

2
+M

γ−1 ◦ D = γ+1 ◦ D = D

where I is the identity operator and L,N,M and D the four elementary
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boundary integral operators expressed, for all x ∈ Γ, by

Lp(x) :=

∫

Γ

G(x,y)p(y)dΓ(y),

Np(x) :=

∫

Γ

∂n(x)G(x,y)p(y)dΓ(y),

Mϕ(x) := −
∫

Γ

∂n(y)G(x,y)ϕ(y)dΓ(y),

Dϕ(x) := −∂n(x)

∫

Γ

∂n(y)G(x,y)ϕ(y)dΓ(y).

(7)

The Helmholtz representation (3)(4) allows the derivation of several inte-
gral equations, each with its own mathematical properties (see for instance
[9, 24, 25, 41]). To this end, first or second trace is applied to (3)(4) and
satisfaction of the boundary condition leads to an integral equation posed
on Γ.

3. Combined boundary integral equation formulations

This section presents the integral equation formulations that we compare
in this paper: the classical Combined Field Integral Equation (CFIE) [34]
and an OSRC-preconditioned CFIE proposed in [7].

3.1. CFIE

To solve the exterior sound-hard acoustic scattering problem (1), we con-
sider the well-known CFIE: find the physical unknown ϕ = −γ+0 (u+−uinc) ∈
H1/2(Γ) solution to

(
I

2
+M + ηD

)
ϕ = −γ+0 uinc − ηγ+1 u

inc, on Γ, (8)

with a coupling complex parameter η. This integral equation is constructed
as a linear combination of the Magnetic Field Integral Equation (MFIE)

(
I

2
+M

)
ϕ = −γ+0 uinc, on Γ,

and the Electric Field Integral Equation (EFIE)

Dϕ = −γ+1 uinc, on Γ.

We have the following existence and uniqueness result [15].
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Proposition 2. Consider Γ a Lipschitz continuous surface. The operator

I

2
+M + ηD,

defines an isomorphism from H1/2(Γ) onto H−1/2(Γ) for all k > 0 provided
ℑm(η) 6= 0. Under this condition, the CFIE (8) is uniquely solvable in
H1/2(Γ) for all frequency k > 0.

The reference CFIE considered in the paper is defined on Γ by
[
(1− α)

i

k

(
I

2
+M

)
+ αD

]
ϕ = −(1− α)

i

k
γ+0 u

inc − αγ+1 u
inc, (9)

setting η = − α

(1− α)
ik with α ∈ R \ {0, 1}.

3.2. OSRC-preconditioned CFIE

In terms of numerical iterative resolution, even if CFIE (9) has the good
property of being uniquely solvable, this equation is a Fredholm integral
equation of the first-kind and does not provide an interesting spectral be-
havior (see Section 6). In fact, it involves the first-order, strongly singular
and non-compact operator D. To expect an eigenvalue clustering and hence
a fast convergence of iterative solvers, the idea consists in composing the
EFIE (operator D) with a regularizing operator of the opposite order before
combining it with the MFIE. We adopt the approach of Antoine and Darbas
[6, 7]. Consider the exact exterior Neumann-to-Dirichlet (NtD) map

V ex : H−1/2(Γ) → H1/2(Γ)
γ+1 u

+ 7→ γ+0 u
+ = V exγ+1 u

+.
(10)

The NtD operator V ex is a non-local pseudodifferential operator of order −1.
The following integral relation holds

−V exD =
I

2
−M, on Γ,

and then
I

2
+M − V exD = I, on Γ.

In this ideal configuration, the solution ϕ = −γ+0 uinc + V exγ+1 u
inc ∈ H1/2(Γ)

is computed directly. However, as well-known, an expression of the exact
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NtD is not available for a general surface Γ. Instead, an approximation
Ṽ of V ex is introduced to construct the OSRC-preconditioned CFIE: find
ϕ = −γ+0 (u+ − uinc) ∈ H1/2(Γ) such that

(
I

2
+M − Ṽ D

)
ϕ = −γ+0 uinc + Ṽ γ+1 u

inc, on Γ. (11)

An efficient approximation Ṽ is derived in [8] according to On-Surface Radi-
ation Conditions (OSRC) method [4, 5, 35, 39]

Ṽ =
1

ik

(
1 +

∆Γ

k2ε

)−1/2

, (12)

where the operator ∆Γ is the Laplace-Beltrami operator over the surface Γ
and the parameter kε = k + iε is complex-valued. The small damping pa-
rameter ε ∈ R

∗ is introduced to regularize the square-root operator in the
transition zone of grazing modes. A suitable choice of ε has been determined
in [26]: ε = 0.4k1/3R−2/3 where R is the radius of the smallest sphere con-

taining Ω. We discuss the implementation of the operator Ṽ in Section 4.2.
We have the following existence and uniqueness result:

Proposition 3. Consider Γ a smooth surface, the OSRC-preconditioned
CFIE (11) is uniquely solvable in H1/2(Γ) for any wavenumber k and any
damping parameter ε 6= 0.

The proof [26] relies on two simple ingredients: the symbolic calculus and

the Fredholm alternative. Indeed, the operator Ṽ has the desired regularizing
effect on the operator D and the preconditioned CFIE (11) is a second-kind
Fredholm integral equation expressed by

I

2
+M − Ṽ D =

(
1

2
+
kε
2k

)
I + C, (13)

where C is a compact operator. In the case of a non-smooth boundary,
some tools and regularization techniques are given in [22] and [15] for other
combined field equations. These tools are not suitable for our equation (11)
in the case of Lipschitz boundaries and would require more investigation.

