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ABSTRACT

This paper presents an original method for evaluating réitiabndices for Multi-State Systems (MSSs)
in the presence of aleatory and epistemic uncertaintieanamy real world MSSs an insufficiency
of data makes it difficult to estimate precise values for comemb state probabilities. The proposed
approach applies the Transferable Belief Model (TBM) intetg@tion of the Dempster-Shafer theory to
represent component state beliefs and to evaluate the M&®iligl indices. We use the example of
an oil transmission system to demonstrate the proposesagprand we compare it with the Universal
Generating Function method. The value of the Dempster-Shiagary lies in its ability to use several
combination rules in order to evaluate reliability indides MSSs that depend on the reliability of the

experts’ opinions as well as their independence.
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. INTRODUCTION

In traditional binary reliability both systems and compotzehave only two possible states: perfect

functioning and complete failure [9], [25]. However, a ®stand its components can have different states



characterized by different levels of performance. Suchesystare referred to as Multi-State Systems
(MSSs). For example, a power station may have states 0, 1, 2d 3l dhat correspond to generating
electricity at 0, 25, 50, 75 and 100 percent of its full capa¢bl]. Therefore, reliability analysis of
MSSs is much more complex than for binary state systems.

MSS theory has been a subject of investigation since 1978]jn4&]. A comprehensive presentation
of MSS reliability theory and its applications can be foundtlie first book devoted to the reliability
analysis of MSSs [35]. A recent review of the literature can dentl in [39]. Practical methods of
MSS reliability assessment are based on four different agbees [17], [43]: the structure function
[44], [58], the Monte Carlo simulation technique [45], [69he Markov approach [34], [62] and the
Universal Generating Function (UGF) method [17], [31], [SBhe structure function approach based on
the extension of Boolean models to multi-valued models \masfitst method to be developed for MSS
reliability assessment. Monte Carlo simulation can regmeany real world problem for the purposes of
reliability assessment. In order to use the Markov methocheed to generate all the possible states of
a system. However, the number of states can be extremely, lavgn for a relatively small number of
system elements. The UGF method was introduced in [57] ance@drto be very effective in evaluating
the reliability of different types of MSSs [35]. The UGF funatiextends the moment-generating function
and allows the entire set of MSS performances to be obtairzegdon the performance of its components
for several system configurations. This can be done by intindutifferent composition operators over
the UGF functions. [56] presents an interesting comparidotme four approaches.

Conventional MSS reliability theory makes two fundamentsummptions [17]: (i) every state probability
of an MSS element can be fully characterized by probabilityasnees; and (ii) the performance rate
of any MSS element can be precisely determined. However,dotesMSSs, there are different types
of uncertainties about the state probabilities and perfme rates of elements [12]. In recent years
a general Fuzzy Multi-State Systems (FMSS) approach has beenspbpe handle uncertainties in
reliability assessments of MSSs [19]. This approach assuna¢ghté state probabilities and/or the state
performances of components can be represented by fuzzesvfil8], [19], whereas the D-S approach
developed in this paper assumes that the state beliefs giauents are represented by belief functions
and that the state performances of components are disaleiesy The literature includes several attempts

to extend belief functions to fuzzy events. The first extensibB®-S theory to the general framework of



fuzzy set theory was proposed by Zadeh in the context of irdition granularity and possibility theory
[67]. A number of different generalizations were then preguh according to how a measure of inclusion
among fuzzy sets is used to define the belief functions [2@], [Bt1], [52], [63], [65], [66]. In order

to take fuzzy numbers into account, fuzzy numbers can b@rasdito each focal element of the belief
structure. This may be achieved by considering the upper@meribounds ofv-cuts of fuzzy numbers.
The structure obtained, introduced by Denceux [15], is calldtuzzy-Valued Belief Structure (FVBS).
This structure is defined as a fuzzy set of belief structuresherframe of discernmeri?2, whose belief
masses are restricted by fuzzy numbers. Fuzzy credibility @ausibility can then be evaluated.

In this paper we are only interested in uncertainties aliwistate probabilities of elements. Uncertainties
are classified into two categories: aleatory uncertainty gpidtemic uncertainty. Aleatory uncertainty is
the inherent variation associated with the physical systetie environment, such as the inherent vari-
ability of component failure. It is referred to as variatyilirandom uncertainty, and stochastic uncertainty
[40]. Knowledge provided by experts cannot be expected dmae aleatory uncertainty. This type of
uncertainty is thus also known as irreducible uncertaiBpjistemic uncertainty is an uncertainty that is
due to a lack of knowledge of quantities or processes withendystem or the environment. It is also
referred to as reducible uncertainty or subjective unaggtd27], [37]. Epistemic uncertainty can be
eliminated by obtaining knowledge that was originally limgk and expert opinion may be useful here.
Over the last few years the risk assessment community hasajgrheld that distinguishing between these
types of uncertainty is useful and important when evalggtire reliability of systems [5]. In case of large
amount of reliability data, the classical probabilistiqpegach was widely used to manage uncertainties
in risk and reliability assessments [4]-[6]. This approacswased on the definition given by Laplace
of the probability of an event as the ratio of the number ofesafvorable to it, to the number of all
possible cases when all cases are equally possible [30].régeehtist probabilistic approach introduced
by Venn [59] which defined the event probability as the limititsfrelative frequency in a large number
of trials was also widely used [4]-[6]. However, in the ca§e@mponents that fail only rarely (nuclear
systems, chemical processes, railway systems, etc.) opaoents that have not been operated long
enough to generate a sufficient quantity of reliability dategert judgment is required and both classical
and frequentist probabilistic approaches become notldaiia these cases [4]-[6], [46]. For this reason,

several methods were proposed to manage uncertaintiesasuBlayesian approach, interval approach,



evidence theory, possibility theory, etc.

