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Abstract

We present a new method for the parametric decomposition of barred spiral galaxies in multi-
spectral observations. The observation is modelled with a realistic image formation model and
the galaxy is composed of physically signi�cant parametric structures. The model also includes a
parametric �ltering to remove non desirable aspects of the observation. Both the model and the
�lter parameters are estimated by a robust Monte Carlo Markov chain (MCMC) algorithm. The
algorithm is based on a Gibbs sampler combined with a novel strategy of simulated annealing in
which several temperatures allow to manage e�ciently the simulation e�ort. Besides, the overall
decomposition is performed following an original framework: a hierarchy of models from a coarse
model to the �nest one is de�ned. At each step of the hierarchy the estimate of a coarse model is
used to initialize the estimation of the �ner model. This leads to an unsupervised decomposition
scheme with a reduced computation time. We have validated the method on simulated and real
5-band images: the results showed the accuracy and the robustness of the proposed approach.

Keywords: Modelling and recovery of physical attributes, Monte Carlo Markov chain algorithms,
Simulated annealing, Hierarchical decomposition, Inverse problems, Astronomy

1. Introduction

Thanks to the increasing computational power available in modern computers, the traditional
low-level models (or pixel models) used in image processing are gradually replaced by high-level
semantic descriptions using complex models for the objects present in the image. These high-
level image models, where each object describes a large set of pixels with only a few signi�cant
parameters of high-level semantic, have become very popular, especially with the emergence of
marked point process methods [1]. These approaches have the advantage to �ll the semantic gap
which arose with the increasing spatial resolution of images, when pixels taken independently are no
more signi�cant. Applications in various domains like building reconstruction [2] in dense remote
sensing images, vascular tree reconstruction [3], �amingo counting [4] or tree crown extraction [5]
have been developed.

Because these approaches lead to complex ill-posed inverse problems of high dimension, the
problem is usually regularized within a Bayesian framework [6, 7] or, more generally, with a reg-
ularized energy function [5]. In this di�cult context, MCMC algorithms have proved their ability
to provide robust solutions in a fully automated way.
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In this paper, we aim at developing a high-level semantic model for the analysis of multispectral
images of galaxies in astronomy as well as an e�cient optimization algorithm based on MCMC
methods to compute an estimation of the model. The MCMC algorithm is based on the Hastings
Metropolis within Gibbs technique taking advantage of recent development in adaptive scale and
direction methods [8�10]. In this way, we obtain an automatic method to characterize these
objects by extracting quantitative morphological, brightness and spectral descriptors. Today, this
application is a major issue since astronomers are searching for a new comprehensive and objective
spectro-morphological classi�cation scheme of local universe galaxies.

Galaxy decomposition and quantitative morphology measurement are very topical problems
in astronomy (see for instance [11�14] and references therein) with many theoretical outcomes.
First, it provides clues to the origin of galaxies and their formation process in relation with the
local environment. In this aspect, understanding the morphology of galaxies at low and moderate
redshifts (local universe) is crucial for any meaningful comparison with galaxy images at higher
redshift (very distant objects at earlier epochs) and with simulation results. Second, it helps in
understanding the physical di�erences between galaxies, since it appears that morphological types
do correlate with colours, atomic hydrogen mass and other quantities. Moreover, the huge data sets
related to large present and forthcoming surveys prevent a visual inspection by dedicated experts
and require automatic and objective methods. Several algorithms and models have already been
developed to perform galaxy decompositions [15�17]. Nevertheless, these methods su�er either
from the use of too naive or simple models or from their supervised approach of the problem
requiring parameter tuning. For example, [15] is an automatic algorithm but the model used is
too simple for our purpose. On the other hand, other methods use more sophisticated models but
they require a lot of human time for their supervision [12]. Besides nowadays, large multispectral
imaging surveys produce huge amount of multiwavelength data for local and more distant (and less
resolved) galaxies and a major issue in astronomy is to design methods able to process automatically
and e�ciently such data [18].

Following the Hubble's visual classi�cation scheme [19] and its modi�cations, galaxies can be
divided into a sequence of four major classes: from elliptical galaxies, through lenticular galaxies,
to spiral galaxies and a parallel branch of spirals with a barred component extending out from
the nucleus; each galaxy class has subclasses for which boundaries may be di�cult to de�ne (Fig.
1). Galaxies from these four classes can be decomposed into several morphologically signi�cant
features: the bulge, the stellar disc, the spiral arms and the stellar bar. So, a barred spiral galaxy
in the Hubble's classi�cation has the richest decomposition and all galaxies from the other classes
can be seen as barred spiral galaxies with missing structures. Thus, we present hereafter a rich
barred spiral galaxy model which can model all galaxy types. It can naturally handle multispectral
information and we propose a new model for the spiral structure simulation that was still missing
in the literature.

Ellipticals

Spirals

Barred Spirals

Lenticulars

Figure 1: The Hubble tuning fork separates galaxies into four classes: elliptic, lenticular, spiral and barred spiral.

The innovative aspect of the spiral model relies in its dual behaviour. One part of the model
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is a traditional constructive parametric model which provides a way to simulate this structure.
On the other hand, we introduce a novel modelling technique which is based on the introduction
of a parametric �ltering of the input image. The parametric �lter modi�es the observation to
remove some of its non-desirable aspects (like non-relevant features). This approach di�ers from a
traditional pre-processing of the observation because the parameters of the �lter are estimated like
the other parameters of the model. Moreover, we show that, even if the �lter consists in masking
parts of the observation, we can still preserve useful information about the masked regions in the
estimation process.

To improve the performances of the optimization algorithm we describe two new approaches
that allow to reduce the number of needed iterations to only a few hundreds compared to the
tens of thousands usually required. Our �rst idea relies on a simulated annealing strategy with
multiple temperatures. Compared with traditional simulated annealing [10, 20, 21], our approach
assigns a di�erent temperature to each dimension of the posterior. This method leads to a better
distribution of the computational e�ort.

A second idea is to introduce an iterative decomposition strategy based on a hierarchy of models.
The hierarchy is composed of models of increasing complexity. The estimates of a model are used
as input for the estimation of the model of higher complexity. This way, we strongly decrease the
length of the burn-in period (�rst iterations discarded because they are not representative of the
equilibrium distribution of the Markov chain in a short run) and �nally, we are able to estimate
the full hierarchy of models faster than the most complex model taken alone.

The good behaviour of the method is demonstrated on simulated and real images. The simulated
images were produced using the parametric model of barred spiral galaxies and are used to produce
quantitative measurement on the quality of the method. The real galaxies are 5-band images from
near ultra-violet (UV) to near infrared (IR) selected from the EFIGI database [22]. These images
were extracted from the Sloan Digital Sky Survey archive (SDSS1); collected with a dedicated 2.5-
m wide-angle optical telescope at Apache Point Observatory in New Mexico this dataset allows one
to extract a well-de�ned sample of galaxy images spanning all the morphological types. Results
obtained with this multiband data show the accuracy and the robustness of the proposed method.

Compared to previous works on galaxy decomposition, this paper introduces a support for mul-
tispectral images and a new parametric model for spiral arms. The parametric model is described
in section 2. It is based on a global approach which incorporates the expert knowledge (prior
on the shape and the brightness of the galaxy structures) and the multispectral information in a
natural way. The Bayesian framework (section 3) allows to rigorously take account of the noise and
the intrinsic variability of the observations. The Bayesian scheme is adapted to include our new
parametric �ltering strategy and an estimation method is proposed. The details of the estimation
algorithm are given in section 4. In section 5, we present the two new techniques designed to
improve the estimation algorithm: a simulated annealing using several temperatures and a hierar-
chical decomposition scheme providing an accurate, robust and fast initialization procedure. The
results on simulated and real images are presented in section 6 with a quantitative and a qualitative
analysis. Finally, we conclude our work and discuss the perspectives in section 7.