4. Discretization and implementation

We describe in this section our strategy for the computation of the pro-
posed preconditioned integral equations.
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4.1. Discretization and iterative resolution

For the numerical resolution, we consider a classical P1 boundary finite
element discretization [20]. The surface mesh is denoted by Γh. We define the
total number of triangles by NT and the total number of vertices by NV . Let
us designate by nλ = λ/hmax the density of discretization points per wave-
length where hmax is the maximal length of the edges of the triangles. The
OSRC-preconditioned CFIE uses the CFIE integral operators and in addition
only some differential operators involved in the OSRC approach. The dis-
cretization of the later gives rise to sparse matrices. However, as well-known,
the discretization of integral operators leads to dense matrices. Moreover,
the integrals involve singular kernels. To deal with the hypersingular integral
operator D, we have considered the following expression [44]

(Dϕ, ψ) = −
∫

Γ

∫

Γ

G(x,y)[ k2ϕ(y)ψ(x)n(x) · n(y)
−curlΓϕ(y) · curlΓψ(x) ] dΓ(y)dΓ(x) ,

that involves only weakly singular kernels. The singularities are then evalu-
ated using a technique based on singular changes of variables related to Duffy
transformation [32].

Let us denote by [A] ∈ CNV ×NV the matrix associated with the linear
discretization of a given integral operator A. We solve the different dense
non-symmetric linear systems with the iterative solver GMRES [48] with no
restart in order to have a precise idea of the impact of the OSRC technique
on the convergence of the solver. The uses of the restart (with 20, 30 or
50 inner iterations) that we performed with the unit sphere and the cube
with cavity, considered for the numerical tests, were not successful for the
CFIE operator. In the numerical results, by “iterations”, we then always
refer to “inner iterations”. Moreover, we always precondition the GMRES
by the mass matrix. At each step of the solver, the solution of (11) needs
the computation of

Y =

(
[I]

2
+ [M ]− [Ṽ ][D]

)
X,

with X,Y ∈ CNV . For the sake of efficiency

• a sparse direct solver is used to apply the OSRC preconditioner [Ṽ ]
(see Section 4.2),
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• the single-level Fast Multipole Method is chosen to evaluate the dense
matrix-vector products involving [M ] and [D] (see Section 4.3).

4.2. Discretization of the OSRC preconditioner

Let us explain how to compute accurately the square-root needed for the
non-local pseudodifferential operator Ṽ . A Padé paraxial approximation of
order Np of the square-root operator is used: a rotating branch-cut technique
[42, 8],

(
1 +

∆Γ

k2ε

)1/2

≈ C0 +

Np∑

j=1

Aj

k2ε
∆Γ

(
1 +

Bj

k2ε
∆Γ

)−1

,

where C0, Aj and Bj , 1 ≤ j ≤ Np are complex coefficients. They depend on
the rotation angle θp of the usual branch-cut {z ∈ R; z < −1} of the square-
root z 7→

√
1 + z. In this paper, we always take θp = π/3. The unique

solvability of the OSRC-preconditioned CFIE (cf. Proposition 3) remains
true even when we use such Padé approximants to localize the square-root
operator. The proof based on symbolic calculus can be easily adapted.

Specifically, the matrix-vector product Y = [Ṽ ]X is realized by first solv-
ing Np Helmholtz-type sparse linear systems

(
Bj

k2ε
[∆Γ] + [I]

)
Xj = [I]X, j = 1, ..., Np,

and in a second step by solving the problem

(
[I] +

[∆Γ]

k2ε

)
Y =

1

ik

(
C0 [I]X+

Np∑

j=1

Aj

k2ε
[∆Γ]Xj

)
.

The matrix −[∆Γ] represents the rigidity matrix on Γh. The operator Ṽ
has desirable advantages for preconditioners: sparse structure, ease of im-
plementation and low additional computational cost (see Section 7). We
use MUMPS library (MUltifrontal Massively Parallel sparse direct Solver
– http://mumps.enseeiht.fr/) to take advantage of the sparse structure

of [Ṽ ].

4.3. Single-level FMM

In order to reduce the computation cost related to the dense matrices,
the FMM splits partially the interactions between both the column and row
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entries of the matrices. This is done thanks to a separation of variables x

and y in the Green’s kernel G(x,y): the degrees of freedom are contained in
boxes (called FMM boxes below – see Figure 1), and the interaction between
two degrees of freedom is replaced by a succession of translations through
the centers of the boxes that contain the degrees of freedom. In a single-level
FMM, only boxes of a same size, of a same level of an oc-tree are considered.
In a multilevel FMM, boxes from different levels are involved. The FMM
strategy is illustrated in Figure 2.

Figure 1: FMM boxes: A mesh (left) and corresponding FMM boxes (right)
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In this paper, the single-level FMM that we consider is based on the
Gegenbauer series and Funk-Hecke formula. For instance, an efficient calcu-
lation of the matrix-vector product [L]X with matrix

[L]i j =

∫

Γ

∫

Γ

G(x,y)ϕj(y)ϕi(x)dΓ(y)dΓ(x), i, j = 1, · · · , NV ,

can be expressed thanks to such an expansion for i far from j:

[L]i j ≈
P∑

p=1

cp
∑

B/B∩suppϕi 6=∅

g
(p)
i,B

∑

B̃/B̃∩suppϕj 6=∅

T (p)

B,B̃
f
(p)

j,B̃
,

with

cp =
ik

(4π)2
wp ,

g
(p)
i,B =

∫

B∩suppϕi

eik<sp,x−CB>ϕi(x)dΓ(x) ,

f
(p)

j,B̃
=

∫

B̃∩suppϕj

e−ik<sp,y−C
B̃
>ϕj(y)dΓ(y) ,

and T (p)

