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Extended component importance measures

considering aleatory and epistemic uncertainties

Mohamed Sallak, Walter Schön, and Felipe Aguirre

Abstract

In this paper, extended component importance measures (Birnbaum importance, RAW, RRW and Crit-

icality importance) considering aleatory and epistemic uncertainties are introduced. The D-S theory which

is considered to be a less restricted extension of probability theory is proposed as a framework for taking

into account both aleatory and epistemic uncertainties. The epistemic uncertainty defined in this paper is

the total lack of knowledge of the component state. The objective is to translate this epistemic uncertainty

to the epistemic uncertainty of system state and to the epistemic uncertainty of importance measures of

components. The Affine Arithmetic allows us to provide much tighter bounds in the computing process of

interval bounds of importance measures avoiding the error explosion problem. The efficiency of the proposed

measures is demonstrated using a bridge system with different types of reliability data (aleatory uncertainty,

epistemic uncertainty and experts’ judgments). The influence of the epistemic uncertainty on the components’

rankings is described. Finally, a case study of a fire-detector system located in a production room is provided.

A comparison between the proposed measures and the probabilistic importance measures using two-stage

Monte Carlo simulations is also made.

Index Terms

Importance measures, Epistemic uncertainty, Dempster-Shafer theory, Experts’ judgments, Affine Arith-

metic, Pignistic reliability.

Acronyms

TBM Transferable Belief Model

D-S Dempster-Shafer

RAW Risk Achievement Worth

RRW Risk Reduction Worth

CR Criticality importance
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BBA Basic Belief Assignment

Notation

Bel Belief measure

Pl Plausibility measure

mX BBA on the frame of discernment X

Fi Failure state of component i

Wi Working state of component i

RS System’s reliability

BetRSPignistic system’s reliability

QS System’s unreliability

BetQSPignistic system’s unreliability

IB Birnbaum importance measure

IB
Bet Birnbaum pignistic importance measure

IRAW RAW importance measure

IRAW
Bet RAW pignistic importance measure

IRRW RRW importance measure

IRRW
Bet RRW pignistic importance measure

ICR CR importance measure

ICR
Bet CR pignistic importance measure

k Conflict factor between BBAs

d Distance between BBAs

S Similarity function

Si(t) Survival function of the ith component

n Number of components

βi Shape parameter in Si(t)

ηi Scale parameter in Si(t)

I. Introduction
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A
N important problem in reliability theory is to identify components within the system that more

significantly influence the system’s behavior with respect to reliability or availability. As we can not

improve all components at one time to improve system’s reliability, priority should be given to components

that are more important. In that way, reliability managers can prioritize where investments should be made

to guarantee the maximum increase of reliability considering the whole system.

Historically, Birnbaum [1] was the first to quantify the contributions of components’ reliability to binary

coherent systems’ reliability. A weakness of Birnbaum importance measure is that it does not depend on the

component’s reliability. Therefore, two components may have a similar measure value, although their current

levels of reliability could differ substantially. The Criticality importance measure (CR) is another widely used

measure [2]. This is a natural extension of the Birnbaum measure which includes the component’s unreliability.

Two other measures that are widely used for ranking the components’ importance are the Risk Achievement

Worth (RAW) and the Risk Reduction Worth (RRW) [3]. Andrews and Beeson [4] extended the Birnbaum

importance measure to promote the importance measures of components in non-coherent systems. However,

these traditional importance measures were only defined for crisp values of components’ reliability data. This

is why several uncertainty importance measures were introduced. Borgonovo [5], and Modarres and Aggarwal

[6] studied the influence of uncertainty in importance measures results. Borgonovo [7] proposed also a common

categorization of uncertainty measures based on variance and moment indicators. The first family of measures

is based on the correlation between input variables and the output. The second category of measures is based

on the variance of the probability distribution. The third category of measure is the moment-independent

sensitivity indicators. However, these measures assume a choice of probability density functions which can

make the results imprecise or even erroneous if there is not enough reliability data. Recently, Borgonovo and

Smith [8] proposed an epistemic RAW and studied its properties for series and parallel systems. In fuzzy set

theory, fuzzy importance measures based on structural importance were introduced by Furuta and Shiraishi [9].

Liang and Wang [10] developed a fuzzy measure based on the use of triangular fuzzy numbers with maximal

and minimal sets. Guimarees et al. [11] presented a fuzzy measure using the Euclidean distance between two

fuzzy sets. Sallak et al. [12] proposed a fuzzy uncertainty measure based on the use of fuzzy triangular numbers

in order to reduce uncertainty in the evaluation of Safety Integrity Levels (SILs). We should note that, in the

case of no prior information about components reliabilities, we can use the structural importance which is

not take into account the reliabilities of the system components because the importance of a component is

measured by the number of times it appears in the reliability models [13], [14]. To our knowledge, there is no

work treating the use of importance measures in D-S theory.

In this paper, importance measures such as Birnbaum, RAW, RRW and CR are extended to make them
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compatible with D-S theory for taking into aleatory and epistemic uncertainties. The use of D-S theory

is due to the fact that during the last years, the reliability assessment community recognized that the

distinction between different types of uncertainties plays an important role in reliability evaluation [15],

[16]. Uncertainty can be considered essentially of two types: aleatory uncertainty which arises from natural

stochasticity or environmental variation across space or through time and epistemic uncertainty which arises

from incompleteness of knowledge or data [17]. The distinction is useful because epistemic uncertainty can be

reduced by acquiring knowledge on the studied system. Furthermore, it has been proved that uncertainties in

reliability and risk assessments are mainly epistemic [18].

In case of large amount of reliability data, the classical probabilistic approach was widely used to manage

uncertainties in risk and reliability assessments [19]. This approach was based on the definition given by

Laplace of the probability of an event as the ratio of the number of cases favorable to it, to the number of all

possible cases when all cases are equally possible [20]. The frequentist probabilistic approach introduced by

Venn [21] which defined the event probability as the limit of its relative frequency in a large number of trials was

also widely used. However, in the case of components that fail only rarely (nuclear systems, chemical processes,

railway systems, etc.) or components that have not been operated long enough to generate a sufficient quantity

of reliability data, expert judgment is required. Several methods were proposed to manage uncertainties in

expert judgment such as Bayesian approach, interval approach, evidence theory, possibility theory, etc. In the

framework of probabilities, De Finetti [22] introduced the subjective probabilities of an event to indicate the

degree to which the expert believes it. Kaplan and Garrik [23] introduced the concept of probability of frequency

to expand their definition of risk. Pate-Cornell [24] used the level six of its uncertainty analysis to obtain a

family of risk curves in presence of both aleatory and epistemic uncertainties. The Bayesian approach proposed

the use of subjective probabilities to represent expert judgment. The probability distributions representing

the aleatory uncertainties are first proposed. The epistemic uncertainties about the parameter values of the

distributions are then represented by prior subjective probability distributions [23]. The equation of Bayes

is used to compute the new epistemic uncertainties in terms of the posterior distributions in case of new

reliability data. Finally, the predictive distributions of the quantities of interest are derived by using the

total probability law. The predictive distributions are subjective but they also take into account the aleatory

uncertainties represented by the prior probability models [25]. However, There are some critics about the

Bayesian approach and representing epistemic uncertainties using probabilities. These critics was exposed

particularly by Walley [26], and Caselton and Luo [27]. When there is few information about the value of a

parameter α, the choice of probability distribution may not be appropriate. For example, there is a difference

between saying that all that is known about the parameter α is that its value is located somewhere in an
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interval [x, y] and saying that a uniform distribution on [x,y] characterizes degrees of belief with respect to

where the value of this parameter is located in the interval [x, y] [28], [19]. Furthermore, in a situation of

ignorance a Bayesian approach must equally allocate subjective probabilities over the frame of discernment.