2. Model of a Barred Spiral Galaxy

Galaxies can be decomposed into di�erent visible structures which are both morphologically
and physically signi�cant. Each structure can be distinguished by its shape and location within the
galaxy, by its mix of stellar populations, average chemical composition, internal kinematics, etc. In
the case of barred spiral galaxies, four main components are evidenced (the spherical stellar halo
component where globular clusters reside and the invisible and massive halo of dark matter are not

1http://www.sdss.org/
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considered): a bulge (B), a disc (D), a so-called stellar bar (Ba) and spiral arms (s). The bulge is
the central tight and bright spheroidal component made mostly of old red stars. Beyond the bulge
is the disc: it is a planar structure with a circular shape, a small scale height and a distinct light
pro�le; it includes most of the gas and dust of the galaxy and it owns a population of stars of various
ages from old red to younger and bluer one. The angle between the line-of-sight and the plane
de�ned by the disc gives the inclination of the galaxy on the celestial sphere: for an inclination of
90◦ (respectively 0◦) we say that the galaxy is viewed face-on (respectively edge-on). The stellar
bar is an elongated structure in the galactic disc extending out from the bulge with a population
of stars similar in colour to the one of the bulge but with a di�erent kinematic. Finally, the spiral
arms are over dense and bright regions in the disc induced by a density wave. They are of great
importance since the star formation regions are located there; spiral arm observations can thus
di�er importantly from one band to another one since the short-lived massive and energetic stars
lead either to a pattern of spotty regions (called H II regions) when viewed at short wavelengths
or to a continuous feature in the IR due to the heating of the dust content of the disc (Fig. 2).

Figure 2: The barred spiral galaxy PGC (principal galaxies catalogue) 40153 from the SDSS in band u (near UV)
and z (near IR). The z -band image is a mosaic of several images which explains its blocky aspect.

2.1. Observation Model

According to astronomical considerations, and neglecting the obscuring e�ect of any irregular
dust distribution, an observation of a galaxy is composed of the sum of the brightness of its
di�erent structures a�ected by perturbations due to the atmosphere, the optics of the telescope,
the characteristics of the detector and corrupted by noise. Thus, an observation Y can be modelled
as:

Y = H ∗ F(φφφ) + e with F(φφφ) = fB(φφφ) + fD(φφφ) + fBa(φφφ) + fs(φφφ) (1)

where ∗ denotes the convolution, fB (respectively fD, fBa and fs) is the brightness of the bulge
(respectively the stellar bar, the disc and the spiral arms). H the convolution kernel stands for the
point spread function (psf), it is generally estimated with accuracy by deterministic methods (so
we assume that it is known). The noise e is a composition of several sources [23]: photon noise,
thermal noise, electronic noise. It is approximated by a multidimensional uncorrelated zero-mean
Gaussian noise N (0,ΣΣΣ) whose covariance matrix ΣΣΣ can also be easily estimated [24] and thus is
considered known. Finally, the model is parametrized by unknowns φφφ.

All structures are modelled using parametric functions and each one can be decomposed into
two descriptors:

• A shape descriptor carries the spatial information: its parameters contain the most important
information about the morphology of the structure;

• A brightness descriptor models the distribution of the �ux coming from the structure.

The combination of the two descriptors provides a complete discriminant model for the object.
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Figure 3: Three super-ellipses with the same position angle α, major axis r and minor axis r/e but di�erent
misshapenness c (displayed near each ellipse).

We will now describe the models used for the di�erent structures. A common model for the
bulge, the disc and the stellar bar already exists in the literature for monospectral images [16, 17]:
we present this model generalized to multispectral images in section 2.2. Then we propose in
section 2.3 a new model for the spiral arm component. At last in section 2.4, we sum up the
variables gathered in φφφ and give some relations and constraints between them.

2.2. Bulge, Disc, Stellar Bar

In this model, a generalized ellipse (also known as super-ellipse) is used as the shape descriptor to
de�ne the shape of the isophotes (lines of equal brightness) of the structure. The traditional Sérsic
law is the brightness descriptor which describes the evolution of the brightness of the isophotes
from the centre to the outer edge.

2.2.1. Shape Descriptor

Major axis r of a generalized ellipse passing trough point (x, y) ∈ R
2 is given by:

r (x, y) =
(

|(x− cx) cosα− (y − cy) sinα|c+2
+ |e ((x− cx) sinα+ (y − cy) cosα)|c+2

)
1

c+2

(2)

where (cx, cy) denotes the centre of the ellipse, e is the elongation (ratio of the minor to the major
axis), α is the position angle (angle between the major axis and the abscissa axis) and c controls
the misshapenness: if c = 0 the generalized ellipse reduces to a simple ellipse, if c < 0 the ellipse
is said to be disky and if c > 0 the ellipse is said to be boxy (Fig. 3).

2.2.2. Brightness Descriptor

The Sérsic law [25] is used to model the brightness pro�le. It is a generalization of the traditional
exponential and de Vaucouleurs laws usually used to model the disc and bulge brightness pro�le,
respectively. Its high �exibility allows it to vary continuously from a nearly �at curve to a very
piked one (Fig. 4). The brightness at radius r along the major axis is given by:

I(r) = I exp

(

−kn

(

( r

R

)
1
n − 1

))

(3)

where R is the e�ective radius, n is the Sérsic index, and I the brightness at the e�ective radius. kn
is an auxiliary function such that Γ(2n) = 2γ(2n, kn) to ensure that half of total �ux is contained
in the e�ective radius (Γ and γ are respectively the complete and incomplete gamma functions).
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Figure 4: The Sérsic law for di�erent Sérsic index n. n = 0.5 yields a Gaussian, n = 1 yields an exponential pro�le
and for n = 4 we obtain the De Vaucouleurs pro�le.

2.2.3. Combination of the Descriptors

the brightness at pixel (x, y) on B spectral bands is given by:

f(φφφ, x, y) = (f1(x, y), . . . , fB(x, y)) (4)

where the brightness in band b is de�ned as:

fb(x, y) =







Ib exp

(

−knb

(

(

r(x,y)
Rb

)
1
nb − 1

))

if r(x, y) ≤ Rmax

0 otherwise
(5)

where Rmax is the cut-o� radius from which the brightness vanishes. r(x, y) is de�ned in (2). In
a discrete space, we assume that the pixel value is equal to the integral of the above formula on
the pixel area. For computing simplicity, the integral value is approximated by the central value of
the pixel in most part of the object. However, because the Sérsic function has a huge dynamic for
small values of r(x, y), the error increases quickly toward the centre so a special care must be taken
to perform a numerical integration of the central pixels. As a compromise between approximation
error and computation speed, we choose to over-sample the pixels near the centre within a radius
of three pixels.

2.3. Spiral arms

To our knowledge, despite the importance of the spiral arms in the classi�cation scheme, no
parametric model for simulating the spiral arms is available, even in the monospectral case. Such a
model should be able to take account of the continuous aspect of the arms which is prominent at long
wavelengths as well as the spotty aspect which may dominate the structure at short wavelengths.
The shape of the continuous aspect (development and tightness) is important in the Hubble's
classi�cation scheme [19, 26] and, in consequence, it has to be accurately modelled. On the contrary,
the spotty aspect of the H II regions is only a marker of the spiral structure.