B,B̃
is the translation operator from the FMM box B̃ to the FMM box

B given by the expression

T (p)

B,B̃
=

L∑

ℓ=1

(−i)ℓ(2ℓ+ 1)h
(1)
ℓ (k|CB − CB̃|)Pℓ(cos(sp, CB − CB̃)), (14)

where wp, sp are the quadrature weights and points for the integration on

the unit sphere involved in the Funk-Hecke formula. The summation “
∑P

p=1”
comes from the discretization of the Funk-Hecke formula while the summa-
tion “

∑L
ℓ=1” is a truncation of the Gegenbauer series. Moreover, CB denotes

the center of the FMM box B, h
(1)
ℓ is the spherical Hankel function of the

first kind of degree ℓ, and Pℓ is the Legendre polynomial of degree ℓ. The
parameters L and P are estimated thanks to the empirical formula ([36])
L = kd+C(kd)3, and the choice of the discretization of the unit sphere such
that P = (L+ 1)(2L+ 1), where d is the diameter of the FMM boxes.

This leads to an algorithm of complexity which is N
3/2
V for a single-level

FMM and NV ln2NV for a multilevel FMM. For more details on the FMM, we
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refer for example to the papers [21], [29], [30], [36], [46]. This choice leads to a
FMM which is known to be unstable at “low-frequency regimes”. This occurs
for any frequency when the mesh density nλ is large compared to the usual
value nλ = 10. This comes from the translation operator T (p)

B,B̃
(14) which

sums Hankel functions. In the Gegenbauer series, the diverging behavior
of the Hankel function is controlled by the converging Bessel function. But
the considered FMM expansion separates the Hankel function such that the
translation operator (14) becomes unstable at low-frequency regimes. In this
paper, we effectively meet with this issue (cf. Remark 1).

5. Presentation of the test geometries

For the numerical results, we have considered several geometries for dif-
ferent purposes as presented below. The geometries were generated using
Gmsh [33].

First, the unit sphere enables us to validate the code by comparison with
the analytical solution.

A second concern is the consideration of domains with cavity. We have in-
tensively studied a cube with cavity that takes inspiration in the 2-D trapping
domain defined by Betcke and Spence [12] (cf. Fig. 3-left). This 3-D geom-
etry is the cube [−1, 1]3 with the rectangular cavity [0, 1]× [−π/10, π/10]×
[−π/10, π/10], shown on Fig. 3-right. A second cavity domain consists in
a 3-D spherical trapping object given in Fig. 4-left, generated by the revo-
lution around the X-axis of a 2-D C-shape contour (Fig. 4-right). The 2-D
contour is defined with the help of four circles; for each of them, the couple
(center,radius) is respectively (O, 1.4), (O, 1), (A, 0.2), (B, 0.2). The two last
centers are given by applying rotations of angles π/5 and −π/5 and center
O = (0, 0) to the point (0, 1.2).

The cone-sphere (Fig. 5-left) and the submarine offer configurations with
singularities. The cone-sphere is based on the unit sphere and has the apex
located at the point (5,0,0). Moreover, for this geometry, the cone and the
sphere are tangent to each other at the interface. As a last example, we con-
sider the geometry of a submarine shown in Fig. 5-right. The characteristic
length are: length = 43m, thickness ≈ 4 to 7m, high ≈ 4 to 7m. This exam-
ple presents a sharp and irregular shape at the back (around point (43,0,0)),
and is characterized by very large length.
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6. Spectral analysis

In order to analyse the convergence properties of the GMRES algorithm
for solving the usual and OSRC-preconditioned CFIEs (9) and (11), let us
observe previously in this section the eigenvalue behavior of the involved
integral operators. To this end, we use a code implemented with the li-
brary Mélina++1, and the library ARPACK++2. Mélina++ is a finite
element (FE) library that provides the FE discretization of the integral oper-
ators and standard differential operators. To compute numerical eigenvalues,
ARPACK++ implements the “Implicit Restarted Arnoldi Method” (IRAM),
which combines Arnoldi factorizations with an implicitly shifted QR method.

6.1. Spherical case

We consider the unit sphere as the scatterer. Spherical harmonics form a
basis of eigenvectors for the elementary integral operators. Explicit expres-
sions of the eigenvalues of the CFIE operators are known [3, 7, 26, 37]. In the
case of the OSRC-preconditioned CFIE, we know such an analytic expression
either with the exact square-root operator in Ṽ (cf. (12)) or with the complex

Padé approximation (cf. Section 4.2) for the localization of Ṽ . In this sec-
tion, we designate by “analytical eigenvalues” the exact eigenvalues obtained
with the exact square-root operator and by “Padé-analytical” the ones ob-
tained considering Padé approximants. The eigenvalues computed with our
code based on a BEM discretization are called “numerical eigenvalues”.

In Fig. 6, we compare the analytical and the numerical eigenvalues of
the CFIE integral operators for the wavenumber k = 11.85, with the mesh
density nλ = 10. For the numerical results, we choose the Padé order Np = 8.

The analytical eigenvalues of the CFIE operator coincide with the numer-
ical ones. The numerical eigenvalues of the OSRC-preconditioned operator
are well clustered at a point near to (1, 0) which is the accumulation point
of the analytical ones. Now, let us observe how the Padé approximation
impacts on the clustering of the eigenvalues. To this aim, for different Padé
orders, we compare the Padé-analytical eigenvalues to the analytical ones in
Fig. 7, and the numerical eigenvalues to the Padé-analytical ones in Fig. 8.
On both Fig. 7 and Fig. 8, the Padé-analytical eigenvalues are the same.

