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1 Context

Classification rule mining aims to extract, from known data, rules predicting a chosen fact – called
class, which can be for example cardiovascular risk in a medical context. The following rule is an
example of what can be extracted:

diabetes and age > 70 → cardiovascular risk

Training data is composed of observations (sells, credit approvals, patients. . . ), each of them having
some attributes (e.g.: items sold, salary, diagnosis. . . ). The obtained prediction rules are under-
standable, in contrast to models found by neural networks or support vector machines. Decision
trees (C4.5, Oblique-DT, DT-GA) are another popular method but have a drawback when multiple
contexts can explain a same class, since they are not able to find overlapping rules. This can happen
in medical data, e.g. cardiovascular risk is higher when both high blood pressure and diabetes are
found than when only diabetes or high blood pressure is found.

2 Multi-objective local search for classification rule mining

A large number of available rules can be generated from a small number of attributes; exploring
all of them to extract only the interesting ones is a costly task, even impossible when a lot of
attributes are available. Therefore combinatorial optimization methods are candidate methods to
deal with rule mining: they are able to deal with large search spaces. Two major rule encodings are
available; Michigan is the common one, where each solution is a single rule. In Pittsburgh encoding
each solution is a set of rules. This encoding increases the search space and adds complexity for
mutation and cross-over operators but allows finding complementary rules, like in medical data.
Accuracy is often used as a fitness function. Accuracy measure counts good classifications provided
by a rule: true positives and false negatives, over all classifications given by this rule. A rule with an
accuracy of 1 makes no wrong classification, while a rule with an accuracy of 0.7 is wrong for 30%
of observations. Another popular criterion is Minimum description length (MDL) principle [4], an
application of Occam’s razor: given two equivalent rules, the simplest rule (the shortest) must be
preferred.

Multi-objective approach can handle mining rules on multiple criteria, obtaining rules having both
good performance and simplicity. Many multi-objective methods were proposed for rule mining
and most of them are detailed in Srinivasan and Ramkrishnan’s review [5]. Methods using an ag-
gregation of objectives can give interesting results, like learning classifier systems (LCS), including
GAssist [1] and XCS [6]. Most of them are based on genetic algorithms, especially NSGA-II. But
one of them uses GRASP which is a greedy algorithm.

We propose a multi-objective model, based on 2 criteria: maximizing accuracy and minimizing
the number of terms (MDL principle). We implemented a Dominance-based multi-objective local
search (DMLS), which is a population-based local search algorithm dedicated to multi-objective
and has proven to give at least as good results as NSGA-II on several problems [3]. Moreover,
DMLS is easier to parameter than a GA and does not need any cross-over operator. Our solution
encoding is Pittsburgh. Each of our rules-sets contains only partial classification rules (e.g.: only
rules predicting cardiovascular risk), avoiding rule inconsistency.
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3 Results

3.1 Experimentations

Fernández et al compared 22 state-of-the-art classification rule mining algorithms on 30 datasets,
providing their obtained accuracy on each dataset [2]. We compared our method to the results they
obtained. In the proposed datasets, we selected 5 of them with less continuous attributes since our
model was designed to handle discrete attributes. When continuous attributes were available (crx,
hea and hep datasets), we discretized each attribute in 10 bins. According to Fernández et al
protocol, our algorithm was run 25 times for each dataset. Datasets are split into 5-fold cross-
validation: 20% of observations in each fold. Then 4 folds are used for training, 1 for evaluation.
For each available partition, the algorithm was run 5 times. After each run, obtained rule sets are
merged into one rule set, on which we can compute accuracy.
Results are available in Table 3.1. We selected among the 22 available, the 10 algorithms giving
the best results. For each dataset (bre, crx, hea, hep, tic) we selected the best obtained accuracy
by these algorithms. Then we computed the relative error to the best for each algorithm. A value
of 0 indicates the algorithm that obtained the best accuracy. Our results are available in the first
column.

MOCA XCS SIA Oblique-DT CORE Gassist OCEC DT-GA HIDER C4.5

bre 0.0000 0.0074 0.0795 0.1672 0.0325 0.0200 0.1333 0.0278 0.0000 0.0144
crx 0.0008 0.0067 0.2404 0.0727 0.0411 0.0060 0.0000 0.0043 0.0625 0.0124
hea 0.0686 0.0194 0.1563 0.0759 0.0675 0.0000 0.0259 0.0352 0.0962 0.0056
hep 0.0500 0.0000 0.0667 0.0750 0.1111 0.0472 0.1222 0.0944 0.0639 0.1250
tic 0.2650 0.1448 0.0000 0.0971 0.2965 0.0467 0.1860 0.1716 0.2991 0.1400

Table 1. Relative error to the best for some state-of-the-art classification rule mining algorithms

MOCA: Multi-Objective Classifier Algorithm, SIA: Supervised Inductive Algorithm, Oblique-DT: Oblique
Decision Tree, CORE: CO-Evolutionary Rule Extractor, GAssist: Genetic Algorithms based claSSIfier
sySTem, OCEC: Organizational Co-Evolutionary algorithm for Classification, DT-GA: Hybrid Decision
Tree - Genetic Algorithm, HIDER: HIerarchical DEcision Rules

3.2 Discussion

Table 3.1 shows that our method obtained the best solutions on bre dataset. When outperformed,
it is each time by different algorithms, moreover on crx the obtained accuracy is very close to
the best. Furthermore, these results are obtained with a local search, which is easier to configure
than most of evaluated algorithms that are GA. Bad results on tic and hea datasets suggest
neighborhood operators may be weak regarding those used by GA: GAssist with a similar model
but more operators obtained better results. A future work could focus on improving our operators.
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