Thus, we propose an original model divided into two parts: a parametric model for the contin-
uous aspect of the spiral and an adaptive masking technique for the spots which aims at masking
the H II regions located on the continuous model. This second aspect is detailed in section 3.1
while the parametric model is presented below.

Following the rules used for the bulge, the disc and the stellar bar, the model for the spiral arm
component is composed of a shape descriptor and a brightness descriptor.

2.3.1. Shape Descriptor

The detailed structure of the spiral arms can be very complex. However, most of the time, two
main symmetric arms can be isolated. Our model concentrates on describing these two main arm
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cases. In [27], the authors have shown that the distribution of the main components in a face-on
galaxy follows a logarithmic spiral: this is our shape descriptor.

The set of points belonging to a symmetric 2-arm logarithmic spiral curve is given by:

Es =
{

(r, ρ) ∈ R
+ × R

∣

∣

∣
r = R0 exp (|os|θ) , ρ = osθ + θ0 + kπ, θ ∈ R

+, k ∈ {0, 1}
}

(6)

with os the pitch angle, R0 the starting radius and θ0 the position angle (Fig. 5).
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Figure 5: A logarithmic spiral and its fundamental parameters. For all points N of the spiral, the pitch angle os
is the constant angle between the perpendicular (dotted line) in N of the line passing through the origin and the
tangent (dashed line) of the spiral in N.

As the galaxy is not necessarily seen face-on, the logarithmic spiral has to be projected on the
observation plane. Because the projection is fully determined by the disc parameters, the shape of
the spiral arms is linked to the parameters of the shape descriptor of the disc (which is assumed
to be a thin circular structure): the centre (cx, cy), the position angle α and the elongation e.

A pseudo distance function that de�nes the isophote shape of the spiral over the whole space
constitutes the second part of the model. From the fact that the spiral arm brightness decreases
both with the distance from the centre and from the spiral crest, we de�ne the distance function
of a point M(r, θ) in two parts:

ds(r, θ) = ds,1(r, θ) + ds,2(r, θ) (7)

where ds,2(r, θ) is the Euclidean distance from the given point M to the closest point of the spiral
P = (r′, θ′), and ds,1(r, θ) is a function of the Euclidean distance between this closest point to the
centre O = (0, 0) of the galaxy in the galactic plane (Fig. 6):

ds,1(r, θ) = exp

(−r′

Re

)

(8)

ds,2(r, θ) =
∥

∥

∥

−−→
PM

∥

∥

∥
(9)

with Re a scale parameter of the spiral and

P = arg min
P∈Es

∥

∥

∥

−−→
PM

∥

∥

∥
(10)

Because there is no analytic formulation for (10), there is no analytic formula to compute ds.
But, on the crest of the spiral, ds,2 is equal to 0 and ds,1 is trivial, thus we can directly compute ds
for the points of Es. As ds,2 is a distance from the points of Es to the others, ds can be computed
over the whole space by performing a distance transform to the set Es valued by the distance ds.
The distance ds,2 is measured in the galactic plane so, the equivalent distance in the projection
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Figure 6: De�nition of the distance function ds = ds,1 + ds,2 between point M and O the centre of the spiral. P is
the closest point of M on the spiral crest.

plane is not the Euclidean distance any more. Nevertheless, ds can be computed over the whole
plane using a traditional distance transform with an adapted distance mask because the unit circle
in the projected distance is an ellipse which is convex [28]. The three steps to simulate the spiral
arms are shown in Fig. 7.

Figure 7: The three steps of spiral arms simulation. Left: the crest of the spiral is drawn with the projection e�ect,
the values on the spiral crest are the values of ds,1 (the distance increases when brightness increases), the background
value is ∞. Centre: the distance transform is calculated with a projected distance mask and allows to compute ds
over the whole simulation. Right: the brightness descriptor is applied on the distance map (image is given in inverse
greyscale).

2.3.2. Brightness descriptor

Again, we choose to use the Sérsic function which is able to model various decreasing schemes.
Then, the brightness of the spiral at pixel (r, θ) is given by:

f(φφφ, r, θ) = (f1(r, θ), . . . , fB(r, θ)) (11)

with B the number of bands and the brightness in band b de�ned as:

fb(r, θ) = Ib exp

(

−knb

(

(

ds(r, θ)

Rb

)
1
nb

− 1

))

(12)

2.4. Constraints over the Parameters

The constraints adopted for the model were chosen from astronomical considerations or from
empirical observations. The number of constraints is kept as low as possible to ensure the physical
consistency of the result by avoiding discrepancies.
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2.4.1. Bulge, Disc and Stellar Bar

We assume that shape parameters do not vary between bands because each structure represents
a particular mix of stars and dust and gas content which do not depend from the observed band.
This strong assumption, which is observed in our real images over the involved wavelength domain,
is an important step in multiband processing to ensure the inter-band coherence of the model. For
the same reasons we assume that the center is identical for all structures. These assumptions
reduce signi�cantly the numbers of free parameters.

On the other hand, the parameters of the Sérsic function depend on the observed band, but we
set, for each structure, the maximum relative variation of Rb and Rb′ between two bands b and b′

to be less or equal than 10%: max
(

|Rb−Rb′ |
max(Rb,Rb′ )

)

≤ 0.1. Similarly, the maximal di�erence between

two Sérsic indexes (nb and nb′) is set to 1: max (|nb − nb′ |) ≤ 1. At last the e�ective brightness of
all structures in all bands is positive.

The set of constraints speci�c for each structure at a given wavelength is given in table 1.

Table 1: Speci�c constraints of each structures at a given wavelength b. Rb and Rmax are given in pixels.
Bulge Disc Stellar Bar

Sérsic index 1 ≤ nb ≤ 8 nb = 1 0.5 ≤ nb ≤ 1
elongation 1 ≤ e ≤ 3.3 1 ≤ e ≤ 8 2 ≤ e ≤ 8

misshapenness c = 0 0.5 ≤ c ≤ 2
cut-o� radius Rmax = ∞ 10 ≤ Rmax ≤ 200
e�ective radius 1.5Rb,B ≤ Rb,D ≤ 200 0 ≤ Rb ≤ 200

2.4.2. Spiral Arms

The main constraint concerns the link between the stellar bar and the arms. Because the spiral
arms do start where the stellar bar ends, we impose that the di�erence between the position angle
of the arms and the stellar bar must be less or equal to 0.3 rad and that the di�erence between
the bar cuto� radius and the arms starting radius must be less or equal to 4 arcsec2. These values
were determined heuristically from real observations. Because a too low pitch angle absolute value
can lead to discrepancies (the spiral degenerates to a ring with a pitch angle of 0) we have �xed a
low limit to the absolute value of the pitch angle at 0.1 rad.

2.4.3. Complete model

Figure 8 is a summary of the di�erent structures and all their parameters, illustrated by a
simulation of a barred spiral galaxy. The total number of parameters of the model is equal to
13 + 11B with B the number of bands in the observation. The shape descriptor of the bulge, the
disc and the stellar bar has 5 parameters, the Sérsic function has 3 parameters. Thus we obtain
4 + 3B parameters for the bulge (misshapenness of the generalized ellipse is constant), 4 + 2B
parameters for the disc (misshapenness of the generalized ellipse and Sérsic index are constant)
and 5 + 3B for the stellar bar. As the centre is identical for each structure the total number
of parameters for the 3 structures is equal to 9 + 8B. Finally the spiral structure has 4 + 3B
parameters, 4 parameters for the shape descriptor and 3B for the Sérsic function (parameters
coming from the disc to determine the projection are not counted). Most nowadays astronomical
surveys provide 5-band images thus leading to 68 parameters to estimate in the inverse problem.

