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Abstract: We establish rates of convergences in time series forecasting us-
ing the statistical learning approach based on oracle inequalities. A series of
papers (e.g. [MM98, Mei00, BCV01, AW12]) extends the oracle inequalities
obtained for iid observations to time series under weak dependence condi-
tions. Given a family of predictors and n observations, oracle inequalities
state that a predictor forecasts the series as well as the best predictor in the
family up to a remainder term ∆n. Using the PAC-Bayesian approach, we
establish under weak dependence conditions oracle inequalities with optimal
rates of convergence ∆n. We extend results given in [AW12] for the abso-

lute loss function to any Lipschitz loss function with rates ∆n ∼

√
c(Θ)/n

where c(Θ) measures the complexity of the model. We apply the method
for quantile loss functions to forecast the french GDP. Under additional
conditions on the loss functions (satisfied by the quadratic loss function)
and on the time series, we refine the rates of convergence to ∆n ∼ c(Θ)/n.
We achieve for the first time these fast rates for uniformly mixing processes.
These rates are known to be optimal in the iid case, see [Tsy03], and for
individual sequences, see [CBL06]. In particular, we generalize the results
of [DT08] on sparse regression estimation to the case of autoregression.
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1. Introduction

Time series forecasting is a fundamental subject in the mathematical statistics
literature. The parametric approach contains a wide range of models associated
with efficient estimation and prediction methods, see e.g. [Ham94]. Classical
parametric models include linear processes such as ARMA models [BD09]. More
recently, non-linear processes such as stochastic volatility and ARCH models re-
ceived a lot of attention in financial applications - see, e.g., the seminal paper by
Nobel prize winner [Eng82], and [FZ10] for a more recent introduction. However,
parametric assumptions rarely hold on data. Assuming that the data satisfy a
model can biased the prediction and underevaluate the risks, see among others
the the polemical but highly informative discussion in [Tal07].

In the last few years, several universal approaches emerged from various fields
such as non-parametric statistics, machine learning, computer science and game
theory. These approaches share some common features: the aim is to build a
procedure that predicts the time series as well as the best predictor in a given set
of initial predictors Θ, without any parametric assumption on the distribution
of the observed time series. However, the set of predictors can be inspired by
different parametric or non-parametric statistical models. We can distinguish
two classes in these approaches, with different quantification of the objective,
and different terminologies:

• in the “prediction of individual sequences” approach, predictors are usu-
ally called “experts”. The objective is online prediction: at each date t, a
prediction of the future realization xt+1 is based on the previous observa-
tions x1, ..., xt, the objective being to minimize the cumulative prediction
loss. See for example [CBL06, Sto10] for an introduction.

• in the statistical learning approach, the given predictors are sometimes
referred as “models” or “concepts”. The batch setting is more classical in
this approach. A prediction procedure is built on a complete sample X1,
..., Xn. The performance of the procedure is compared on the expected
loss, called the risk, with the best predictor, called the “oracle”. The en-
vironment is not deterministic and some hypotheses like mixing or weak
dependence are required: see [Mei00, MM98, AW12].

In both settings, one is usually able to predict a time series as well as the
best model or expert, up to an error term that decreases with the number of
observations n. This type of results is referred in statistical theory as oracle in-
equalities. In other words, one builds on the basis of the observations a predictor
θ̂ such that

R(θ̂) ≤ inf
θ∈Θ

R(θ) + ∆(n,Θ) (1.1)
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where R(θ) is a measure of the prediction risk of the predictor θ ∈ Θ. In gen-
eral, the remainder term is of the order ∆(n,Θ) ∼

√

c(Θ)/n in both approaches,
where c(Θ) measures the complexity of Θ. See, e.g., [CBL06] for the “individual
sequences” approach; for the “statistical learning approach” the rate

√

c(Θ)/n
is reached in [AW12] with the absolute loss function and under a weak depen-
dence assumption. Different procedures are used to reach these rates. Let us
mention the empirical risk minimization [Vap99] and aggregation procedures
with exponential weights, usually referred as EWA [DT08, Ger11] or Gibbs es-
timator [Cat04, Cat07] in the batch approach, linked to the weighted majority
algorithm of the online approach [LW94], see also [Vov90]. Note that results
from the “individual sequences” approach can sometimes be extended to the
batch setting, see e.g. [Ger11] for the iid case, and [AD11, DAJJ12] for mixing
time series.

In this paper, we extend the results of [AW12] to the case of a general loss
function. Another improvement with respect to [AW12] is to study both the
ERM and the Gibbs estimator under various hypotheses. We achieve here in-
equalities of the form of (1.1) that hold with large probability (1 − ε for any
arbitratily small confidence level ε > 0) with ∆(n,Θ) ∼

√

c(Θ)/n. We assume
to do so that the observations are taken from a bounded stationary process (Xt)
(see [AW12] however for some possible extensions to unbounded observations).
We also assume weak dependence conditions on the process process (Xt). Then
we prove that the fast rate ∆(n,Θ) ∼ c(Θ)/n can be reached for some loss
functions including the quadratic loss. Note that [Mei00, MM98] deal with the
quadratic loss, their rate can be better than

√

c(Θ)/n but cannot reach c(Θ)/n.
Our main results are based on PAC-Bayesian oracle inequalities. The PAC-

Bayesian point of view emerged in statistical learning in supervised classification
using the 0/1-loss, see the seminal papers [STW97, McA99]. These results were
then extended to general loss functions and more accurate bounds were given,
see for example [Cat04, Cat07, Alq08, Aud10, AL11, SLCB+12, DS12]. In PAC-
Bayesian inequalities the complexity term c(Θ) is defined thanks to a prior
distribution on the set Θ.

The paper is organized as follows: Section 2 provides notations used in the
whole paper. We give a definition of the Gibbs estimator and of the ERM in
Section 3. The main hypotheses necessary to prove theoretical results on these
estimators are provided in Section 4. We give examples of inequalities of the
form (1.1) for classical set of predictors Θ in Section 5. When possible, we also
prove some results on the ERM in these settings. These results only require a
general weak-dependence type assumption on the time series to forecast. We
then study fast rates under a stronger φ−mixing assumptions of [Ibr62] in Sec-
tion 6. Note that the φ-mixing setting coincides with the one of [AD11, DAJJ12]
when (Xt) is stationary. In particular, we are able to generalize the results of
[DT08, Ger11, AL11] on sparse regression estimation to the case of autoregres-
sion. In Section 7 we provide an application to French GDP forecasting. A short
simulation study is provided in Section 8. Finally, the proofs of all the theorems
are given in Appendices A and B.
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2. Notations

Let X1, . . . , Xn denote the observations at time t ∈ {1, . . . , n} of a time series
X = (Xt)t∈Z

defined on (Ω,A,P). We assume that this series is stationary and
take values in Rp equipped with the Euclidean norm ‖ · ‖. We fix an integer
k, that might depend on n, k = k(n), and assume that family of predictors
is available:

{

fθ : (R
p)k → Rp, θ ∈ Θ

}

. For any parameter θ and any time t,
fθ (Xt−1, . . . , Xt−k) is the prediction of Xt returned by the predictor θ when
given (Xt−1, . . . , Xt−k). For the sake of shortness, we use the notation:

X̂θ
t = fθ(Xt−1, . . . , Xt−k).

We assume that θ 7→ fθ is a linear function. Let us fix a loss function ℓ that
measures a distance between the forecast and the actual realization of the series.
Assumptions on ℓ will be given in Section 4.

Definition 1. For any θ ∈ Θ we define the prediction risk as

R (θ) = E

[

ℓ
(

X̂θ
t , Xt

)]

(R(θ) does not depend on t thanks to the stationarity assumption).

Using the statistics terminology, note that we may want to include para-
metric set of predictors as well as non-parametric ones (i.e. respectively finite
dimensional and infinite dimensional Θ). Let us mention classical parametric
and non-parametric families of predictors:

Example 1. Define the set of linear autoregressive predictors as

fθ(Xt−1, . . . , Xt−k) = θ0 +

k
∑

j=1

θjXt−j

for θ = (θ0, θ1, . . . , θk) ∈ Θ ⊂ Rk+1.

In order to deal with non-parametric settings, we will also use a model-
selection type notation: Θ = ∪Mj=1Θj.

Example 2. Consider non-parametric auto-regressive predictors

fθ(Xt−1, . . . , Xt−k) =
j
∑

i=1

θiϕi(Xt−1, . . . , Xt−k)

where θ = (θ1, . . . , θj) ∈ Θj ⊂ Rj and (ϕi)
∞
i=0 is a dictionnary of functions

(Rp)k → Rp (e.g. Fourier basis, wavelets, splines...).

3. ERM and Gibbs estimator

3.1. The estimators

As the objective is to minimize the risk R(·), we use the empirical risk rn(·) as
an estimator of R(·).
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Definition 2. For any θ ∈ Θ, rn(θ) =
1

n−k
∑n
i=k+1 ℓ

(

X̂θ
i , Xi

)

.

Definition 3 (ERM estimator [Vap99]). We define the Empirical Risk Mini-
mizer estimator (ERM) by

θ̂ERM ∈ argmin
θ∈Θ

rn(θ).

Let T be a σ-algebra on Θ and M1
+(Θ) denote the set of all probability

measures on (Θ, T ). The Gibbs estimator depends on a fixed probability mea-
sure π ∈ M1

+(Θ) called the prior that will be involved when measuring the
complexity of Θ.

Definition 4 (Gibbs estimator or EWA). Define the Gibbs estimator with in-
verse temperature λ > 0 as

θ̂λ =

∫

Θ

θρ̂λ(dθ), where ρ̂λ(dθ) =
e−λrn(θ)π(dθ)
∫

e−λrn(θ′)π(dθ′)
.

The choice of π and λ in practice is discussed in Section 5.

