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Abstract:
Modeling techniques evolved a lot during the last half century. Acceleration models used for
microscopic traffic simulation are heterogeneous. For instance, differential equation based models
are different from agent based ones. Comparison of those models is a difficult task because studies
are often conducted based on a suitable and particular theory, usually not applicable to all
models. So we propose to use the hysteresis loops to understand and compare models regardless
of the used modeling technique. We show how this study can reflect important properties of the
models in order to compare them.
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1. INTRODUCTION

There is a wide range of models available to simulate
and study the properties of a traffic flow. Usual classi-
fication (Hoogendoorn and Bovy (2001)) recognizes two
main families of models: macroscopic and microscopic.
The macroscopic models allow to study the evolution of
macroscopic order variables of a traffic such as the density
of vehicles, the average speed and the output rate. The mi-
croscopic models study individual entities composing the
traffic: the vehicles. Those models deal with microscopic
variables such as individual position and speed. The inter-
action among individual entities results in a consistent and
hopefully realistic traffic flow. Two aspects are considered
in microscopic models: acceleration and lane changing. In
this paper we only consider acceleration models, used to
determine the acceleration of a particular vehicle according
to the vehicles in front. Those models are usually referred
to as “car-following” models.

During the last 50 years, modeling and simulation tech-
niques have significantly evolved, resulting in a hetero-
geneous variety of acceleration models (Brackstone and
McDonald (1999)). The first models in the car-following
area were based on dynamical equations (see for instance
Gazis et al. (1961)). Those equations have been then en-
riched to integrate physical values used by drivers in their
decision making process (such as Gipps (1981)). Artificial
intelligence (AI) and multi-agent systems (MAS) allowed
to develop even more realistic models based on a wide va-
riety of theories and techniques such as fuzzy logic theory
(Kikuchi and Chakroborty (1992)), constraint satisfaction
(Doniec et al. (2006)) or game theory (Champion et al.
(2003)).

Even if those models are used to study the same phe-
nomenon (the vehicle’s acceleration) and its consequences

at a macroscopic level (resulting flow, emergence of stop
& go waves. . . ), the variety of tools used makes the study
of those models difficult. Finding the most suitable model
for a given situation is then a challenging task. Bench-
marking has been conducted in Brockfeld et al. (2003) to
determine the most realistic resulting flow. However this
approach does not give any information on how individual
entities actually behave and how they can influence the
macroscopic properties of the traffic.

In this paper we propose to use the hysteresis phenomenon
to study and understand car-following models while being
independent of the modeling techniques. The hysteresis
loop can be used to understand the dynamics of a model,
reflect its anticipation capabilities and study the propaga-
tion of a perturbation along a platoon of vehicles.

Section 2 presents the models we selected for this study,
then Section 3 presents the hysteresis phenomenon and its
application to study driver behavior. Section 4 describes
the experimental protocol and Section 5 presents the
results we obtained. Finally, Section 6 discusses the results
and gives some further work perspectives.

2. MODELS

We selected three car-following models for this study. Each
model determines at a given point of time the vehicle’s
acceleration. The first model is described with a simple
dynamic equation, the second introduces physical values
involved in the decision making process of drivers and
the third is an agent based model. Figure 1 summarizes
naming conventions used across this paper.

2.1 Optimal Velocity (OV)

The OV model, proposed by Bando et al. (1994), is
based on the following principle : for each situation there



Fig. 1. Naming conventions used in model description :
the nth vehicle follows the (n−1)th vehicle. The front
bumper’s position of the nth vehicle is called xn, its
velocity ẋn, and its acceleration ẍn. We call ln the
length of the nth vehicle. The gap available in front
of the vehicle is ∆xn = xn−1 − ln−1 − xn.

is an optimal speed to adopt. Any deviation from this
optimal speed causes the vehicle to adopt an acceleration
proportional to the difference between the optimum and
the actual speed.

This behavior is expressed in the following equation:

ẍn = an (V (∆xn)− ẋn) (1)

Where V (∆x) is the optimal velocity for a given situation
represented by the available gap, an is a parameter of the
model influencing how strong the reaction is.