1http://anum-maths.univ-rennes1.fr/melina/
2http://www.ime.unicamp.br/∼chico/arpack++/
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Figure 6: Unit sphere: distribution of the eigenvalues, k = 11.85, nλ = 10

For both the Padé-analytical and numerical eigenvalues, more precise is
the Padé approximation, better is the clustering of the eigenvalues around
the point (1, 0). The figures show a spiral curve which is absorbed by the
accumulation point progressively when the Padé order Np increases. This
curve has been an interesting tool to determine the influence of the Padé
approximation on the accuracy of the resolution strategy. Indeed, the Padé
approximation presents two critical points: when z is close to −1 and when z
is large. When k becomes large, some eigenvalues of the discretized operator
[∆Γ]/k

2
ε may be close to −1; when nλ is large, some eigenvalues of [∆Γ]/k

2
ε

become large. However, this phenomenon does not really affect the condi-
tion number in our configurations (see Fig. 9). As we can see, the condition
number of the OSRC-preconditioned CFIE remains between 1.2 and 1.7 in-
dependently of the Padé order, the frequency and the mesh density so far.
More precisely, in Fig. 9-b and 9-c, this condition number lies between 1.2
and 1.31. This is not the case for the CFIE. The linear dependance of the
CFIE condition number on nλ is related to the dispersion of the eigenvalues
in the elliptic part. These eigenvalues which lie on the real line x = 0 are as-
sociated with evanescent modes (high-order spatial modes). The dependance
on k comes from the small-magnitude eigenvalues linked to a grazing mode.
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Figure 9: Unit sphere: condition number

6.2. Cavity domains

Several studies of the conditioning and spectral properties of the combined
boundary integral equations exist in the canonical case when Γ is a circle or
a sphere [38, 37, 2] since a complete theory of conditioning is available. Re-
cent results [11, 12] have been obtained for more general two-dimensional
domains (convex, non-convex, polygon, starlike polygon, trapping domains)
in the case of the acoustic sound-soft scattering problem. Let us note that
the CFIE is a second-kind boundary integral equation for the sound-soft scat-
tering problem. This is no more true for the sound-hard boundary condition.
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In [11], the derived estimates show that the condition number depends on the
geometry of Γ, asymptotically as k → ∞. For instance, the dependence on
k is more pronounced for the case of a trapping obstacle than for the case of
a circle or a square. Moreover, in [12], Betcke and Spence have conjectured
numerically that the classical CFIE operator is coercive uniformly in k, for
all sufficiently large wavenumbers k, for all non-trapping domains. Then,
it is interesting to observe numerically how the OSRC-preconditioned CFIE
behaves for such scattering objects in the sound-hard case.
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Figure 10: 2-D open cavity: distribution of the eigenvalues (k = 32, nλ = 10).

First, we consider the two-dimensional trapping domain chosen by Betcke
and Spence: an open cavity of width π/5 (cf. Fig. 3-left). We take Np = 8
and θp = π/3. We draw on Fig. 10 the eigenvalues of the CFIE operators
taking k = 32 and nλ = 10. Moreover, we plot on Fig. 11 the condition
number of the two integral operators with respect to k (resp. nλ) for nλ = 10
(resp. k = 23). The eigenvalues of the CFIE operator are dispersed in the
elliptic part. Moreover, small eigenvalues close to zero appear in the hyper-
bolic zone. Consequently, the condition number of the CFIE grows with both
the mesh density nλ and the increase of k. The dependence on nλ comes from
the large-magnitude eigenvalues, and the one on k from the small-magnitude
eigenvalues. Note that most of the eigenvalues of the OSRC-preconditioned
CFIE are again well clustered around the point (1, 0). However, there are
a few small eigenvalues and at least one of them can be very close to zero
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at a resonance frequency (a multiple of 5, cf. [12]). We can observe the
phenomenon on Fig. 12 for k = 20. This leads to a light dependence (com-
pared to the CFIE) of the condition number on k accentuated at resonance
frequencies.
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Figure 11: 2-D open cavity: Condition number of the CFIE operators
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Figure 12: 2-D open cavity: Eigenvalues and condition number at resonance (k = 20).

Now, let us consider 3-D trapping domains, the cube with cavity (Fig.
3-right) and the sphere with cavity (Fig. 4). The first one is intensively
considered as a 3-D generalization of the trapping domain by Betcke and
Spence. The second domain confirms the results in a configuration where
the cavity offers a wider hidden part. Fig. 13 and Fig. 14 show that the
behavior of the eigenvalues is similar to what we already observed in the
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2-D case: dispersion in the elliptic part and eigenvalues in a neighborhood
of zero in the hyperbolic zone for the CFIE; clustering around a point near
to (1, 0) for the OSRC-preconditioned CFIE. In Fig. 15 and Fig. 16, we
compare the behavior of the condition number for both the CFIE and the
OSRC-preconditioned CFIE versus the wavenumber k or versus the mesh
density nλ. First of all, let us look at the case of the CFIE. For a fixed
wavenumber, as expected, we clearly see that the increase of the condition
number is linked to the increase of the largest eigenvalue magnitude. We
also check that the smallest-magnitude eigenvalues do not really vary and do
not affect the condition number at fixed wavenumber. On the contrary, for a
fixed mesh density, we see that the increase of the condition number is linked
to the decrease of the smallest eigenvalue magnitude and we observe that the
largest-magnitude eigenvalues do not really affect the condition number. In
the case of these domains with cavity, which generate trapping phenomena,
the OSRC-preconditioning does not completely vanish the dependencies on k
and nλ.
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Figure 13: Cube with cavity: distribution of the eigenvalues, k = 8, nλ = 9.6, Np = 8