2The arcsecond is an angular distance equals to 1/60 of arcminute = π
648000

rad.
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Figure 8: Example of simulated barred spiral galaxy with our model. For each structure, we indicate the equations
describing the structure and its variables.

3. Proposed Approach

3.1. Adaptive Masking for H II Regions in Spiral Arms

As mentioned previously, the parametric model of the spiral arms only models their continuous
aspect. But, at short wavelengths, this continuous aspect may be dominated by more or less com-
pact H II regions containing young and very bright stars which causes a spotty aspect. Neither the
shape nor the brightness pro�le of the H II regions carry interesting information for a classi�cation
purpose. Only their spatial distribution is an important marker of the spiral structure. Thus,
rather than developing a complex parametric model for the H II regions we prefer to mask them in
the observation.

The decision to mask a particular region is based on an initial mapM containing all possible H II
regions and on the parameters of the continuous model. The idea is to mask only the components
of M which lie on the estimated spiral. Because the masking is conditional to a spatial information
carried by the parameters of the continuous model, it allows to mask information in the observation
while preserving the information about the location of this masking. In this way, we prevent the
estimation of the brightness parameters of the spiral to be biased by the brightness of the H II
regions and we preserve the spatial information of their distribution.

Formally, we mask a connected component of M if the distance ds,2 from its centre to the crest
of the spiral is less or equal to three arcsec. The �lter de�ned by the masking of selected H II
regions will be denoted by Am (·, ·). Thus, the observation Y is itself modi�ed by the mask in
function of parameters φφφ, yielding to the new data Am (Y,φφφ). Equation (1) reads then:

Am (Y,φφφ) = H ∗ F(φφφ) + e (13)

3.2. Bayesian Model

The ill-posed nature of the problem has been demonstrated for the model including only the
bulge and the disc structure in monoband images by showing that several solutions may exist [16,
29, 30]. It seems clear that a more complex model including more structures in multispectral images
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will lead to the same issues. We have adopted a Bayesian approach, which has the advantage to
rigorously take account of the incertitude [7]. Equation (13) can be written as:

e = Am (Y,φφφ)−H ∗ F(φφφ) (14)

which gives the following formulation of the posterior under the zero mean Gaussian noise hypoth-
esis:

P (φφφ|Y) ∝ (15)

P (φφφ)
1

(2π)
N
2 det (ΣΣΣ)

1
2

exp
(

− 1
2 (Am (Y,φφφ)−H ∗ F(φφφ))T ΣΣΣ−1 (Am (Y,φφφ)−H ∗ F(φφφ))

)

where P (φφφ) denotes the priors and N is the dimension of the observation. Prior assigned to
each parameter is determined by the set of constraints given in section 2.4 and is thus product of
bounded uniform priors. One can note that due to the de�nition of Am (·, ·) the dimension of the
observation can change in function of φφφ leading to an original problem of estimating parameters
from an observation with varying dimension.

The conditional posterior pdf of the brightness factor parameter Ib for each structure reduces
to a truncated (positive) Gaussian pdf which can be e�ciently sampled using an accept-reject
algorithm [31]:

Ib ∼ N+ (µ, 1/A) (16)

The proof and the values of µ and 1/A are given in Appendix AppendixA. This expression also
leads to the integration of one brightness factor from the posterior pdf. It reads then:

P (φφφ\{Ib}|Y) ∝
(

D

(2π)
N
2 |ΣΣΣ| 12

)

exp (ǫ)P (φφφ\{Ib}) (17)

where φφφ\{Ib} denotes the set of parameters deprived of Ib. The proof and the value of D and ǫ are
given in Appendix AppendixB. Unfortunately calculus become rapidly intractable when one wants
to integrate several brightness factors at the same time. The integration strategy will be described
in section 4.

Indeed, due to the high dimensionality of the problem, it is intractable to characterize com-
pletely the posterior pdf, thus we aim at �nding the maximum a posteriori (MAP). We now give
an overview of the estimation algorithm which is based on MCMC methods.

3.3. Estimation Algorithm

The estimation algorithm robustness is a crucial point. Indeed, we need to process thousands of
galaxies and thus the algorithm must tolerate large approximation on the initial parameters so that
it can be used in an unsupervised mode. Several authors have pointed out the di�culty of providing
a fully automatic algorithm for the estimation of the parameters of the much more simpler two
components (bulge and disc) model in mono band images [16, 29, 30]. Obviously, the estimation
of a more complex model generates more di�culties. To overcome this problem we propose to use
MCMC methods. MCMC algorithms allow to sample the parameter space according to the target
distribution and theoretical results prove the convergence of the distribution of the samples to the
target distribution in in�nite time.

Nevertheless, the main disadvantage of MCMC algorithms is their convergence time. In our
application, tens of thousands iterations (and sometimes much more) are required before the MAP
can be reached. This point is of prime interest for us because one iteration of a MCMC algorithm
requires several evaluations of the likelihood which have a heavy computational cost. Indeed, the
simulation of the parametric model requires, for each pixel of the observation, the computation of
several costly functions: exponential, power, trigonometric functions, a distance transform and a
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�nal convolution operation. That is why the e�ort is put on the minimization of the number of
required iterations by using robust adaptive methods and a new simulated annealing technique.
We will show that, with this e�cient design, we can reduce the simulation e�ort to only a few
hundreds of iterations.

In this section, we presented the Bayesian framework coupled to a new parametric �ltering
strategy. We also gave the key points of the estimation algorithm whose details are provided in
the next section.

4. Estimation Algorithm

4.1. Gibbs sampler

The main algorithm is a Gibbs sampler [10, 21, 32] which decomposes the sampling of a high
dimensional pdf by simulating each variable separately according to its conditional pdf. The
variable are not necessarily scalar and can gather a vector of parameters. In the following we call
block a vector of parameters which are updated together in the Gibbs algorithm.

To improve the e�ciency of the algorithm the blocks have been de�ned according to the cor-
relation between parameters [21]. Shape parameters are weakly correlated and are thus sampled
independently. On the contrary, Sérsic parameters (Rb, nb and Ib) are highly correlated, so all
variables of the block (Rb, nb, Ib) (or (Rb, Ib) if nb is constant) are sampled together. Because only
one brightness factor can be integrated in the posterior (17), we propose to integrate a di�erent
brightness factor at di�erent steps of the algorithm. Indeed, one can note that their conditional
posterior pdf can be decomposed into:

P
(

Rb, nb, Ib | φφφ\{Rb,nb,Ib},Y
)

= P
(

Rb, nb | φφφ\{Rb,nb,Ib},Y
)

P
(

Ib | φφφ\{Ib},Y
)

Thus, according to [33], the pdf P
(

Rb, nb, Ib | φφφ\{Rb,nb,Ib},Y
)

can be simulated in two steps, by
�rst sampling (Rb, nb) according to P

(

Rb, nb | φφφ\{Rb,nb,Ib},Y
)

(the conditional posterior where Ib
has been integrated) and then sampling Ib according to P

(

Ib | φφφ\{Ib},Y
)

. The di�erent steps of
the Gibbs sampler are summarized in algorithm 1.