The optimal velocity function used in this paper is inspired
from the one proposed in Bando et al. (1994). The function
maintains the main properties of the one previously used
but introduces a parameter vn0 to specify the desired speed
of the vehicle :

V (∆x) =

(
tanh

(
2∆x

vn0
− 2

)
+ tanh(2)

)
∗ v

n
0

2
(2)

2.2 Intelligent Driver Model (IDM)

The IDM model, proposed by Treiber et al. (2000), is
designed as the aggregation of two behaviors : the first one
leads the vehicle to accelerate until it reaches its desired
speed, the second one forces it to decelerate to maintain a
safe gap ahead.

The model is described as follow :

ẍn = an

[
1−

(
ẋn
vn0

)δ
−
(
s∗n(ẋn,∆vn)

∆x

)2
]

(3)

Where an is the maximum acceleration of the nth vehicle,
vn0 its desired speed, δ the acceleration exponent and
∆vn is the approaching rate of the leading vehicle given
by ∆vn = ẋn − ẋn−1. s∗n is a function that calculates
the desired gap to maintain for a particular (speed /
approaching rate) couple :

s∗n(ẋn,∆vn) = sn0 + sn1

√
ẋn
vn0

+ Tnẋn +
ẋn∆vn

2
√
anbn

(4)

Where Tn is the safe time headway, bn represents the
conformable deceleration, and sn0 and sn1 are jam distance
parameters.

Equation 3 reflects the two sub-behaviors of IDM :

an

(
1− (ẋn/v

n
0 )
δ
)

is the acceleration part on a free road

and −an (s∗n (ẋn,∆vn) /∆x)
2

represents the part influ-
enced by other vehicles applying a constraint and forcing
the vehicle to decelerate to maintain the situation safe.

2.3 Archisim

The Archisim model, presented in Espié et al. (1994), is
based on in-depth studies conducted by driving psycholo-
gists and developed with MAS techniques. The behavior of
an Archisim vehicle is influenced not only by the leading
vehicle, but by potentially all the surrounding vehicles.
During each time step, the vehicle receives a list of its
acquaintances (vehicles in perception range). From this
list, it determines which one of the vehicles down the road
causes the biggest constraint (causes the biggest deceler-
ation). The constraint is then classified as short term or
long term depending on the context and a corresponding
strategy is adopted as proposed in Espié et al. (2007). A
short term constraint corresponds to a situation where the
constraint is known to reduce with no particular action of
the driver.

The short term strategy consists in maintaining short
minimal bumper to bumper time given by the Sbbt param-
eter. The bumper to bumper time is defined as the time
necessary for the front bumper of the follower vehicle to
reach the position of the rear bumper of the leader vehicle.
Thus, we can deduce a minimal gap to maintain given by
the expression ∆xmin = ẋn ∗ Sbbt.
If the vehicle chooses the long term strategy, the minimal
safe bumper to bumper time is given by Ebbt = αnSbbt +
(1−αn)Lbbt with Ebbt the effective bumper to bumper time
targeted, Lbbt the longest bumper to bumper time and αn
a vehicle specific parameter.

3. THE HYSTERESIS LOOP

The hysteresis, from Greek husteros meaning “coming
after”, is the lag of a reaction compared to its cause. It
was first introduced by the physicist James Alfred Ewing
as follows :

When there are two quantities M and N ,
such that cyclic variations of N cause cyclic
variation of M, then if the changes of M lag
behind those of N , we may say that there is
hysteresis in the relation of M and N .

Figure 2 shows the graphical representation of the hys-
teresis phenomenon. The loop shows the values taken by
the reaction as a function of the effect. The reaction shows
different values for the same effect when this effect changes.

In this paper, we suppose that for each stable value of
the effect there is one stable value of the reaction and it
is unique. When the system is in a situation where both
effect and reaction are stable, the system is told to be in
an equilibrium state. Figure 2 shows what could be the
equilibrium states on the dashed line.
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Fig. 2. Hysteresis phenomenon showing the lag of the
reaction compared to the effect.