The Bayesian approach was based on the use of subjectivebjitid® to represent expert judgment
[3]. The subjective probabilities of an event indicate thgrde to which the expert believes it [23].
The probability distributions representing the aleatorgartainties are proposed such as for example the
representation of a lifetime component by an exponentgttitiution. The epistemic uncertainties about
the parameter values of the distributions are then repteddry prior subjective probability distributions.
The equation of Bayes is used to compute the new epistemicrtaimt@s in terms of the posterior
distributions in case of new reliability data. Finally, theegictive distributions of the quantities of interest
such as the lifetime of new components are derived by usiagidtal probability law [3], [22], [42],
[68]. The predictive distributions are subjective but thésoaake into account the aleatory uncertainties
represented by the prior probability models. However, Tlageesome critics about the Bayesian approach
exposed particularly by Walley [60] and Caselton and Luo [1d]a situation of ignorance a Bayesian
approach must equally allocate subjective probabilitiesr ahe frame of discernment. Thus there is no
distinction between uncertainty and ignorance.

The D-S theory also known as the evidence theory or belieftiome theory is a generalization of the
Bayesian theory of subjective probability. Whereas thed3&n theory requires probabilities for each
guestion of interest, belief functions allow us to base degrof belief for one question on probabilities
for a related question [50]. To illustrate the idea of ohitagndegrees of belief for one question from
subjective probabilities for another, we propose an exariptisk assessment inspired from the example
of limb given by Shafer [50]. Suppose we have subjective pritiiab for the reliability of a risk expert

A. The probability that A is reliable is 0.75, and the probayithat A is not reliable is 0.25. The risk
expert A reports us that a component i is failed. This inforamatvhich must be true if A is reliable, is
not necessarily false if A is not reliable. The risk expertitasny justifies a 0.75 degree of belief that the
component i is failed, but only a 0 degree of belief (not a @2§ree of belief) that the component i is
not failed. This value does not mean that we are sure that tipaoent i is failed, as a zero probability
would. It means that the risk expert's testimony gives us @ason to believe that the component i
is failed. The 0.75 and the O constitute a belief function. Tthese is no requirement that belief not
committed to a given proposition should be committed to #gation. The second important issue in

D-S theory is that belief measures of uncertainty may begassi to overlapping sets and subsets of



hypotheses, events or propositions as well as to individypbthesis. There are several interpretations
of D-S theory (Dempster's model [14], the Theory of Hints [28}c.). In this work the Transferable
Belief Model (TBM) interpretation of the D-S theory is progas

The paper is organized as follows: Section 2 introduces basicapts of D-S theory and TBM. Section 3
presents and discusses the proposed MSS model based on thahkBddrresponding structure function
and reliability indices. Section 4 presents an example coimgpahe UGF method and the proposed
approach in the case of aleatory uncertainty. The same erawifh expert opinion is then studied
using the TBM in presence of both aleatory and epistemic taicgies. Finally section 5 presents some

conclusions.

I[l. BACKGROUND OFD-S THEORY AND TBM

D-S is a theory for uncertain reasoning under both aleatad/ épistemic uncertainties. It was first
developed by Dempster [14] and extended by Shafer [50]. Thewiodt using D-S theory in reliability
assessment was presented by Dempster and Kong [13]. Intreears D-S theory has been used by
numerous researchers to quantify uncertainty in the nét\akanalysis of binary state systems [1],
[71, [33], [48], [49], [51], [55]. Several different interptations of D-S theory have been put forward:
Dempster's model [14], the Theory of Hints [28], the probigpibf modal propositions model [47] and
the Transferable Belief Model (TBM) [54]. Each model corresp® to a different understanding of the
concept of uncertainty. The interpretation of D-S theoryt tha have adopted in this paper is based on
the TBM, which is a model developed outside the scope of piiityatheory and can thus avoid the

accusation that D-S theory is understood as a special forappér and lower probability theory [5].

A. Basic Belief Assignment (BBA)

The definition domain of the variable of interestis called the frame of discernmef, where all
of the possible events are mutually exclusive elementanpgsitions. As an example, let us consider a
frame of discernmenf2 = {x, x2}, meaning thatr; andz, are elementary propositions and mutually
exclusive of each other. The power €t is the set of all the subsets 6F including itself, i.e.:2® =
{0}, {x1}, {2}, Q}. A Basic Belief Assignment (BBA) orf is a functionmf : 2 — [0, 1] which

maps belief masses onto events or sets of events such that:



> mfa) =1

Ae20

An agent holding a piece of evidence allocates unitary ansoohbelief to the different subsets Of
The numbern®’(A) represents the support to A given by the agent’s belief [$8gre is a distinction
between probabilities and BBAs: probability distributibmctions are defined oft, whereas BBAs are
defined on the power s&¥’. This means that there afs?"4%) possible hypotheses in D-S theory,
while in probability theory there are onlyurd(€2) possible hypotheses. Furthermore, the sub-additivity
hypothesis is not required in D-S theory like it is in probipitheory.
The subsetst c Q such thatm®(A) > 0 are called focal sets of.2. Full knowledge is represented by
a BBA having a singletoqz} (z € Q) as a unique focal set. A Bayesian BBA is a special case where
all of the focal sets are singletons and is equivalent to givdities. Complete ignorance is represented
by a BBA having only one focal element equalfioand which is termedracuous
According to Klir and Folger [24], the BBAs have some impattaroperties which distinguishes it from
being a probability function:

« It is not required thain(2) = 1.

