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Abstract. Astronomers still lack a multiwavelength analysis scheme
for galaxy classi�cation. In this paper we propose a way of analysing
multispectral observations aiming at re�ning existing classi�cations with
spectral information. We propose a global approach which consists of
decomposing the galaxy into a parametric model using physically mean-
ingful structures. Physical interpretation of the results will be straight-
forward even if the method is limited to regular galaxies. The proposed
approach is fully automatic and performed using Markov Chain Monte
Carlo (MCMC) algorithms. Evaluation on simulated and real 5-band
images shows that this new method is robust and accurate.

Key words: Bayesian inference, MCMC, multispectral image process-
ing, galaxy classi�cation.

1 Introduction

Galaxy classi�cation is a necessary step in analysing and then understanding
the evolution of these objects in relation to their environment at di�erent spatial
scales. Current classi�cations rely mostly on the De Vaucouleurs scheme [1] which
is an evolution of the original idea by Hubble. These classi�cations are based
only on the visible aspect of galaxies and identi�es �ve major classes: ellipticals,
lenticulars, spirals with or without bar, and irregulars. Each class is characterized
by the presence, with di�erent strengths, of physical structures such as a central
bright bulge, an extended fainter disc, spiral arms, . . . and each class and the
intermediate cases are themselves divided into �ner stages.

Nowadays wide astronomical image surveys provide huge amount of multi-
wavelength data. For example, the Sloan Digital Sky Survey (SDSS3) has already
produced more than 15Tb of 5-band images. Nevertheless, most classi�cations
still do not take advantage of colour information, although this information gives
important clues on galaxy evolution allowing astronomers to estimate the star
formation history, the current amount of dust, etc. This observation motivates
the research of a more e�cient classi�cation including spectral information over

3 http://www.sdss.org/



2

all available bands. Moreover due to the quantity of available data (more than
930,000 galaxies for the SDSS), it appears relevant to use an automatic and
unsupervised method.

Two kinds of methods have been proposed to automatically classify galaxies
following the Hubble scheme. The �rst one measures galaxy features directly
on the image (e.g. symmetry index [2], Pétrosian radius [3], concentration in-
dex [4], clumpiness [5], . . . ). The second one is based on decomposition techniques
(shapelets [6], the basis extracted with principal component analysis [7], and the
pseudo basis modelling of the physical structures: bulge and disc [8]). Parame-
ters extracted from these methods are then used as the input to a traditional
classi�er such as a support vector machine [9], a multi layer perceptron [10] or a
Gaussian mixture model [6].

These methods are now able to reach a good classi�cation e�ciency (equal to
the experts' agreement rate) for major classes [7]. Some attempts have been made
to use decomposition into shapelets [11] or feature measurement methods [12]
on multispectral data by processing images band by band. Fusion of spectral
information is then performed by the classi�er. But the lack of physical meaning
of data used as inputs for the classi�ers makes results hard to interpret. To avoid
this problem we propose to extend the decomposition method using physical
structures to multiwavelength data. This way we expect that the interpretation
of new classes will be straightforward.

In this context, three 2D galaxy decomposition methods are publicly avail-
able. Gim2D [13] performs bulge and disc decomposition of distant galaxies using
MCMC methods, making it robust but slow. Budda [14] handles bulge, disc, and
stellar bar, while Gal�t [15] handles any composition of structures using various
brightness pro�les. Both of them are based on deterministic algorithms which
are fast but sensitive to local minima. Because these methods cannot handle
multispectral data, we propose a new decomposition algorithm. This works with
multispectral data and any parametric structures. Moreover, the use of MCMC
methods makes it robust and allows it to work in a fully automated way.

The paper is organized as follows. In Sec. 2, we extend current models to
multispectral images. Then, we present in Sec. 3 the Bayesian approach and a
suitable MCMC algorithm to estimate model parameters from observations. The
�rst results on simulated and raw images are discussed in Sec. 4. Finally some
conclusions and perspectives are drawn in Sec. 5.