3.2. Overview of the results

Our results assert that the risk of the ERM or Gibbs estimator is close to
infθ R(θ) up to a remainder term ∆(n,Θ) called the rate of convergence. For
the sake of simplicity, let θ ∈ Θ be such that

R(θ) = inf
θ
R(θ).

If θ does not exist, it is replaced by an approximative minimizer θα satisfying
R(θα) ≤ infθ R(θ) + α where α is negligible w.r.t. ∆(n,Θ) (e.g. α < 1/n2). We
want to prove that the ERM satisfies, for any ε > 0,

P

(

R
(

θ̂ERM
)

≤ R(θ) + ∆(n,Θ, ε)
)

≥ 1− ε (3.1)

where ∆(n,Θ, ε) → 0 as n→ ∞. We also want to prove that and that the Gibbs
estimator satisfies, for any ε > 0,

P

(

R
(

θ̂λ

)

≤ R(θ) + ∆(n, λ, π, ε)
)

≥ 1− ε (3.2)

where ∆(n, λ, π, ε) → 0 as n → ∞ for some λ = λ(n). To obtain such results
called oracle inequalities, we require some assumptions discussed in the next
section.
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4. Main assumptions

We prove oracle inequalities under assumptions of two different types. On the
one hand, assumptions LipLoss(K) and Lip(L) hold respectively on the loss
function ℓ and the set of predictors Θ. In some extent, we choose the loss function
and the predictors, so these assumptions can always be satisfied. Assumption
Margin(K) also holds on ℓ.

On the other hand, assumptionsBound(B),WeakDep(C), PhiMix(C) hold
on the dependence and boundedness of the time series. In practice, we cannot
know whether these assumptions are satisfied on data. However, remark that
these assumptions are not parametric and are satisfied for many classical mod-
els, see [Dou94, DDL+07].

Assumption LipLoss(K), K > 0: the loss function ℓ is given by ℓ(x, x′) =
g(x− x′) for some convex K-Lipschitz function g such that g(0) = 0 and g ≥ 0.

Example 3. A classical example in statistics is given by ℓ(x, x′) = ‖x − x′‖,
see [AW12]. It satisfies LipLoss(K) with K = 1. In [MM98, Mei00], the loss
function used is the quadratic loss ℓ(x, x′) = ‖x−x′‖2. It satisfies LipLoss(4B)
for time series bounded by a constant B > 0.

Example 4. The class of quantile loss functions introduced in [KB78] is given
by

ℓτ (x, y) =

{

τ (x− y) , if x− y > 0

− (1− τ) (x− y) , otherwise

where τ ∈ (0, 1) and x, y ∈ R. The risk minimizer of t 7→ E(ℓτ (V − t)) is the
quantile of order τ of the random variable V . Choosing this loss function one can
deal with rare events and build confidence intervals, see [Koe05, BC11, BP11].
In this case, LipLoss(K) is satisfied with K = max(τ, 1 − τ) ≤ 1.

Assumption Lip(L), L > 0: for any θ ∈ Θ there are coefficients aj (θ) for
1 ≤ j ≤ k such that, for any x1, ..., xk and y1, ..., yk,

‖fθ (x1, . . . , xk)− fθ (y1, . . . , yk)‖ ≤
k
∑

j=1

aj (θ) ‖xj − yj‖ ,

with
∑k
j=1 aj (θ) ≤ L.

Assumption Bound(B), B > 0: we assume that ‖X0‖ ≤ B almost surely.

Remark that under Assumptions LipLoss(K), Lip(L) and Bound(B), the
empirical risk is a bounded random variable. Such a condition is required in
the approach of individual sequences. We assume it here for simplicity but it
is possible to extend the slow rates oracles inequalities to unbounded cases see
[AW12].

Assumption WeakDep(C) is about the θ∞,n(1)-weak dependence coefficients
of [Rio00, DDL+07].
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Definition 5. For any k > 0, define the θ∞,k(1)-weak dependence coefficients
of a bounded stationary sequence (Xt) by the relation

θ∞,k(1) :=

sup
f∈Λk

1 ,0<j1<···<jk

∥

∥

∥E [f(Xj1 , . . . , Xjℓ)|Xt, t ≤ 0]− E [f(Xj1 , . . . , Xjℓ)]
∥

∥

∥

∞

where Λk1 is the set of 1-Lipshitz functions of k variables

Λk1 =

{

f : (Rp)k → R,
|f(u1, . . . , uk)− f(u′1, . . . , u

′
k)|

∑k
j=1 ‖uj − u′j‖

≤ 1

}

.

The sequence (θ∞,k(1))k>0 is non decreasing with k. The idea is that as
soon as Xk behaves“almost independently” from X0, X−1, ... then θ∞,k(1) −
θ∞,k−1(1) becomes negligible. Actually, it is known that for many classical mod-
els of stationary time series, the sequence is upper bounded, see [DDL+07] for
details.
Assumption WeakDep(C), C > 0: θ∞,k(1) ≤ C for any k > 0.

Example 5. Examples of processes satisfying WeakDep(C) are provided in
[AW12, DDL+07]. It includes Bernoulli shifts Xt = H(ξt, ξt−1, . . . ) where the
ξt are iid, ‖ξ0‖ ≤ b and H satisfies a Lipschitz condition:

‖H(v1, v2, ...)−H(v′1, v
′
2, ...)‖ ≤

∞
∑

j=0

aj‖vj − v′j‖ with

∞
∑

j=0

jaj <∞.

Then (Xt) is bounded by B = H(0, 0, ...) + bC and satisfies WeakDep(C) with
C =

∑∞
j=0 jaj. In particular, solutions of linear ARMA models with bounded

innovations satisfy WeakDep(C).
In order to prove the fast rates oracle inequalities, a more restrictive depen-

dence condition is assumed. It holds on the uniform mixing coefficients intro-
duced by [Ibr62].

Definition 6. The φ-mixing coefficients of the stationary sequence (Xt) with
distribution P are defined as

φr = sup
(A,B)∈σ(Xt,t≤0)×σ(Xt,t≥r)

|P(B/A)− P(B)|.

Assumption PhiMix(C′), C′ > 0: 1 +
∑∞

r=1

√
φr ≤ C′.

This assumption appears to be more restrictive thanWeakDep(C) for bounded
time series:

Proposition 1 ([Rio00]).

Bound(B) and PhiMix(C) ⇒ Bound(B) and WeakDep(CB).
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(This result is not stated in [Rio00] but it is a direct consequence of the last
inequality in the proof of Corollaire 1, p. 907 in [Rio00]).

Finally, for fast rates oracle inequalities, an additional assumption on the
loss function ℓ is required. In the iid case, such a condition is also required. It
is called Margin assumption, e.g. in [MT99, Alq08], or Bernstein hypothesis,
[Lec11].

Assumption Margin(K), K > 0:

E

{

[

ℓ
(

Xq+1, fθ(Xq, ..., X1)
)

− ℓ
(

Xq+1, fθ(Xq, ..., X1)
)]2
}

≤ K
[

R(θ)−R(θ)
]

.

As assumptions Margin(K) and PhiMix(C) are used only to obtain fast
rates, we give postpone examples to Section 6.

5. Slow rates oracle inequalities

In this section, we give oracle inequalities (3.1) and/or (3.2) with slow rates
of convergence ∆(n,Θ) ∼

√

c(Θ)/n. The proof of these results are given in
Section B. Note that the results concerning the Gibbs estimator are actually
corollaries of a general result, Theorem 9, stated in Section A. We introduce the
following notation for the sake of shortness.

Definition 7. When Assumptions Bound(B), LipLoss(K), Lip(L) andWeakDep(C)
are satisfied, we say that we are under the set of Assumption SlowRates(κ)
where κ = K(1 + L)(B + C)/

√
2 .

5.1. Finite classes of predictors

Consider first the toy example where Θ is finite with |Θ| = M , M ≥ 1. In
this case, the optimal rate in the iid case is known to be

√

log(M)/n, see e.g.
[Vap99].

Theorem 1. Assume that |Θ| = M and that SlowRates(κ) is satisfied for
κ > 0. Let π be the uniform probability distribution on Θ. Then the oracle
inequality (3.2) is satisfied for any λ > 0, ε > 0 with

∆(n, λ, π, ε) =
2λκ2

n (1− k/n)
2 +

2 log (2M/ε)

λ
.

The choice of λ in practice in this toy example is already not trivial. The
choice λ =

√

log(M)n yields the oracle inequality:

R(θ̂λ) ≤ R(θ) + 2

√

log(M)

n

(

κ

1− k/n

)2

+
2 log (2/ε)
√

n log(M)
.
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However, this choice is not optimal and one would like to choose λ as the mini-
mizer of the upper bound

2λκ2

n (1− k/n)
2 +

2 log (M) .

λ

However κ = κ(K,L,B, C) and the constants B and C are, usually, unknown.
In this context we will prefer the ERM predictor that performs as well as the
Gibbs estimator with optimal λ:

Theorem 2. Assume that |Θ| = M and that SlowRates(κ) is satisfied for
κ > 0. Then the oracle inequality (3.1) is satisfied for any ε > 0 with

∆(n,Θ, ε) = inf
λ>0

[

2λκ2

n (1− k/n)2
+

2 log (2M/ε)

λ

]

=
4κ

1− k/n

√

log (2M/ε)

n
.

5.2. Linear autoregressive predictors

We focus on the linear predictors given in Example 1.

Theorem 3. Consider the linear autoregressive model of AR(k) predictors

fθ(xt−1, . . . , xt−k) = θ0 +

k
∑

j=1

θjxt−j

with θ ∈ Θ = {θ ∈ Rk+1, ‖θ‖ ≤ L} such that Lip(L) is satisfied. Assume
that Assumptions Bound(B), LipLoss(K) and WeakDep(C) are satisfied. Let
π be the uniform probability distribution on the extended parameter set {θ ∈
R
k+1, ‖θ‖ ≤ L+ 1}. Then the oracle inequality (3.2) is satisfied for any λ > 0,

ε > 0 with

∆(n, λ, π, ε) =

2λκ2

n (1− k/n)
2 + 2

(k + 1) log
(

(KB∨K2B2)(L+1)
√
eλ

k+1

)

+ log (2/ε)

λ
.