However, this approach strongly reduces these dependencies and the condi-
tion number is very small compared to the one of the CFIE: the condition
number of the OSRC-preconditioned CFIE lies between 7 and 11 in Fig.
15-left, and between 2 and 13 in Fig. 15-right ; moreover the largest (resp.
smallest) eigenvalue magnitude of the OSRC-preconditioned CFIE is strongly
smaller (resp. larger) than the one of the CFIE.
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Figure 14: Sphere with cavity: distribution of the eigenvalues, k = 5.8, nλ = 10

For the cube with cavity, in Fig. 17, we exhibit a resonance frequency
around k = 5.2 where the OSRC-preconditioned CFIE has an eigenvalue
that comes very close to zero. In Fig. 18-left we show the condition number
versus k, in linear scale, where we considered numerous values of k, with four
different meshes, whereas Fig. 18-right offers the same graph with a semi-
logarithmic scale. To differentiate the different meshes, the curves are drawn
alternatively using dashed and solid lines for the CFIE and using dashed and
dotted lines for the OSRC-preconditioned CFIE. Fig. 18-left clearly indi-
cates that the resonance effect is attenuated by the OSRC-preconditioning.
Fig. 18-right offers another element on the behavior of the condition num-
ber versus nλ: at the interface between two meshes (change of line style in
the figure), we can observe that the values computed with a coarse mesh
are smaller than the ones computed with a finer mesh. This is clear for the
condition numbers of the CFIE. For the OSRC-preconditioned CFIE how-
ever, this phenomenon is much less visible and we can observe a very good
transition from a mesh to another. The highlighted resonance frequencies
are characterized by the presence of one or two eigenvalues close to zero:
when two of them are near zero, they are close enough to interpret them as
one eigenvalue with multiplicity 2. Moreover, it seems that this number of
eigenvalues close to zero is the same with or without preconditioning (inde-
pendently of the mesh for the case k = 5.2 where two meshes were used for
this frequency). A comparable behavior is visible for the sphere with cavity
in Fig. 19-right.
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Figure 15: Cube with cavity: Condition number, smallest and largest eigenvalue magni-
tude – left: vs. nλ, k = 4.6 ; right: vs. k, nλ = 10
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Figure 16: Sphere with cavity: condition number – left: vs. nλ, k = 5.8 ; right: vs. k,
nλ = 10
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Figure 17: Cube with cavity: Resonance case, around k = 5.2
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Finally, in Fig. 19-left, the condition number is considered versus the
Padé order for the cube with cavity. The behavior is more significative than
it is for the unit sphere considered previously. A first conclusion could be
that the Padé order has to be chosen larger for domains with cavity than for
the sphere.
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Figure 18: Cube with cavity: Condition number vs. wavenumber ; left: linear scale, right:
log scale
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dition number vs. wavenumber (log scale) for the sphere with cavity
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6.3. Cone-sphere and submarine

The cone-sphere is considered in literature for its sharp apex. We hereby
study the eigenvalue behavior for the cone-sphere presented in Section 5.
For this example, we consider the Padé order Np = 8. Fig. 20 shows the
eigenvalues of the CFIE and the OSRC-preconditioned CFIE operators tak-
ing k = 8.8 and nλ = 10. We report on Fig. 21 the condition number with
respect to the wavenumber k for the mesh density nλ = 10, and with respect
to nλ for k = 5.8. Despite the strong singularity of the geometry, the OSRC-
preconditioning technique is again as efficient as for the sphere. In Fig. 21,
for the OSRC-preconditioned CFIE, the condition number lies between 1.9
and 2.9 versus nλ and between 2.1 and 2.15 versus k.
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Figure 20: Cone-sphere: distribution of the eigenvalues, k = 8.8, nλ = 10

The submarine introduced in Section 5 is considered as a rather realistic
example. Let us remind the reader that this object is 43m long. This ex-
plains a choice of smaller wavenumbers. Once more, we consider the Padé
order Np = 8. Fig. 22 shows the eigenvalues of the CFIE and the OSRC-
preconditioned CFIE operators taking k = 2.5 and nλ = 10. Fig. 23 gives
the condition number with respect to the wavenumber k for the mesh density
nλ = 10, and with respect to nλ for k = 1.5. For the OSRC-preconditioned
CFIE, this value lies between 2.5 and 2.9 versus nλ and between 2.3 and
2.6 versus k. This behavior is also very interesting in view of an iterative
solution and even remarkable for the considered object.
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Figure 21: Cone-sphere: condition number – left: vs. k, nλ = 10 ; right: vs. nλ, k = 5.8

−1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

Real part

Im
ag

in
ar

y 
pa

rt

CFIE  ; k=2.5, nλ=10

0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

Real part

Im
ag

in
ar

y 
pa

rt
CFIE+OSRC  ; k=2.5, nλ=10, Np=8

Figure 22: Submarine: distribution of the eigenvalues, k = 2.5, nλ = 10
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Figure 23: Submarine: condition number – left: vs. k, nλ = 10 ; right: vs. nλ, k = 1.5
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7. Numerical results

This section is devoted to numerical simulations validating the OSRC-
preconditioned CFIE coupled with the single-level FMM (SLFMM). First,
we validate the numerical results with the Mie series solution of the bistatic
Radar Cross Section (RCS) of the conducting unit sphere. The RCS is given
by

RCS(θ) = 10log10(4π|a0(θ)|2), (15)

where θ is the angle of diffusion and a0(θ) the scattering amplitude. Then,
we test the method on the different scatterers considered in previous sections.
These non-smooth objects are not in the functional setting considered in this
paper for the well-posedness of the usual and OSRC-preconditioned CFIEs.
However, the usual CFIE has been solved successfully for many industrial
test-cases in this context. For all scatterers, we examine the influence of an
increase of the frequency and of a mesh density on the GMRES convergence.
The convergence criterion for all the presented examples is identical: the
iterations are stopped when the initial residual has decreased by a factor of
10−3. As expected, all numerical experiments attest the spectral analysis
described previously. The considered meshes were obtained using Gmsh [33].
All the tests were run on an Intel(R) Xeon(R) CPU - E5620- 2.40GHz.

