
HAL Id: hal-00749582
https://hal.science/hal-00749582

Submitted on 7 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty quantification in computational stochastic
multiscale analysis of nonlinear elastic materials

Alexandre Clément, Christian Soize, Julien Yvonnet

To cite this version:
Alexandre Clément, Christian Soize, Julien Yvonnet. Uncertainty quantification in computational
stochastic multiscale analysis of nonlinear elastic materials. Computer Methods in Applied Mechanics
and Engineering, 2013, 254 (-), pp.61-82. �10.1016/j.cma.2012.10.016�. �hal-00749582�

https://hal.science/hal-00749582
https://hal.archives-ouvertes.fr


Uncertainty quantification in computational stochastic

multiscale analysis of nonlinear elastic materials

A. Clément, C. Soize∗, J. Yvonnet
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Abstract

This paper is devoted to a computational stochastic multiscale analysis of
nonlinear structures made up of heterogeneous hyperelastic materials. At the
microscale level, the nonlinear constitutive equation of the material is charac-
terized by a stochastic potential for which a polynomial chaos representation
is used. The geometry of the microstructure is random and characterized by
a high number of random parameters. The method is based on a determin-
istic non-concurrent multiscale approach devoted to micro-macro nonlinear
mechanics which leads us to characterize the nonlinear constitutive equation
with an explicit continuous form of the strain energy density function with
respect to the large scale Cauchy Green strain states. To overcome the curse
of dimensionality, due to the high number of involved random variables, the
problem is transformed into another one consisting in identifying the po-
tential on a polynomial chaos expansion. Several strategies, based on novel
algorithms dedicated to high stochastic dimension, are used and adapted for
the class of multi-modal random variables which may characterize the po-
tential. Numerical examples, at both small and large scales, allow analyzing
the efficiency of the approach through comparisons with classical methods.

Keywords: , Uncertainty quantification, Multiscale, Nonlinear materials,
Computational stochastic mechanics, Nonlinear composites, Hyperelasticity