In theory, λ can be chosen of the order
√

(k + 1)n to achieve the optimal

rates
√

(k + 1)/n up to a logarithmic factor. But the choice of the optimal λ
in practice is still a problem. The ERM predictor still performs as well as the
Gibbs predictor with optimal λ.

Theorem 4. Under the assumptions of Theorem 3, the oracle inequality (3.1)
is satisfied for any ε > 0 with

∆(n,Θ, ε) =

inf
λ≥2KB/(k+1)





2λκ2

n (1− k/n)2
+

(k + 1) log
(

2eKB(L+1)λ
k+1

)

+ 2 log (2/ε)

λ



 .
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The additional constraint on λ does not depend on n. It is restrictive only
when k+1, the complexity of the autoregressive model, has the same order than
n. For n sufficiently large and λ = ((1 − k/n)/κ)

√

((k + 1)n/2) satisfying the
constraint λ ≥ 2KB/(k+ 1) we obtain the oracle inequality

R(θ̂ERM ) ≤ R(θ)

+

√

2(k + 1)

n

κ

1− k/n
log

(

2e2KB(R+ 1)

κ

√

n

k + 1

)

+
2
√
2κ log (2/ε)

√

(k + 1)n (1− k/n)
.

Theorems 3 and 4 are both direct consequences of the following results about
general classes of predictors.

5.3. General parametric classes of predictors

We state a general result about finite-dimensional families of predictors. The
complexity k + 1 of the autoregressive model is replaced by a more general
measure of the dimension d(Θ, π). We also introduce some general measure
D(Θ, π) of the diameter that will, for most compact models, be linked to the
diameter of the model.

Theorem 5. Assume that SlowRates(κ) is satisfied and the existence of d =
d(Θ, π) > 0 and D = D(Θ, π) > 0 satisfying the relation

∀δ > 0, log
1

∫

θ∈Θ
1{R(θ)−R(θ) < δ}π(dθ)

≤ d log

(

D

δ

)

.

Then the oracle inequality (3.2) is satisfied for any λ > 0, ε > 0 with

∆(n, λ, π, ε) =
2λκ2

n (1− k/n)2
+ 2

d log (D
√
eλ/d) + log (2/ε)

λ
.

A similar result holds for the ERM predictor under a more restrictive as-
sumption on the structure of Θ, see Remark 1 below.

Theorem 6. Assume that

1. Θ = {θ ∈ Rd : ‖θ‖1 ≤ D},
2. ‖X̂θ1

1 − X̂θ2
1 ‖ ≤ ψ. ‖θ1 − θ2‖1 a.s. for some ψ > 0 and all (θ1, θ2) ∈ Θ2.

Assume also that Bound(B), LipLoss(K) and WeakDep(C) are satisfied and
that Lip(L) holds on the extended model Θ′ = {θ ∈ Rd : ‖θ‖1 ≤ D + 1}. Then
the oracle inequality (3.1) is satisfied for any ε > 0 with

∆(n,Θ, ε) = inf
λ≥2Kψ/d

[

2λκ2

n (1− k/n)
2 +

d log (2eKψ(D + 1)λ/d) + 2 log (2/ε)

λ

]

.
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This result yields to nearly optimal rates of convergence for the ERM predic-
tors. Indeed, for n sufficiently large and λ = ((1 − k/n)/κ)

√

(dn/2) ≥ 2Kψ/d
we obtain the oracle inequality

R(θ̂ERM ) ≤ R(θ) +

√

2d

n

κ

1− k/n
log

(

2e2Kψ(D + 1)

κ

√

n

d

)

+
2
√
2κ log (2/ε)√
dn (1− k/n)

.

Thus, the ERM procedure yields prediction that are close to the oracle with an
optimal rate of convergence up to a logarithmic factor.

Example 6. Consider the linear autoregressive model of AR(k) predictors stud-
ied in Theorems 3 and 4. Then Lip(L) is automatically satisfied with L = D+1.
The assumptions of Theorem 6 are satisfied with d = k + 1 and ψ = B. More-
over, thanks to Remark 1, the assumptions of Theorem 5 are satisfied with
D(Θ, π) = (KB ∨ K2B2)(R + 1). Then Theorems 3 and 4 are actually direct
consequences of Theorems 5 and 6.

Note that the context of Theorem 6 are less general than the one of Theo-
rem 5:

Remark 1. Under the assumptions of Theorem 6 we have for any θ ∈ Θ

R(θ)−R(θ) = E

{

g
(

X̂θ
1 −X1

)

− g
(

X̂θ
1 −X1

)

}

≤ E

{

K
∥

∥

∥X̂θ
1 − X̂θ

1

∥

∥

∥

}

≤ Kψ‖θ − θ‖1.

Define π as the uniform distribution on Θ′ = {θ ∈ Rd : ‖θ‖1 ≤ D + 1}. We
derive from simple computation the inequality

log
1

∫

θ∈Θ
1{R(θ)−R(θ) < δ}π(dθ)

≤ log
1

∫

θ∈Θ
1{‖θ − θ‖1 < δ

Kψ}π(dθ)










= d log
(

Kψ(D+1)
δ

)

when δ/Kψ ≤ 1

≤ d log (Kψ(D + 1)) otherwise.

Thus, in any case,

log
1

∫

θ∈Θ 1{R(θ)−R(θ) < δ}π(dθ)
≤ d log

(

(Kψ ∨K2ψ2)(D + 1)

δ

)

and the assumptions of Theorem 5 are satisfied for d(Θ, π) = d and D(Θ, π) =
(Kψ ∨K2ψ2)(D + 1).

As a conclusion, for some predictors set with a non classical structure, the
Gibbs estimator might be preferred to the ERM.
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5.4. Aggregation in the model-selection setting

Consider now several models of predictors Θ1, ..., ΘM and consider Θ =
⊔M
i=1 Θi

(disjoint union). Our aim is to predict as well as the best predictors among all
Θj’s, but paying only the price for learning in the Θj that contains the oracle.
In order to get such a result, let us choose M priors πj on each models such

that πj(Θj) = 1 for all j ∈ {1, ...,M}. Let π =
∑M
j=1 pjπj be a mixture of these

priors with prior weights pj ≥ 0 satisfying
∑M
j=1 pj = 1. Denote

θj ∈ arg min
θ∈Θj

R(θ)

the oracle of the model Θj for any 1 ≤ j ≤ M . For any λ > 0, denote ρ̂λ,j
the Gibbs distribution on Θj and θ̂λ,j =

∫

Θj
θρ̂λ,j(dθ) the corresponding Gibbs

estimator. A Gibbs predictor based on a model selection procedure satisfies an
oracle inequality with slow rate of convergence:

Theorem 7. Assume that:

1. Bound(B) is satisfied for some B > 0;
2. LipLoss(K) is satisfied for some K > 0;
3. WeakDep(C) is satisfied for some C > 0;
4. for any j ∈ {1, ...,M} we have

(a) Lip(Lj) is satisfied by the model Θj for some Lj > 0,

(b) there are constants dj = d(Θj , π) and Dj = c(Θj, πj) are such that

∀δ > 0, log
1

∫

θ∈Θj
1{R(θ)−R(θj) < δ}πj(dθ)

≤ dj log

(

Dj

δ

)

Denote κj = κ(K,Lj,B, C) = K(1 + Lj)(B + C)/
√
2 and define θ̂ = θ̂λĵ ,ĵ

where

ĵ minimizes the function of j

∫

Θj

rn(θ)ρ̂λj ,j(dθ) +
λjκj

n(1− k/n)2
+

K(ρ̂λj ,j , πj) + log (2/(εpj))

λj

with

λj = argmin
λ>0

[

2λκ2j

n (1− k/n)
2 + 2

dj log (Djeλ/dj) + log (2/(εpj))

λ

]

.

Then, with probability at least 1− ε, the following oracle inequality holds

R(θ̂) ≤ inf
1≤j≤M

[

R(θj) + 2
κj

1− k/n

{
√

dj
n

log

(

Dje
2

κj

√

n

dj

)

+
log (2/(εpj))
√

ndj

}]

.
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The proof is given in Appendix B. A similar result can be obtained if we
replace the Gibbs predictor in each model by the ERM predictor in each model.
The resulting procedure is known in the iid case under the name SRM (Struc-
tural Risk Minimization), see [Vap99], or penalized risk minimization, [BM01].
However, as it was already the case for a fixed model, additional assumptions
are required to deal with ERM predictors. In the model-selection context, the
procedure to choose among all the ERM predictors also depends on the unknown
κj ’s. Thus the model-selection procedure based on Gibbs predictors outperforms
the one based on the ERM predictors.

6. Fast rates oracle inequalities

6.1. Discussion on the assumptions

In this section, we study conditions under which the rate 1/n can be achieved.
These conditions are restrictive:

• now p = 1, i.e. the process (Xt)t∈Z is real-valued;
• the dependence condition WeakDep(C) is replaced by PhiMix(C);
• we assume additionally Margin(K) for some K > 0.

Let us provide some examples of processes satisfying the uniform mixing
assumption PhiMix(C). In the three following examples (ǫt) denotes an iid
sequence (called the innovations).