7.1. Unit sphere

As a usual validation test, we first consider the unit sphere. For all the
presented results in this section, the incident wave is a plane wave with
incident direction −ξinc = (0, 0,−1). Concerning the complex Padé approx-
imation, we fix Np = 2. Fig. 24 shows the RCS for different wavenumbers
from k = 11.85 to k = 47.4 taking nλ = 10. One can check that the results
obtained with our approach match with the Mie Series solution. The relative
errors are given in Table 1. The OSRC-preconditioned CFIE formulation
yields the same accuracy as the CFIE.

To validate the efficiency of the preconditioner, we now focus on the
GMRES convergence versus the mesh density for a given wavenumber or
versus the wavenumber for a given mesh density. We plot in Fig. 25 the
number of iterations to reach convergence with respect to k for nλ = 10 (left)
and with respect to nλ for k = 10 (right). The number of iterations drastically
increases with both wavenumber and density of discretization per wavelength
for the codes without OSRC preconditioning (CFIE or CFIE+FMM). On
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Figure 24: Normalized RCS for various wavenumbers k (nλ = 10)

Table 1: Relative ‖ · ‖2 and ‖ · ‖∞ errors on the normalized RCS (nλ = 10)

CFIE CFIE + FMM CFIE + OSRC + FMM
k

4.76
11.85
23.7
47.4

‖ · ‖2 ‖ · ‖∞
6.3e-3 7.9e-3
2.5e-3 2.9e-3

– –
– –

‖ · ‖2 ‖ · ‖∞
5.5e-3 6.7e-3
3.9e-3 4.9e-3
1.67e-2 2.07e-2

– –

‖ · ‖2 ‖ · ‖∞
6.8e-3 8.2e-3
2.2e-3 2.3e-3
1.02e-2 9.3e-3
2.46e-2 4.21e-2

the contrary, we can see that it is independent of these two parameters when
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we use the OSRC preconditioning technique. These numerical 3-D high-
frequency tests well fit with the previous eigenvalue analysis.
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Figure 25: Unit sphere: Convergence of GMRES solver

More precisely, in Table 2, we show the CPU costs of the different codes
(with or without SLFMM ; with or without OSRC preconditioning). More
details are given in Tables 3 and 4. In these tables, we use the following
notations

• CPU time
· (T00, T0F, T0P) = precomputation (matrices [M ] and [D], close
interactions of FMM, OSRC preconditioner)
· Tg, Tit = Total CPU for the solution of the system, total CPU time
per iteration
· Tmv = Total CPU time for the computation of dense matrix-vector
products per iteration
· Tc (resp. Tf) = Total CPU for the calculation of the close (resp. far)
interactions per iteration
· To = Total CPU for the application of the OSRC preconditioner per
iteration

• Nit = Number of iterations to reach convergence of the GMRES solver

• C = CFIE ; CF = CFIE+SLFMM ; COF = CFIE+SLFMM+OSRC
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As one can see, the application of the OSRC preconditioning technique
considerably reduces the global cost of the resolution and does not really
affect the cost per iteration. Recall that the operators involved in the pre-
conditioning technique are differential operators. Then, the cost of applying
the regularizing operator Ṽ per iteration is negligible. Thus, the cost per iter-
ation is essentially the one of FMM matrix-vector products. For instance, the
global cost is multiplied by 8 when the wavenumber is multiplied by 2 from
23.7 to 47.4. This is precisely the cost of the single-level FMM (SLFMM)
since its theoretical complexity is about (k2)3/2 = k3 and 8 = 23.

Table 2: Global costs vs k taking nλ = 10

k Total CPU time Total CPU time Total CPU time
CFIE CFIE+SLFMM CFIE+SLFMM+OSRC

4.76 7 min 42” 13 min 47” 2 min 42”
11.85 9 h 43 min 4 h 33 min 32 min 40”
23.7 > 15 days 214 h 44 min 6 h 20 min
47.4 – – 48 h 48 min

Table 3: Precomputation and global resolution cost vs k taking nλ = 10

Case k T00 T0F T0P Tg Nit
C 4.76 7 min 40” - - 2”56 23
CF 4.76 - 8”34 - 13 min 13” 25
COF 4.76 - 8”34 3.6 10−2 2 min 33” 4

C 11.85 9 h 39 min - - 3 min 49” 47
CF 11.85 - 8 min 24” - 4 h 24 min 53
COF 11.85 - 8 min 24” 3.5 10−2 24 min 15” 4

CF 23.7 - 10 min 42” - 214 h 33 min 173
COF 23.7 - 10 min 39” 1”63 6 h 09 min 4

CF 47.4 - - - - -
COF 47.4 - 18 h 22 min 8”35 30 h 25 min 5

Remark 1. The use of the FMM should be discussed in this approach. Of
course, we would not have been able to run some of the tests without FMM
due to the sizes of the discretized systems, but how does the FMM impacts
on the OSRC technique ? The different tests performed show that the FMM
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Table 4: Computation costs per GMRES iteration vs k taking nλ = 10

Case k Tit Tmv Tc Tf To
C 4.76 1.1 10−1 1.1 10−1 - - -
CF 4.76 31”74 - 29”14 2”6 -
COF 4.76 38”34 - 35”24 3”09 1.8 10−2