∗christian.soize@univ-paris-est.fr

Preprint submitted to Comput. Methods Appl. Mech. Engng. October 22, 2012



1. Introduction

The problem of the stochastic nonlinear homogenization of heterogeneous
random microstructures is a difficult task. Among the many issues related
to this objective, the first ones appears at the deterministic level, where,
unlike the linear case, the general form of the constitutive equations is un-
known. Moreover, the principle of superposition is no longer available and
makes unsuitable any analytical homogenization scheme applied to the small
elastic strains. Many recent works have been devoted to overcome these
difficulties and can be classified in two distinct families. First, approaches
based on the extension of classical analytical homogenization methods [8, 1]
and on second-order homogenization techniques [34, 26] both leading to de-
termine the effective constitutive laws of nonlinear composites. Secondly,
approaches based on numerical multiscale simulations such as concurrent
methods [37, 12, 46, 49, 28] and non-concurrent ones [33, 44, 45, 50].
On the other hand, the uncertain nature at the microscopic level of many
classes of heterogeneous materials, should be taken into account if one seeks
to obtain a reliable model of the effective constitutive law. Thus, many re-
cent works have been devoted to the construction and the identification of
stochastic models at the finest scale and to their incorporation in a multi-
scale analysis through ad hoc numerical methods (see [48, 19] for instance).
Naturally, at the present time, the different proposed approaches are only
available in the case of linear elasticity and still need further developments
to incorporate mechanical nonlinearities at the microscopic level. Moreover,
these methods involve very high computational times, especially if one de-
terministic simulation appears expensive. A great challenge thus comes from
the extension of the deterministic methods stated above to the stochastic
framework with reasonable computational costs.
Based on a novel efficient non-concurrent multiscale approach developed by
Yvonnet and coworkers [50, 51, 52], we have extended this method to the
stochastic case in [7]. The so-called Stochastic Numerical EXplicit Poten-
tials method (S-NEXP) aims at numerically determine the apparent strain
energy density function according to the large scale strain states and the
random variables describing the uncertainties related to the microstructure
(geometrical or material parameters). This parametric technique allows one
getting efficient solutions but suffers from the “curse of dimensionality” since
the interpolation scheme requires a high number of microscopic nonlinear
numerical simulations. This problem is similar to the one encountered in
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the framework of stochastic intrusive techniques, such as Galerkin meth-
ods which rely on conventional tensor-product integration rules. However,
taking into account a high number of random parameters is of first impor-
tance in a stochastic multiscale analysis and we thus propose a different
methodology based on polynomial chaos representations. Initiated in [14],
the methodology to construct a polynomial chaos expansion of random fields
has been intensely developed to solve stochastic partial differential equations
[3, 15, 16, 13, 24, 22, 29, 32, 31, 35, 38, 11] but also for the identification of ran-
dom fields using experimental data and classical inference techniques [17, 2]
or maximum likelihood estimation [9, 10, 43, 18]. A new methodology has
been recently introduced to deal with the identification of polynomial chaos
representations in high-dimension [39, 41]. We propose to use this novel tech-
nique in order to obtain a representation of the stochastic nonlinear constitu-
tive equations which can thus be seen as a stochastic non-intrusive technique
as opposed to the Stochastic Numerical EXplicit Potentials method [7] which
suffers from the classical tensor-product interpolation rules since it acts as
an intrusive technique. Then, we based our approach on the same nonlinear
homogenization scheme presented in [7] but the methodology proposed to
characterize the stochastic apparent nonlinear constitutive equations is to-
tally different. Indeed, we use the NEXP approach [52] as a deterministic
solver, which is not directly extended to the stochastic framework, and we
reformulate the problem into the identification of polynomial chaos expan-
sions in high-dimension.
The paper is organized as follows. Section 2 deals with the homogeniza-
tion of nonlinear heterogeneous materials at finite strains in a deterministic
framework. In the same section, the Numerical EXplicit Potentials method
(NEXP) is also briefly presented. Section 3 presents the probabilistic model
which allows generating realizations of the microstructure. In Section 4, we
then detail the procedure of identification of the reduced-order random vari-
ables, resulting from a principal component analysis, on polynomial chaos
expansions. Since the problem of identifying multi-modal random variables
arises, we define a prior stochastic model based on mixtures of polynomial
chaos as introduced in [30]. Both cases of uni-modal and multi-modal ran-
dom variables are then addressed. The efficiency of the proposed method
is shown in Section 6 with two numerical examples at the microscale and
one example at the mesoscale. For each problem, the proposed approach
is compared with classical methods showing its efficiency. Some concluding
remarks are finally drawn in Section 7.
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2. The method of Numerical EXplicit Potentials

In this section, we detail the nonlinear homogenization scheme applied
to hyperelastic heterogeneous materials and we present the deterministic
method of Numerical EXplicit Potentials [50, 51, 52, 7] (NEXP) leading to
a continuous explicit form of the strain energy density function which char-
acterizes the effective constitutive equations. In the field of homogenization,
knowledge on the separation of the scales is vital to perform an appropri-
ate mechanical analysis. We set apart two cases: the case where the two
scales are the microscale and the macroscale and the case for which the two
scales are the microscale and the mesoscale. More precisely, when the two
considered scales are the microscale and the macroscale, the scales are sep-
arated. Such a separation is obtained when the spatial correlation lengths
of the mechanical fields at the microscale are small enough with respect to
the macroscale. The statistical fluctuations at the macroscale are then neg-
ligible and the macroscopic mechanical quantities are thus deterministic and
are referred as the effective properties. On the other hand, when the two
considered scales are the microscale and the mesoscale, the scales are not
separated. The statistical fluctuations at the mesoscale are important and
the mesoscopic mechanical quantities are stochastic and referred as the ap-
parent properties. The proposed method can be used in both cases, as it will
be shown in the numerical examples. Then, in order to simplify the writing of
this paper without loss of generality, we use the following terminology. The
small scale indicates the microscale and the large scale indicates either the
macroscale or the mesoscale. Moreover, both the effective quantities, linked
to the macroscale, and the apparent quantities, linked to the mesoscale, are
referred as the apparent quantities.