Thus there is no distinction between uncertainty and ignorance.

A number of alternatives theories based on different notions of uncertainty were proposed. The evidence theory

also known as the Dempster-Shafer or belief functions theory is a generalization of the Bayesian theory of

subjective probability. Whereas the Bayesian theory requires probabilities for each question of interest, belief

functions allow us to base degrees of belief for one question on probabilities for a related question [29]. To

illustrate the idea of obtaining degrees of belief for one question from subjective probabilities for another, we

propose an example in risk assessment inspired from the example of limb given by Shafer. Suppose we have

subjective probabilities for the reliability of a risk expert A. The probability that A is reliable is 0.75, and

the probability that A is not reliable is 0.25. The risk expert A reports us that a component i is failed. This

information which must be true if A is reliable, is not necessarily false if A is not reliable. The risk expert

testimony justifies a 0.75 degree of belief that the component i is failed, but only a 0 degree of belief (not

a 0.25 degree of belief) that the component i is not failed. This value does not mean that we are sure that

the component i is failed, as a zero probability would. It means that the risk expert’s testimony gives us no

reason to believe that the component i is failed. The 0.75 and the 0 constitute a belief function. Thus there

is no requirement that belief not committed to a given proposition should be committed to its negation. The

second point of evidence theory is that belief measures of uncertainty may be assigned to overlapping sets

and subsets of hypotheses, events or propositions as well as to individual hypothesis. D-S theory which can be

considered as an alternative approach to represent uncertainties has gained an increasing amount of attention

both from the theoretical and the applied point of view [30], [31], [32], [33]. In a finite discrete space, D-S

theory is a generalization of probability theory where probabilities are assigned to sets instead of mutually

exclusive singletons. This theory is still a young field compared to other theories and its main application is

data fusion.

II. D-S and reliability assessment

D-S is a theory of uncertainty that was first developed by Dempster [34] and extended by Shafer [35].

The idea of using D-S theory in reliability assessment was introduced by Dempster and Kong [36]. The D-S

theory which is considered to be a less restricted extension of probability theory is proposed in this paper as

a framework for taking into account both aleatory and epistemic uncertainties.
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A. Basic concepts

The frame of discernment X is the set of all hypotheses for which the information sources can provide

evidence. A Basic Belief Assignment (BBA) on a frame of discernment X is a function mX : 2X → [0, 1] which

maps beliefs masses on subsets of events as follows:

∑

A∈2X

mX(A) = 1 (1)

A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all the focal elements

are singletons (i.e. one-element subsets of the frame of discernment), then we speak about a Bayesian belief

function. The two important measures of uncertainty provided by D-S theory are called belief and plausibility

functions. They are defined by:

Bel(A) =
∑

B⊆A

mX(B), P l(A) =
∑

B∩A6=∅

mX(B) ∀ A ⊆ X, ∀ B ⊆ X (2)

The interval [Bel(A), P l(A)] represents the uncertainty of A.

For BBAs defined on the Cartesian product ΩxΩy. The formulas of marginal BBA mΩxΩy↓Ωx defined on a frame

of discernment Ωx and the vacuous extension defined on the Cartesian product ΩxΩy are given in Appendices.

The two most known rules of combination are the conjunctive ∩© and disjunctive ∪© rules [35]. The Dempster

rule is a widely used rule calculated from the conjunctive combination of two BBAs followed by normalization.

The formulas of these three rules are given in Appendices. Depending on the reliability of experts and the

conflict between them, several other combination rules were defined in D-S theory (Yager rule [37], Dubois

and Prade rule [38], Cautious rule [39], etc.). For more details, see [34], [35], [40], [39].

B. Reliability assessment

In our reliability model, the frame of discernment Xi of a component i is defined by: Xi = {Fi, Wi} where

Fi and Wi denote the failure and the working states of the component i. An expert α should use an interval

[Bel(WA), P l(WA)] to represent its interval belief that the component A is in the working state at time t.

From this, we can say that the values of Bel({WA}) and Pl({WA}) are going to bound the correct value

to be in the working state which represents the aleatory uncertainty concerning the functioning state of the

component A. Moreover, the epistemic uncertainty is equal to Pl({WA}) − Bel({WA}) which represents the

length of the interval [Bel(WA), P l(WA)]. It represents the part of the belief expert allocated to the lack of

knowledge concerning the state of the component A. Thus we can say that aleatory and epistemic uncertainty
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are treated separately in our approach. The BBAs about component A are computed as follows

mXA
α ({WA}) = Bel({WA})

mXA
α ({FA}) = 1 − Pl({WA})

mXA
α (ΩA) = Pl({WA}) − Bel({FA})

Thus, unlike the probabilistic relationship between a set and its complement, the belief assigned to a set does

not uniquely determine the belief assigned to its complement. Similarly, the plausibility assigned to a set does

not uniquely determine the plausibility assigned to its complement [28].

In order to evaluate the whole reliability of a system S composed of n components {1, 2, ..., n} in a given

configuration, we use the BBA defined as follows:

mXS = (mX1↑X1×X2...×Xn×XS ⊕ mX2↑X1×X2...×Xn×XS ⊕ ... ⊕ mXn↑X1×X2...×Xn×XS ⊕ mX1×X2...×XS

Config )↓XS (3)

The BBA mX1×X2...×Xn×XS

Config represents the relation between the system S and its components (structure

function). Then, belief and plausibility measures are obtained from mXS . The reliability of the system RS

is obtained by:

RS = [RS , RS ] = [Bel({WS}), P l({WS})] (4)

For example, let us consider a system S with two components 1 and 2 in parallel. For simplicity we consider

that the system S and its components have two states 0i and 1i. Let us suppose that Expert 1 asserts an interval

belief [0.3, 0.9] that component 1 is working at time t. Expert 2 asserts an interval belief [0.4,1] that component

1 is working at time t. Dempster’s rule of combination applied to the BBAs from experts 1 and 2 gives the new

BBAs shown in Table I. Also, since BBAs have been combined the level of conflict k can be gauged. In this case

k = 0.04 indicating a minor conflict in the evidence from the two experts. The same reasoning is done to obtain

BBA of component 2. Then, we use the vacuous extension to extend mX1 and mX2 to the product space X1 ×

X2 ×XS and we combine the obtained BBAs using the Dempster rule. The resulting BBAs are combined with

mX1×X2×XS

Config . For parallel configuration we have mL1×L2×LS

P arallel ({(11, 12, 1S), (01, 02, 0S), (01, 12, 1S), (11, 02, 1S)}) =

1. To obtain the BBAs of the system S the final result is marginalized on LS . Belief and plausibility functions

are then computed to obtain upper and lower bounds of system’s reliability.