C 11.85 4”88 4”88 - - -
CF 11.85 4 min 59” - 4 min 15” 43”84 -
COF 11.85 6 min 03” - 5 min 08” 54”73 6.4 10−2

CF 23.7 1 h 14 min - 1 h 13 min 1 min 08”
COF 23.7 1 h 32 min - 1 h 31 min 1 min 23” 2.5 10−1

CF 47.4 - - - - -
COF 47.4 6 h 05 min - 5 h 45 min 20 min 13” 1”12

does not affect the OSRC technique as far as the accuracy of the FMM is
reasonable. When the mesh density becomes too large, the problem meets
with low-frequency regimes. This is clearly visible in Fig. 26 and Table 5 for
the case nλ = 32 where the code has converged to a wrong solution.
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Figure 26: Normalized RCS for various discretization densities nλ

Remark 2. Finally, we conclude this section on the influence of the Padé
order on the convergence. For the test-case k = 47.4 and nλ = 10, we note
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that only 3 GMRES iterations are required with Np = 10 against 4 taking
Np = 4, 6, 8 and 5 for Np = 2. This corroborates the behavior of the condition
number for such a scatterer (cf. Figure 9 a)). The extra cost per iteration
added by an increase of the Padé order is negligible (a few seconds). At high-
frequencies, the global cost per iteration is about some hours (for instance
6h for k = 47.4, essentially due to the FMM cost). So, it is interesting to
increase the Padé order and save one iteration or more.

Table 5: Relative ‖ · ‖2 and ‖ · ‖∞ errors on the normalized RCS (k = 15)

CFIE CFIE + FMM CFIE + OSRC + FMM
nλ

8
16
32

‖ · ‖2 ‖ · ‖∞
4.1e-3 8.8e-3
2.5e-3 3.4e-3

– –

‖ · ‖2 ‖ · ‖∞
7.3e-3 1.1e-2
6.9e-3 1.3e-2

– –

‖ · ‖2 ‖ · ‖∞
5.4e-3 4.9e-3
5.3e-3 8.5e-3
5.3e-1 5.6e-1

7.2. Cavity domains

We consider first the cube with cavity defined in Section 6.2, hit by an
incident plane wave which generates reflexions in the cavity and given by the
incident direction −ξinc = −(

√
3/2, 0, 1/2). We consider Np = 8 in agreement

with the spectral observations in Section 6. The cost related to the OSRC
operator is still negligible compared to the cost related to the integral oper-
ators. Fig. 27 shows the RCS obtained with the code CFIE+OSRC+FMM
for different wavenumbers when the mesh density is given by nλ = 10 on left,
and the same quantity for different mesh densities when the wavenumber is
k = 8 on right. For the figure on the right, the reference solution is obtained
with the code CFIE+FMM with the mesh density nλ = 12.5 which is in the
usual framework of the FMM. GMRES residuals and the number of GMRES
iterations versus wavenumber for the mesh density nλ = 10 and versus mesh
density for the wavenumber k = 8 can be observed in Fig. 28. The number
of GMRES iterations exactly exhibits the same behavior according to both
the parameters k and nλ than the condition numbers of the CFIE operators
(cf. Section 6.2). A light peak is visible at the resonant frequency k = 20 for
the resolution of the OSRC-preconditioned CFIE (the iterative resolution of
the CFIE is out of reach at such a frequency). The efficiency of the OSRC-
preconditioned CFIE is here again highlighted. Fig. 28-d shows the residual
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behavior around a resonance frequency. Close to such a frequency, the pres-
ence of small eigenvalues, distributed away from the cluster of eigenvalues at
(1, 0), slows down convergence of the GMRES. For k = 5.2, we can observe
a plateau from iteration 7 to 12 in the GMRES residual curve. This plateau
is not present in non-resonant cases.
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Figure 27: Normalized RCS

Remark 3. In Section 7.1, we mentioned the instability of the FMM. One
could overcome the problem of low-frequency regimes by considering larger
FMM boxes but this implies an increase of the cost related to the close in-
teractions. Indeed, for the case k = 8 and nλ = 26, we first considered the
automatically suggested level of FMM boxes (level 5) and obtained the con-
vergence indicated in Fig. 28 (26 iterations) and the RCS shown in Fig. 27
(right). Then, we tried the same test case with a lower level (level 4 with
larger FMM boxes): The convergence was the same (26 iterations) and the
RCS looked very similar but the global CPU cost was multiplied by a factor
2 due to a strong increase of the close interactions. We also considered the
same test case with FMM level 5 and OSRC Padé order Np = 4 instead of 8,
and obtained convergence after 31 iterations instead of 26. This observation
may suggest that the instability of the FMM did not affect the convergence
of the code CFIE+OSRC+FMM for mesh densities up to nλ = 26, but the
choice of the Padé order has to be chosen larger for finer mesh densities in
the case of the cube with cavity as suggested by the spectral analysis.
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Figure 28: Convergence of GMRES: iterations and residuals

The second trapping domain we consider is the sphere with cavity (Fig. 4)
hit by the incident plane wave given by the incident direction −ξinc =
−(

√
3/2, 0, 1/2). Some RCS are illustrated in Fig. 29. For example, the

RCS obtained for k = 7 for various mesh densities (Fig. 29-c) are in agree-
ment with the reference solutions (Fig. 29-d): the two plots share the RCS
for nλ = 12 with the code CFIE+OSRC+FMM. The behavior of the GM-
RES solver versus the parameters k and nλ is given in Fig. 30. The results
are comparable to what we observe for the cube with cavity.
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Figure 29: Normalized RCS
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Figure 30: Convergence of GMRES: iterations and residuals
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7.3. Cone-sphere and submarine – two industrial oriented test-cases

The essential characteristic of the cone-sphere is its sharp apex toward
the direction (1, 0, 0) from its centroid. We then consider three incident
directions: (−1, 0, 0) parallel to the axis of the cone, where the incident wave
hits the cone-sphere on the sharp apex, (1, 0, 0) which hits the sphere part
of the cone-sphere, and (0, 0,−1) which hits the object perpendicularly to
its axis. Table 6 indicates how the resolution convergence depends on the
incident direction with the code CFIE or CFIE+FMM while it is not the case
for the code CFIE+OSRC+FMM. Fig. 31 and 32 give the RCS for different
incident directions, wavenumbers or mesh densities. The dependency to the
parameters k and nλ are illustrated in Fig. 33. Let us note again the benefit
of the analytical preconditioner.