« It is not required thain(A) < m(B) when A C B.

« No relationship betweem (A) andm(A).

« Also m(A) +m(A) does not always have to be 1.
For simplicity, let us consider a componehtwith two states. The frame of discernmehf of the
component is then given byL; = {0;, 1;}, where0; and1; denote respectively the failed and operational
states of the componeit If an expert asserts a portion of belief that the component is working at
time ¢t and a portion of belief); that the component is not working at timet, this will be expressed

as foIIows:mgixpert({li}) = z; and m]%;pert({oi}) = y;. The epistemic uncertainty is represented by

mé’ia:pert({oi’ 12}) =1—-z —y.
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Fig. 1: The belief interval [29]

B. Belief and plausibility functions

The most important measures of uncertainty provided by DeSrthare known as belief and plausibility

functions. The belieBel and plausibilityPI functions for a subsefl are defined as follows:

Bel(A)= Y m?(B) YACQ, VBCQ (1)
BCA

Pi(A)= > m?(B) YACQ,VBCQ (2)
BNA#0

Bel(A) is obtained by adding the BBAs of propositions that totalrege with A, whereasP! is
obtained by adding the BBAs of propositions that agree wdthotally and partially (cf. Figure 1).
[Bel(A), PI(A)] is the interval that describes the uncertainty/AfThe functionsBel and P!, although
they are also functions mapping events A ifiol], () into 0 andQ into 1, do not fulfill in the general
case the sub-additivity properties given for probabilitiey are related to each other by the following
eqguation:

PI(A) + Bel(A) = 1

where A represents the negation of the event A.

Let us consider the same componéntThe belief measure concerning the functioning of compomnent

L;

at timet is given by: Bel({1;}) = Mg hert

({1;}) and the plausibility measure is given b&i({1;}) =

L;

Mppert {1i}) + m%‘mpm({oi, 1;}). The availability of the componertat time¢ is then given by:

Ai = [Ai, Ai] = [Bel({1:}), PI({1:})]

The quantityA4; represents the total amount of justified support given to tiepgsition "the component
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Fig. 2: Marginalization and vacuous extension operations

i is available at time t”, while the quantityl; represents the maximum amount of specific support that
could be given to the proposition "the componenis available at time t” if justified by additional

information. Finally, the quantityl, — A; represents the epistemic uncertainty.

C. Marginalization and vacuous extension

The first step in TBM is to define the frame of discernment. As ndtiog Shafer [50], the degree of
granularity of the frame is always to some extent a matterooiention, since any element representing
a state of nature can always be split into several posstsiliHence, it is fundamental to examine how
a belief function defined on a frame may be expressed in a fin@oaversely, in a coarser frame.
Consider two finite set andY. A mappingp : 2X — 2" is called a refining if it satisfies:

o p(B)=Uyepr{y}) VBCY.

« The set{p(y),y € Y} C 2% is a partition ofX.

Y is called a coarsening of, and X is called a refinement df. A BPA mY onY can be transformed into
a BBA m™~ on a refinemenfX by transferring each mass* (B) for B C Y to m*(A) for A = p(B).
This operation is called a vacuous extensionnof to X (cf. Figure 2). The inverse operation is the
marginalization (cf. Figure 2). The formulas of vacuous estem and marginalization are given in the

Appendix.



{0} {L}t {05 L}
Expert 1 0.1 0.3 0.6
Expert 2 0 04 0.6
Expert 1@ Expert 2 0.0625 0.5625 0.3750

TABLE I: Dempster combination of BBAs

D. Combination rules

The D-S evidence theory can aggregate multiple sources afiration through the combination rules.
The two most familiar rules of combination are the Conjureetand Disjunctive rules [50] (the formulas
for the different rules can be found in the Appendix). Demgstrule is a widely-used rule that consists
in applying a conjunctive combination followed by a normation of the conflict factok (the formula
for Dempster’s rule can be found in the Appendix). This conflctor is equivalent to the BBA allocated
to the empty set.

Let us suppose that Expert 1 asserts a 0.3 portion of beliettmaponent is working and a 0.1 portion
of belief that it is not working at time¢. Expert 2 asserts a 0.4 portion of belief that componieist
working at timet and no belief at all that it is not working. Dempster’s rulecofimbination applied to
the BBAs from experts 1 and 2 gives the new BBAs shown in Tabléldo, since BBAs have been
combined the level of conflick can be gauged. In this case iths= 0.04, indicating a minor conflict
in the evidence from the two experts.

Several other combination rules have been defined in D-S thibatydepend on the reliability of experts
and the conflict between them (Yager rule [64], Dubois and Pratie[20], Cautious rule [16], etc.).
For more details, see [14], [16], [50], [53].

[Il. TBM OF MULTI-STATE SYSTEMS
A. General model

Let us consider a systerfi with n components. Foi = 1,...,n, X; denotes the state of theth
component. The set; = {0,1,...,m;} representing all states of theh component is linearly ordered
(L;, <), i.e. there exists a linear order (total, antisymmetriansitive binary relation) over each skt.
Complete failure (the worst state) corresponds to siaterfect functioning (the best state) corresponds

to statem;. A general model of MSS with a partial ordering over the Betvas proposed by Montero



et al. [38]. In D-S theoryL; can be considered as the frame of discernment of-hecomponent. The
state vector of the MSS X = (X, Xo, ..., X;,).