2 Galaxy Model

2.1 Decomposition into Structures

It is widely accepted by astronomers that spiral galaxies for instance can be
decomposed into physically signi�cant structures such as bulge, disc, stellar bar
and spiral arms (Fig. 4, �rst column). Each structure has its own particular
shape, populations of stars and dynamic. The bulge is a spheroidal population
of mostly old red stars located in the centre of the galaxy. The disc is a planar
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structure with di�erent scale heights which includes most of the gas and dust if
any and populations of stars of various ages and colour from old red to younger
and bluer ones. The stellar bar is an elongated structure composed of old red
stars across the galaxy centre. Finally, spiral arms are over-bright regions in
the disc that are the principal regions of star formation. The visible aspect of
these structures are the fundamental criterion in the Hubble classi�cation. It is
noteworthy that this model only concerns regular galaxies and that no model
for irregular or peculiar galaxies is available.

We only consider in this paper bulge, disc, and stellar bar. Spiral arms are not
included because no mathematical model including both shape and brightness
informations is available; we are working at �nding such a suitable model.

2.2 Structure Model

We propose in this section a multispectral model for bulge, disc, and stellar bar.
These structures rely on the following components: a generalized ellipse (also
known as super ellipse) is used as a shape descriptor and a Sérsic law is used for
the brightness pro�le [16]. These two descriptors are �exible enough to describe
the three structures.

The major axis r of a generalized ellipse centred at the origin with axis
parallel to coordinate axis and passing trough point (x, y) ∈ R

2 is given by:

r (x, y) =

(
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where e is the ratio of the minor to the major axis and c controls the misshapen-
ness: if c = 0 the generalized ellipse reduces to a simple ellipse, if c < 0 the ellipse
is said to be disky and if c > 0 the ellipse is said to be boxy (Fig. 1). Three more
parameters are needed to complete shape information: the centre (cx, cy) and
the position angle α between abscissa axis and major axis.
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Fig. 1. Left: a simple ellipse with position angle α, major axis r and minor axis r/e.
Right: generalized ellipse with variations of parameter c (displayed near each ellipse).

The Sérsic law [16] is generally used to model the brightness pro�le. It is a
generalization of the traditional exponential and De Vaucouleurs laws usually
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used to model disc and bulge brightness pro�les. Its high �exibility allows it
to vary continuously from a nearly �at curve to a very piked one (Fig. 2). The
brightness at major axis r is given by:

I(r) = I e
−kn

(

(

r
R

)
1
n − 1

)

(2)

where R is the e�ective radius, n is the Sérsic index, and I the brightness at
the e�ective radius. kn is an auxiliary function such that Γ (2n) = 2γ(2n, kn) to
ensure that half of the total �ux is contained in the e�ective radius (Γ and γ are
respectively the complete and incomplete gamma function).
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Fig. 2. The Sérsic law for di�erent Sérsic index n. n = 0.5 yields a Gaussian, n = 1
yields an exponential pro�le and for n = 4 we obtain the De Vaucouleurs pro�le.

Then, the brightness at pixel (x, y) is given by:

F (x, y) = (F1(x, y), . . . , FB(x, y)) (3)

with B the number of bands and the brightness in band b is de�ned as:

Fb(x, y) = Ib e
−knb

(

(

r(x,y)
Rb

)
1
nb − 1

)

(4)

As each structure is supposed to represent a particular population of stars and
galactic environment, we also assume that shape parameters do not vary between
bands. This strong assumption seems to be veri�ed in observations suggesting
that shape variations between bands is negligible compared with deviation in-
duced by noise. Moreover, this assumption reduces signi�cantly the number of
unknowns. The stellar bar has one more parameter which is the cut-o� radius
Rmax; its brightness is zero beyond this radius. For the bulge (respectively the
stellar bar), all Sérsic parameters are free which leads to a total number of 5+3B
(respectively 6+3B) unknowns. For the disc, parameter c is set to zero and Sér-
sic index is set to one leading to 4+2B free parameters. Finally, we assume that
the centre is identical for all structures yielding a total of 11 + 8B unknowns.
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2.3 Observation Model

Atmospheric distortions can be approximated by a spatial convolution with a
Point Spread Function (PSF) H given as a parametric function or an image.
Other noises are a composition of several sources and will be approximated by
a Gaussian noise N (0, Σ). Matrix Σ and PSF H are not estimated as they can
be measured using a deterministic procedure. Let Y be the observations and e

the noise, we then have:

Y = Hm+ e with m = FB + FD + FBa (5)

with B, D, and Ba denoting respectively the bulge, the disc, and the stellar bar.