C. Construction of BBAs

Within the framework of DS theory, the construction of BBAs remains an important problem which can

considerably influence final results. Nevertheless, there is very few works concerning the construction of BBAs
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{01} {11} {01, 11}
Expert 1 0.1 0.3 0.6
Expert 2 0 0.4 0.6
Expert 1 ⊕ Expert 2 0.0625 0.5625 0.3750

TABLE I: Dempster combination of BBAs concerning component 1

from reliability data [41], [33]. The problem of elicitation of experts’ judgments has long been addressed

in the probability theory framework related to reliability and risk assessments. In [42], Ouchi reviews the

literature on the use of expert opinion in probabilistic risk analysis. However, these elicitation techniques are

not suited to other uncertainty theories (possibility theory, D-S theory, etc.). This section is mainly dealing

with the elicitation process of experts’ judgments in D-S theory. The integration of experts’ reliability will be

presented. The dependence of BBAs on the number of components’ failures will also be discussed.

1) Expert elicitation using reliability parameters: Let us consider a component i with a constant failure rate

λ. The reliability expert 1 tells us that λ ∈
[

λ, λ
]

[41]. t represents the amount of time that the components

must function for the system to succeed and w is the lifetime of the component. Because, the failure rate is

constant, w has an exponential distribution with scale parameter 1
λ . The component will fail when w ≤ t or

λ ≥ 1
t . If 1

t ≤ λ, the component will certainly fail, thus, the proposition totally agrees with the event Fi so

we represent it by Bel1({Fi}) = 1 − e−λt. Similarly if 1
t ≤ λ, the component may fail, thus, the proposition

totally or partially agrees with the event Fi so we represent it by Pl1({Fi}) = 1 − e−λt. Finally, the obtained

BBAs are:

mXi

1 ({Wi}) = e−λt

mXi

1 ({Fi}) = 1 − e−λt

mXi

1 ({Wi, Fi}) = e−λt − e−λt

2) Discounting: It sometimes occurs that an expert (or a source of information) induces a BBA mΩ, but

there is some doubt regarding the reliability of that expert. It may be useful to discount this BBA mΩ by

some factor δ ∈ [0, 1]. When the BBA is discounted, the remaining assignment is applied to the combination

of all options in the frame of discernment Ω. This discounting operation was introduced by Shafer [35]. The

details of this operation are given in the Appendix.

3) Dependence of BBAs on the number of components’ failures: This subsection describes how to build

belief function models for situations with unknown parameter of probability distribution.

Kozine and Filimonov [43] asked how to model the dependence of beliefs functions on the number of

occurrences that have happened and how to embed this dependence on the number of occurrences in the
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BBA m. Dempster proposed a model for an unknown parameter of binomial distribution [44]. Let us consider

the observations (X1, ..., Xn) which come from a binomial process with an unknown failure rate λ. Xi is equal

to 1 if the component failed on the ith demand. Consider ai be a series of independent pivotal random values

which have a uniform distribution on the interval [0, 1], and consider the equation hold:

Xi = 1 ⇔ ai ≤ λ (5)

This equation presents a logical restriction on the possible values of the triples (Xi, ai, λ). When the ai’s are

marginalized out, the result is a binomial model over the Xi’s.

To find the margin over λ, first arrange the pivotal variables in order, a0 ≤ a1 ≤ ... ≤ an+1 where a0 = 0 and

an+1 = 1. Let X be the total number of failures observer in the n demand. It must be true that a = aX ≤ λ ≤

a = aX+1. The order statistics from a uniform distribution follow a beta distribution. Then the joint belief

function over λ is the mass density function:

m(a, a) =
n!

(k − 1)!(n − k − 1)!
ak−1(1 − a)n−k−1 0 < k < n; (6)

m(0, a) = n(1 − a)n−1 k = 0;

m(a, 1) = nan−1 k = n;

For any set B we can get the Bel and Pl functions that λ ∈ B by:

Bel(B) =

∫ ∫

[a,b]⊆B
m(a, b)dadb (7)

Pl(B) =

∫ ∫

[a,b]∩B 6=∅
m(a, b)dadb

Under consideration that B is an interval we obtain:

Bel(B) =
k

n + 1
(8)

Pl(B) =
k + 1

n + 1

This method was also applied in the case of Poisson processes, the uniform pivotal variables ai become γ

waiting time distributions. Almond has applied Dempster’s works in some reliability problems [41]. For more

details see [44], [41].
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D. Computational complexity

The computational complexity of reasoning within the D-S theory of evidence is one of the main points of

criticism this formalism has to face. In the proposed reliability model, the computational cost of the model

grows exponentially with the size of the studied system. Three operations are used: extension, projection

and combination. Dempster’s rule of combination requires significantly large computational cost with the

increasing of the focal elements cardinality. In the case of binary systems, for each component, there are

two elements in the frame of discernment (working and failure: n=2 is the cardinality of the frame of

discernment), thus the BBA has nf = 2n −1 = 3 focal elements (empty-set here is excluded). Furthermore, the

combination of two BBAs requires the computation of up to 2nf+1−2 operations (intersections). Then the total

number of combination operations for nc components (we add also the BBA of the system configuration) is

Ncomb = (2nf+1−2)∗C2
nc+1. The total number of extensions is Next = (nc+1)∗(2nf+1−2). The total number of

projection is Next = Ncomb ∗nf . Finally, the total number of operation is NOp = Ncomb +Next +Nproj . Thus, the

DS approach can be applied on large binary coherent systems and the maximum number of system’components

to be analyzed in a reasonable time is about 100 components.

However, the DS approach can be more time consuming when used to study reliability of multi-state systems.

In order to optimize the D-S operations and saving time and space, some computation algorithms were given

in [45], [41]. The idea of these algorithms lies in doing local calculations in smaller product spaces so as to

reduce the exponential growth of the D-S. On the other hand, Smets [29] introduced a different approach that

propagates conditional belief functions over a directed acyclical network called belief network. The advantage

is that the edges of the graphs are weighted by conditional belief functions and not by joint belief functions

over a product space, thus, it’s a more optimal method in terms of computational cost. The approach is

less general but, the loss of generality does not affect the reliability analysis. Smets [46] introduced matrix

calculus using the Möbius transformation to the D-S. This approach simplifies greatly the development of

software and optimizes the computational time. Reducing the number of focal elements of the BBAs under

consideration while retaining the essence of the information they represent is also an other way to overcome

the computational complexity.

III. Interval and Affine Arithmetics

A. Interval Arithmetic (IA)

In order to define importance measures based on upper and lower values of reliability defined in Eq. 4,

we need to use interval arithmetic operations. Interval Arithmetic (IA) was first proposed by Moore [47]. An
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interval number [x, x] is the set of real numbers x such that x ≤ x ≤ x where x and x are elements of the set

of real numbers R with x ≤ x. Addition, subtraction, multiplication, and division of intervals are defined in

Appendices. However, when a given variable occurs more than once in an interval computation, it is treated as a

different variable in each occurrence. This effect is called the dependency problem. Therefore, standard interval

arithmetic provides guaranteed bounds but they are often too conservative [48]. Several techniques have been

developed to avoid the dependence problems and hence reduce the overestimation: Quadratic approximation

and Gauss Transformation, Deconvolution, Generalized Interval Arithmetic, Modal Interval, Central Forms

and Affine Arithmetics.