2.1. Nonlinear homogenization scheme

We consider a microstructure, schematically depicted on figure 1, which
occupies a domain Ω ⊂ R

d where d ∈ {1, 2, 3} denotes the spatial dimension
and where ∂Ω denotes the boundary of the domain Ω. We identify the posi-
tion of the material points by the vector X in the reference configuration and
by x in the deformed configuration. Those two vectors are related through:

x = X + u, (1)
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Figure 1: Model problem: small scale and large scale structures.

where u is the displacement vector of a material point. We introduce the
deformation gradient tensor F at point X defined by

F =
∂x

∂X
= 1+∇X(u), (2)

where 1 is the second-order identity tensor and ∇X(·) is the gradient op-
erator according to the reference configuration. Domain Ω, characterizing
the microstructure, is composed of Np hyperelastic phases defining the Np

domains Ω(r) with r ∈ {1, . . . , Np} and such that Ω =
⋃Np

r=1Ω
(r). The con-

stitutive equations of each phase can then be characterized by strain energy
density functions ψ(r) according to the right-hand Cauchy-Green strain ten-
sor C = F TF such that the local strain energy density function ψ of Ω can
be written as

ψ(X,C) =

Np∑

r=1

I
(r)(X)ψ(r)(C), (3)

where I
(r) is the characteristic function of domain Ω(r) which is equal to

1 if X ∈ Ω(r) and 0 otherwise. Let us denote by P and S the first and
second Piola-Kirchhoff stress tensors respectively, related by P = F S. In
the Lagrangian description, the local constitutive equation is given by (see
e.g. [20])

S = 2
∂ψ

∂C
(X,C). (4)
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In the present work, we consider a compressible Neo-Hookean model (see [20]
for instance) described by the following potential

ψ(C) =
1

2
λ{log(J)}2 − µ log(J) +

1

2
µ(tr(C)− 3), (5)

where log(·) indicates the natural logarithm, J = det(F ) is the volumetric
change, λ = Eν

(1+ν)(1−2ν)
and µ = E

2(1+ν)
in which E and ν are respectively the

Young modulus and the Poisson ratio. We also introduce the fourth-order
tangent elastic tensor L defined by

L = 4
∂2ψ(X ,C)

∂C2 . (6)

The apparent (or effective) kinematic quantities are defined by volume aver-
aging on the elementary cell as

F = 〈F 〉, (7)

C = F
T
F �= 〈C〉, (8)

and the following apparent strains tensors

P = 〈P 〉, (9)

S = F
−1
P �= 〈S〉, (10)

where the symbol < · > denotes the spatial averaging over Ω. Using equa-
tions (7) to (10), it can be shown (see a proof in [52]):

S = 2
∂ψ(C)

∂C
, (11)

L = 4
∂2ψ(C)

∂C
2 , (12)

where ψ(C) is the apparent (or effective) strain energy density function.
Thus, for a given large scale strain state C, the corresponding value of ψ(C)
is determined by taking the spatial average of local strain energy density func-
tions ψ(X,C), where C(X) is the strain field at equilibrium. The involved
nonlinear mechanical problems which must satisfy the local equilibrium con-
dition at each scale are detailed in [52, 7]. They are classically linearized and
solved with the Finite Element Method (FEM).
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2.2. The method of Numerical EXplicit Potentials

The NEXP method aims at numerically determine the strain energy den-
sity function ψ(C) for a finite set of large scale boundary conditions depend-
ing on tensor C. The resulting values are then used to calculate an efficient
separated variables representation of the potential whose coefficients are in-
terpolated according to C. The components of apparent tensors S(C) and
L(C), required to solve the large scale problem, can thus be obtained by
derivation of the apparent strain energy density function.
The main steps of the approach are summarized as follows.

1. Defining an elementary cell representing the microstructure of the het-
erogeneous material.

2. Defining and discretizing the bounded space ∆C spanned by the large
scale (mesoscopic or macroscopic) strains related to the components of
the right Cauchy-Green strain tensor C into a finite number p of nodes.