A central problem in reliability theory is how to determingetrelationship between the system states
and the states of its components. This relationship can berided by a structure function defined by
the mappingp : Ly x La X ... x L, — Lg. The valuep(X1, X, ..., X,,) is the system state when each

component is at stateX;. The structure functiorp is assumed to be non-decreasing, i.e.:
X <Y = o(X) <pY)

This means that improving the state of one or more componemsat lead to a lower system perfor-

mance. We also assume that
©(0,0,...,0) =0 and  p(mi,ma,...,my) =mg
The BBAs of thei-th component states are defined by the mappirlg : 2+ — [0, 1] such that

> mhia) =1 (3)

AEQL’L

Let m{LJ} = m%(X; = {j}) denote the BBA that thé-th component is in statg. The BBA mfjk} =
mb(X; = {j,k}) represents the fact that tli¢h component is in statg or k.

For j = 0, ..., m;, the vacuous extension is used to extend the BBAs of each componeni to the
product spacé.; x Lo... x L, x Lg. The resulting BBAs of all components are combined using Deerjs
rule. The resulting BBAs are then combined with the BBA repnging the system configuration. The
BBA mgix ¢ *Fn*Ls represents the relation between the state of system anthtkeo$its components.

To obtain the BBAs of system states the final results are maliged onLg:

mLS — (leTleLz...XLnXLS @ mLZTLIX[Q-nXLnXLS @ . (4)

L, tLiXLs...XL,XLg LiXLy..XLy,xLs\|Lg
..dm D M fia )

For example, let us consider a systémwith two components 1 and 2. For simplicity we consider that
the system and its components have two st@jeand 1,. We use the vacuous extension to extenth

andm!> to the product spacé; x L, x Lg and we combine the obtained BBAs using the Dempster



rule. The resulting BBAs are combined with(, 72 "<.

For serial configuration (a failure of any component 1 or 2 Itesn failure of the entire systerf) we

havem®5: *L2xLs ({(1,,15,15), (01,02, 05), (01, 12,05), (11,09,05)}) = 1.

Series

For parallel configuration (at least one of the two componénts 2 must succeed for the syste¥nto
succeed) we haven’: <=2 Ls ({(14, 12, 1g), (01,09, 05), (01, 12, Lg), (11,02, 15)}) = L.

To obtain the BBAs of the systeifi the final result is marginalized ohg.

Belief and plausibility functions are then computed using E@nd Eg. 2. Finally, the lower and upper

bounds (belief interval) for the system to be in statare given by:
hj = [hj, hj] = [Bel(p(X) = j), Pl(o(X) = j)]  j=0,...,ms (5)

System utility is an important performance measure intreduay Aven [2] for the study of multi-state
systems. At each stagean MSS vyields a particular gain. This gain is termed the syst#lity wat state

j and is denoted.;. The overall system utility is the expected utility of the t&ys, defined as follows:
U= 10,0) = (> uy Bel(o(X) = 1,3 g PU(X) = )] 5 =0, ms )
§=0 j=0
The overall system utility of the syste® is defined as follows:
U = [up.Bel(p(X) = 0) + ui.Bel(o(X) = 1), ug.Pl(p(X) = 0) + u1.Pl(p(X) = 1)]
where belief and plausibility functions are given by:
Bel(p(X) = 0) = m"*({0s})
Bel(p(X) = 1) = m"*({1s})
Pl(p(X) = 0) = m"*({0s}) + m"*({0s, 15})

Pl(p(X) = 1) = m"*({1s}) +m"* ({0s, Ls})

10



B. MSS reliability indices

MSS reliability measures were first introduced by Aven [2] aodsequently by Brunelle and Kapur
[10]. In this work we consider the three measures most conynased by reliability engineers:

1) MSS availability A.

2) MSS expected performande;.

3) MSS unsupplied deman#,,.

The aim of this section is to define the above reliability measun the TBM framework. The set
9i = {gi0, 91, ---, gim, } rEpresents the performance rates of compohanstates (j = {0, ..., m;}). The
setG = {Go, G, ..., G, } represents the performance rates of the system. We define MShdity
A as the belief that the MSS will be in a state with a performamsell greater than or equal to the

demandw. MSS availability is given by:

A(w) = [Bel(p(X) = j), Pl(¢(X) = j)] (7)

wherej corresponds to the first state which satisfies the demand
Another important measure of system performance is the M$8oted output performancg,. This
index determines the system’s expected performance, agsl it depend on the demand Therefore,

E, defines the average capacity (productivity) of the systeroatt be obtained as follows:

By =13 Bel(p(X) = )G, S Pl(p(X) = ).G;] ®
j=0 j=0

In some cases the expected unsupplied demé@pdnay be used as a measure of system output

performance. This index can be formulated as:

Bu(w) = > Bel(p(X) = j).max(w — G;,0), > Pl(¢(X) = j).maz(w — G;,0)] 9)
§=0 §=0

It should be noted that the MSS expected output performdngceind MSS expected unsupplied
performanceF, are particular cases of the overall system utility defined ir6Eeghen the system utility

functionsu; at statej are respectively equal t6; andmax(w — G, 0).