B. Affine Arithmetic (AA)

Affine arithmetic (AA) was introduced in 1993 by Comba and Stolfi [49] and developed by De Figueiredo

and Stolfi in [50]. AA is an extension of IA obtained by considering affine forms in place of intervals. This

method is similar to standard IA but, in addition, it keeps track of correlations between quantities during

the computations. This extra information allows us to provide much tighter bounds in the computing process

avoiding the error explosion problem. In AA, each quantity x is represented by an affine form x̂, which is a

first-degree polynomial:

x̂ = x0 + x1ǫ1 + ... + xnǫn (9)

Each noise symbol ǫi is a symbolic real variable whose value is only known to lie in the interval U = [−1, +1]

and is independent from the other noise symbols. The coefficients xi are known real values. The coefficient x0

is called the central value of x̂. The coefficients x1, ..., xn are called the partial deviations associated with the

noise symbols ǫ1, ..., ǫn in x. Conversions between affine forms and intervals are performed as follows:

• Affine Form → Interval:

x̂ = x0 +
n

∑

i=1

xiǫi → x = [x0 −
n

∑

i=1

|xi|, x0 +
n

∑

i=1

|xi|] (10)

• Interval → Affine Form:

x = [x, x] → x̂ =
x + x

2
+

x − x

2
ǫ (11)

where ǫ is a new variable.

Extending non-affine operations requires that we use good affine approximation to the exact result and

append an extra term to bound the error of this approximation. Different approximation methods can be

used for the affine forms of several functions: Optimal (Chebyshev), Min-range and Interval approximation.

All these techniques assume that the function is at least bounded on the argument interval. The Chebyshev



IEEE TRANSACTIONS ON RELIABILITY 12

approximation provides the best approximation result. However, its computation is prohibitive expensive [51].

IV. Importance measures using the D-S theory

The aim of this section is to introduce importance measures using the D-S theory. This will be done by

introducing new definitions of usual probabilistic importance measures. These new measures will be first used

to rank the importance of components in presence of only aleatory uncertainty, both aleatory and epistemic

uncertainties, and in the case when many experts’ judgments must be taken into account. Then, the measures

will be used to reflect to what degree the epistemic uncertainties on the components’ reliability influence the

components’ rankings. In this work, the following key assumptions are taken into account:

• System and components are allowed to take only two possible states: either working or failed.

• Component failures are statistically independent. Failure of one component does not impact the failures

of the other components.

• The structure function is coherent. That is, improvement of component states cannot damage the system.

• The components are not repairable.

A. Interval Definitions

In 1969, Birnbaum first introduced the concept of components’ reliability importance [1]. This measure was

defined as the probability that a component i is critical to system failure, i.e. when component i fails it causes

the system to move from a working to a failed state. The Birnbaum’s importance measure of a component i

can be interpreted as the rate at which the system’s reliability improves as the reliability of component i is

improved. Analytically, Birnbaum’s importance interval measure of a component i can be defined using D-S

theory by:

[IB(i)] = [Bel({WS}|{Wi}), P l({WS}|{Wi})] − [Bel({WS}|{Fi}), P l({WS}|{Fi})]

= [RS|Wi
, RS|Wi

] − [RS|Fi
, RS|Fi

]

Where Bel({WS}|{Wi}) and Pl({WS}|{Wi}) denote respectively the belief and plausibility measures that the

system is functioning when it is known that component i is in a working state. Whereas Bel({WS}|{Fi}) and

Pl({WS}|{Fi}) denote respectively the belief and plausibility measures that the system is functioning when

component i is in a failed state.

In order to evaluate [IB(i)] using AA, we first need to define the affine form ÎB(i) of the quantity IB(i). This

will be done by writing the affine forms of the quantities RS|Wi
and RS|Fi

, and then evaluating the affine form

of their difference.
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Fig. 1: Algorithm to compute reliability of systems

The affine forms of the quantities RS|Wi
and RS|Fi

are respectively: R̂S|Wi
= RS|Wi,0 + RS|Wi,1ǫ1 and R̂S|Fi

=

RS|Fi,0 + RS|Fi,2ǫ2 where RS|Wi,0 =
RS|Wi

+RS|Wi

2 , RS|Wi,1 =
RS|Wi

−RS|Wi

2 , RS|Fi,0 =
RS|Fi

+RS|Fi

2 and RS|Fi,2 =

RS|Fi
−RS|Fi

2 . It follows that, the affine form of the quantity IB(i) is defined by:

ÎB(i) = R̂S|Wi
− R̂S|Fi

(12)

= IB
0 (i) + IB

1 (i)ǫ1 + IB
2 (i)ǫ2

where

IB
0 (i) = RS|Wi,0 − RS|Fi,0

IB
1 (i) = RS|Wi,1

IB
2 (i) = RS|Fi,2

The Birnbaum’s importance measures obtained using AA and IA methods are expressed in table II. Note that

in the case of Birnbaum measures, AA and IA give the same results because we use only subtraction operations.

In order to compute for example the Birnbaum measure of component k, we first assume that m({Wk}) = 1.

Then all the masses are combined so as to obtain at the end the system’s reliability. First, each BBA on Ωk

must be extended to the product space Ω1Ω2 · · · ΩnΩS . Then, all of the components’ reliability masses and

the system’s configuration mass mΩ
Config are combined using combination rule. Finally, the obtained mass is

projected to the frame of discernment of the system’s states Ωs. This process is represented by Figure 1 and

repeated for the hypothesis m({Wk}) = 0. Then, using AA operations we compute the difference between

system’s reliability in the two cases in order to obtain the importance measure of component k.

The RAW is defined as the ratio of the conditional system’s unreliability if component i is failed with the

system’s unreliability. This measure quantifies the maximum possible percentage increase in system unrelia-

bility generated by a particular component. Using the D-S theory, the RAW of a component i can be defined



IEEE TRANSACTIONS ON RELIABILITY 14

TABLE II: Interval and pignistic importance measures

Interval form using AI Interval form using AA Pignistic form

Birnbaum [RS|Wi
, RS|Wi

] − [RS|Fi
, RS|Fi

] [IB
0 (i) − hB

i , IB
0 (i) + hB

i ] |Bet(RS |{Wi}) − Bet(RS |{Fi})|

hB
i = |IB

1 (i)| + |IB
2 (i)|

IB
0 (i) = RS|Wi,0 − RS|Fi,0

IB
1 (i) = RS|Wi,1

IB
2 (i) = RS|Fi,2

RAW
[Q

S|Fi

,QS|Fi
]

[Q
S

,QS ]
[IRAW

0 (i) − hRAW
i , IRAW

0 (i) + hRAW
i ] Bet(QS |{Fi})

BetQS

hRAW
i = |IRAW

1 (i)| + |IRAW
2 (i)|

+|IRAW
3 (i)| + |IRAW

4 (i)|
IRAW

0 (i) = αQS|Fi,0QS,0 + βQS|Fi,0

IRAW
1 (i) = QS|Fi,1(αQS,0 + β)

IRAW
2 (i) = αQS,2QS|Fi,0

IRAW
3 (i) = δQS|Fi,0

IRAW
4 (i) = αQS,2QS|Fi,1 + δQS|Fi,1

α = −1/Q
S

QS

δ = |(β1 − β2)/2|
β1 = 1/Q

S
− αQ

S

β2 = 1/x′ − αx′

x′ =
√

−1/α
β = (β1 + β2)/2

RRW
[Q

S
,QS ]

[Q
S|Wi

,QS|Wi
]

[IRRW
0 (i) − hRRW

i , IRRW
0 (i) + hRRW

i ] BetQS

Bet(QS |{Wi})

hRRW
i = |IRRW

1 (i)| + |IRRW
2 (i)|

+|IRRW
3 (i)| + |IRRW

4 (i)|
IRRAW

0 (i) = αQS,0QS|Wi,0 + βQS,0

IRRW
1 (i) = QS,0(αQS|Wi,0 + β)