3. Computing the apparent (or effective) strain energy density function
ψ(C) for each node of the discretized space ∆C corresponding to differ-
ent boundary conditions applied on the elementary cell. The numerical
data are stored in a hypermatrix W.

4. Interpolating the values of the database to obtain a continuous map-
ping relating the components of C to the apparent (or effective) strain
energy density function ψ(C). While different solutions exist to per-
form interpolation (see e.g. [50]), we adopt in this work a method based
on a separated representation of W (see [7, 50]).

Using the notations defined in [7], similar to the Voigt ones, the continuous
interpolation of ψ can be approximated by

ψ ≈
R∑

r=1

D∏

k=1

φ̃r
k(Ck) , (13)

where φ̃r
j(ωj) are the interpolated values of the real-valued vectors {φr

k, k1 =

1, . . . , D} related to the macroscopic scale strain tensor component C i and
R is an integer. Thus, the components of the second Piola-Kirchhoff stress
tensor can be approximated by

Si(C1, . . . , CD) ≈ 2

R∑

r=1

({∏

k �=i

φ̃r
k(Ck)

}
∂φ̃r

i (C i)

∂C i

)
, (14)
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in which k = 1, . . . , D. In the same manner, the components of tangent
elastic tensor L can be approximated by

Lij ≈ 4 γij

R∑

r=1

({∏

k �=i,j

φ̃r
k(Ck)

}
∂φ̃r

i (C i)

∂C i

∂φ̃r
j(Cj)

∂Cj

)
if i �= j , (15)

Lii ≈ 4 γii

R∑

r=1

({∏

k �=i

φ̃r
k(Ck)

}
∂2φ̃r

i (C i)

∂C
2

i

)
, (16)

The interpolation functions are chosen as one-dimensional C2 cubic spline
functions (see [50, 52]) for which results of convergence with respect to the
number of discretization points have been studied. However, one should note
that many other choices are available.

3. Probabilistic model and random generator of geometries of the

microstructure

This work is focussed on heterogeneous materials for which the geometri-
cal parameters characterizing the microstructure are random. In particular,
we are interested in composites made of polymer matrix and reinforced by
non penetrating long fibers. The geometrical modeling of the fibers is de-
picted on figure 2. One fiber is represented by an ellipse parametrized by 5
constants: the horizontal and vertical positions X and Y of its center, an
aspect ratio α, the length of its semi-major axis a and its orientation angle γ
according to vector e3. Introducing the semi-minor axis b, the aspect ratio α
is defined by α = b/a with α ∈]0, 1]. We also introduce the number of fibers
Nf composing the geometry of the microstructure which yields a number
N = 5Nf of geometrical parameters. Since the condition of impenetrability
of the fibers is a key point in the model, we propose to generate a greater
number n ≫ Nf of “possible” geometrical parameters. Then, the verifica-
tion of the impenetrability condition will act as a rejection process. We here
adopt a parametric approach to deal with the uncertainties. We set m = 5n.
The geometry is modeled by a R

m- valued random variable with probabil-
ity distribution Pξ for which its support is a subset of Rm. Considering the
geometrical parametrization previously introduced, the random “possible”
geometrical parameters are represented by the second-order random vector
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Figure 2: Geometrical description of a fiber

ξ defined by

ξ = (X,Y,α, a,γ)

= (X1, . . . , Xn, Y1, . . . , Yn, α1, . . . , αn, a1, . . . , an, γ1, . . . , γn) . (17)