11



C. Construction of BBAs

1) From observations:Let us considem observations of events or sets of events in the frame of
discernment? = {A,..., A,}. Let ¢; denote the number of occurrences of an evént The BBAs

related to the occurrence df; can then be obtained as follows:

m?({A;}) = 2

If we lack any observations relating to the occurrence ofabent 4;, then if ¢; ; denotes the number

of occurrences of a set of evenftsl;, 4;}, we obtain

The Bel and Pl functions are then computed from BBAs using Eq. 1 and Eq. 2. kamele, let
us consider a system with two components 1 and 2. The two coemp®rcan have three states, i.e.
Ly = {0,1,2} and Ly, = {0,1,2}. Out of 50 observations we have 30 observations indicativag t
component 1 is in staté or 1, 10 observations indicating that it is in st&end a further 10 indicating
that it is in stated, 1, or 2. At the same time 32 observations indicate that componesti2 state0, 8
observations indicate that it is in stateand 10 observations indicate that this component 2 is irstat
0, 1 or 2. This is written as:

mis,y = 30/50 = 0.6

mizy = 10/50 = 0.2

M19) = 10/50 = 0.2

{0} = 32/50 = 0.64

mlz — —
mi?, = 8/50 = 0.16

mke _
MG 10 = =10/50 = 0.2
Using Eq.1 and Eq.2 the components’ Bel and PI functions (bigltefvals) for being in each of these

different states are computed (cf. Table II).

12



Component 1 Component 2

States [Bel, PI] [Bel, PI]
{0} [0, 0.8] [0.64, 0.84]
{1} [0, 0.8] [0.16, 0.36]
{2} [0.2, 0.4] [0, 0.2]
{0,1} [0.6, 0.8] [0.8, 1]
{0,2} [0.2, 1] [0.64, 0.84]
{1,2} [0.2, 1] [0.16, 0.36]
{0,1,2} 1 1

TABLE Il Belief intervals of components 1 and 2

Component 3

States Expert 1  Expert 2 Expert 3
{0} 0.3 0.4 0.45

{1} 0.2 0.2 0.15

{2} 0.1 0.2 0.25
{0,1} 0 0 0

{0,2} 0 0 0

{1,2} 0 0 0

{0,1,2} 0.4 0.2 0.15

TABLE Ill: BBAs for component 3 according to experts’ opingn

2) From expert opinion:Suppose that Expert 1 asserts a 0.3 portion of belief that coem is in
state0, a 0.2 portion of belief that it is in state and a 0.1 portion of belief that it is in stafe(the
remaining 0.4 represents ignorance and will be allocateédadrame of discernment). The corresponding
values asserted by Expert 2 are 0.4, 0.2 and 0.2, while for Eptrey are 0.45, 0.15 and 0.25. The
BBAs provided by the experts are shown in Table 1, and theéABBbtained from the combination rules
in Table 1V. Finally, the components’ Bel and PI functions feck state are given in Table V.

The conflict factork between BBAs is defined as follows:

k= > m*(A)m" (B) (10)
ANB=0YACL,,BCL,
The factork is equal to 0.3, 0.4 and 0.32 respectively between Expert 1Exmert 2, Expert 2 and
Expert 3, and Expert 1 and Expert 3. Dempster’s rule therefoes dot lead to obvious contradictions,
because the factdr is not high. Dempster's rule assumes the three experts tajballg reliable and

independent. The Disjunctive rule considers only one of ttpeds to be reliable, but we do not know

13



States Dempster's rule  Disjunctive rule

{0} 0.6316 0.054
{1} 0.1579 0.006
{2} 0.1789 0.005
{0,13 0 0.12

{0,2} 0 0.109
{1,220 0.037
{0,1,2} 0.0316 0.669

TABLE IV: The obtained BBAs for component 3

Dempster’s rule Disjunctive rule

States [Bel, PI] [Bel, PI]

{0} [0.6316, 0.6632]  [0.0540, 0.9520]
{1} [0.1579, 0.1895]  [0.0060, 0.8320]
{2} [0.1789, 0.2105]  [0.0050, 0.8200]
{0,1} [0.7895, 0.8211]  [0.1800, 0.9580]
{0,2} [0.8105, 0.8421]  [0.1680, 0.9570]
{1,2} [0.3368, 0.3684]  [0.0480, 0.9460]
{0,1,2} 1 1

TABLE V: Interval beliefs for component 3

which one. It is very important to choose a combination ruleaccordance with the hypothesis under

consideration (independence, reliability, conflict, etc.)

IV. NUMERICAL EXAMPLES
A. Example 1

The TBM method proposed here has not been used before in MSS8iligliassessment, and so we
have chosen to compare it with the UGF method used by Ding asidriski for evaluating reliability
indices in an oil transmission system [17]. In this examphdy aleatory uncertainty is considered (the
components’ state probabilities are precise values) [17].

The oil transmission system (cf. Figure 3) consists of threesiThe oil flow is transmitted from point C
to point E. The pipes’ performance is measured by their trassiom capacity (tons per minute). Elements
1 and 2 have three states. A state of total failure for botimelds corresponds to a transmission capacity
of zero, a state of partial failure corresponding to a cdpaafi 1 ton/min for element 1 and 1.5 tons/min

for element 2, and the operational state corresponds tocitegsaof 1.5 tons/min for element 1 and 2
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l

Fig. 3: The oil transmission system and its Reliability Blockagiam

tons/min for element 2, so thgt = {0,1,1.5} andgs = {0,1.5,2}. The corresponding probabilities for
element 1 arep = 0.1, p11 = 0.1, andpo = 0.8, and for element 2 argy,; = 0.1, po; = 0.2, and
p22 = 0.7. Element 3 is binary. It has a state of total failure corresipog to a capacity of zero and a
fully operational state with a capacity of 4 tons/min so that {0,4}. The corresponding probabilities
are psop = 0.04 and p3; = 0.96. The system output performance rate is defined as the maximum flow
that can be transmitted from C to E.