Example 7 (AR(p) process). Consider the stationary solution (Xt) of an
AR(p) model: ∀t ∈ Z, Xt =

∑p
j=1 ajXt−j + ǫt. Assume that (ǫt) is bounded

with a distribution possessing an absolutely continuous component. If A(z) =
∑p
j=1 ajz

j has no root inside the unit disk in C then (Xt) is a geometrically
φ-mixing processe, see [AP86] and PhiMix(C) is satisfied for some C.
Example 8 (MA(p) process). Consider the stationary process (Xt) such that
Xt =

∑p
j=1 bjǫt−j for all t ∈ Z. By definition, the process (Xt) is stationary

and φ-dependent - it is even p-dependent, in the sense that φr = 0 for r > p.
Thus PhiMix(C) is satisfied for some C > 0.

Example 9 (Non linear processes). For extensions of the AR(p) model of the
form Xt = F (Xt−1, . . . , Xt−p; ǫt), Φ-mixing coefficients can also be computed
and satisfy PhiMix(C). See e.g. [MT93].

We now provide an example of predictive model satisfying all the assumptions
required to obtain fast rates oracle inequalities, in particular Margin(K), when
the loss function ℓ is quadratic, i.e. ℓ(x, x′) = (x− x′)2:

Example 10. Consider Example 2 where

fθ(Xt−1, . . . , Xt−k) =
N
∑

i=1

θiϕi(Xt−1, . . . , Xt−k),
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for functions (ϕi)
∞
i=0 of (Rp)k to Rp, and θ = (θ1, . . . , θN) ∈ RN . Assume the ϕi

upper bounded by 1 and Θ = {θ ∈ RN , ‖θ‖1 ≤ L} such that Lip(L). Moreover
LipLoss(K) is satisfied with K = 2B. Assume that θ = argminθ∈RN R(θ) ∈ Θ
in order to have:

E

{

[

(

Xq+1 − fθ(Xq, ..., X1)
)2

−
(

Xq+1 − fθ(Xq, ..., X1)
)2
]2
}

= E

{

[

fθ(Xq, ..., X1)− fθ(Xq, ..., X1)
]2

[

2Xq+1 − fθ(Xq, ..., X1)− fθ(Xq, ..., X1)
]2
}

≤ E

{

[

fθ(Xq, ..., X1)− fθ(Xq, ..., X1)
]2

4B2(1 +R)2
}

≤ 4B2(1 +R)2
[

R(θ)−R(θ)
]

by Pythagorean theorem.

Assumption Margin(K) is satisfied with K = 4B2(1 +D)2. According to The-
orem 8 below, the oracle inequality with fast rates holds as soon as Assumption
PhiMix(C) is satisfied.

6.2. General result

We only give oracle inequalities for the Gibbs predictor in the model-selection
setting. In the case of one single model, this result can be extended to the
ERM predictor. For several models, the approach based on the ERM pre-
dictors requires a penalized risk minimization procedure as in the slow rates
case. In the fast rates case, the Gibbs predictor itself directly have nice prop-
erties. Let Θ =

⊔M
i=1 Θi (disjoint union), choose π =

∑M
j=1 pjπj and denote

θj ∈ argminθ∈Θj
R(θ) as previously.

Theorem 8. Assume that:

1. Margin(K) and LipLoss(K) are satisfied for some K, K > 0;
2. Bound(B) is satisfied for some B > 0;
3. PhiMix(B) is satisfied for some C > 0;
4. Lip(L) is satisfied for some L > 0;
5. for any j ∈ {1, ...,M}, there exist dj = d(Θj , π) and Dj = D(Θj , πj)

satisfying the relation

∀δ > 0, log
1

∫

θ∈Θj
1{R(θ)−R(θj) < δ}πj(dθ)

≤ dj log

(

Dj

δ

)

.

Then for

λ =
n− k

4kKLBC ∧ n− k

16kC
the oracle inequality (3.2) for any ε > 0 with
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∆(n, λ, π, ε)

= 4 inf
j







R(θj)−R(θ) + 4kC (4 ∨KLB)
dj log

(

Dje(n−k)
16kCdj

)

+ log
(

2
εpj

)

n− k







.

Compare with the slow rates case, we don’t have to optimize with respect
to λ as the optimal order for λ is independent of j. In practice, the value of λ
provided by Theorem 8 is too conservative. In the iid case, it is shown in [DT08]
that the value λ = n/(4σ2), where σ2 is the variance of the noise of the regression
yields good results. In our simulations results, we will use λ = n/v̂ar(X), where
v̂ar(X) is the empirical variance of the observed time series.

Notice that for the index j0 such that R(θj0) = R(θ) we obtain:

R
(

θ̂λ

)

≤

R(θ) + 4kC (4 ∨KLB) dj0 log (cj0e(n− k)/(16kCdj0)) + log (2/(εpj0))

n− k
.

So, the oracle inequality achieves the fast rate dj0/n log (n/dj0) where j0 is the
model of the oracle. However, note that the choice j = j0 does not necessarily
reach the infimum in Theorem 8.

Let us compare the rates in Theorem 8 to the ones in [Mei00, MM98, AD11,
DAJJ12]. In [Mei00, MM98], the optimal rate 1/n is never obtained. The paper
[AD11] proves fast rates for online algorithms that are also computationally
efficient, see also [DAJJ12]. The fast rate 1/n is reached when the coefficients
(φr) are geometrically decreasing. In other cases, the rate is slower. Note that
we do not suffer such a restriction. The Gibbs estimator of Theorem 8 can also
be computed efficiently thanks to MCMC procedures, see [AL11, DT08].

6.3. Corollary: sparse autoregression

Let the predictors be the linear autoregressive predictors

X̂θ
p =

p
∑

j=1

Xp−jθj .

For any J ⊂ {1, . . . , p}, define the model:

ΘJ = {θ ∈ R
p : ‖θ‖1 ≤ L and θj 6= 0 ⇔ j ∈ J}.

Let us remark that we have the disjoint union Θ =
⊔

J⊂{1,...,p} ΘJ = {θ ∈
Rp : ‖θ‖1 ≤ 1}. We choose πJ as the uniform probability measure on ΘJ and

pj = 2−|J|−1
(

p
|J|
)−1

.
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Corollary 1. Assume that θ = argminθ∈RN R(θ) ∈ Θ and PhiMix(C) is sat-
isfied for some C > 0 as well as Bound(B). Then the oracle inequality (3.2) is
satisfied for any ε > 0 with

∆(n, λ, π, ε) = 4 inf
J

{

R(θJ)−R(θ) + cst.
|J | log ((n− k)p/|J |) + log

(

2
ε

)

n− k

}

for some constant cst = cst(B, C, L).
This extends the results of [AL11, DT08, Ger11] to the case of autoregression.

Proof. The proof follows the computations of Example 10 that we do not re-
produce here: we check the conditions LipLoss(K) with K = 2B, Lip(L) and
Margin(K) with K = 4B2(1+L)2. We can apply Theorem 8 with dJ = |J | and
Dj = L.

7. Application to French GDP forecasting

7.1. Uncertainty in GDP forecasting

Every quarter t ≥ 1, the French national bureau of statistics, INSEE1, publishes
the growth rate of the French GDP (Gross Domestic Product). Since it involves
a huge amount of data that take months to be collected and processed, the
computation of the GDP growth rate log(GDPt/GDPt−1) takes a long time
(two years). This means that at time t, the value log(GDPt/GDPt−1) is actually
not known. However, a preliminary value of the growth rate is published 45 days
only after the end of the current quarter t. This value is called a flash estimate
and is the quantity that INSEE forecasters actually try to predict, at least in
a first time. As we want to work under the same constraint as the INSEE, we
will now focus on the prediction on the flash estimate and let ∆GDPt denote
this quantity. To forecast at time t, we will use:

1. the past forecastings2 ∆GDPj , 0 < j < t;
2. past climate indicators Ij , 0 < j < t, based on business surveys.

Business surveys are questionnaires of about ten questions sent monthly to a
representative panel of French companies (see [Dev84] for more details). As
a consequence, these surveys provide informations from the economic decision
makers. Moreover, they are available each end of months and thus can be used
to forecast the french GDP. INSEE publishes a composite indicator, the French
business climate indicator that summarizes information of the whole business
survey, see [CM09, DM06]. Following [Cor10], let It be the mean of the last
three (monthly based) climate indicators available for each quarter t > 0 at the
date of publication of ∆GDPt. All these values (GDP, climate indicator) are

1Institut National de la Statistique et des Etudes Economiqueshttp://www.insee.fr/
2It has been checked that to replace past flash estimates by the actual GDP growth rate

when it becomes available do not improve the quality of the forecasting [Min10].
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available from the INSEE website. Note that a similar approach is used in other
countries, see e.g. [BBR08] on forecasting the European Union GDP growth
thanks to EUROSTATS data.

In order to provide a quantification of the uncertainty of the forecasting,
associated interval confidences are usually provided. The ASA and the NBER
started using density forecasts in 1968, while the Central Bank of England and
INSEE provide their prediction with a fan chart, see ee [DTW97, TW00] for
surveys on density forecasting and [BFW98] for fan charts. However, the statis-
tical methodology used is often crude and, until 2012, the fan charts provided
by the INSEE was based on the homoscedasticity of the Gaussian forecasting
errors, see [Cor10, Dow04]. However, empirical evidences are

1. the GDP forecasting is more uncertain in a period of crisis or recession;
2. the forecasting errors are not symmetrically distributed.

7.2. Application of Theorem 6 for the GDP forecasting

Define Xt as the data observed at time t: Xt = (∆GDPt, It)
′ ∈ R2. We use the

quantile loss function (see Example 4 page 6) for some 0 < τ < 1 of the quantity
of interested ∆GDPt:

ℓτ ((∆GDPt, It), (∆
′GDPt, I

′
t))

=

{

τ (∆GDPt −∆′GDPt) , if ∆GDPt −∆′GDPt > 0

− (1− τ) (∆GDPt −∆′GDPt) , otherwise.