Since the direct construction of Pξ is not a trivial task, we use a random gen-
erator similar to the one proposed in [7]. The aim is to generate the indepen-
dent realizations {X(k)}νk=1, {Y(k)}νk=1, {α(k)}νk=1, {a(k)}νk=1 and {γ(k)}νk=1

which characterize the random vectors X, Y, α, a and γ, yielding the inde-
pendent realizations {ξ(k)}νk=1 of random vector ξ. The realizations of each
random vector X, Y, α, a and γ are generated through the same procedure
with different or identical input parameters including a spatial correlation
parameter ρ and a coefficient of variation δ. This procedure is completely
detailed in [7]. Once the set of realizations {ξ(k)}νk=1 is computed, the final
step for obtaining the geometry of the microstructure consists in a selection
of the realizations verifying the condition of impenetrability of the fibers lead-
ing to the new set of realizations {ξ(k)}µk=1 with µ � ν. One must note that
the random generator characterizing the probabilistic model can be replaced
by any other random generator with the same capabilities in order to model
more complex shapes or arbitrary shapes.
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4. Identification of a high-dimension polynomial chaos expansion

of the apparent strain energy density function

The central idea of the proposed approach is to obtain a continuous ex-
plicit form of the strain energy density function ψ which characterizes the
apparent (or effective) constitutive behavior of the material depending on
random parameters. The main idea is to determine a polynomial chaos ex-
pansion of a discretized ψ according to a finite set of large scale (mesoscopic
or macroscopic) boundary conditions depending on tensor C. With such a
form, the separated variables representation defined by Eq. (13) associated
with the interpolation scheme presented in Section 2, will be used as post-
processing to determine the continuous explicit form of ψ(C) for a particular
geometry of the microstructure. We propose to determine a polynomial chaos
expansion of each component of hypermatrix W and thus of the apparent (or
effective) potential. Since the geometry or the microstructure is random,
the local potential ψ(X,C) is also random and defined by a stochastic local
potential such as

Ψ(X,C) := ψ(X,C, ξ). (18)

The apparent strain energy density function is thus obtained by volume av-
eraging of the stochastic local potential such as

Ψ(C) = 〈Ψ(X,C)〉X , (19)

where Ψ(C) is a R-valued random variable. Since the apparent Cauchy-
Green strain tensor is discretized into a finite number of nodes {Ci}Qi=1, the
apparent potential is characterized by a R

Q-valued random vector Ψ(C)
defined by

Ψ(C) =
(
Ψ(C1), . . . , Ψ(CQ)

)
, (20)

where integer Q indicates the number of components of W. Below, for nota-
tional convenience, the components Ψ(Ci) are simply denoted by Ψi. Then,
each component {Ψi, i = 1, . . . , Q} of Ψ corresponds to the value of Ψ for
a particular value of the apparent right-hand Cauchy-Green strain tensor C
corresponding to a discretized node of domain ∆C .
In 3 we have proposed a random generator which allows obtaining a finite set
{ξ(k)}µk=1 of independent realizations of the geometry of the microstructure.

For each realization ξ(k), the vector Ψ(C) is computed, using the Numer-

ical EXplicit Potentials method, and yields a set of realizations {Ψ(k)}µk=1.
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This set of realizations of the discretized strain energy density function is
the starting point of the approach and will be referred as the numerical data.
The next step consists in defining a stochastic model of Ψ based on represen-
tations on polynomial chaos expansions. The methodology used to construct
a polynomial chaos expansion [14, 23] of Ψ is the one presented in [39, 41]
for the high dimensional stochastic case and consists here (a) in reducing the
random vector Ψ with a principal component analysis and then (b) in identi-
fying the polynomial chaos expansion of the reduced-order random variables
in terms of the length Ng of the germ, the maximum degree Nd of the polyno-
mial chaos and the vector-valued deterministic coefficients of the expansions.
The procedure is summarized in the following section.

4.1. Summarizing the identification of a high-dimension polynomial chaos
expansion

Using a principal component analysis, the R
Q-valued random vector Ψ,

characterized by the set of realizations {Ψ(k)}µk=1, is written as follows

Ψ ≃ µΨ +

M∑

j=1

√
λjϕjζj , (21)

in which µΨ = E{Ψ} and
{
λj , ϕj

}M

j=1
are the M first largest eigenvalues and

associated eigenvectors of the covariance matrix of random vectorΨ. Second-
order random variables ζ1, . . . , ζM are centered and orthonormal, that is to
say, E{ζj} = 0 and E{ζjζj′} = δjj′. Integer M is assumed to be sufficiently
large to reach the mean-square convergence which is controlled by