In traffic theory, Bando et al. (1994) observed that when
stop and go waves appear, it is possible to plot on a
graph the speed of individual vehicles as a function of the
gap available in front of them and obtain an hysteresis
loop. Other authors did notice this property in Jiang
et al. (2001); Helbing and Tilch (1998); Bando et al.
(1998); Davis (2003) and discussed the influence of model
parameters on the loop’s size and shape.

We present here an interpretation of the hysteresis loop
where the cause is a constraint applied to a vehicle — a
vehicle present in front of it, given by the gap available
— and the reaction is the behavior of the vehicle given
by its speed. In this interpretation, the equilibrium states
correspond to desired states the models will eventually
converge to. The equilibrium states are also considered as
optimal because they represent the state where a vehicle
can, given a particular gap, maximize its speed while
staying safe. Any point below the equilibrium state is
considered as under constrained and any point above is
over constrained.

4. SIMULATION PROTOCOL

The three selected models are tested in the same envi-
ronment. We selected the Archisim platform (Espié et al.,
1994) to conduct this experiment because it allows us to:

• create a repeatable scenario,
• record simulation traces (individual vehicle trajecto-

ries),
• select or define the model used to guide the vehicle in

the simulation.

This platform also provides the reference implementation
for the Archisim model so we only had to add the two
remaining models through two new kind of vehicle agents.

The scenario developed in this study involves a platoon of
vehicles we want to study led by a controlled vehicle on
a straight one lane free road. The speed and acceleration
of the leader vehicle are controlled by the modeler. This
allows to apply a known and controlled constraint on the
platoon to study its reactions. For each studied model,
the scenario is instantiated with the same leader vehicle,
assuring a comparable constraint.

During a simulation run, the leader’s speed varies to
study the reaction of the platoon following it. The leader’s
speed changes from 4 to 22 m.s−1 and vice-versa. Each
speed variation, of an intensity of 3 m.s−2, occurs every 2
minutes. The follower can thus adapt to the new constraint

Table 1. Parameters used during this study

Model Parameter Value

OV a 1.0

IDM T 1.2s

IDM a 0.8m.s−2

IDM b 1.25m.s−2

IDM s0 1m

IDM s1 10m

IDM δ 3

Archisim Sbbt 0.7s

Archisim Lbbt 2.5s

Archisim α 0.5

* v0 25m.s−1

and eventually join a new equilibrium state before the
leader changes its speed again.

Inside the platoon, all the studied vehicles are given the
same set of parameters. The desired speed is the same
for all the three models: 25 m.s−1. The model-specific
parameters are set to the values originally proposed by
the authors. The parameters for IDM are from Treiber
et al. (2000), those for OV are from Bando et al. (1994)
and those for Archisim are the default values provided by
the authors. Table 1 summarizes the parameters used.

5. RESULTS AND HYSTERESIS LOOP’S
INTERPRETATION

In this section we present the equilibrium states and
simulation results of each model.

5.1 Equilibriums

To analytically identify equilibriums, we have to find
points of the (gap / speed) plan where the acceleration
adopted by the vehicle is null. For each model we have to
solve the equation AM (∆x, ẋ) = 0 where AM represents
the acceleration given by a particular model M.

The calculation for OV is straightforward. Considering
the optimal velocity function proposed in Equation 2, the
equilibrium line is given by :

V (∆xn) =
v0

(
tahn

(
2∆xn

vn0
− 2
)

+ tanh(2)
)

2
(5)

For the IDM model, we have to consider that the approach-
ing rate is null : ∆ẋn = 0. This hypothesis was also used
by Treiber in Treiber et al. (2000) to determine stable flow.
The equilibrium line is then given by :

∆xn(ẋn) =
sn0 + sn1

√
ẋn

vn0
+ Tnẋn√

1−
(
ẋn

vn0

)δ (6)

For Archisim, we consider that an equilibrium state is
reached when the bumper to bumper time is the one given
by the long term strategy. Indeed the short term strategy
cannot be, given its definition, stable over time. Also, once
the vehicle reaches its desired speed, it will not continue
to accelerate. As a consequence, the equilibrium line for
the Archisim model can be expressed as :



0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

ẋ
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Fig. 3. Equilibrium states for the three studied models.