IRRW
2 (i) = αQS|Wi,2QS,0

IRRW
3 (i) = δQS,0

IRRW
4 (i) = αQS|Wi,2QS,1 + δQS,1

CR [IB(i)]
[Q

i
,Qi]

[Q
S

,QS ]
[I

′

0(i)IB
0 (i) − hCR

i , I
′

0(i)IB
0 (i) + hCR

i ] IB(i) BetQi

BetQS

hCR
i = |I

′

0(i)|
∑6

j=5
|IB

j (i)| + |IB
0 (i)|

∑4

j=1
|I

′

j(i)|

+(
∑4

j=1
|I

′

j(i)|)(
∑2

j=1
|IB

j (i)|)

I
′

0(i) = αQi,0QS,0 + βQi,0

I
′

1(i) = Qi,0(αQS,0 + β)

I
′

2(i) = αQS,2Qi,0

I
′

3(i) = δQi,0

I
′

4(i) = αQS,2Qi,1 + δQi,1
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by:

[IRAW (i)] =
[Bel({FS}|{Fi}), P l({FS}|{Fi})]

[Bel({FS}), P l({FS})]

=
[Q

S|Fi
, QS|Fi

]

[Q
S
, QS ]

where Bel({FS}|{Fi}) and Pl({FS}|{Fi}) denote the belief and plausibility measures that the system is in a

failed state when it is known that component i is in a failed state.

The RRW is the ratio of the system’s unreliability with the conditional system’s unreliability if component i

is replaced by a perfect component [52], [53], [16]. Using D-S theory, the RRW of a component i is defined by:

[IRRW (i)] =
[Bel({FS}), P l({FS})]

[Bel({FS}|{Wi}), P l({FS}|{Wi})]

=
[Q

S
, QS ]

[Q
S|Wi

, QS|Wi
]

Whereas the Birnbaum importance provided the probability that a given component would be responsible for

the failure at time t, CR (also called the Criticality measure of Lambert) is another well-known measure used

to determine the probability that the given component was responsible for system failure before time t [2].

Thus the CR measure is suitable for prioritizing maintenance actions. As compared to Birnbaum’s measure,

the components’ reliability is integrated into the measure. Using the TBM, the CR measure can be defined

by:

[ICR(i)] = [IB(i)]
[Bel({Fi}), P l({Fi})]

[Bel({FS}), P l({FS})]

= [IB(i)]
[Q

i
, Qi]

[Q
S
, QS ]

Similarly to the way interval form using AA of Birnbaum measures was obtained, the interval forms of IRAW (i),

IRRW (i), and ICR(i) are computed and represented in Table II.

B. Pignistic Definitions

In Table II, we give interval values of Birnbaum importance measures. However, these interval values are not

sufficient to rank components. To do this, we have to convert these interval values to a probability measure.

Such a transformation is called a probabilistic transformation. We define the probabilistic transformation as a

mapping f : m → P where P denotes the probability distribution and m the BBA function [54]. A probabilistic

transformation f is:

• ulb-consistent (upper and lower bound consistent): if Bel(A) ≤ f(A) ≤ Pl(A) for any A ⊆ X.

• p-consistent (or probabilistically consistent): if f(m) = m for any Bayesian BBA m.
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• α-consistent: if f(αm1 + (1 − α)m2) = αf(m1) + (1 − α)f(m2) for any BBAs m1 and m2.

The most known probabilistic transformation is the pignistic transformation BetP . It was introduced by Smets

and Kennes [55] and corresponds to the generalized insufficient reason principle: a BBA assigned to the union

of n atomic sets is split equally among these n sets. It is defined for any set B ⊆ X and B 6= ∅ by the following:

BetP (B) =
∑

A6=∅|A⊆X

|A ∩ B|

|A|

m(A)

1 − m(∅)
(13)

Where |A| denotes the cardinality of A ⊆ X. We should note that in the case of binary systems and

closed world hypothesis (i.e. m(∅) = 0), the pignistic system’s reliability BetRS is given by: BetRS =

mXS ({WS}) + mXS ({WS ,FS})
2 .

The formula of the normalized plausibility probabilistic transformation PlP and the normalized belief prob-

abilistic transformation BelP are given in Appendices.

Other probabilistic transformations were also defined using different kinds of mappings either proportional to

the plausibility, to the normalized plausibility, to all plausibilities, to the belief or a hybrid mapping. For more

details, see [56].

Then, based on the pignistic transformation, we propose to define our pignistic Birnbaum measure as follows:

IB
Bet(i) = |Bet(RS|{Wi}) − Bet(RS|{Fi})| (14)

where Bet(RS|{Wi}) is the system’s pignistic reliability when component i is functioning, and Bet(RS|{Fi})

is the system’s pignistic reliability when component i is in a failed state. In the case of coherent systems, we

can write: IB
Bet(i) = Bet(RS |{Wi}) − Bet(RS|{Fi}). We also note that the pignistic Birnbaum measure IB

Bet(i)

is the midpoint of the interval [IB(i)] = [IB
0 (i) − hB

i , IB
0 (i) + hB

i ]. The other pignistic measures are given in

Table II. Furthermore, this pignistic Birnbaum measure can be defined using some other distances instead of

substraction operation. In [57], Tessem aimed to assess the quality of Bayesian approximation algorithms of

belief functions by proposing an error measure between two pignistic values of BBAs m and m′ based on the

Minkowski family and defined as follows: d(m, m′) = maxθl⊆X |BetP (θl) − BetP ′(θl)|. In our reliability model,

the parameter θl belongs to {FS , WS , {FS , WS}}. BetP is the system’s pignistic reliability when component i

is functioning, and BetP ′ is the system’s pignistic reliability when component i is in a failed state. When θl is

equal to WS the Tessem distance is equivalent to our proposed measure. We can also use the extension of the

Euclidean measure between two BBAs from the probability theory to the D-S theory proposed by Cuzzolin

[58] as follows: d(m, m′) =
√

∑

A⊆XS
(m(A) − m′(A))2. Jousselme et al. [59] proposed a distance based on

similarity function and defined by: d(m, m′) =
√

d11

2 − d12 + d22

2 where dij =
∑

A⊆X

∑

B⊆X

mi(A)mj(B)S(A, B)
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Fig. 2: Reliability block diagram of a bridge system

and S(A, B) is the similarity function given by: S(A, B) = |A∩B|
|A∪B| . For more details about distances defined in

D-S theory see [59], [60], [61], [58].

According to Dubois et al. [62], the pignistic transformation is mathematically equivalent to changing each

piece of partial ignorance Ei into a uniform probability Pi on Ei representing a Bayesian uninformed prior,

and BetP is then the convex mixture of the Pi’s with weights mi. Hence the pignistic transformation approach

to decision with belief functions is consistent with the higher-order probability approach, viewing the weights

mi as meta-probabilities. It is thus a generalized indifference Laplacean principle. Furtheremore, the pignistic

transformation is the only probabilistic transformation in the belief framework which have the three properties

of consistency [63], [54]. Moreover if we consider the set of probability distributions P = {P |P ≥ Pl} where

P is a probability distribution and Pl is the plausibility function induced by the BBA mi, then it was proved

[64], [65] that the pignistic probability coincides with the center of gravity of P . That’s why we advise users

to use the pignistic transformation in the absence of total order of components importance measures or to get

new information to have a direct total order on components ranking.

V. Numerical example

To examine the general applicability of the importance measures definitions, a system with a bridge config-

uration is studied (cf. Figure 2). The bridge system is composed of five components X1, X2, X3, X4 and X5.