√

1−
∑M

j=1 λj

tr [CΨ]
= ǫMKL < ǫKL , (22)

in which ǫKL is the tolerance parameter. The random vector Ψ is charac-

terized by the set of realizations {Ψ(k)}µk=1. Introducing the vector ζ(k) =

(ζ
(k)
1 , . . . , ζ

(k)
M ), we deduce that {ζ(k)}µk=1 are the independent realizations of

random vector ζ, which represents the strain energy density function for the
prescribed large scale strain states, given by

ζ
(k)
j =

1√
λj

ϕT
j (Ψ

(k) − µΨ) . (23)
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The reduced-order random vector ζ = (ζ1, . . . , ζM), characterized by the re-

alizations {ζ(k)}µk=1, has an arbitrary probability distribution which is char-
acterized by projecting ζ onto the Gaussian polynomial chaos leading to the
following approximation

ζ ≃ ζPC =

N∑

α=1

yαHα(Ξ) , (24)

where the real valued random variables H1(Ξ), . . . , HN(Ξ) are the renum-
bered normalized Hermite polynomials of the R

Ng valued normalized Gaus-
sian random variables Ξ = (Ξ1, . . . ,ΞNg

) verifying that E{Ξ} = 0 and
E{ΞΞT} = [INg

], and where deterministic coefficients y1, . . . ,yN are vec-
tors in R

M such that

N∑

α=1

yα yαT = [IM ] , (25)

with [IM ] the (M ×M) identity matrix. The realizations of orthogonal poly-
nomialsHα(Ξ) are computed with the technique proposed in [40] for the high-
dimension case. This method ensures that the orthogonality properties of the
polynomials Hα(Ξ) are numerically satisfied (especially in high dimension)
and would also be available for any arbitrary probability measure of real-
valued random variables Ξ. We denote by Nd the integer number indicating
the maximum degree of the orthonormal polynomials in (24). The number
N of polynomials in Eq. (24) is thus N = h(Ng, Nd) = (Ng +Nd)!/(Ng!Nd!).
The problem is thus to identify the N deterministic vector-valued coefficients
y1, . . .yN in R

M which must verify Eq. (25).
The random vector Ψ, characterizing the apparent potential and fully de-
fined by Eqs. (21) and (24), must be a positive-valued random vector which
is naturally the case for N → +∞ in Eq. (24). Consequently, for a fixed
value of N , this condition could not be satisfied even if the mean-square
convergence of the series (24) seems to be reached. However, in practice,
no particular constraint is added to the problem since the numerical tests
have shown that this condition was always satisfied, that is to say that no
realization, generated with Eq. (24), had to be rejected.
The identification of the vector-valued coefficients y1, . . . ,yN for a fixed
value of N is done using the maximum likelihood method [36, 42] as per-
formed in [2, 43, 10]. For a given value of y1, . . . ,yN , the estimation of
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pζPC
j (N)(ζ

(k)
j ;y1, . . . ,yN) is performed using the kernel density estimation

method [5] with the set of independent realizations {ζ(k)}µk=1 calculated with
Eq. (23), and using Eq. (25) and µPC independent realizationsΞ(θ1), . . . ,Ξ(θµPC

)
of the normalized Gaussian vector Ξ.
The optimal value (y1, . . . ,yN ) of (y1, . . . ,yN) is then the solution of the
following optimization problem

(y1, . . . ,yN ) = argmax
(y1,...,yN )∈CN

ad

L(y1, . . . ,yN) , (26)

in which admissible set CN
ad is such that

C
N
ad =

{
(y1, . . . ,yN) ∈ (RM)N ,

N∑

α=1

yαyαT = [IM ]

}
. (27)