The total flow between points C and D through the parallel pipasd 2 is equal to the sum of the
flows in the two pipes. The flow from point D to point E is limited byettransmission capacity of
element 3. This flow cannot however be greater than the flow betweits C and D. Therefore, the

flow between points C and E (the system performance) is:

G = ®(g1(t), g2(t), g3(t))

where @ is the function which maps component performance rates sggtem performance rates, as
shown in Table VI. The setr = {0,1,1.5,2,2.5,3,3.5} represents the system performance rates (the oil
transmission system has 7 states). We shall now evaluateeliability indices of the oil transmission
system using both the UGF and the TBM methods.

1) UGF Method: The UGF Method (u-functions) was introduced by Ushakov inriid-1980s [57],
and it has proved to be very effective in evaluating the bdiit of different types of MSSs [31], [34],
[35]. It involves intuitively simple recursive procedureembined with simplification techniques. The

UGF method includes the following steps:
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5 o0 0 0 0 0 1 1 1 1 1 1 15 15 15 15 15 1.5
g2 00 15 15 2 2 0 0 15 15 2 2 0 0 15 15 2 2
g3 04 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
G=%®(g1,92,3) 0 0O O 15 0 2 0 1 0 25 0 3 0 15 0 3 0 35

TABLE VI: Performance rates of the oil transmission system

« Evaluation of individual u-functions for each element.
« Evaluation of the resulting u-function for the whole MSS usamnposition operators.
« Evaluation of MSS reliability measures.
The u-function representing the probability mass functipmfj of a random discrete variablé; is given
by
m;
wi(z) =Y aijz"
§=0

wherez;; are them,; + 1 possible values ofX; anda;; is the probability thatX; is equal toz;;. The
u-function representing the pmf of a functidn of n independent random variables;, Xs, ..., X, is

defined using a composition operates as follows:

U(z) = Qa(ui(z),u2(2),...,un(z))

my ma
= Q@(E aljlzz”l,g a2j22x2j2,..., E anjnzx"j")

J1=0 J2=0 Jn=0
ma mo

My, n
= E E E (H aijisz(wljl7w2j2,...,a:njn))

J1=0j2=0  j,=0 i=1
Using performance rateg; and the corresponding probabilities (¢) that component (i € {1, ...,n})

is in statej (j € {0, ...,m;}), the u-function for componeritis defined as follows:
my;
wi(z) =Y pijz%
j=0
The u-functions of the three elements of the oil transmissistem are then given by:

u(z) = p102?° + p11z9" + praz9?

= 0.12°+0.12' +0.82!°
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ug(z) = p2027® + pa127% + poaz?®

= 0.12°4+0.221° 4+ 0.722

uz(z) = p30z%° + p3129*

= 0.042° +0.962*

The composition operator@q, for serial elements{ls, for parallel elements anfls, for elements
connected in a bridge structure are defined in [35], whereesponding recursive procedures for their
computation were introduced for different types of systems

Applying the operatorQ2e with ®(g1(t), g2(t), g3(t)) over the u-functions of the different elements

comprising the oil transmission system, we obtain:

U(z) = Qa(ui(z),u2(z),us(z))

= Qo (Qa,(u1(2),u2(2)),uz(2))

The function® is defined by the type of connection between the elements. therdunction®g is

defined as thenin function, and the functio®p is defined as theum function:

®(g1,92,93) = Ps(®p(91,92),93)

= min((g1 + g2),93))

The u-functionu4(z) for elements 1 and 2 in parallel is determined as follows:

ug(z) = Qo (u1(z),u2(2))
2 2
— Z Z p1j1p2j2-zglj1 +92J'2
J1=072=0
= 0.012° +0.012" + 0.1z +0.0722 + 0.022%° + 0.232% + 0.5623°
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Based on these procedures, the resulting UGF for the ent88 khan be obtained as follows:

U(z) = Qag(ua(2),us(z))
1 6
B Z Z p4j4P3j3.zmi"{94j4 9353 }
J3=074=0
= 0049620 —+ 0009621 + 0.09621.5 + 0067222 + O~019222'5 i 0220823 N 0'537623.5

Applying the operators 4, 6 anddc (introduced in [35]) over the resulting u-function of the ol
MSS, the following MSS reliability indices are obtained:

« The MSS availabilityA(w) for the arbitrary demand constaatcan be obtained by:
A(w) = 8a(U(2),w) = 64(Y_pjz%,w) = > pjl(Gj —w >0) (11)
j=0 J=0

whereG) is the performance rate of system at standp; is the corresponding probability of the
system being in statg.

« MSS Expected output performanég; for the givenU (z) using the followingdg:
Eq=0p(U(2) =050} _piz%)=> G, (12)
j=0 j=0

« MSS performance deficiendy, (w) for the givenU (z) and constant demand using the following

(SD:
Ey(w) = dp(U(2),w) = 6p(Y_ p;z%,w) =Y pymaz(w — G;,0) (13)
j=0 j=0

Using Eq. 11, Eq. 12 and Eqg. 13, the availability, expected duiprformance and performance deficiency
of the oil transmission system obtained for each demarate computed (cf. Table VII).