Algorithm 1 Main Gibbs sampler
Require: initial estimation φφφ
1: repeat

2: sample (cx, cy) ∼ P (cx, cy | Y,φφφ\{cx,cy})
3: for all structures f ∈ {fB, fD, fBa, fs} do
4: for all shape parameters ϕ of component f do
5: sample ϕ ∼ P (ϕ | Y,φφφ\{ϕ})
6: end for

7: for all bands b do
8: sample (Rb, nb) ∼ P

(

Rb, nb | Y,φφφ\{Rb,nb,Ib}
)

9: sample Ib ∼ P
(

Ib | φφφ\{Ib},Y
)

10: end for

11: end for

12: until Convergence criterion is satis�ed

4.2. Hastings-Metropolis sampling

There are no classical expression for the posterior pdfs and thus, there is no direct simulation
algorithm for them. The usual way, in this case, is to perform Hastings-Metropolis (HM) steps
within the Gibbs sampler [10]. In fact, HM within Gibbs reduces to a complex HM algorithm
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ensuring that all convergence properties are preserved [34]. Due to the lack of knowledge on the
posterior de�nition, we have opted for the random walk version of the HM algorithm [10, 21]. In
this case the proposal distribution q is de�ned as q(. | X) = X + q′(.) where q′ is a distribution
which does not depend of X and is usually centred on 0. By this way, at each iteration, a random
move is proposed from the actual position. The choice of a good proposal distribution is crucial
to obtain an e�cient algorithm, and literature suggest that, for low dimension variables, a good
proposal should lead to an acceptance rate of 0.5 [35].

In case of a scalar block, the determination of a good proposal distribution can be solved by
using a standard Gaussian distribution N (0, σ2) with an adaptive scale technique [9]. The idea
is to adjust the standard deviation σ to achieve the optimal acceptance rate. If the measured
acceptance rate is too high the standard deviation is decreased and vice versa. In our scheme, the
scale parameter is updated every 20 iterations (adaptation time) following [9]:

log(σi+1) = log(σi) +
log(Ai)− log(1−Ai)− log(A) + log(1−A)

d
(18)

where σi and σi+1 are respectively the old and the new standard deviations, A = 0.5 is the target
acceptance rate, Ai is the measured acceptance rate during the last 20 iterations and d is the
dimension of the simulated law. One can note that, due to the constant adaptation time, the
property of convergence of the algorithm is compromised [8]: this problem is addressed in section
4.4.

In the case of a vectorial block, we use the so called Snooker algorithm which is an adaptive
direction sampling method proposed by Gilks et al. [10]. The Snooker algorithm uses a set of already
generated samples to determine the preferred directions; we choose a set size of 10 samples. The �rst
10 samples are generated with a traditional random walk HM algorithm with a multidimensional
Gaussian proposal.

4.3. Convergence criterion

Numerous criteria have been proposed to assess the convergence of MCMC algorithms (the
reader can refer to [36, 37] for example). Most of these criteria require to run multiple chains, which
is not an a�ordable solution in our application. So we draw our inspiration from [38] and [39]
and we monitor the convergence of the mean value of the chain by constructing an asymptotically
valid con�dence interval. Because of the high dimensionality of our chain, building a con�dence
interval may be very di�cult, thus we monitor only the evolution of the mean normalized square
error (MNSE) de�ned as the mean log likelihood per pixel:

MNSE(φφφ) =
1

N
(Am (Y,φφφ)−H ∗ F(φφφ))T ΣΣΣ−1 (Am (Y,φφφ)−H ∗ F(φφφ)) (19)

Formally, let S = {E1, . . . , En} be the set of MNSE at the end of each iteration. Let ρ̂2i be the
estimated variance of the samples {Ei−S+1, . . . , Ei}, where S is the size of the estimation window.
The convergence is assumed to be reached if the following inequality is satis�ed [38]:

t
ρ̂n√
S

< ǫ (20)

where t is an appropriate Student's t quantile and ǫ the desired half wide of the con�dence interval.
We have adopted t = 90%, ǫ = 0.05 and S = 25.

4.4. MCMC estimator

When the convergence is diagnosed, all adaptive techniques are disabled and the algorithm is
run for a �xed number of iterations (T = 50). This number was �xed empirically to provide a
fairly accurate estimate for a reasonable simulation e�ort. This �nal run is used to estimate the
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MAP and its variance. This is the easiest way to ensure that the chain stationary distribution is
not compromised by adaptive HM [8, 40]. Let ΦΦΦ = {φφφ0, . . . ,φφφT } be the set of the last T generated
samples. The MAP estimation is a direct research of the sample with the maximum posterior
probability:

Φ̂ΦΦMAP = argmax
φφφ∈ΦΦΦ

P (φφφ|Y) (21)

We now describe the estimator of the variance. Due to correlation in the chains, we use the
overlapping batch means (OBM) estimator as suggested in [41]. The OBM estimator is given by:

V̂ 2
OBM =

bT

(T − b)(T − b+ 1)

T
∑

i=b

(〈ΦΦΦ〉i − 〈ΦΦΦ〉)2 (22)

where 〈ΦΦΦ〉 is the mean of the φφφi and 〈ΦΦΦ〉i is the partial mean on b samples on a sliding window:

〈ΦΦΦ〉i =
1

b

i
∑

j=i−b+1

φφφj (23)

where b = ⌊
√
T ⌋ is the size of the estimation window [41].

5. Improvements and Initialization

In this section, we present two new improvements added to our estimation algorithm. The �rst
one concerns a novel simulated annealing scheme which uses a di�erent temperature for each block
of the Gibbs sampler, as well as a general method to automatically determine the initial temper-
ature. The second improvement concerns a hierarchical decomposition scheme which provides an
e�cient decrease of the burn-in period. Finally, we discuss about the initialization procedure.

5.1. Multiple Temperatures Simulated Annealing

To speed up the exploration of the space solution, we have set up a special simulated annealing
scheme. The idea of using the simulated annealing in a MCMC context was introduced by [42]: the
principle consists in modifying the target pdf, so the algorithm can easily jump from one mode of
the target pdf to another one. Usually, the pdf is modi�ed to become P (φφφ|Y)

1
t whose temperature

t is decreased using a logarithmic scheme to ensure the convergence [32]. This approach has some
drawbacks. First, the theoretical condition of a logarithmic temperature decreasing requires too
much time and another faster scheduling must be used in practice. Another issue is that the same
temperature is applied to the overall distribution without considering the di�erence between each
dimension. This is a serious drawback in applications where the conditional posterior of some
parameters (e.g. the centre of the galaxy or the position angles of the structures) are quite simple
with a well de�ned maximum and thus do not require hot temperatures whereas others (like the
Sérsic parameters) are strongly coupled with several pronounced local maxima and thus require
high temperatures to be e�ciently sampled.

We propose to use an independent temperature for each block of the Gibbs sampler. In this
approach the temperature is proportional to the complexity of the posterior pdf in the dimension
of the considered block. In this way, the posterior pdf is smoothed di�erently in each dimension,
making the posterior pdf easier to explore in all dimensions. Another interpretation of this approach
is to consider that we are swapping between multiple HM algorithms sampling from di�erent
posterior distributions. But, as in the traditional simulated annealing the �nal MAP estimation
remains the same.

Nevertheless, as the produced Markov chain is no longer homogeneous, the stationary distri-
bution of the chain is not the posterior pdf and thus the samples cannot be used to estimate the
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variance of the posterior pdf. This problem is easily solved by freezing the temperature to its
neutral value 1 ◦ during the �nal run of iterations used for the estimation.