We use the family of forecasters proposed by [Cor10] given by the relation

fθ(Xt−1, Xt−2) = θ0+θ1∆GDPt−1+θ2It−1+θ3(It−1−It−2)|It−1−It−2| (7.1)

where θ = (θ0, θ1, θ2, θ3) ∈ Θ(B). Fix D > 0 and

Θ =

{

θ = (θ0, θ1, θ2, θ3) ∈ R
4, ‖θ‖1 =

3
∑

i=0

|θi| ≤ D

}

.

Let us denote Rτ (θ) := E [ℓτ (∆GDPt, fθ(Xt−1, Xt−2))] the risk of the forecaster

fθ and let rτn denote the associated empirical risk. We let θ̂ERM,τ denote the
ERM with quantile loss ℓτ :

θ̂ERM,τ ∈ argmin
θ∈Θ

rτn(θ).

We apply Theorem 6 as Lip(L) is satisfied Θ′ with L = D+1 and LipLoss(K)
withK = 1. If the observations are bounded, stationary such thatWeakDep(C)
holds for some C > 0, the assumptions of Theorem 6 are satisfied with ψ = B
and d = 4:
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Corollary 2. Let us fix τ ∈ (0, 1). If the observations are bounded, stationary
such that WeakDep(C) holds for some C > 0 then for any ε > 0 and n large
enough, we have

P

{

Rτ (θ̂ERM,τ ) ≤ inf
θ∈Θ

Rτ (θ) +
2κ

√
2√

n (1− 4/n)
log

(

2e2B(D + 1)
√
n

κε

)

}

≥ 1− ε.

In practice the choice of D has little importance as soon as D is large enough
(only the theoretical bound is influenced). As a consequence we take D = 100
in our experiments.

7.3. Results

The results are shown in Figure 1 for forecasting corresponding to τ = 0.5.
Figure 2 represents the confidence intervals of order 50%, i.e. τ = 0.25 and
τ = 0.75 (left) and for confidence interval of order 90%, i.e. τ = 0.05 and
τ = 0.95 (right). We report only the results for the period 2000-Q1 to 2011-Q3
(using the period 1988-Q1 to 1999-Q4 for learning).

Fig 1. French GDP forecasting using the quantile loss function with τ = 0.5.

We denote θ̂ERM,τ [t] the estimator computed at time t − 1, based on the
observations Xj, j < t. We report the online performance:

mean abs. pred. error = 1
n

∑n
t=1

∣

∣

∣∆GDPt − fθ̂ERM,0.5[t](Xt−1, Xt−2)
∣

∣

∣

mean quad. pred. error = 1
n

∑n
t=1

[

∆GDPt − fθ̂ERM,0.5[t](Xt−1, Xt−2)
]2

and compare it to the INSEE performance, see Table 1. We also report the
frequency that the GDPs fall above the predicted τ -quantiles for each τ , see
Table 2. Note that this quantity should be close to τ .
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Fig 2. French GDP online 50%-confidence intervals (left) and 90%-confidence intervals (right).

Predictor Mean absolute prediction error Mean quadratic prediction error

θ̂ERM,0.5 0.2249 0.0812
INSEE 0.2579 0.0967

Table 1

Performances of the ERM and of the INSEE.

τ Estimator Frequency

0.05 θ̂ERM,0.05 0.1739

0.25 θ̂ERM,0.25 0.4130

0.5 θ̂ERM,0.5 0.6304

0.75 θ̂ERM,0.75 0.9130

0.95 θ̂ERM,0.95 0.9782
Table 2

Empirical frequencies of the event: GDP falls under the predicted τ -quantile.

The methodology fails to forecast the importance of the 2008 subprime crisis
as it was the case for the INSEE forecaster, see [Cor10]. However, it is interesting
to note that the confidence interval is larger at that date: the forecast is less
reliable, but thanks to our adaptive confidence interval, it would have been
possible to know at that time that the prediction was not reliable. Another
interesting point is to remark that the lower bound of the confidence intervals
are varying over time while the upper bound is almost constant for τ = 0.95.
It supports the idea of asymmetric forecasting errors. A parametric model with
gaussian innovations would lead to underestimate the recessions risk.

8. Simulation study

In this section, we finally compare the ERM or Gibbs estimators to the Quasi
Maximum Likelihood Estimator (QMLE) based method used by the R function
ARMA [R D08]. The idea is not to claim any superiority of one method over
another, it is rather to check that the ERM and Gibbs estimators can be safely
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n Model Innovations ERM abs. ERM quad. QMLE

100 (8.1) Gaussian 0.1436 (0.1419) 0.1445 (0.1365) 0.1469 (0.1387)
Uniform 0.1594 (0.1512) 0.1591(0.1436) 0.1628 (0.1486)

(8.2) Gaussian 0.1770 (0.1733) 0
¯
.1699 (0.1611) 0.1728 (0.1634)

Uniform 0.1520 (0.1572) 0.1528 (0.1495) 0.1565 (0.1537)

1000 (8.1) Gaussian 0.1336 (0.1291) 0.1343 (0.1294) 0.1345 (0.1296)
Uniform 0.1718 (0.1369) 0.1729 (0.1370) 0.1732 (0.1372)

(8.2) Gaussian 0.1612( 0.1375) 0.1610 (0.1367) 0.1613 (0.1369)
Uniform 0.1696 (0.1418) 0.1687 (0.1404) 0.1691 (0.1407)

Table 3

Performances of the ERM estimators and ARMA, on the simulations. The first row “ERM
abs.” is for the ERM estimator with absolute loss, the second row “ERM quad.” for the

ERM with quadratic loss. The standard deviations are given in parentheses.

used in various contexts as their performances are close to the standard QMLE
even in the context where the series is generated from an ARMA model. It
is also the opportunity to check the robustness of our estimators in case of
misspecification.

8.1. Parametric family of predictors

Here, we compare the ERM to the QMLE.
We draw simulations from an AR(1) models (8.1) and a non linear model

(8.2):

Xt = 0.5Xt−1 + εt (8.1)

Xt = 0.5 sin(Xt−1) + εt (8.2)

where εt are iid innovations. We consider two cases of distributions for εt: the
uniform case, εt ∼ U [−a, a], and the Gaussian case, εt ∼ N (0, σ2). Note that,
in the first case, both models satisfy the assumptions of Theorem 8: there exists
a stationary solutions (Xt) that is φ-mixing when the innovations are uniformly
distributed and WeakDep(C) is satisfied for some C > 0. This paper does
not provide any theoretical results for the Gaussian case as it is unbounded.
However, we refer the reader to [AW12] for truncations techniques that allows
to deal with this case too. We fix σ = 0.4 and a = 0.70 such that V ar(ǫt) ≃ 0.16
in both cases. For each model, we simulate first a sequence of length n and
then we predict Xn using the observations (X1, . . . , Xn−1). Each simulation is
repeated 100 times and we report the mean quadratic prediction errors on the
Table 3.

It is interesting to note that the ERM estimator with absolute loss performs
better on model (8.1) while the ERM with quadratic loss performs slightly better
on model (8.2). The difference tends be too small to be significative, however,
the numerical results tends to indicate that both methods are robust to model
mispecification. Also, both estimators seem to perform better than the R QMLE
procedure when n = 100, but the differences tends to be less perceptible when
n grows.
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Table 4

Performances of the Gibbs, AIC and “full model” predictors on simulations.

n Model Innovations Gibbs AIC Full Model

100 (8.3) Uniform 0.165 (0.022) 0.165 (0.023) 0.182 (0.029)
Gaussian 0.167 (0.023) 0.161 (0.023) 0.173 (0.027)

(8.4) Uniform 0.163 (0.020) 0.169 (0.022) 0.178 (0.022)
Gaussian 0.172 (0.033) 0.179 (0.040) 0.201 (0.049)

(8.5) Uniform 0.174 (0.022) 0.179 (0.028) 0.201 (0.040)
Gaussian 0.179 (0.025) 0.182 (0.025) 0.202 (0.031)

1000 (8.3) Uniform 0.163 (0.005) 0.163 (0.005) 0.166 (0.005)
Gaussian 0.160 (0.005) 0.160 (0.005) 0.162 (0.005)

(8.4) Uniform 0.164 (0.004) 0.166 (0.004) 0.167 (0.004)
Gaussian 0.160 (0.008) 0.161 (0.008) 0.163 (0.008)

(8.5) Uniform 0.171 (0.005) 0.172 (0.006) 0.175 (0.006)
Gaussian 0.173 (0.009) 0.173 (0.009) 0.176 (0.010)

8.2. Sparse autoregression

To illustrate Corollary 1, we compare the Gibbs predictor to the model selection
approach of the ARMA procedure in the R software. This procedure computes
the QMLE estimator in each AR(p) model, 1 ≤ p ≤ q, and then selects the order
p by Akaike’s AIC criterion [Aka73]. The Gibbs estimator is computed using a
Reversible Jump MCMC algorithm as in [AL11]. The parameter λ is taken as
λ = n/v̂ar(X), the empirical variance of the observed time series.

We draw the data according to the following models:

Xt = 0.5Xt−1 + 0.1Xt−2 + εt (8.3)

Xt = 0.6Xt−4 + 0.1Xt−8 + εt (8.4)

Xt = cos(Xt−1) sin(Xt−2) + εt (8.5)

where εt are iid innovations. We still consider the uniform (εt ∼ U [−a, a]) and
the Gaussian (εt ∼ N (0, σ2)) cases with σ = 0.4 and a = 0.70. We compare
the Gibbs predictor performances to those of the estimator based on the AIC
criterion and to the QMLE in the AR(q) model, so called “full model”. For each
model, we first simulate a time series of length 2n, use the observations 1 to
n as a learning set and n + 1 to 2n as a test set, for n = 100 and n = 1000.
Each simulation is repeated 20 times and we report in Table 4 the mean and
the standard deviation of the empirical quadratic errors for each method and
each model.