Depending on the cases, the components have reliability data presented in Tables III, IV, V and VII. Four

different cases are considered. The first case corresponds to the case when there is no epistemic uncertainty

about reliability data of components. The second one corresponds to the presence of both aleatory and

epistemic uncertainties. The third one consists of treating many experts’ judgments. The last case corresponds

to reliability data with variable epistemic uncertainty.

A. Case I: Reliability data with only aleatory uncertainty

We consider only aleatory uncertainties (mXi({Fi, Wi}) = 0) for components X1, X2, X3, X4 and X5

as shown in Table III. Importance measures are computed by using equations presented in Table II. The
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TABLE III: Case I - BBAs of components

Components mXi ({Fi}) mXi ({Wi}) mXi ({Fi, Wi})

X1 0.21 0.79 0
X2 0.26 0.74 0
X3 0.22 0.78 0
X4 0.31 0.69 0
X5 0.28 0.72 0

X1 X2 X3 X4 X5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Component

IB

X1 X2 X3 X4 X5
0

0.5

1

1.5

2

2.5

3

Component

IR
A

W

X1 X2 X3 X4 X5
0

0.5

1

1.5

2

2.5

Component

IR
R

W

X1 X2 X3 X4 X5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Component

IC
R

Fig. 3: Case I - Importance measures of components

obtained importance measures (cf. Figure 3) are precise values because there is no epistemic uncertainty

related to components’ reliability data and in this case the belief measures are equals to the plausibility

measures. Additionally, we can see that RRW and CR measures give the same rankings for all components

(IRRW (X5) < IRRW (X3) < IRRW (X1) < IRRW (X2) < IRRW (X4) and ICR(X5) < ICR(X3) < ICR(X1) <

ICR(X2) < ICR(X4)). Birnbaum and RAW measures give the same most important component X2. Therefore,

we can only consider the two measures RAW and RRW because their definitions are easier to understand. If

we have the potential to upgrade components, RAW measure indicates that the component X2 is the most

important in the system. Whereas if no upgrades or improvements are possible, RRW measure indicates that

the deterioration of component X4 is the most critical in the system and thus inspections must be first done

on X4.
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TABLE IV: Case II - BBAs of components

Components mXi ({Fi}) mXi ({Wi}) mXi ({Fi, Wi})

X1 0.18 0.72 0.10
X2 0.23 0.71 0.06
X3 0.22 0.68 0.10
X4 0.20 0.66 0.14
X5 0.27 0.62 0.11
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Fig. 4: Case II - Pignistic importance measures of components

B. Case II: Reliability data with both aleatory and epistemic uncertainties

Let us consider epistemic uncertainties (mXi({Fi, Wi}) > 0) for components X1, X2, X3, X4 and X5 as

shown in Table IV. Using equations presented in Table II, we compute importance measures of system’s

components. The obtained importance measures (cf. Figure 4) are interval values because in the presence of

epistemic uncertainties the belief measures are not equal to the plausibility measures. However, within these

interval values of importance measures, it is very difficult to rank components’ importance. This is why we

compute the pignistic values of importance measures. As we can see in Figure 5, within the pignistic values, it

is easy to rank components’ importance. For example, according to RRW , we have: IRRW (X5) < IRRW (X1) <

IRRW (X3) < IRRW (X4) < IRRW (X2).

Another interesting idea is to compare the results obtained by the distances defined in subsection IV-B

and our proposed distance in the computation of the Birnbaum importance measures. According to results

presented in Figure 6, we obtain the same ranking of components in all distances (IB(X5) < IB(X3) <
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Fig. 5: Case II - Importance measures of components

IB(X4) < IB(X1) < IB(X2)). Particularly, the importance measures values obtained by our proposed distance

are identical to those obtained by Tessem distance and are very close to those obtained by Jousselme distance.

This example shows that, in this case study, the distance choice does not influence the components’ rankings.

Additionnaly, we propose also to compare the results obtained for probability transformations presented

in Table XI. As we can see in Figure 7, the pignistic and the plausibility transformations give the same

ranking: IB
pignistic(X5) < IB

pignistic(X3) < IB
pignistic(X4) < IB

pignistic(X1) < IB
pignistic(X2) and IB

plausibility(X5) <

IB
plausibility(X3) < IB

plausibility(X4) < IB
plausibility(X1) < IB

plausibility(X2). The belief transformation give the same

ranking except for components X1 and X2: IB
belief (X5) < IB

belief (X3) < IB
belief (X4) < IB

belief (X2) < IB
belief (X1).

C. Case III: Reliability data based on several experts’ judgments

Let us consider three experts’ judgments about components X1, X2, X3, X4 and X5 as shown in Table V.

In order to aggregate the experts’ judgments, we use three combination rules: Dempster rule, Cautious rule

and Yager rule. Table VI shows the results of reliability data related to the use of each rule between BBAs.

Note that the conflict factor k between BBAs is not high (k =
∑

A∩B=∅,∀A,B⊆X mX
i (A)mX

j (B) < 0.6). Thus

Dempster rule does not lead to obvious contradictions in combination results. The Dempster rule considers

that the three experts are equally reliable and independent. The Cautious rule considers that the experts are

not independent. Instead of normalizing out the conflict, as in the Dempster rule, the Yager rule is based on

the attribution of the conflict to the frame of discernment X. Then, we use equations presented in Table II to

compute and rank the components’ importance. According to results presented in Figure 8, we obtain the same
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Fig. 6: Case II - Birnbaum pignistic measures based on several distances
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TABLE V: Case III - BBAs of components X1, X2, X3, X4 and X5

Expert I Expert II Expert III

Components mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi})

X1 0.10 0.80 0.15 0.82 0.15 0.75
X2 0.20 0.75 0.20 0.77 0.22 0.68
X3 0.18 0.79 0.10 0.85 0.30 0.60
X4 0.20 0.70 0.22 0.68 0.25 0.65
X5 0.16 0.75 0.16 0.77 0.18 0.72

TABLE VI: Case III - The obtained BBAs based on several combination rules

Dempster rule Cautious rule Yager rule

Components mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi})

X1 0.0159 0.9841 0.0459 0.8214 0.0022 0.4920
X2 0.0273 0.9727 0.1990 0.7690 0.0088 0.3927
X3 0.0206 0.9794 0.1809 0.7915 0.0054 0.4029
X4 0.0630 0.9370 0.2378 0.6667 0.0110 0.3094
X5 0.0392 0.9608 0.1599 0.7704 0.0046 0.4158

ranking of components X3 and X5 in Dempster, Cautious and Yager rules (Rank(X3 = 4) and Rank(X5 = 5)).

Whereas, the ranks of other components change depending on the combination rule. For example, according

to RRW measure, the rank of component X2 is 2 when using Dempster rule, and 1 when using Cautious or

Yager rule. This why it is very important to choose the combination rule which has hypothesis (independence,

conflict, etc.) corresponding to our case study. For example, if the experts are not independent we have to

choose the Cautious rule. Whereas, if there is a high conflict between experts, we have to choose the Yager

rule.

D. Case IV: Reliability data with variable epistemic uncertainty

We aim to study the influence of the epistemic uncertainty on the components’ rankings. Therefore, we

consider that there is no epistemic uncertainty with only one component in each case a, b, c, d and e (cf.