2) TBM method:The system consists of 3 components. Components 1 and 2 haa&e8{9, 1, 2}.
Component 3 has 2 stat¢s, 1}. The state vector of the system s = (X, X, X3). The frames of

discernment of the components and of the system are:

Ly ={0,1,2}

L2 = {07 17 2}
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Demandw UGF
A Ey Ey

1 0.9504 2.88 0.0496
15 0.9408 2.88 0.0792
2 0.8448 2.88 0.1568
25 0.7776 2.88 0.268
3 0.7584 2.88 0.3888
35 0.5376 2.88 0.6200

TABLE VII: Example 1: MSS reliability indices based on UGF metho

X1 o0 0 00 0 1 1 1 1 1 1 2 2 2 2 2 2
X 00 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
X3 0o 1 0 1 0 1 O 1 0O 1 0 1 0 1 0 1 0 1
Xs=¢(X1,X2,Xs) 0 0 0 2 0 3 0 1 0 4 0 5 0 2 0 5 0 6

TABLE VIII: Structure function of the oil transmission system

Ly ={0,1}
Lg=1{0,1,2,3,4,5,6}

The corresponding BBAs for element 1, 2 and 37@{%1} =0.1, mfll} =0.1, m{L21} = 0.8, mfg} =0.1,

L, _ L, _ Ly __ Lz _
mipy = 0.2, my = 0.7, migy = 0.04, andm{l} = 0.96.
The vacuous extension defined in Eq.15 is used to extend the BBABdseparate components to the
product spacd.; x Lo x L3 x Lg. The resulting BBAs are combined using Dempster’s rule, ded t
new BBAs are then combined with the BBA.,, iy, Which represents the structure functipnof the

oil transmission system (cf. Table VIII). This BBA is given:by

mConfig({Xl = 07X2 = 0>X3 = OaXS = 0} ) {Xl = OaX2 = 07X3 = 17XS = O} PR

"'7{X1 :27X2 :27X3:()7XS:0}7{X1 :27X2 :27X3 = 17XS:6}) =1

The resulting BBAs are then marginalized to the frame of disoent Lg using Eq.14. Belief and
plausibility functions are computed using Eqg.1 and Eq.2, &edhtelief intervals of system states using
Eq.4 and Eq.5 (cf. Table IX). Finally, using Eq.7, Eq.8 and EQ.9, b&ia the reliability indices sum-
marized in Table X. In the absence of epistemic uncertaintyhaxe Bel(p(X) = j) = Pl(p(X) = j)
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System Performance h; = [hj, h;]
statesj  rates (ton/min) o

0 0 0.0496
1 1 0.0096
2 15 0.096
3 2 0.0672
4 25 0.0192
5 3 0.1536
6 35 0.6048

TABLE IX: Example 1: Belief intervals of system states

Demandw TBM
A Ey E,

1 0.9504 2.88 0.0496
15 0.9408 2.88 0.0792
2 0.8448 2.88 0.1568
25 0.7776 2.88 0.268
3 0.7584 2.88 0.3888
35 0.5376 2.88 0.6200

TABLE X: Example 1: MSS reliability indices based on the TBM metho

for each statg (@ = h;). Thus we obtain precise values instead of interval belidésexpected, the

same reliability indices are obtained for the UGF and TBM radth(cf. Table VII and Table X).

B. Example 2

This example features the same oil transmission system odexkimple 1, but epistemic uncertainty is
also taken into account. The corresponding BBAs of composiaiés are given by three experts (Expert
1, Expert 2 and Expert 3), as shown in Table XI. Three combinatides are used to aggregate the
experts’ opinions: Dempster’s rule, the Disjunctive rutelahe Cautious rule [16]. Table XII shows the
BBAs of component states obtained using each of these catiinrules.

Belief and plausibility functions are computed using Eq.d Ba.2. The belief intervals of system states
for each rule are then computed using Eg.4 and EQq.5 (cf. Tallg. s we can see, the Disjunctive
rule gives a less precise belief interval than Dempstets amd the Cautious rule.

The reliability indices of the system (cf. Table XIV) obtathdor each demandv using the three

combination rules are computed using Eq.7, Eq.8 and Eq.9.
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Component Expert 1 Expert 2 Expert 3
M{oy  ™M{1} M2y M{o} M{1} M2y Mo} M{1} My}
1 0.19 0.2 0.58 0.16 0.3 0.52 0.14 0.32 0.52
2 0.15 0.24 0.56 0.18 0.29 0.53 0.10 0.26 0.6
3 0.29 0.58 0 0.26 0.52 0 0.34 0.52 0

TABLE Xl: Example 2: BBAs of component states given by experts

Component Dempster’s rule Disjunctive rule Cautious rule
m{o} m{1} m{2} m{o} m{1} m{2} m{o} m{1} m{2}
1 0.0302 0.1196 0.8502 0.0043 0.0027 0.0256 0.1560 0.3144106.
2 0.0212 0.1064 0.8724 0.0192 0.0181 0.1568 0.1802 0.2905116.
3 0.2111 0.7798 0 0.1568 0.1781 0 0.3074 0.5662 0

TABLE XIl: Example 2: The obtained BBAs after combination

Dempster’s rule is based on the assumption that the BBAs twob#ined come from reliable experts.
The expected output performanégl = [2.572681, 2.603106] never exceeds 3 tons/min and the system
unsupplied demand ever exceeds 1 ton/min. Suppose that shenspafety standard requires that the
system operation satisfies a required level of system av#ifagreater than or equal to 0.6. This would
imply that the oil transmission system cannot meet the systeailability requirement if the demand

is greater than 34 = [0.578374,0.585170] for w > 3). The system unsupplied demaig, is always
lower than 1 ton/min.