Note that the Gibbs predictor performs better on Models (8.4) and (8.5)
while the AIC predictor performs slightly better on Model (8.3). The difference
tends to be negligible when n grows - this is coherent with the fact that we
develop here a non-asymptotic theory. Note that the Gibbs predictor performs
also well in the case of a Gaussian noise where the boundedness assumption is
not satisfied.
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Appendix A: A general PAC-Bayesian inequality

Theorems 1 and 5 are actually both corollaries of a more general result that we
would like to state for the sake of completeness. This result is the analogous of
the PAC-Bayesian bounds proved by Catoni in the case of iid data [Cat07].

Theorem 9 (PAC-Bayesian Oracle Inequality for the Gibbs estimator). Let us
assume that LowRates(κ) is satisfied for some κ > 0. Then, for any λ, ε > 0
we have

P

{

R
(

θ̂λ

)

≤ inf
ρ∈M1

+(Θ)

[

∫

Rdρ+
2λκ2

n (1− k/n)2
+

2K(ρ, π) + 2 log (2/ε)

λ

]}

≥ 1− ε.

This result is proved in Appendix B, but we can now provide the proofs of
Theorems 1 and 5.
Proof of Theorem 1.We apply Theorem 9 for π = 1

M

∑

θ∈Θ δθ and restrict the inf
in the upper bound to Dirac masses ρ ∈ {δθ, θ ∈ Θ}. We obtain K(ρ, π) = logM ,

and the upper bound for R(θ̂λ) becomes:

R
(

θ̂λ

)

≤ inf
ρ∈{δθ,θ∈Θ}

[

∫

Rdρ+
2λκ2

n (1− k/n)
2 +

2 log (2M/ε)

λ

]

= inf
θ∈Θ

[

R(θ) +
2λκ2

n (1− k/n)
2 +

2 log (2M/ε)

λ

]

.

�

Proof of Theorem 5. An application of Theorem 9 yields that with probability
at least 1− ε

R(θ̂λ) ≤ inf
ρ∈M1

+(Θ)

[

∫

Rdρ+
2λκ2

n (1− k/n)
2 +

2K(ρ, π) + 2 log (2/ε)

λ

]

.

Let us estimate the upper bound at the probability distribution ρδ defined as

dρδ
dπ

(θ) =
1{R(θ)−R(θ) < δ}

∫

t∈Θ 1{R(t)−R(θ) < δ}π(dt)
.

Then we have:

R
(

θ̂λ

)

≤ inf
δ>0

[

R(θ) + δ +
2λκ2

n (1− k/n)
2

+ 2
− log

∫

t∈Θ
1{R(t)− infΘR < δ}π(dt) + log

(

2
ε

)

λ

]

.
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Under the assumptions of Theorem 5 we have:

R
(

θ̂λ

)

≤ inf
δ>0

[

R(θ) + δ +
2λκ2

n (1− k/n)
2 + 2

d log (D/δ) + log
(

2
ε

)

λ

]

.

The infimum is reached for δ = d/λ and we have:

R
(

θ̂λ

)

≤ R(θ) +
2λκ2

n (1− k/n)
2 + 2

d log (D
√
eλ/d) + log

(

2
ε

)

λ
.

�

Appendix B: Proofs

B.1. Preliminaries

We will use Rio’s inequality [Rio00] that is an extension of Hoeffding’s inequality
in a dependent context. For the sake of completeness, we provide here this result
when the observations (X1, . . . , Xn) come from a stationary process (Xt)

Lemma 1 (Rio [Rio00]). Let h be a function (Rp)n → R such that for all x1,
..., xn, y1, ..., yn ∈ Rp,

|h(x1, . . . , xn)− h(y1, . . . , yn)| ≤
n
∑

i=1

‖xi − yi‖. (B.1)

Then, for any t > 0, we have

E (exp(t {E [h(X1, . . . , Xn)]− h(X1, . . . , Xn)})) ≤ exp
( t2n (B + θ∞,n(1))

2

2

)

.

Others exponential inequalities can be used to obtain PAC-Bounds in the con-
text of time series: the inequalities in [Dou94, Sam00] for mixing time series, and
[DDL+07, Win10] under weakest “weak dependence” assumptions, [SLCB+12]
for martingales. Lemma 1 is very general and yields optimal low rates of con-
vergence. For fast rates of convergence, we will use Samson’s inequality that is
an extension of Bernstein’s inequality in a dependent context.

Lemma 2 (Samson [Sam00]). Let N ≥ 1, (Zi)i∈Z be a stationary process on Rk

and φZr denote its φ-mixing coefficients. For any measurable function f : Rk →
[−M,M ], any 0 ≤ t ≤ 1/(MK2

φZ ), we have

E(exp(t(SN (f)− ESN (f)))) ≤ exp
(

8KφZNσ2(f)t2
)

,

where SN (f) :=
∑N

i=1 f(Zi), KφZ = 1 +
∑N

r=1

√

φZr and σ2(f) = Var(f(Zi)).
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Proof of Lemma 2. This result can be deduced easily from the proof of Theorem
3 of [Sam00] which states a more general result on empirical processes. In page
457 of [Sam00], replace the definition of fN (x1, . . . , xn) by fN (x1, . . . , xn) =
∑n
i=1 g(xi) (following the notations of [Sam00]). Then check that all the argu-

ments of the proof remain valid, the claim of Lemma 2 is obtained page 460,
line 7. �

We also remind the variational formula of the Kullback divergence.

Lemma 3 (Donsker-Varadhan [DV76] variational formula). For any π ∈ M1
+(E),

for any measurable upper-bounded function h : E → R we have:

∫

exp(h)dπ = exp

(

sup
ρ∈M1

+(E)

(∫

hdρ−K(ρ, π)

)

)

. (B.2)

Moreover, the supremum with respect to ρ in the right-hand side is reached for
the Gibbs measure π{h} defined by π{h}(dx) = eh(x)π(dx)/π[exp(h)].

Actually, it seems that in the case of discrete probabilities, this result was
already known by Kullback (Problem 8.28 of Chapter 2 in [Kul59]). For a com-
plete proof of this variational formula, even in the non integrable cases, we refer
the reader to [DV76, Cat, Cat07].

B.2. Technical lemmas for the proofs of Theorems 2, 6, 7 and 9

Lemma 4. We assume that LowRates(κ) is satisfied for some κ > 0. For any
λ > 0 and θ ∈ Θ we have

E

(

eλ(R(θ)−rn(θ))
)

∨ E
(

eλ(rn(θ)−R(θ))
)

≤ exp
( λ2κ2

n (1− k/n)
2

)

.

Proof of Lemma 4. Let us fix λ > 0 and θ ∈ Θ. Let us define the function h by:

h(x1, . . . , xn) =
1

K(1 + L)

n
∑

i=k+1

ℓ(fθ(xi−1, . . . , xi−k), xi).

We now check that h satisfies (B.1), remember that ℓ(x, x′) = g(x− x′) so

∣

∣

∣h (x1, . . . , xn)− h (y1, . . . yn)
∣

∣

∣

≤ 1

K(1 + L)

n
∑

i=k+1

∣

∣

∣g(fθ(xi−1, . . . , xi−k)− xi)− g(fθ(yi−1, . . . , yi−k)− yi)
∣

∣

∣

≤ 1

1 + L

n
∑

i=k+1

∥

∥

∥

(

fθ(xi−1, . . . , xi−k)− xi
)

−
(

fθ(yi−1, . . . , yi−k)− yi
)

∥

∥

∥
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where we used Assumption LipLoss(K) for the last inequality. So we have

∣

∣

∣
h (x1, . . . , xn)− h (y1, . . . yn)

∣

∣

∣

≤ 1

1 + L

n
∑

i=k+1

(

∥

∥

∥fθ(xi−1, . . . , xi−k)− fθ(yi−1, . . . , yi−k)
∥

∥

∥+
∥

∥

∥xi − yi

∥

∥

∥

)

≤ 1

1 + L

n
∑

i=k+1





k
∑

j=1

aj(θ)‖xi−j − yi−j‖+ ‖xi − yi‖





≤ 1

1 + L

n
∑

i=1



1 +

k
∑

j=1

aj(θ)



 ‖xi − yi‖ ≤
n
∑

i=1

‖xi − yi‖

where we used Assumption Lip(L). So we can apply Lemma 1 with h(X1, . . . , Xn) =
n−k

K(1+L)rn(θ), E(h(X1, . . . , Xn)) =
n−k

K(1+L)R(θ), and t = K(1 + L)λ/(n− k):

E

(

eλ[R(θ)−rn(θ)]
)

≤ exp
(λ2K2(1 + L)2 (B + θ∞,n(1))

2

2n (1− k/n)2

)

≤ exp
(λ2K2(1 + L)2 (B + C)2

2n
(

1− k
n

)2

)

by Assumption WeakDep(C). This ends the proof of the first inequality. The
reverse inequality is obtained by replacing the function h by −h. �

We are now ready to state the following key Lemma.

Lemma 5. Let us assume that LowRates(κ) is satisfied satisfied for some
κ > 0. Then for any λ > 0 we have

P



















∀ρ ∈ M1
+(Θ),

∫

Rdρ ≤
∫

rndρ+
λκ2

n(1−k/n)2 + K(ρ,π)+log(2/ε)
λ

and
∫

rndρ ≤
∫

Rdρ+ λκ2

n(1−k/n)2 + K(ρ,π)+log(2/ε)
λ



















≥ 1− ε. (B.3)

Proof of Lemma 5. Let us fix θ > 0 and λ > 0, and apply the first inequality of
Lemma 4. We have:

E

(

exp
(

λ
(

R(θ)− rn(θ)−
λκ2

n (1− k/n)
2

)))

≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). An
application of Fubini’s Theorem yields

E

∫

exp
(

λ(R(θ) − rn(θ))−
λ2κ2

n (1− k/n)
2 − log (2/ε)

)

π(dθ) ≤ ε

2
.
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We apply Lemma 3 and we get:

E exp
(

sup
ρ

{

λ

∫

(R(θ)− rn(θ))ρ(dθ) −
λ2κ2

n (1− k/n)
2 − log (2/ε)−K(ρ, π)

})

≤ ε

2
.