Table VII). For example, the case c corresponds to mX3({F3, W3}) = 0 (there is no epistemic uncertainty about

reliability data of component X3). For simplicity, we choose to evaluate only Birnbaum pignistic measures. The

same analysis can be done for other importance measures. Figure 9 shows that components X1, X2, X3 and X4

change ranks depending on the cases. For example, component X4 changes rank between case a (Rank(X4)=3),

b (Rank(X4)=1) and d (Rank(X4)=2). That means that an element which is the most important with respect

to a value of epistemic uncertainty can be less important for a different value of epistemic uncertainty. This
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Fig. 8: Case III - Components’ ranking

TABLE VII: Case IV - BBAs of components X1, X2, X3, X4 and X5

Case a Case b Case c Case d Case e

Comp. mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi}) mXi ({Fi}) mXi ({Wi})

X1 0.13 0.87 0.05 0.79 0.05 0.79 0.05 0.79 0.05 0.79

X2 0.10 0.74 0.18 0.82 0.10 0.74 0.10 0.74 0.10 0.74

X3 0.07 0.78 0.07 0.78 0.15 0.85 0.07 0.78 0.07 0.78

X4 0.15 0.69 0.15 0.69 0.15 0.69 0.23 0.77 0.15 0.69

X5 0.13 0.72 0.13 0.72 0.13 0.72 0.13 0.72 0.8 0.2

case clearly shows that, in some systems’ configurations, the change of epistemic uncertainty’s amount gives

a greatest impact on the components’ rankings.

VI. Case study : Fire-Detector System

Nowadays, fire detection systems are used worldwide in order to protect life and goods. The function of a

fire detection system is to detect fire at the earliest practicable moment, and to give signals and indications so

that appropriate action can be taken [66]. In order to increase the overall detectors’ reliability, these systems

must be tested periodically to detect dormant failures, i.e. to check that they will respond if there is an actual

demand. European standard EN 54 specifies requirements, test methods and performance criteria against
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Fig. 9: Case IV - Birnbaum importance measure results

which the effectiveness and reliability of the component parts of fire detection can be assessed [66]. This is

why industrials need methods to rank fire detector components for tests and maintenance. This can be carried

out by identifying components which have the greatest impact on the overall system’s reliability.

The system considered here is a fire detector located in a production room taken from Hoyland and Rausand

[53]. It falls into two sections, heat and smoke detection sections with a manually alarm button. The configu-

ration of the fire detector is represented in Figure 10. In the heat detection part, there is a one circuit with

four identical fuse plugs FP1, FP2, FP3, and FP4. If the temperature is more than 72◦C, the fuse plugs force

the air out of the circuit. This circuit is connected to a pressure switch (PS). The PS is in a working state if

at least one of the fuse plugs is in a working state. Then, it transmits a signal to a start relay (SR) in order

to activate an alarm and to cause a shutdown of the system. The smoke-detection part is composed of three

smoke detectors SD1, SD2, and SD3. These smoke-detectors are connected to a voting unit (VU) with a two

out of three voting configuration. The DC source must be in a working state for the successful transmission of

a signal from heat-detector or smoke-detector. In the case of manual activation of this part, an operator OP

must be always present. If the operator observes a fire, he has to turn on the manual-switch (MS) in order to

relieve pressure in the circuit of the heat-detection part. This activates the PS, which in turn gives an electric
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TABLE VIII: Components information for the fire-detector system

Components Abbreviation Description Interval bounds of β η
number (epistemic uncertainty)
1 DC Current source [0.9, 1.85] 1
2 SR Start relay [1.4, 1.75] 1
3 PS Power switch [1.2, 1.8] 1
4 OP Operator [1.2, 1.8] 1
5 MS Manual switch [1.7, 1.9] 1
6 VU Voting [1.7, 1.9] 1
7-10 FP1-4 Melt plugs [2, 2.4] 1
11-13 SD1-3 Smoke detectors [1.1, 2.15] 1

signal to SR. The system has 13 independent Weibull components with survival functions (two-parameter

Weibull distribution) given by:

Si(t) = exp−(t/βi)ηi (i = 1, ..., 13)

The values of βi and ηi given by experts are shown in Table VIII. This case study was used by Chaudhuri

et al. [67] to compute Birnbaum importance of components based on a new representation of the structure

function in presence of precise values of βi. In this study, we are in presence of both aleatory uncertainties

(Weibull components with survival functions) and epistemic uncertainties (interval values of βi). We aim:

1) To compare the components’ rankings obtained in presence of epistemic uncertainty and those obtained

when using precise values of βi (βi = βimin+βimax

2 ) (Comparison I).

2) To compare the components’ rankings obtained obtained by D-S approach and those obtained by two-

stages nested Monte-Carlo simulations approach (Comparison II).

A. Comparison I

The measures IB
average, IRAW

average, IRRW
average, and ICR

average denote respectively the Birnbaum, RAW, RRW and CR

importance measures obtained when using average values of βi. The reliability block diagram of the system is

given in Figure 11. There are 8 minimal path sets:

{{1, 4, 5, 3, 2}, {1, 11, 12, 6, 2}, {1, 11, 13, 6, 2}, {1, 12, 13, 6, 2}, {1, 7, 3, 2}, {1, 8, 3, 2}, {1, 9, 3, 2}, {1, 10, 3, 2}}.

The BBAs of components at time t are obtained as follows:

m({Wi}) = exp−(t/βimin)η

; m({Fi}) = 1 − exp−(t/βimax)η

(i = 1, ..., 13)

Using minimal paths method, we compute the BBA mConfig which represents the system’s configuration

and then we evaluate the reliability of system using our method given in section II-B. Finally, the importance

measures are computed over the time using equations presented in Table II. Figure 12 reports the importance

measures results at time t = 1.6. Looking at the importance measures obtained at time t = 1.6 one may
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observe that, in RRW importance measure, DC is more important than FP when using precise values of βi

(IRRW
average(DC) > IRRW

average(FP )), contrarily to what would be happen if the components’ ranking is based on

the use of uncertainty values of βi (IRRW
Bet (DC) < IRRW

Bet (FP )). Thus, reliability engineers can consider that

the deterioration of component DC is more critical than FP and inspections will be done first on DC instead

of FP. The same remarks hold for components VU and FP according to the Birnbaum measure and engineers

can consider that the reliability of fire detector system is mostly perturbed by changes in the states of FP

instead of VU. We can do the same analysis using CR measures. The drawback of the use of average values of

βi lies in the loss of epistemic uncertainty information whereas D-S theory takes into account this information.

This case study clearly shows the importance of taking into account epistemic uncertainty in the evaluation

of importance measures and the efficiency of D-S importance measures to address this problem.

B. Comparison II

We propose also to compare these results with importance measures obtained using probabilistic approach

based on Monte-Carlo simulations. The probabilistic approach is based on a two-stage nested Monte Carlo

simulation: sampling of values of the probability distribution representing the epistemic uncertainty about

the parameter β (outer loop) and nested sampling of values of the aleatory variables representing the failure

probabilities (inner loop) of components. These aleatory uncertainties were quantified by a Weibull distribution.

The parameter β of these random laws has been considered as subject to epistemic uncertainty. Its state of

knowledge was expressed by a uniform and normal probability distributions. In probability theory, when a

probability distribution function for an uncertain variable is not available, the uniform distribution function

is often used, justified by Laplace’s Principle of Insufficient Reason [26]. This principle can be interpreted to

mean that all simple events for which a probability distribution function is unknown have equal probabilities.