The Disjunctive rule merely assumes that at least one sodrogasmation is reliable, and we do not

know which one. In the case where a system availabilitydof> 0.6 is required we cannot reach a

System Performance Dempster’s rule Disjunctive rule Castiole

statesj  rates (ton/min) (R, hyj] (R, hy] (R, hy]
0 0 [0.211560,0.220665] [0.025647,0.994379] [0.325028,0572]
1 1 [0.001981,0.002005]  [0.000008,0.968740] [0.0328338403]
2 15 [0.016596,0.016795]  [0.000078,0.968810] [0.0762248825]
3 2 [0.020564,0.029713]  [0.000119,0.968850]  [0.0409088450]
4 2.5 [0.009917,0.010038] [0.000054,0.968786] [0.0520995549]
5 3 [0.151858,0.153676] [0.000981,0.969713] [0.1788320379]
6 35 [0.578374,0.585170]  [0.004380,0.973112]  [0.1505893119]

TABLE XIlI: Example 2: Belief intervals of system states
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Dempster’s rule

Demand A Ey4 Ey
1 [0.779335,0.788440] [2.572681,2.603106] [0.2115&20665]
15 [0.777354,0.786435] [2.572681,2.603106]  [0.31833B2001]
2 [0.760753,0.769645] [2.572681,2.603106] [0.43340®,0734]
25 [0.740150,0.748840] [2.572681,2.603106]  [0.55805B1888]
3 [0.730232,0.738807] [2.572681,2.603106] [0.689061,0062]
3.5 [0.578374,0.585170] [2.572681,2.603106] [0.895Q929075]

Disjunctive Rule

Demand A Ey E,
1 [0.052958,0.974353] [0.018774,11.158645] [0.025644,0042]
15 [0.050538,0.974302] [0.018774,11.158645] [0.038%.789088]
2 [0.028428,0.971658] [0.018774,11.158645] [0.0513422482]
25 [0.005416,0.967598] [0.018774,11.158645] [0.0642628951]
3 [0.005361,0.967259] [0.018774,11.158645] [0.07722B@237]
35 [0.004380,0.931722] [0.018774,11.158645] [0.0906681546]

Cautious Rule

Demand A Eg E,
1 [0.532428,0.674977] [1.425048,1.923970] [0.3250280572]
15 [0.499575,0.642124] [1.425048,1.923970]  [0.50306B9059]
2 [0.423299,0.565848] [1.425048,1.923970] [0.721022,9959]
25 [0.382398,0.524947] [1.425048,1.923970]  [0.958563,2584]
3 [0.329399,0.471948] [1.425048,1.923970] [1.22258%2983]
35 [0.150569,0.293119] [1.425048,1.923970] [1.576B3@4072]

TABLE XIV: Example 2: MSS reliability indices

decision, because for each demamndthe support ofA is very large. Moreover, the supports éf;
and E,, are also very large and greater than the maximum capacitieobil transmission system (3.5
tons/min). The Disjunctive rule does not generate any cosfiod does not reject any of the information
asserted by the sources. As such, no normalization proeasuequired. The drawback of this method
is that it yields a less precise result.

However, both Dempster’s rule and the Disjunctive rule assuhat the experts are independent. The
Cautious rule is commutative, associative and idempofdre.property of idempotence makes it suitable
for combining non-distinct items of evidence (i.e eviderimm dependent experts). In Table XIV we
can see that using the Cautious rule the oil transmissiotersysay (but we cannot be sure) meet the
system availability requirementi(> 0.6) if the demand is lower than 24(= [0.499575, 0.642124] for

w = 1.5). On the other hand, the expected output performafide= [1.425048,1.923970] is always
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lower than 2 tons/min.

V. CONCLUSION

The current work proves the applicability of D-S theory and TBMiletermining the reliability indices
of MSSs in the presence of both aleatory and epistemic unotemi New definitions are given for MSS
reliability indices in the framework of TBM. In particulam ithe case of aleatory uncertainty, the same
reliability indices are obtained for the UGF and TBM methad@sr results show that the proposed model
might be used in practical situations when there is a needke into account epistemic uncertainties

and experts’ opinions. The use of several combination rulebe TBM framework is also discussed.

APPENDIX
A. Formula of marginalization

Consider a BBAn ‘% defined on the Cartesian produet(,. The marginal BBAm =42 on Q,

is defined by:
M2 (A) = > mS=(B)
BCQ,Q,/Proj(BlQ,)=A
(14)
VA CQ,
Where Proj(B | Q) = {z € Q,/3y € Q,, (z,y) € B}.
B. Formula of vacuous extension
Consider a BBAmS* defined on(2,. Its vacuous extension dn,Q, is defined by:
Q, i —
1, () = m>*(A) if B=AxQ,
0 otherwise.
(15)
VACQ,

23



C. Formulas of combination rules

The Conjunctivep) and Disjunctive© rules are defined by:

mig;(H) = Y mi(A)m{(B),VH C Q (16)
ANB=HYA,BCQ

miy, (H) = > mi(Am$(B),VH C Q (17)
AUB=HNA,BCQ

Dempster’s rule is given by:

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

> AnB=mva.Bcx M (A)m (B)

1 Y ANB=0.YABCX sz(A)mﬁ((B)

(18)
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