Solving this type of optimization problem, defined by Eqs. (26) and (27),
on a Stiefel manifold defined by Eq. (25) is not a trivial task if one seeks
to use both a high length of germ Ng and a high maximum degree Nd of
the polynomial chaos. Using the methodology proposed in [39], the opti-
mization problem defined by Eqs. (26) and (27) is reformulated into a set
of recurrent optimization problems P1, . . . ,PM for ℓ = 1, . . . ,M related to
each reduced-order random variable ζj and depending only on the polynomial
chaos coefficients for each ζj. The new optimization problems are not convex
problem and they are thus solved using the algorithm proposed in [39] and
also successfully employed in [41]. This algorithm consists in a two-steps
random search algorithm for which µrs realizations of the coefficients of the
polynomial chaos expansions are used for each step. Its advantage mainly
comes from automatically verifying the constraint defined by Eq. (25). In
the various numerical examples, this strategy of identification will be referred
as strategy (UM).

4.2. Prior stochastic model for the identification of multi-modal random vari-
ables using mixture of polynomial chaos expansions

As it will be shown in Section 6.2, reduced-order random variables {ζj, j =
1, . . . , M} are each characterized by marginal probability density function
pζj which may possess several modes, that is to say several local maxima.
Classical polynomial chaos decompositions may thus require, for this par-
ticular class of random variables, a large number N of basis functions to
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converge. We then propose a prior stochastic model using polynomial chaos
representations based on the methodology proposed in [30] where mixture of
polynomial chaos are used to represent a multi-modal scalar random vari-
able in an efficient way. The extension of this technique to the case of
vector-valued random variables is not straightforward since a high amount of
realizations are required to estimate the joint probability density functions.
We thus propose a prior stochastic model based on mixture of polynomial
chaos which takes into account the information on the mutli-modality of the
marginal probability density functions {pζj , j = 1, . . . , M}. This strategy,
denoted by (MM) in the following, will be numerically tested in Sec. 6.2.
We define the number of modes Mmode

j of a reduced-order random variable
ζj, whose support is R, as the number of local maxima of the probability
density function pζj of ζj. The aim of the representation is to separate the
different modes of each probability density function pζj and to seek a poly-
nomial chaos representation of each resulting uni-modal probability density
function. By denoting Sj = sup pζj the support of the probability density
function pζj , we assume that Sj is bounded such that Sj = [Smin

j , Smax
j ].

We then introduce a partition of the interval [Smin
j , Smax

j ] defined by inter-

vals {Kj,i}
Mmode

j

i=1 , verifying that Sj =
⋃Mmode

j

i=1 Kj,i with
⋂Mmode

j

i=1 Kj,i = ∅. The
intervals {Kj,i}

Mmode
j

i=1 are defined by Kj,i = [qi−1, qi) where Smin
j = q0 <

q1 < . . . < q
M

j
mode

= Smax
j . Separation points {δi}

Mmode
j

i=0 , including Smin
j

and Smax
j , are estimated with probability density function computed with

the kernel density estimation method given in [4] which allows determining
an appropriate bandwidth to exhibit the different modes of the probability
density function of the random variable ζj. Then, introducing a uniform ran-

dom variable Ξ̂j on [Smin
j , Smax

j ], we can define the indicator function IKj,i
of

Kj,i and seek a mixture of polynomial chaos representation of ζj under the
following form

ζj(Ξ̂j,Ξ) ≃
Mmode

j∑

i=1

IKj,i
(Ξ̂j)

(
N∑

α=1

yαj,iHα(Ξ)

)
, (28)

which can be seen as a functional representation of random variable ζj with

respect to Ξ̂j and Ξ. Functions {IKj,i
Hα} form an orthogonal set of functions

composed by piecewise polynomial functions which are polynomial according
to Ξ and piecewise constant according to Ξ̂j . The identification of the de-
terministic coefficients of the polynomial chaos expansions is done with the
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technique given in [39]. This technique is used for each mode and has thus
to be employed Mmode

j times. However, the computational times are not in-
creased and may even be reduced since the identification of random variables
with uni-modal probability density functions is fast. The performances of
the proposed prior stochastic model are discussed in Sections 6.2 and 6.3.