Table 6: Number of iterations vs incident direction taking nλ = 8, and k = 8

Incident direction CFIE CFIE+SLFMM CFIE+SLFMM+OSRC
(-1,0,0) 171 176 7
(1,0,0) 177 182 7
(0,0,-1) 230 235 7
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Figure 31: Normalized RCS for various mesh densities, k = 8
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Figure 32: Normalized RCS for nλ = 10

5 10 15 20 25
0

50

100

150

200

250

300

k

G
M

R
E

S
 it

er
at

io
ns

Cone−sphere, nλ=10

 

 

CFIE
CFIE+FMM
CFIE+OSRC+FMM

5 10 15 20 25 30
0

50

100

150

200

nλ

G
M

R
E

S
 it

er
at

io
ns

Cone−sphere, k=8

 

 

CFIE
CFIE+FMM
CFIE+OSRC+FMM

a) GMRES iterations vs k b) GMRES iterations vs nλ

Figure 33: Convergence of GMRES: iterations and residuals

The case of the submarine is illustrated in Fig. 34-35 for the RCS
and Fig. 36 for the GMRES convergence when the incident direction is
−(

√
3/2, 0, 1/2). For k = 2.5, Fig. 35-right exhibits the stability of the RCS

versus the mesh density obtained with the code CFIE+OSRC+FMM while
Fig. 35-left indicates that the code CFIE+FMM do not offer the same prop-
erty. We can guess that this instability is related to the very low convergence
of the GMRES. On Fig. 35-left, the results labeled “Ref” were obtained
with the code CFIE+FMM for the mesh densities nλ = 10 and nλ = 16.8
and do not really match (relative (l2,l∞) differences: (0.1846, 0.4127)). On
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Fig. 35-right, the results are obtained with the code CFIE+OSRC+FMM
with mesh densities from 10 to 30 and agree to each other (relative (l2,l∞)-
differences: (0.0212, 0.0679) to (0.0280, 0.1051)). A common curve is visible
in both left and right plots of Fig. 35: nλ = 16.8 in solid-line style. The
instability essentially occurs in the illuminated zone which corresponds to
the back of the submarine. Concerning the GMRES convergence, Fig. 36
gives a behavior comparable to what we observed for the unit sphere. The
method seems suitable even for such an industrial oriented test-case.
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Figure 34: Normalized RCS: various wavenumbers, nλ = 10
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Figure 35: Normalized RCS: various mesh densities, k = 2.5
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Figure 36: Convergence of GMRES: iterations and residuals

8. Conclusion and perspectives

In this paper, we have drawn a detailed numerical study of the classical
and the OSRC-preconditioned CFIEs for the iterative solution of the acoustic
sound-hard scattering problem. The developed strategy is based on the use of
an OSRC preconditioner to accelerate the chosen iterative solver (GMRES),
and the use of the Fast Multipole Method (FMM) to reduce the iteration
cost.

A thorough study of the eigenvalue behavior was realized in order to il-
lustrate the impact of the OSRC preconditioning technique on the spectrum
of the CFIE operator. Moreover, this spectral analysis allows to precisely un-
derstand the influence of the different parameters of the technique, and more
specifically of the Padé approximation. This work shows that Padé approx-
imants are an adequate tool. It happens that even a rough approximation
leads to good preconditioning properties. As a first conclusion, this experi-
ment attests that the preconditioner fulfills the expected improvements.

The resolution scheme (OSRC preconditioning and FMM) was applied
to several numerical test-cases: for smooth and non-smooth obstacles (sin-
gularities, cavity domains). The convergence of the GMRES, with respect
to both physical and mesh parameters, corroborates the spectral analysis.
The speed of convergence is strongly improved by the OSRC preconditioning
and the application of FMM does not disturb this benefit. Consequently,
only a few GMRES iterations are required to obtain the same accuracy as
the CFIE with no preconditioning when we increase the frequency or the
mesh density. Moreover, the computation cost follows the FMM behavior:
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indeed, the algorithm complexity is essentially governed by the FMM due
to the low computation cost of the preconditioner. Combining the OSRC
preconditioner and the FMM is a very efficient approach to solve the CFIE
at high frequencies, even for trapping domains.

However, in the case of trapping domains, near the resonance frequencies,
the solver is still slightly influenced by few eigenvalues close to zero. To deal
with this issue, the deflated GMRES [43, 47] may be a response to avoid this
remaining dependance of the convergence for trapping scatterers at resonance
frequencies.

The combination presented here can be extended to the iterative res-
olution of the Maxwell exterior problem using the strategy developed in
[26, 27, 28]. The OSRC preconditioning approach has already been success-
fully applied to the impedance case [45]. In a future work, we aim to carry
out the study of the spectral behavior of the CFIE and OSRC-preconditioned
CFIE operators for Maxwell exterior problem with perfectly conducting con-
dition, and the study of the contribution of the FMM on the resolution phase.
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