As ex ≥ 1R+(x), we have:

P

{

sup
ρ

{

λ

∫

(R(θ)− rn(θ)) ρ(dθ)−
λ2κ2

n (1− k/n)2
− log (2/ε)−K(ρ, π)

}

≥ 0

}

≤ ε

2
.

Using the same arguments than above but starting with the second inequality
of Lemma 4:

E exp
(

λ
(

rn(θ)−R(θ)− λκ2

n (1− k/n)
2

)))

≤ 1.

we obtain:

P

{

sup
ρ

{

λ

∫

[rn(θ)−R(θ)] ρ(dθ) − λ2κ2

n
(

1− k
n

)2 − log

(

2

ε

)

−K(ρ, π)

}

≥ 0

}

≤ ε

2
.

A union bound ends the proof. �

The following variant of Lemma 5 will also be useful.

Lemma 6. Let us assume that LowRates(κ) is satisfied satisfied for some
κ > 0. Then for any λ > 0 we have

P



















∀ρ ∈ M1
+(Θ),

∫

Rdρ ≤
∫

rndρ+
λκ2

n(1−k/n)2 + K(ρ,π)+log(2/ε)
λ

and

rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 + log(2/ε)
λ



















≥ 1− ε.

Proof of Lemma 6. Following the proof of Lemma 5 we have:

P

{

sup
ρ

{

λ

∫

(R(θ)− rn(θ)) ρ(dθ)−
λ2κ2

n (1− k/n)
2 − log (2/ε)−K(ρ, π)

}

≥ 0

}

≤ ε

2
.

Now, we use the second inequality of Lemma 4, with θ = θ:

E

(

exp
(

λ
(

rn(θ)−R(θ)− λκ2

n (1− k/n)
2

)))

≤ 1.

But then, we directly apply Markov’s inequality to get:

P

{

rn(θ) ≥ R(θ) +
λκ2

n (1− k/n)2
+

log (2/ε)

λ

}

≤ ε

2
.

Here again, a union bound ends the proof. �
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B.3. Proof of Theorems 9 and 7

In this subsection we prove the general result on the Gibbs predictor.
Proof of Theorem 9. We apply Lemma 5. So, with probability at least 1− ε we
are on the event given by (B.3). From now, we work on that event. The first
inequality of (B.3), when applied to ρ̂λ(dθ), gives

∫

R(θ)ρ̂λ(dθ) ≤
∫

rn(θ)ρ̂λ(dθ) +
λκ2

n (1− k/n)
2 +

1

λ
log (2/ε) +

1

λ
K(ρ̂λ, π).

According to Lemma 3 we have:
∫

rn(θ)ρ̂λ(dθ) +
1

λ
K(ρ̂λ, π) = inf

ρ

(∫

rn(θ)ρ(dθ) +
1

λ
K(ρ, π)

)

so we obtain

∫

R(θ)ρ̂λ(dθ) ≤ inf
ρ

{

∫

rn(θ)ρ(dθ) +
λκ2

n (1− k/n)2
+

K(ρ, π) + log (2/ε)

λ

}

.

(B.4)
We now estimate from above r(θ) by R(θ). Applying the second inequality
of (B.3) and plugging it into Inequality B.4 gives

∫

R(θ)ρ̂λ(dθ) ≤ inf
ρ

{

∫

Rdρ+
2

λ
K(ρ, π) +

2λκ2

n (1− k/n)
2 +

2

λ
log (2/ε)

}

.

We end the proof by the remark that θ 7→ R(θ) is convex and so by Jensen’s

inequality
∫

R(θ)ρ̂λ(dθ) ≥ R
(∫

θρ̂λ(dθ)
)

= R(θ̂λ). �

Proof of Theorem 7. Let us apply Lemma 5 in each model Θj, with a fixed
λj > 0 and confidence level εj > 0. We obtain, for all j,

P























∀ρ ∈ M1
+(Θj),

∫

Rdρ ≤
∫

rndρ+
λjκ

2
j

n(1−k/n)2 +
K(ρ,πj)+log(2/εj)

λj

and
∫

rndρ ≤
∫

Rdρ+
λjκ

2
j

n(1−k/n)2 +
K(ρ,πj)+log(2/εj)

λj























≥ 1− εj.

We put εj = pjε, a union bound gives leads to:

P



























∀j ∈ {1, ...,M}, ∀ρ ∈ M1
+(Θj),

∫

Rdρ ≤
∫

rndρ+
λjκ

2
j

n(1−k/n)2 +
K(ρ,πj)+log

(

2
εpj

)

λj

and
∫

rndρ ≤
∫

Rdρ+
λjκ

2
j

n(1−k/n)2 +
K(ρ,πj)+log

(

2
εpj

)

λj



























≥ 1− ε. (B.5)

From now, we only work on that event of probability at least 1−ε. Remark that

R(θ̂) = R(θ̂λĵ ,ĵ
)
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≤
∫

R(θ)ρ̂λĵ ,ĵ
(dθ) by Jensen’s inequality

≤
∫

rnρ̂λĵ ,ĵ
(dθ) +

λjκ
2
j

n (1− k/n)2
+

K(ρ̂λĵ ,ĵ
, πj) + log

(

2
εpj

)

λj

by (B.5)

= inf
1≤j≤M







∫

rnρ̂λj ,j(dθ) +
λjκ

2
j

n (1− k/n)
2 +

K(ρ̂λj ,j , πj) + log
(

2
εpj

)

λj







by definition of ĵ

= inf
1≤j≤M

inf
ρ∈M1

+(Θj)







∫

rnρ(dθ) +
λjκ

2
j

n (1− k/n)2
+

K(ρ, πj) + log
(

2
εpj

)

λj







by Lemma 3

≤ inf
1≤j≤M

inf
ρ∈M1

+(Θj)







∫

Rρ(dθ) +
2λjκ

2
j

n (1− k/n)
2 + 2

K(ρ, πj) + log
(

2
εpj

)

λj







by (B.5) again

≤ inf
1≤j≤M

inf
δ>0







R(θj) + δ +
2λjκ

2
j

n (1− k/n)
2 + 2

dj log (Dj/δ) + log
(

2
εpj

)

λj







by restricting ρ as in the proof of Cor. 5 page 10

≤ inf
1≤j≤M







R(θj) +
2λjκ

2
j

n (1− k/n)
2 + 2

dj log
(

Djeλj

dj

)

+ log
(

2
εpj

)

λj







by taking δ =
dj
λj

= inf
1≤j≤M







R(θj) + inf
λ>0







2λκ2j

n (1− k/n)
2 + 2

dj log
(

Djeλ
dj

)

+ log
(

2
εpj

)

λ













by definition of λj

≤ inf
1≤j≤M







R(θj) + 2
κj

1− k/n







√

dj
n

log

(

Dje
2

κj

√

n

dj

)

+
log
(

2
εpj

)

√

ndj













.

�

B.4. Proof of Theorems 2 and 6

Let us now prove the results about the ERM.
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Proof of Theorem 2. We choose π as the uniform probability distribution on Θ
and λ > 0. We apply Lemma 6. So we have, with probability at least 1− ε,

{

∀ρ ∈ M1
+(Θ

′),
∫

Rdρ ≤
∫

rndρ+
λκ2

n(1−k/n)2 + K(ρ,π)+log(2/ε)
λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 + log(2/ε)
λ .

We restrict the inf in the first inequality to Dirac masses ρ ∈ {δθ, θ ∈ Θ} and
we obtain:







∀θ ∈ Θ, R(θ) ≤ rn(θ) +
λκ2

n(1−k/n)2 +
log( 2M

ε )
λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 + log(2/ε)
λ .

In particular, we apply the first inequality to θ̂ERM . We remind that θ minimizes
R on Θ and that θ̂ERM minimizes rn on Θ, and so we have

R(θ̂ERM ) ≤ rn(θ̂
ERM ) +

λκ2

n (1− k/n)2
+

log(M) + log (2/ε)

λ

≤ rn(θ) +
λκ2

n (1− k/n)
2 +

log(M) + log (2/ε)

λ

≤ R(θ) +
2λκ2

n (1− k/n)
2 +

log(M) + 2 log (2/ε)

λ

≤ R(θ) +
2λκ2

n (1− k/n)
2 +

2 log (2M/ε)

λ
.

The result still holds if we choose λ as a minimizer of

2λκ2

n (1− k/n)
2 +

2 log (2M/ε)

λ
.

�

Proof of Theorem 6. We put Θ′ = {θ ∈ Rd : ‖θ‖1 ≤ D+1}. We choose π as the
uniform probability distribution on Θ′. We apply Lemma 6. So we have, with
probability at least 1− ε,

{

∀ρ ∈ M1
+(Θ

′),
∫

Rdρ ≤
∫

rndρ+
λκ2

n(1−k/n)2 + K(ρ,π)+log(2/ε)
λ

and rn(θ) ≤ R(θ) + λκ2

n(1−k/n)2 + log(2/ε)
λ .

So for any ρ,

R(θ̂ERM ) =

∫

[R(θ̂ERM )−R(θ)]ρ(dθ) +

∫

Rdρ

≤
∫

[R(θ̂ERM )−R(θ)]ρ(dθ) +

∫

rndρ+
λκ2

n (1− k/n)
2 +

K(ρ, π) + log (2/ε)

λ

≤
∫

[R(θ̂ERM )−R(θ)]ρ(dθ) +

∫

[rn(θ)− rn(θ̂
ERM )]ρ(dθ) + rn(θ̂

ERM )



P. Alquier et al./Prediction of time series 33

+
λκ2

n (1− k/n)2
+

K(ρ, π) + log (2/ε)

λ

≤ 2Kψ

∫

‖θ − θ̂ERM‖1ρ(dθ) + rn(θ) +
λκ2

n (1− k/n)2
+

K(ρ, π) + log (2/ε)

λ

≤ 2Kψ

∫

‖θ − θ̂ERM‖1ρ(dθ) +R(θ) +
2λκ2

n (1− k/n)
2 +

K(ρ, π) + 2 log (2/ε)

λ
.