The software MATLAB has been used for generating minimal cut sets and reliability estimation. The resulting

number of model runs to be performed is n ∗ m with n and m being the sample sizes of the epistemic outer

and the aleatory inner simulation loop respectively. The sampling of epistemic and aleatory uncertainties

simultaneously with sample size n=10000 give the results presented in Table IX for 99 percentile.

From the results of the present analysis (cf. Table IX), it is seen that both approaches can obtain interval

bounds of importance measures and provide decision-makers useful information about the importance of each

components. The interval obtained from D-S theory is wider than that from the probabilistic approach. This

is to be expected since the D-S approach only uses the information of the confidence bounds on the unknown

parameter β, while in the probabilistic approach prior information (uniform and normal distributions) is as-

sumed and incorporated in analysis. However, by assuming a probability distribution for epistemic uncertainty
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TABLE IX: Case Study - Interval values of Birnbaum measure: Comparison with MC simulations

MC simulations approach D-S approach

Normal distribution Uniform distribution

Components 99 percentile 99 percentile

DC [0,0.0048] [0,0.0063] [0,0.0098]
OP [0,0.0007] [0,0.0012] [0,0.0022]
MS [0,0.0007] [0,0.0011] [0,0.0021]
PS [0.0001,0.0056] [0,0.0078] [0,0.0121]
SR [0.0005,0.0083] [0,0.0119] [0,0.0196]
SD1-3 [0,0.00076] [0,0.00115] [0,0.0022]
VU [0,0.0008] [0,0.0012] [0,0.0023]
FP1-4 [0,0.0017] [0,0.0026] [0,0.0039]

Start relay

SR

2 out of 3

VU

SD1 SD2 SD3

DC

DC

Source

PS

Constant

pressure
Temp

FP4

FP1

FP2

FP3

Temp

Temp

Temp

+

-

MSManual

OP

Fig. 10: The configuration of the fire-detector system [53].

we are introducing once more uncertainty in the probabilistic approach. The experts state their uncertainty

assessment of the value of β in terms of a range of possible values, this does not justify the allocation of a

specific distribution (uniform or normal).

On the other hand, in this case study, we offer two solutions to the reliability experts: The first solution is

to obtain interval values of importance measures as represented in Table IX. In the case of IB
g = [a, b] and

IB
h = [c, d] with a > c and b > d, the component g is more important than component h. But in the case

that a > c and b < d we can not take a decision, in this case we have to use pignistic values of importance

measures. This is why we give pignistic importance measures of components in Table X.
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Fig. 11: Reliability block diagram of the fire-detector system.
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Fig. 12: Case study - Importance measures of components at t = 1.6
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TABLE X: Case Study - Pignistic values of Birnbaum measure: Comparison with MC simulations

MC simulations approach D-S approach

Normal distribution Uniform distribution

Components 99 percentile 99 percentile

DC 0.0024 0.0032 0.0049
OP 0.0003 0.0006 0.0011
MS 0.0003 0.0006 0.0010
PS 0.0028 0.0038 0.0060
SR 0.0043 0.0058 0.0098
SD1-3 0.0003 0.0005 0.0011
VU 0.0004 0.0006 0.0011
FP1-4 0.0008 0.0013 0.0019

VII. Summary and conclusions

It is an important task to identify the components in a system, which have the greatest impact on system’s

reliability. In this paper, we introduced extended measures of component importance in presence of both

aleatory and epistemic uncertainties. These measures were based on D-S reliability analysis approach and

Affine Arithmetic. A classical system was studied and four cases representing different types of reliability data

were analyzed. We finally proposed a comparison with hybrid probabilistic approaches. Future research will

focus on extending the D-S approach to other importance measures that also account for interactions such as

joint reliability [68], [69] and total order reliability importance measures [70], [71].

Appendix

A. Formula of marginalization

Consider a BBA mΩxΩy defined on the Cartesian product ΩxΩy. The marginal BBA mΩxΩy↓Ωx on Ωx is

defined by:

mΩxΩy↓Ωx(A) =
∑

B⊆ΩxΩy/P roj(B↓Ωx)=A

mΩxΩy (B)

∀A ⊆ Ωx

(15)

Where Proj(B ↓ Ωx) = {x ∈ Ωx/∃y ∈ Ωy, (x, y) ∈ B}.



IEEE TRANSACTIONS ON RELIABILITY 30

B. Formula of vacuous extension

Consider a BBA mΩx defined on Ωx. Its vacuous extension on ΩxΩy is defined by:

mΩx↑ΩxΩy (B) =











mΩx(A) if B = A × Ωy

0 otherwise.

∀ A ⊆ Ωx

(16)

C. Formulas of combination rules

The Conjunctive ∩© and Disjunctive ∪© rules are defined by:

mΩ
i ∩©j(H) =

∑

A∩B=H,∀A,B⊆Ω

mΩ
i (A)mΩ

j (B), ∀H ⊆ Ω (17)

mΩ
i ∪©j(H) =

∑

A∪B=H,∀A,B⊆Ω

mΩ
i (A)mΩ

j (B), ∀H ⊆ Ω (18)

The Dempster’s rule is given by:

mX
i⊕j(H) =

∑

A∩B=H,∀A,B⊆X mX
i (A)mX

j (B)

1 −
∑

A∩B=∅,∀A,B⊆X mX
i (A)mX

j (B)
(19)

D. AI operations

In AI, addition, subtraction, multiplication, and division of intervals are defined as:

x + y = [x + y, x + y]

x − y = [x − y, x − y]

x ∗ y = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)]

x

y
= [x, x] ∗ [

1

y
,
1

y
] if 0 /∈ [y, y]

E. Normalized plausibility probabilistic transformation PlP

The formula of the normalized plausibility probabilistic transformation PlP is given by:

P lP (B) =
P l(B)

∑

A∈X

P l(A)
=

∑

C|C∩B 6=∅

m(C)

∑

A∈X

∑

C|C∩A 6=∅

m(C)

F. Normalized belief probabilistic transformation BelP

The formula of the normalized belief probabilistic transformation P lP is given by:

BelP (B) =
m(B)

∑

A∈X

Bel(A)
=

m(B)
∑

A∈X

∑

C 6=∅|C⊆A

m(C)
(20)
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TABLE XI: Consistencies of some probabilistic transformations

α-consistency p-consistency ulb-consistency

BetP Yes Yes Yes
BelP No Yes No
P lP No Yes No

G. Consistencies of some probabilistic transformations

The consistencies of some probabilistic transformations is given in Table XI.

H. Discounting approach

Let suppose that we have to discount a BBA mΩ by some factor δ ∈ [0, 1]. When the BBA is discounted, the remaining

assignment is applied to the combination of all options in the frame of discernment Ω. The number 1 − δ is the degree of

reliability attributable to the expert (Shafer [35] calls this a degree of trust), which leads to a BBA mΩ
δ defined as:

mΩ
δ (A) = (1 − δ).mΩ(A) ∀ A ⊆ Ω, A 6= Ω (21)

mΩ
δ (Ω) = δ + (1 − δ).mΩ(Ω)

A discount rate δ = 1 means that the expert can certainly not be trusted: the resulting BBA is then vacuous. On the contrary,

a null discount rate leaves mΩ unchanged: this corresponds to the situation where the expert is known to be fully reliable. The

discounting operation of a BBA mΩ is also equivalent to the disjunctive combination of mΩ with the BBA mΩ
0 defined by:

mΩ
0 (A) =



















1 − δ if A = ∅

δ if A = Ω

0 otherwise

(22)
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