ẋn (∆xn) = Min

(
∆xn

αSbbt + (1− α)Lbbt
, vn0

)
(7)

The same results for equilibrium states have been ap-
proached experimentally by setting stable flows at different
speeds and recording the behavior adopted by vehicles.

Figure 3 summarizes the three theoretical equilibriums. It
can provides important elements of comparison because
gaps and speeds have immediate implication on macro-
scopic variables such as flow density and speed. If all
vehicles are in stable state, the flow is stable with the same
speed as individual vehicles. Also, with the approximation
of vehicles length, the flow density is the reverse of indi-
vidual gap head. Some authors discussed the impact of
different microscopic parameters on macroscopic variable
(Treiber et al. (2000)).

Considering the parameters we used in this study, for
every speed adopted by the leader, the Archisim model
heads for smaller gaps than the other models, implying
higher density. For small speeds (less than about 12m.s−1),
the OV model goes for bigger gaps than IDM. On the
opposite, for high speeds, the IDM model adopts very large
gaps compared to the two others models, implying lower
concentration. Finally, we can deduce from those results
that a IDM platoon can not travel at desired speed because
the equilibrium line never reaches it.

Those results do not provide any information about the
dynamic behavior of the models and how they actually
adapt to a constraint variation.

5.2 Delay and anticipation

We focus on the results obtained after using the scenario
described in Section 4. The objective is to be able to study
how a model operates the transition from one equilibrium
state to another when the constraint applied to the vehicle
changes. In this section, we only consider the hysteresis
loop of the vehicle immediately following the leader. For
each observed loop, we first propose an interpretation and
then link it to the knowledge we have about the models to
validate that the hysteresis loop reflects the behavior.

Figure 4 — representing the reaction of an OV vehicle
— has one half of the hysteresis loop staying below the
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Fig. 4. Reaction of an OV vehicle to a constraint varying
between 4m.s−1 and 22m.s−1

equilibrium line, and the other half above. This shape is
similar to usual hysteresis loops seen in general literature.
The part below corresponds to the growth of the available
gap during the acceleration phase. During this phase,
for all the given gaps, the associated velocity is below
the optimal one. The constraint applied to the vehicle is
therefore lower than the optimal one, letting the vehicle
free to accelerate in order to join the equilibrium line. The
deceleration phase (above the equilibrium) has analogous
properties and shows that the vehicle only decelerates
when it is in an over constrained situation.

This information perfectly matches the description made
of the model. It is purely reactive and only engages
reaction when a variation from optimal state is detected.
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Fig. 5. Reaction of a IDM vehicle to a constraint varying
between 4m.s−1 and 22m.s−1

Figure 5 represents the adaptation of the IDM model on
the same constraint’s variation. The overall shape of the
hysteresis phenomenon drawn is still a loop. Moreover,
when the follower’s speed matches the leader’s one (at
4 and 22 m.s−1), the vehicle is in an equilibrium state.
However, there is a clear distinction to make with the OV
model : the loop is nearly always below the equilibrium
line. This position of the loop shows that during almost all
the speed transitions, the IDM model maintains the vehicle
in an under constrained situation. This reveals two prop-
erties of the model. First during the acceleration phase,
the IDM vehicle’s reaction lags compared to the constraint
variation, exactly like a OV vehicle does. Second, during
the deceleration phase, the vehicle manages to anticipate
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Fig. 6. Reaction of an Archisim vehicle to a constraint
varying between 4m.s−1 and 22m.s−1

the reduction of the gap before it happens and reduces its
speed early. This clearly shows the ability of the model to
anticipate the constraint’s variation.

Those results reflect the initial description of the model
given in Section 2. We mentioned the fact that IDM is
an aggregation of two sub-behaviors. One manages the
acceleration, the other manages the deceleration and takes
into account the approaching rate of the leading vehicle.
Knowledge of the approaching rate allows the model to
anticipate the future reduction of the available gap and
explains the anticipation capabilities exhibited by this
model.