Rather than a logarithmic decreasing, we adopt the geometric step scheduling [43] which pro-
vides an adaptive way to modify the temperature in complex optimization problems. In this
scheme, the temperature is adjusted every p iterations (step length). The temperature can either
decrease or stay the same depending on the evolution of the energy of the system between the
current and the previous step. If the energy decreases, the temperature does not evolve. On the
contrary if the energy increases the temperature is decreased by a geometric factor. Let φφφj ⊂ φφφ be
a block of the Gibbs sampler. Let αj be the geometric factor. T j

i is the temperature at step i of
block j, we de�ne an energy function U(φφφ) = − logP (φφφ | Y) and the mean energy 〈U〉 at step i:

〈U〉i =
1

p

i+p
∑

k=i

U(φφφk) (24)

the temperature evolution is then given by the following relation:

T j
i+2 =

{

T j
i+1 if 〈U〉i+1 ≤ 〈U〉i

αjT j
i+1 if 〈U〉i+1 > 〈U〉i

(25)

We set pj = 10 and αj = 0.9 for all blocks. Experiments have shown that these parameters work
well whatever the observations.

The initial temperature factor T j
0 is always a crucial point of simulated annealing algorithms.

Indeed, a too low temperature make the simulated annealing procedure useless because it becomes
nearly equivalent to the non-tempered algorithm. On the contrary, a too high temperature will
result in a long burn-in period and may destruct all initialization e�ort. Thus, we propose an auto-
matic method to determine a good initial temperature. To do so, we assume that the temperature
depends on three features:

• In a Gaussian context, increasing the temperature is nearly equivalent to increasing noise
variance, so we propose to �rst use the temperature to regularize the noise variance in the
observation. This is done by dividing the initial temperature by the variance of the noise.

• Each block of the Gibbs algorithm does not a�ect the same number of data. Some variables
like Sérsic parameters a�ect pixels in only one band whereas shape parameters have an
in�uence on all pixels. One can note that because all parameters are optimized in a global
way and are linked together (not necessarily directly), this is not completely true. However
we can assume that the more pixels are a�ected by a parameter, the more di�cult it is to
optimize it and thus, we will set the temperature to be proportional to the number of a�ected
pixels.

• Finally we assume that we can trust the initial parameters φφφ0 in a certain limit, by saying
that if the initial parameters are good (in term of MNSE) then, we should not put the initial
temperature too high as we are certainly already close to the global maximum. If the initial
guess is poor, we consider that it is safer to use a warmer temperature.

These assumptions suggest the following formula for the initial temperature:

T j
0 = βj

√

NSEj(φφφ0)

mean(diag(ΣΣΣj))
(26)

where NSEj is the normalized squared error of the pixels a�ected by block j and βj is a scaling
factor for block j. The term NSEj(φφφ0) incorporates information about the quality of φφφ0 and the
number of a�ected pixels. The term mean(diag(ΣΣΣj)) performs the noise regularization. ΣΣΣj denotes
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the submatrix of ΣΣΣ which concerns pixels a�ected by block j. One can note that taking the mean
of the diagonal elements of the matrix was chosen because the noise power are nearly equivalent in
all bands but may not be the best choice for all applications. The βj factor must be determined
empirically and refers to the intrinsic complexity related to this block. Adopted values are given
in table 2.

5.2. Hierarchy of models

In the previous section, we suggested that a good initialization is important to start the tem-
pering from lower temperatures. However, deriving the initialization from observations is a big
issue. We can easily extract the shape properties of the dominant structure (the disc in spiral
galaxies) by measuring the second order moments but other initial estimates are harder to get.
Instead, we propose a new way to perform the optimization in several steps using a hierarchy of
models. The idea is to estimate the parameters of a coarse model and use them to initialize the
estimation algorithm of a new �ner model. The �nal and �nest model of the hierarchy is then the
one presented in section 2. The hierarchy is determined by the relative importance of the di�erent
structures, the models becoming more and more complex with �ner structures along the hierarchy.

In our strategy, we de�ne three models: the �rst one is only composed of a disc and a bulge,
the second one introduces the stellar bar, and the �nal one incorporates the spiral structure (Fig.
8). This hierarchy was determined by the relative importance of each structure in terms of �ux
and e�ects they can have on other structures. For example, it has been shown that the spiral arms
have a relatively low in�uence on the disc and the bulge parameters estimation [44] whereas the
stellar bar may have a big impact on the bulge parameters estimation [12].

This strategy is also based on the experience that it requires less simulation e�ort to estimate
all the coarse models than running the burn-in period of the full model. Several factors have a
good impact on the global computational e�ort:

• A coarse model have less blocks to estimate than a �ne model. Thus, the simulation e�ort is
lower, as well as the computation time.

• All the structures of a �ne model that were also present in a coarse model can be accurately
initialized using the estimates of the coarse model. This allows to start the tempering from
a colder temperature and to reach the convergence time quicker.

• The estimates of a coarse model can also help to provide a good initialization of structures
introduced in the �ner model.

5.3. Deterministic initialization

There are three deterministic initialization procedures corresponding to the three models (see
section 5.2). The �rst one aims at �nding initial estimation for the bulge and the disc parameters
from the global observation. We choose to use second order statistics to determine the shape
parameters of both the bulge and the disc [24]. The second order moments give us an estimation
of the centre, the elongation, the position angle and the scale length. The e�ective radius of the
disc is set equal to the measured scale length and the bulge e�ective radius is initialized to half
the value of the disc one. The Sérsic index of the bulge is always initialized to 4 (de Vaucouleurs
law). The brightness factors of the bulge and the disc are de�ned such that the disc contains three
quarters of the total �ux and the bulge the remaining quarter.

In a second time, the parameters of the bulge and the disc are initialized using the estimates
of the �rst model. Nevertheless, we need to determine initial parameters for the stellar bar. We
have automatized and generalized a procedure imagined for face-on spiral in [45]. The overall idea
of the method is to examine the evolution of the isophotes from the centre to the outer part of
the galaxy and to look for the bar signature in the evolution of the elongation and the position
angle of these isophotes (i.e. a strong elongation with a constant position angle). To ful�ll the
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Table 2: Summary of all the variables, their initial temperature factors β, how they are initialized and how they are
sampled. RWHM means Random Walk Hastings Metropolis and AD means Adaptive Direction. All proposal distri-
butions are Gaussians whose covariance matrix (or deviation for scalars) are given in the last column. Initialization
methods are described in section 5.3.

Structure Parameter β Factor Initialization Estimation Algorithm

B, Ba, D cx, cy 0.01 First order moment RWHM
(

1 0
0 1

)

B

e 0.2 2nd order moment RWHM 0.2
α 0.01 2nd order moment RWHM 0.2
c 0.01 0 RWHM 0.05
I No annealing 1/3 total �ux direct simulation
R

1
2nd order moment

AD
(

0.16 −0.02
−0.02 0.01

)

n 4

D

e 0.01 2nd order moment RWHM 0.2
α 0.01 2nd order moment RWHM 0.2
I No annealing 1/3 total �ux direct simulation
R 0.01 2nd order moment RWHM 1

s

R0 0.01 bar cut o� radius RWHM 1
θ0 0.01 isophotes analysis RWHM 0.2
os 0.01 bar position angle RWHM 0.1
Re 0.01 disc e�ective radius RWHM 0.1
I No annealing 1/4 disc �ux direct simulation
R

1
3 arcsec

AD
(

0.16 −0.02
−0.02 0.01

)

n 0.75

face-on hypothesis, we �rst compute a deprojected version of the galaxy using the disc parameters
estimated in the �rst model: this is an example on how information brought by a coarse model
help to initialize new components of a �ne model. This method provides estimates for the position
angle and the cut o� radius. The initialization of the remaining parameters is described in table 2.