3 Bayesian Model and Monte Carlo Sampling

The problem being clearly ill-posed, we adopt a Bayesian approach. Priors as-
signed to each parameter are summarized in Tab. 1; they were determined from
literature when possible and empirically otherwise. Indeed experts are able to
determine limits for parameters but no further information is available: that
is why Probability Density Functions (pdf) of chosen priors are uniformly dis-
tributed. However we expect to be able to determine more informative priors in
future work. The posterior reads then:

P (φ|Y ) =
1

(2π)
N

2 det (Σ)
1
2

e−
1
2 (Y −Hm)

T
Σ−1 (Y −Hm)P (φ) (6)

where P (φ) denotes the priors and φ the unknowns. Due to its high dimension-
ality it is intractable to characterize the posterior pdf with su�cient accuracy.
Instead, we aim at �nding the Maximum A Posteriori (MAP).

Because of the posterior complexity, the need for a robust algorithm leads
us to choose MCMC methods [17]. MCMC algorithms are proven to converge in
in�nite time, and in practice the time needed to obtain a good estimation may
be quite long. Thus several methods are used to improve convergence speed:
simulated annealing, adaptive scale [18] and direction [19] Hastings Metropolis
(HM) algorithm. As well, highly correlated parameters like Sérsic index and
radius are sampled jointly to improve performance.

The main algorithm is a Gibbs sampler consisting in simulating variables sep-
arately according to their respective conditional posterior. One can note that the
brightness factors posterior reduces to a truncated positive Gaussian N+

(

µ, σ2
)

which can be e�ciently sampled using an accept-reject algorithm [20]. Other
variables are generated using the HM algorithm.

Some are generated with a Random Walk HM (RWHM) algorithm whose
proposal is a Gaussian. At each iteration a random move from the current value is
proposed. The proposed value is accepted or rejected with respect to the posterior
ratio with the current value. The parameters of the proposal have been chosen by
examining several empirical posterior distributions to �nd preferred directions
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and optimal scale. Sometimes the posterior is very sensitive to input data and
no preferred directions can be found. In this case we decided to use the Adaptive
Direction HM (ADHM). ADHM algorithm uses a sample of already simulated
points to �nd preferred directions. As it needs a group of points to start with
we choose to initialize the algorithm using simple RWHM. When enough points
have been simulated by RWHM, the ADHM algorithm takes over. Algorithm
and parameters of proposal distributions are summarized in Tab. 1.

Table 1. Parameters and their priors. All proposal distributions are Gaussians whose
covariance matrix (or deviation for scalars) are given in the last column.

Structure Parameter Prior Support Algorithm

B, Ba, D centre (cx, cy) Image domain RWHM with

(

1 0

0 1

)

B

major to minor axis (e) [1; 10] RWHM with 1

position angle (α) [0; 2π] RWHM with 0.5

ellipse misshapenness (c) [−0.5; 1] RWHM with 0.1

brightness factor (I) R
+ direct with N

+
(

µ, σ2
)

radius (R) [0; 200]
ADHM with

(

0.16 −0.02

−0.02 0.01

)

Sérsic index (n) [1; 10]

D

major to minor axis (e) [1; 10] RWHM with 0.2

position angle (α) [0; 2π] RWHM with 0.5

brightness factor (I) R
+ direct with N

+
(

µ, σ2
)

radius (R) [0; 200] RWHM with 1

Ba

major to minor axis (e) [4; 10] RWHM with 1

position angle (α) [0; 2π] RWHM with 0.5

ellipse misshapenness (c) [0.6; 2] RWHM with 0.1

brightness factor (I) R
+ direct with N

+
(

µ, σ2
)

radius (R) [0; 200]
ADHM with

(

0.16 −0.02

−0.02 0.01

)

Sérsic index (n) [0.5; 10]

cut-o� radius (Rmax) [10; 100] RWHM with 1

Also, parameters Ib, Rb, and nb are jointly simulated. Rb, nb are �rst sampled
according to P

(

Rb, nb | φ\{Rb,nb,Ib}

)

where Ib has been integrated and then Ib
is sampled [21]. Indeed, the posterior can be decomposed in:

P
(

Rb, nb, Ib | φ\{Rb,nb,Ib}, Y
)

= P
(

Rb, nb | φ\{Rb,nb,Ib}, Y
)

P
(

Ib | φ\{Ib}, Y
)

(7)
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4 Validation and Results

We measured two values for each parameter: the MAP and the variance of the
chain in the last iterations. The latter gives an estimation of the uncertainty
on the estimated value. A high variance can have di�erent interpretations. In
case of an observation with a low SNR, the variance naturally increases. But
the variance can also be high when a parameter is not relevant. For example,
the position angle is signi�cant if the structure is not circular, the radius is also
signi�cant if the brightness is strong enough. We have also checked visually the
residual image (the di�erence between the observation and the simulated image)
which should contain only noise and non modelled structures.