Finally, we study the hysteresis loop for the Archisim
model (see Figure 6). This loop has distinctive properties
compared to the two previous ones. It has an “8” shape :
at some point the trace of the acceleration phase is above
the deceleration phase and at some point it is below. First,
we consider the deceleration phase given by the straight
line on the loop. It exactly matches the equilibrium line
meaning that there is no hysteresis when decelerating. The
model manages to maintain an optimal reaction during
this phase. The acceleration phase is slightly more complex
because the vehicle is, at the beginning of the acceleration
phase, above the equilibrium line and, at the end, under
the equilibrium line. This loop shows that, at least for the
beginning of the acceleration, the follower chooses to be in
an over constrained situation.

Once again, those observations match the original descrip-
tion of the model. During the acceleration phase, the leader
vehicle is considered as a short term constraint because it
goes faster and is accelerating. Those two properties imply
that the available gap will continue to grow, making the
constraint weak. The position of the acceleration phase
above the equilibrium line is considered as an expression
of the anticipation capabilities of the model, exactly like
the fact that the deceleration phase of IDM being below
the equilibrium reflects anticipation.

5.3 Propagation of a perturbation

The previous part was about the interpretation of the hys-
teresis phenomenon on a single vehicle. We now consider
a platoon of 30 vehicles and study the propagation of the
hysteresis phenomenon in this context.
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Fig. 7. Study of a platoon of 30 vehicles using the Optimal
Velocity model. Top figure shows hysteresis for the
vehicle number 1, 2, 6, 10, 14, 18, 22 and 26 in the
platoon and bottom figure shows hysteresis to equi-
librium pseudo distance evolution along the platoon

For this study we introduce a notion of pseudo distance
between the hysteresis loop and the equilibrium line. This
distance is defined as the maximum difference between
the equilibrium speed and the velocity used by the vehicle
during the simulation.

Figure 7 represents the evolution of the hysteresis loop
along a platoon of OV vehicles. In this figure, the first
vehicle’s loop is in the center and as we get closer to
the tail of the platoon, the loop area gets bigger. At the
end of the platoon, the loops seem to reach a final state
comparable to an attractor. Those readings are confirmed
by the second part of Figure 7 that shows an augmentation
of the distance between equilibrium and the hysteresis
loops on the 10 first vehicles. After this first phase, the
distance gets stable around 6.8m/s. Figure 7 also shows
that the first vehicle has a speed variation comparable to
the one applied by the modeler from 4 to 22m/s. At the
end of the platoon, the speed variation has changed to
become a variation from 0.9 to 22.4m/s which is a clear
augmentation. Finally, even if the perturbation is tending
to something different from what we modeled, we can
still observe singular points at speed 4 and 22m/s. This
corresponds to the stable flow maintained by the platoon
for a long time compared to the phase transitions.

Those results are coherent with the ones already exposed
in literature. First, the emergence of a stable hysteresis
loop after some time, independent of initial perturbation,
was originally observed by Bando et al. (1994). This is
a limit behavior observable during stop and go waves.
This property was used in Nakanishi et al. (1997) to
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Fig. 8. Evolution of the hysteresis loop across a platoon of
30 IDM vehicles

simplify the calculation. The author supposed that the
behavior of a given vehicle at time t is the same as the
one of its predecessor shortly before. Analogous properties
are used in other models such as Newell (1993) and
present interesting results. Even if the hysteresis loop
validates this approach (only after few vehicles to let the
perturbation get stable), it cannot give any information
about temporality: it does not give information on the time
elapsed between the reactions of the two vehicles.

Figure 8 represents the propagation of a perturbation
across a platoon of IDM vehicles. To reduce overlaps on
the graphs, top figure only represents the hysteresis loop
for vehicle 10, given the fact that all loops starting from
vehicle number 2 share similar properties. It shows a “8”
shape, but has to be distinguished from the one obtained in
Figure 6 because the rotations are in opposite directions. It
shows the deceleration phase above the acceleration phase
for small gaps, and the opposite for large gaps. We can
observe that the deceleration phase is really similar to
the one observed in Figure 4. However, the acceleration
phase seems stronger here because the leader is also an
IDM vehicle, with similar acceleration capabilities, leading
to a higher grade. This shape has to be linked to the
results obtained by Zhang (1999) at microscopic level, who
studied similar “8” shapes on the (density / speed) plan.