Finally, the initial parameters of the spiral arms are determined using a Fourier analysis of
the residual (di�erence between the observation and the simulation) in a log polar space. Indeed,
in this particular space the spiral arms appear like two equidistant lines whose parameters can
be identi�ed in the frequency space [46, 47]. The spiral arms are identi�ed by the maximum of
frequency 2. From this maximum we can extract the pitch angle (inclination of the sinusoidal
wave) and the starting radius (phase angle interpreted as a translation). The initialization of the
remaining parameters is described in table 2.

6. Results

6.1. Comparison With Other Algorithms

As mentioned in section 1, available software perform supervised monoband galaxy decompo-
sition (e.g [15�17]). In order to discuss about our method performances, we have performed a
comparison with Gal�t [16] which is a well-known and recognized software in the astronomical
community. In this case, we used only the bulge and the disc structures in monoband images,
so that both methods use exactly the same model. Nevertheless, Gal�t performs a deterministic
�t with the Levenberg-Marquardt method and requires a manual initialization with a su�ciently
good precision. The tests were conducted on �ve galaxies and showed a good behaviour of the
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two methods. We have also compared the MNSE of the estimations and the magnitude3 of the
structures provided by each method. The comparison is detailed in table 3 and shows a good
agreement between both methods. Our approach gives slightly better results in term of MNSE
than Gal�t.

Table 3: Comparison between our method (O) and Gal�t (G) for the bulge-disc decomposition of �ve monoband
galaxy images. For each line, the �rst column gives the PGC number of the galaxy. Then we have: the MNSE, the
magnitude of the disc (MD) and the magnitude of the bulge (MB) for each method.

Object (O)-MNSE-(G) (O)-MD-(G) (O)-MB-(G)
2182 2.53 2.69 12.6 12.55 15.65 15.35
2600 122.64 122.82 11.69 11.60 15.17 15.20
3563 8.48 9.65 13.13 13.13 12.24 12.24
3584 7.25 7.27 12.18 12.18 14.73 14.74
5055 1.56 1.59 14.92 14.95 13.24 13.24

6.2. Simulated images

We used simulated images to evaluate the performances of the algorithm compared to a ground
truth. The results show that the proposed method is able to provide a very good solution on raw
multispectral data with an unsupervised Bayesian inference scheme.

Figure 9 shows an example on a 5-band simulation of a barred spiral galaxy. The peak signal-
to-noise ratio (PSNR) de�ned as 10 log10(max(Y)2/σ2) (σ is the standard deviation of the noise
in the simulation) for each band is respectively: 37.7 dB, 53.5 dB, 55.6 dB, 54.5 dB and 45.3 dB.
These values are typical for real images in extragalactic astronomy.

The residual image shows the trace of an ellipsoidal structure. This trace is the biggest error
on the estimation and it comes from a small error in the estimates of the stellar bar shape which is
con�rmed by a detailed analysis of the parameters. In fact, there is a negative correlation between
the stellar bar cut-o� radius and the spiral starting radius, and the algorithm had some di�culties
to get out of a local minimum which is very close to the optimal one. Nevertheless the error
remains negligible compared to the total �ux of each structures and the MNSE of the estimates
is only 1.099. The maximal absolute error per pixel divided by noise deviation is respectively for
each band 1.13, 2.6, 3.1, 2.5 and 1.6.

Figure 10 is a plot of the estimates of all parameters with their error bars (three times the
standard deviation) against their true value. The abscissa axis represents the value of the ground
truth values, whereas the ordinate axis are the estimates. Ideally, every point should be on the
diagonal. A point located below the diagonal means that the parameter is under-estimated and
vice versa. We can see that nearly all the parameters are well estimated. Nevertheless, as usual,
most of the errors are under-estimated.

A more global analysis of the results leads to several observations. The variables like the
elongation, the position angle, or the centre are retrieved with a very good precision (relative error
less than 0.1%) and, thanks to the spatial extension of the disc, its radius is well estimated with
a relative error less than 5%. On the other hand, the Sérsic parameters are harder to estimate.
For the bulge and the stellar bar, the information is hold by only a few pixels and an error in the
estimation does not lead to a high variation in the likelihood. We also observed that the di�erent
errors seem to compensate each other as they nearly do not a�ect global features like the integrate
�ux.

3The magnitude is equal to −2.5 log10 F l + F l0 with F l the integrate �ux of the structure and F l0 = 26 is a
reference �ux corresponding to the brightness of the dark sky.
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Figure 9: Application of the method on a 5-band simulated image. The �rst row shows the �ve bands of the
simulation, the second row is the estimate and the last row is the residual image. All the images are given in inverse
greyscale. The simulations and the estimates are all displayed with the same dynamic range, while the contrast of
all residual images has been adjusted independently to emphasize the small structures; the dynamic range of the
residual images is less than 2% of the dynamic range of the observations.

6.3. Real images

We present tests realized on three real 5-band images of barred spiral galaxies. The images
come from the EFIGI database [22] which is based on the Sloan Digital Sky Survey. The �ve bands
were obtained using the photometric system ugriz [48] which de�nes �lters centred on the following
wavelengths: u=3543Å, g=4770Å, r=6231Å, i=7625Å and z=9134Å. Each image is about 200 by
200 pixels. During the preprocessing, other astronomical objects (mainly superimposed stars from
the Milky Way) were masked using an automatic procedure. The images were chosen according to
the following criteria: they contain a relatively well resolved barred spiral galaxy; the galaxy has a
reasonable inclination so the stellar bar and the spiral arms are visible; the galaxy is not merging
with another one; the �eld is not contaminated by another very bright and extended object. We
remind that the H II regions are not modelled but masked using the parametric �lter and thus they
do not appear in the simulations.

Galaxy PGC 2182 (Fig. 11) is a very bright object viewed nearly face-on with a medium size
stellar bar. It has a small bulge and its arms are quite bright with a low pitch angle. No H II region
is visible. The �gures show that the galaxy is well modelled with a �nal MNSE equals to 1.09. It
is remarkable that this MNSE, corresponding to the complete model including the four structures,
is 10 times lower than the MNSE of the bulge�disc model which is the �rst model in the hierarchy
(table 4). We do not see any residual structure from the disc and the stellar bar. A small residual
is observable in the bulge, it can be due to model noise or an imperfect estimation of the psf. The
shape and the brightness of the arms are well retrieved. We can observe that in the real images
the arms seem to spread more in the outer part of the galaxy and this e�ect cannot be reproduced
in our model.

Galaxy PGC 23650 (Fig. 12) is a quite bright object with a low inclination. It has a massive
and extended stellar bar and a small bulge. It has two faint and loosely wound spiral arms. Again,
we do not observe H II region. The four structures are well estimated with a �nal MNSE equals
to 2.06. The addition of the stellar bar and the spiral arms structures to the bulge�disc model
improves the decomposition as the MNSE is reduced by 24% (table 4). Only the cut-o� radius of
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Figure 10: Estimate of each parameter against its true value for the simulated image 9

the stellar bar seems to have been over-estimated. This can be explained by the two over bright
regions at the beginning of the arms that are not included in the model.