Parameters are initialized by generating random variables according to their
priors. This procedure ensures that the algorithm is robust so that it will not be
fooled by a bad initialisation, even if the burn-in period of the Gibbs sampler is
quite long (about 1,500 iterations corresponding to 1.5 hours).

4.1 Test on Simulated Images

We have validated the procedure on simulated images to test the ability of the
algorithm to recover input parameters. The results showed that the algorithm
is able to provide a solution leading to a residual image containing only noise
(Fig. 3). Some parameters like elongation, position angle, or centre are retrieved
with a very good precision (relative error less than 0.1%). On the other hand,
Sérsic parameters are harder to estimate. Thanks to the extension of the disc,
its radius and its brightness are estimated with a relative error of less than 5%.
For the bulge and the stellar bar, the situation is complex because information
is held by only a few pixels and an error in the estimation of Sérsic parametres
does not lead to a high variation in the likelihood. Although the relative error
increases to 20%, the errors seem to compensate each other.

Another problem is the evaluation of the presence of a given structure. Be-
cause the algorithm seeks at minimizing the residual, all the structures are always
used. This can lead to solutions where structures have no physical signi�cance.
Therefore, we tried to introduce a Bernoulli variable coding the structure oc-
currence. Unfortunately, we were not able to determine a physically signi�cant
Bernoulli parameter. Instead we could use a pre- or post-processing method to
determine the presence of each structure. These questions are highly linked to
the astrophysical meaning of the structures we are modelling and we have to ask
ourselves why some structures detected by the algorithm should in fact not be
used. As claimed before, we need to de�ne more informative joint priors.

4.2 Test on Real Images

We have performed tests on about 30 images extracted from the EFIGI database [7]
which is composed of thousands of galaxy images extracted from the SDSS. Im-
ages are centred on the galaxy but may contain other objects (stars, galaxies,
artefacts, . . . ). Experiments showed that the algorithm performs well as long as
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Fig. 3. Example of estimation on a simulated image (only one band on �ve is shown).
Left: simulated galaxy with a bulge, a disc and a stellar bar. Centre: estimation. Right:
residual. Images are given in inverse gray scale with enhanced contrast.

no other bright object is present in the image (see Fig. 4 for example). As there is
no ground truth available on real data we compared the results of our algorithm
on monospectral images with those provided by Gal�t. This shows a very good
agreement since Gal�t estimations are within the con�dence interval proposed
by our method.

4.3 Computation Time

Most of the computation time is used to evaluate the likelihood. Each time a
parameter is modi�ed, this implies the recomputation of the brightness of each
a�ected structure for all pixels. Processing 1,000 iterations on a 5-band image of
250× 250 pixels takes about 1 hour with a Java code running on an Intel Core 2
processor (2,66GHz). We are exploring several ways to improve performance
such as providing a good initialisation using fast algorithms or �nely tuning the
algorithm to simplify exploration of the posterior pdf.

5 Conclusion

We have proposed an extension of the traditional bulge, disc, stellar bar de-
composition of galaxies to multiwavelength images and an automatic estimation
process based on Bayesian inference and MCMC methods. We aim at using the
decomposition results to provide an extension of the Hubble's classi�cation to
multispectral data. The proposed approach decomposes multiwavelength obser-
vations in a global way. The chosen model relies on some physically signi�cant
structures and can be extended with other structures such as spiral arms. In
agreement with the experts, some parameters are identical in every band while
others are speci�c to each band. The algorithm is non-supervised in order to
obtain a fully automatic method. The model and estimation process have been
validated on simulated and real images.

We are currently enriching the model with a parametric multispectral de-
scription of spiral arms. Other important work being carried out with experts
is to determine joint priors that would ensure the signi�cance of all parameters.
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Fig. 4. Left column: galaxy PGC2182 (bands g, r, and i) is a barred spiral. Centre
column: estimation. Right column: residual. Images are given in inverse gray scale with
enhanced contrast.

Finally we are looking for an e�cient initialisation procedure that would greatly
increase convergence speed and open the way to a fast and fully unsupervised
algorithm for multiband galaxy classi�cation.
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