Middle part of Figure 8 shows that along the platoon,
the pseudo distance between the hysteresis loop of the
vehicles and the equilibrium tends to reduce unlike what
is observed in Figure 7. Also, we notice that considering
our scenario, each vehicle in the platoon reaches a lower
maximal speed compared to its predecessor as shown in
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Fig. 9. Study of a platoon of 30 vehicles using the Archisim
model.

the bottom part of Figure 8. This reflects a really slow
convergence to the final equilibrium considering that in a
2 minutes phase, the last vehicle does not have time to
reach “full” speed. This propagation pattern has opposite
properties compared with OV showed in Figure 7.

Figure 9 shows the evolution of the propagation on an
Archisim platoon. All the loops starting from the position
number 2 present a triangular shape on the bottom left
part. Even if the overall shape is not the same with the first
vehicle, they share this property of exhibiting anticipation
for early stages of acceleration. All the triangles share
really similar shapes with a scaling factor between them.
The reduction of the triangle size is interpreted as follow :
it corresponds to the acceleration phase where each vehicle
can perceive that the platoon is accelerating. During this
phase each vehicle considers that the maximal constraint
perceived is temporary and as a consequence accepts
a small gap head. When the acceleration of the leader
stops, each follower vehicle begins to consider it as a
long term constraint and as a consequence tries to reach
the equilibrium line. This transition corresponds to the
horizontal lines. During the acceleration of the platoon,
each vehicle is moving slightly faster than the one behind
it, so when the leader stops accelerating each vehicle has
its own speed, smaller than its predecessors. This explains
why from one vehicle to its follower, the size of the triangle
gets smaller. Bottom part of Figure 9 confirms it and
shows that after 20 vehicles, the hysteresis loops match the
equilibrium line, reflecting the disappearance of hysteresis
in those vehicle’s behavior. Basically when the leader stops
its acceleration, the 20th hasn’t started its own.

It is really important at this point to notice the time-
independent nature of the hysteresis loop. During this



scenario we know that all the vehicles react to the same
stimuli happening at a particular point in time. However
a simple reading of the evolution of hysteresis loops is
not enough to reach this conclusion and we need to add
additional knowledge to get a complete understanding of
the situation, such as adding a temporal dimension.

6. CONCLUSION AND PERSPECTIVES

In this paper we used the hysteresis loop to understand and
compare behaviors produced by different models. Studying
the hysteresis phenomenon is an natural approach to eval-
uate a reaction as a function of the stimulus causing it. It is
thus useful to study the reaction and the adaptation of an
agent, in a dynamic environment. We showed that study
of hysteresis loops allows to identify key properties of a
behavior such as delay in reaction, anticipation capabilities
and limit behavior in a platoon through comparison be-
tween equilibrium states and actual behavior. The results
presented are consistent with the ones obtained by original
authors of the models, but are obtained independently of
the modeling technique used.

For each studied model, we determined the equilibrium
state using analytical and simulation studies. Both ap-
proaches lead to the same information so the experimental
approach is adequate to study those models as black boxes.
However, there is no guaranty that this is sufficient for
any model. As an example, stochastic models can accept
surfaces to reflect states that have a high probability of
being stable. Simple protocol will then not be enough
to experimentally determine what are the desired states,
which is a mandatory information to conduct the analysis.
Determination of those equilibrium states on any “black-
box” model is still an open issue that needs to be addressed
to extend the validity of our approach.
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Champion, A., Espié, S., Mandiau, R., Auberlet, J., and
Kolski, C. (2003). A game-based, multi-agent coordina-
tion mechanism-application to road traffic and driving
simulations. In Summer Computer Simulation Confer-
ence, 644–649. Society for Computer Simulation Inter-
national; 1998.

Davis, L. (2003). Modifications of the optimal velocity
traffic model to include delay due to driver reaction
time. Physica A: Statistical Mechanics and its Appli-
cations, 319, 557–567.
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