Galaxy PGC 35538 (Fig. 13) is a galaxy of medium brightness observed nearly face-on. It has
a very small bulge and an extended disc. Its stellar bar is very small and con�ned in its inner part.
Its arms are tightly wound and not very well de�ned. We can observe several H II regions mainly
distributed along the spiral arms. We can see that the estimates are good with a �nal MNSE
equals to 2.91. The addition of the stellar bar and the spiral arms structures to the bulge�disc
model improves the decomposition as the MNSE is reduced by 20% (table 4). The bulge, the disc
and the stellar bar are very well estimated. Despite the di�culty to visually extract two distinct
arms from the observation, the algorithm has found a reasonable solution: the shape of the two
arms is coherent with the observation. Moreover, the map of the H II regions and the result of the
adaptive masking technique showed in Fig. 14 con�rms this remark. The masking technique is of
major interest in such case where the spiral arms may be better de�ned by the spatial distribution
of the H II regions than by the brightness of its continuous counterpart.

Figure 15 shows the brightness pro�les of the three real galaxies and their estimates. We can see
that, despite the complexity of the di�erent curves, an accurate �t can be automatically realized.

6.4. Computation Time

Table 4 gives the computation statistics for the simulated galaxy (section 6.2) and the three
real galaxies (section 6.3). The tests were run on an Intel Core 2 processor (2.66GHz) and the
code is written in Java. The total time to process the three steps of the hierarchy of models is
comprised between 2 and 3 hours and requires 600 to 700 iterations. About 15% of this time is
used to estimate the �rst model and 24% for the second model.

Table 4: Computation statistics. For each galaxy, and for each step of the hierarchy of models, we give the number
of iteration to converge (It.), the total time spend (in minutes) and the MNSE of the estimates.

Galaxy Simulation PGC2182 PGC23650 PGC35538
Model It. Time MNSE It. Time MNSE It. Time MNSE It. Time MNSE
B+D 165 14 10.73 156 12 3.41 142 10 3.52 140 11 3.64

B+D+Ba 187 23 7.72 182 21 3.25 190 18 2.86 205 20 3.48
B+D+Ba+s 382 145 1.09 293 101 2.6 251 98 2.68 303 137 2.91

Total 734 182 631 133 583 126 648 168

20



Figure 11: Application of the method on a 5-band (ugriz ) image of the galaxy PGC 2182. The �rst row shows the
�ve bands of the observation, the second row is the estimate and the last row is the residual image. All the images
are given in inverse greyscale. The simulations and the estimates are all displayed with the same dynamic range.
The contrast of all residual images has been adjusted independently to emphasize the small structures.

The total number of iterations per object is low for our type of application. It is di�cult to
appreciate the gain due to the tempering strategy because it would have been very di�cult to
obtain good results without it. We have performed tests without the hierarchical decomposition
strategy and we observed that a thousand of burn-in iterations were needed, leading to a much
more longer computation time.

One can note that, this application could take a great advantage of GPU capabilities for a
massive parallelization of the likelihood computation which is the most time consuming part of the
algorithm.

7. Conclusion

This paper deals with the decomposition of galaxies in multispectral observations. An MCMC
algorithm allows to estimate the model parameters in a fully automatic and e�cient way. The
method has been validated on simulated and real images showing its ability to recover accurate
and meaningful estimates.

Our �rst contribution was to extend an existing parametric galaxy model to handle multispectral
observations of barred spiral galaxies. Especially, we have proposed a new multispectral parametric
model for the spiral arms.

Second, we proposed a new tempering strategy in which each block of the Gibbs sampler has
a di�erent temperature. This re�ects the di�culty to explore the conditional posterior distribu-
tion of the parameters in the dimension of the block. In this scheme, the simulation e�ort is
better distributed than in traditional simulated annealing. Moreover, we have proposed a way to
automatically determine an initial temperature for each block of the sampler.

Third, we have also completed the traditional parametric model with a parametric �ltering of
the observation. In this approach, the parameters of the �lter are fully part of the model and they
are estimated as the other parameters. In our case, the parametric �lter is used to remove non
desirable aspects (the H II regions) of the observation that we do not want to model. Nevertheless,
these H II regions carry interesting spatial information and our approach preserves this spatial
information contrary to a preprocessing.
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Figure 12: Application of the method on a 5-band (ugriz ) image of the galaxy PGC 23650. See the caption of
Fig. 11 for explanations. The three bright stars in the corner, bellow and above the galaxy were masked.

Our last contribution concerns the initialization procedure. We introduced a hierarchy of mod-
els, starting from a coarse model and �nishing by the �nest and complete model of the barred
spiral galaxy. In this framework, the estimates of a coarse model are used to initialize a �ner
model, reducing the burn-in period of the �ne model.

There are several perspectives to our work. From a methodological point of view, we think that
the parametric �ltering technique deserves an in-depth study as it allows to replace a preprocessing
by a robust adaptive method. From an astronomical point of view, we plan to enrich the hierarchy
of models with a model per galaxy type. Our idea is to de�ne decision rules to navigate through
the possible models of galaxies and to end up with the model that better �ts with the multispectral
observations. This last point is of great importance in astronomy, where millions of galaxies are
observed by even more accurate telescopes.

AppendixA. Distribution of a Brightness Factor

Each structure of the model owns a brightness factor Ib in each band b. We can show that the
conditional posterior of this factor is distributed according to a truncated positive Gaussian. Let
f be the brightness of a structure and Ib the brightness factor of f in band b. We de�ne f ′ = f/Ib.
Let z = Am (Y,φφφ)−H∗F\{f}(φφφ) and g = H∗ f ′(φφφ) where F\{f} denotes the sum of the brightness
of all structures excepted f . Equation (15) can be rewritten as:

P (Ib|Y,φφφ\Ib) ∝ 1

(2π)
N
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2
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− 1
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(A.1)
with

A = gTΣΣΣ−1g , B = −zTΣΣΣ−1g − gTΣΣΣ−1z , and C = zTΣΣΣ−1z (A.2)
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Figure 13: Application of the method on a 5-band (ugriz ) image of the galaxy PGC 35538. See the caption of
Fig. 11 for explanations.

so:
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let µ = − 1
2
B
A and ǫ = C − µ2A, (A.1) becomes:
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where erf is the Gauss error function. We recognize the expression of a truncated Gaussian law,
thus:

P (Ib|Y,φφφ\Ib) ∝ 1
D exp

(

− 1
2

(

Ib−µ

1/
√
A

)2
)

IR+(Ib)

∼ N+ (µ, 1/A)
(A.6)

where N+ (µ, 1/A) is a truncated positive Gaussian pdf of mean µ and variance 1/A which can be
e�ciently simulated [31].

AppendixB. Integration of a Brightness Factor

This Appendix uses the same notations as Appendix AppendixA. Because the brightness factor
Ib is distributed according to a truncated positive Gaussian distribution (Appendix AppendixA),
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Figure 14: The results with (left) and without (right) adaptive masking technique on the galaxy PGC 35538 (Fig.
13). The red and green spots are all possible H II regions, the green ones are masked, the red ones were omitted
because they were too far from the spiral crest (grey-blue area). Without adaptive masking (right), the estimation
is bad because the spiral arms do not pass through a majority of H II regions as it should do.
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Figure 15: Pro�le cuts of the observation and the estimate of galaxies (from left to right) PGC 2182 (Fig. 11), PGC
23650 (Fig. 12), and PGC 35538 (Fig. 13) in band g. For the galaxies PGC 2182 and PGC 35538, the pro�les passes
through the stellar bar major axis. For the galaxy PGC 23650, the cut passes through the diagonal line from bottom
left corner to upper right one. Each plot shows a pro�le of the observation (black), the complete simulation of the
estimate with the psf (purple), and the di�erent structures of the simulation without the psf: the disc (orange), the
bulge (blue), the stellar bar (red), the spiral arms (grey). The intensities are given in a log scale.

we can integrate it from the posterior pdf. We have:
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