Now we define, for any δ > 0, ρδ by

dρδ
dπ

(θ) =
1{‖θ − θ̂ERM‖ < δ}

∫

t∈Θ′ 1{‖t− θ̂ERM‖ < δ}π(dt)
.

So in particular, we have, for any δ > 0,

R(θ̂ERM ) ≤ 2Kψδ +R(θ)

+
2λκ2

n (1− k/n)
2 +

log 1
∫

t∈Θ′ 1{‖t−θ̂ERM‖<δ}π(dt) + 2 log (2/ε)

λ
.

But for any δ ≤ 1,

− log

∫

t∈Θ′

1{‖t− θ̂ERM‖ < δ}π(dt) = d log

(

D + 1

δ

)

.

So we have

R(θ̂ERM ) ≤ inf
δ≤1

{

2Kψδ +R(θ) +
2λκ2

n (1− k/n)
2 +

d log
(

D+1
δ

)

+ 2 log (2/ε)

λ

}

.

We optimize this result by taking δ = d/(2λKψ), which is smaller than 1 as
soon as t ≥ 2Kψ/d, we get:

R(θ̂ERM ) ≤ R(θ) +
2λκ2

n (1− k/n)2
+
d log

(

2eKψ(D+1)t
d

)

+ 2 log (2/ε)

λ
.

We just choose λ as the minimizer of the r.h.s., subject to t ≥ 2Kψ/d, to end
the proof. �

B.5. Some preliminary lemmas for the proof of Theorem 8

Lemma 7. Under the hypothesis of Theorem 8, we have, for any θ ∈ Θ, for
any 0 ≤ λ ≤ (n− k)/(2kKLBC),

E exp

{

λ

[(

1− 8kCλ
n− k

)

(

R(θ)−R(θ)
)

− r(θ) + r(θ)

]}

≤ 1,

and

E exp

{

λ

[(

1 +
8kCλ
n− k

)

(

R(θ)−R(θ)
)

− r(θ) + r(θ)

]}

≤ 1.
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Lemma 7. We apply Lemma 2 to N = n− k, Zi = (Xi+1, . . . , Xi+k),

f(Zi) =
1

n− k

[

R(θ)−R(θ)

− ℓ (Xi+k, fθ(Xi+k−1, . . . , Xi+1)) + ℓ
(

Xi+k, fθ(Xi+k−1, . . . , Xi+1)
)2
]

,

and so
SN(f) = [R(θ)−R(θ)− r(θ) + r(θ)],

and the Zi are uniformly mixing with coefficients φZr = φ⌊r/q⌋. Note that 1 +
∑n−q
r=1

√

φZr = 1 +
∑n−q
r=1

√

φ⌊r/k⌋ ≤ k C by PhiMix(C). For any θ and θ′ in Θ
let us put

V (θ, θ′) = E

{

[

ℓ
(

Xk+1, fθ(Xk, ..., X1)
)

− ℓ
(

Xk+1, fθ′(Xk, ..., X1)
)]2
}

.

We are going to apply Lemma 2. Remark that σ2(f) ≤ V (θ, θ)/(n− k)2. Also,

∣

∣

∣ℓ (Xi+k, fθ(Xi+k−1, . . . , Xi+1))− ℓ
(

Xi+k, fθ(Xi+k−1, . . . , Xi+1)
)

∣

∣

∣

≤ K
∣

∣fθ(Xi+k−1, . . . , Xi+1)− fθ(Xi+k−1, . . . , Xi+1)
∣

∣ ≤ KLB

where we used LipLoss(K) for the first inequality and Lip(L) and PhiMix(B, C)
for the second inequality. This implies that ‖f‖∞ ≤ 2KLB/(n− k), so we can
apply Lemma 2 for any 0 ≤ λ ≤ (n− k)/(2kKLBC)], we have

lnE exp
[

λ
(

R(θ)−R(θ)− r(θ) + r(θ)
)]

≤ 8kCV (θ, θ)λ2

n− k
.

Notice finally that Margin(K) leads to

V (θ, θ) = K
[

R(θ)−R(θ)
]

This proves the first inequality of Lemma 7. The second inequality is proved
exacly in the same way, but replacing f by −f .

We are now ready to state the following key Lemma.

Lemma 8. Under the hypothesis of Theorem 8, we have, for any 0 ≤ λ ≤
(n− k)/(2kKLBC), for any 0 < ε < 1,

P























∀ρ ∈ M1
+(Θ),

(

1− 8kCλ
n−k

)

(∫

Rdρ−R(θ)
)

≤
∫

rdρ− r(θ) + K(ρ,π)+log(2/ε)
λ

and
∫

rdρ− r(θ) ≤
(∫

Rdρ−R(θ)
)

(

1 + 8kCλ
n−k

)

+ K(ρ,π)+log(2/ε)
λ























≥ 1− ε.
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Proof of Lemma 8. Let us fix ε, λ and θ ∈ Θ, and apply the first inequality of
Lemma 7. We have:

E exp

{

λ

[(

1− 8kCλ
n− k

)

(

R(θ)−R(θ)
)

− r(θ) + r(θ)

]}

≤ 1,

and we multiply this result by ε/2 and integrate it with respect to π(dθ). Fubini’s
Theorem gives:

E

∫

exp

{

λ

[

(

1− 8kCλ
n− k

)

(

R(θ)−R(θ)
)

− r(θ) + r(θ) + log(ǫ/2)

]}

π(dθ)

≤ ε

2
.

We apply Lemma 3 and we get:

E exp

{

sup
ρ
λ

[

(

1− 8kCλ
n− k

)(∫

Rdρ−R(θ)

)

−
∫

rdρ+ r(θ)

+ log(ǫ/2)−K(ρ, π)

]}

≤ ε

2
.

As ex ≥ 1R+(x), we have:

P

{

sup
ρ
λ

[

(

1− 8kCλ
n− k

)(∫

Rdρ−R(θ)

)

−
∫

rdρ + r(θ)

+ log(ǫ/2)

]

−K(ρ, π) ≥ 0

}

≤ ε

2
.

Let us apply the same arguments starting with the second inequality of Lemma 7.
We obtain:

P

{

sup
ρ
λ

[

(

1 +
8kCλ
n− k

)(

R(θ)−
∫

Rdρ

)

− r(θ) +

∫

rdρ

+ log(ǫ/2)−K(ρ, π)

]

≥ 0

}

≤ ε

2
.

A union bound ends the proof. �

B.6. Proof of Theorem 8

Proof of Theorem 8. Fix 0 ≤ λ = (n − k)/(4kKLBC) ∧ (n − k)/(16kC) ≤
(n− k)/(2kKLBC). Applying Lemma 8, we assume from now that the event of
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probability at least 1− ε given by this lemma is satisfied. In particular we have
∀ρ ∈ M1

+(Θ),

∫

Rdρ−R(θ) ≤
∫

rdρ − r(θ) + K(ρ,π)+log(2/ε)
λ

(

1− 8kCλ
n−k

) .

In particular, thanks to Lemma 3, we have:

∫

Rdρ̂λ −R(θ) ≤ inf
ρ∈M1

+(Θ)

∫

rdρ− r(θ) + K(ρ,π)+log(2/ε)
λ

(

1− 8kCλ
n−k

) .

Now, we apply the second inequality of Lemma 8:

∫

Rdρ̂λ −R(θ)

≤ inf
ρ∈M1

+(Θ)

(

1 + 8kCλ
n−k

)

[∫

Rdρ−R(θ)
]

+ 2K(ρ,π)+log(2/ε)
λ

(

1− 8kCλ
n−k

)

≤ inf
j

inf
ρ∈M1

+(Θj)

(

1 + 8kCλ
n−k

)

[∫

Rdρ−R(θ)
]

+ 2
K(ρj,π)+log

(

2
εpj

)

λ
(

1− 8kCλ
n−k

)

≤ inf
j

inf
δ>0

(

1 + 8kCλ
n−k

)

[

R(θj) + δ −R(θ)
]

+ 2
dj log

(

Dj
δ

)

+log
(

2
εpj

)

λ
(

1− 8kCλ
n−k

)

by restricting ρ as in the proof of Theorem 5. First, notice that our choice
λ ≤ (n− k)/(16kC) leads to

∫

Rdρ̂λ −R(θ) ≤ 2 inf
j

inf
δ>0







3

2

[

R(θj) + δ −R(θ)
]

+ 2
dj log

(

Dj

δ

)

+ log
(

2
εpj

)

λ







≤ 4 inf
j

inf
δ>0







R(θj) + δ −R(θ) +
dj log

(

Dj

δ

)

+ log
(

2
εpj

)

λ







.

Taking δ = dj/λ leads to

∫

Rdρ̂λ −R(θ) ≤ 4 inf
j







R(θj)−R(θ) +
dj log

(

Djeλ
dj

)

+ log
(

2
εpj

)

λ







.

Finally, we replace the last occurences of λ by its value:
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∫

Rdρ̂λ −R(θ)

≤ 4 inf
j







R(θj)−R(θ) + (16kC ∨ 4kKLBC)
dj log

(

Dje(n−k)
16kCdj

)

+ log
(

2
εpj

)

n− k







.

Jensen’s inequality leads to:

R
(

θ̂λ

)

−R(θ)

≤ 4 inf
j







R(θj)−R(θ) + 4kC (4 ∨KLB)
dj log

(

Dje(n−k)
16kCdj

)

+ log
(

2
εpj

)

n− k







.

�
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