4.3. Error estimation

In order to control the quality of the convergence of the series in Eqs. (24)
and (28) with respect to N , we use the specific error function introduced in
[39, 41]. This unusual L1-log error function allows the error of very small
values of the probability density function to be measured. For a fixed value
of N , such a measurement is summarized in the following. Let e �→ pζj (e) be
the probability density function of the random variable ζj. The convergence
of random vectors ζPC towards ζ according to N is then controlled with the
L1-log error defined by

errj(Ng, Nd) =

∫

BIj

∣∣ log10 pζj (e)− log10 pζPC
j (N)(e;y

1, . . . ,yN)
∣∣de , (29)

where BIj is the intersection of the bounded supports of e �→ pζj (e) and
e �→ pζPC

j (N)(e;y
1, . . . ,yN). The estimation of pζj(e) is performed using the

kernel density estimation method [5] with the set of independent realizations
{ζ(k)}µk=1 calculated with Eq. (23). The L1-log error function related to the
random vector ζPC and denoted by err(Ng, Nd) is defined by

err(Ng, Nd) =
1

M

M∑

j=1

errj(Ng, Nd) . (30)

5. Summary of the overall procedure

For the sake of clarity, we summarize the overall proposed method. Thus,
the main steps of the approach can be classified as follows.

1. Defining the parameters of the random generator to obtain the set of
realizations {ξ(k)}µk=1 of the microstructure geometry.

2. Discretizing the bounded space ∆C spanned by the large scale (meso-
scopic or macroscopic) strains and computing the apparent (or effec-
tive) strain energy density function according to the prescribed large

15



scale strains for each realization of the geometry of the microstructure.

This step leads us to the set of realizations {Ψ(k)}µk=1 of random vector
Ψ.

3. Computing the reduced-order model of the discretized potential through
a principal component analysis. This step leads to the set of realiza-
tions {ζ(k)

j }µk=1 of reduced-order random vector ζ.

4. Identifying the reduced-order random vector ζ on polynomial chaos
expansions, leading to the following approximation ζ ≃ ∑N

α=1 y
αHα(Ξ)

with
∑N

α=1 y
α yαT = [IM ].

5. Computing the separated variables representation associated with an
appropriate interpolation scheme in order to obtain a continuous ex-

plicit form of each realization {Ψ(k)
, k = 1, . . . , µPC} of the potential

leading to the following approximation Ψ
(k)
(C) ≈ ∑R

r=1

∏D

i=1 φ̃
r
i (C i).
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A pseudo-algorithm of the proposed methodology is given in Algorithm 1.

NEXP approach;
begin

input : Set of realizations {ξ(k)}µk=1

Parameter Q of discretization of ∆C

for k = 1 to µ do

Compute Ψ
(k)
(C) = (Ψ

(k)
(C1), . . . , Ψ

(k)
(CQ))

end

output: Set of realizations {Ψ(k)}µk=1

end

Principal Component Analysis;
begin

input : Set of realizations {Ψ(k)}µk=1

Tolerance parameter ǫKL

Compute µΨ ≃ 1
µ

∑µ

k=1Ψ
(k)

Compute [CΨ] ≃ 1
(µ−1)

∑µ

k=1 ψ̃
(k)
ψ̃

(k)T
and solve the eigenvalues

problem

Select M such that

√
1−

∑M
j=1

λj

tr[CΨ]
= ǫMKL < ǫKL

Compute {ζ(k)}µk=1 with ζ
(k)
j = 1√

λj

ϕT
j (Ψ

(k) − µΨ)

output: Set of realizations {ζ(k)}µk=1

end

Identification on polynomial chaos basis;
begin

input : Set of realizations {ζ(k)}µk=1

Parameters Ng, Nd

for j = 1 to M do

Determine Mmode
j

for ℓ = 1 to Mmode
j do

Solve recurrent optimization problem Pℓ

end

output: Decomposition of ζj under the form

ζj(Ξ̂j,Ξ) ≃ ∑Mmode
j

i=1 IKj,i
(Ξ̂j)

(
∑N

α=1 y
α
j,iHα(Ξ)

)

end

output: PC coefficients {yα, α = 1, . . . , N}
end

Algorithm 1: Pseudo-algorithm of the proposed methodology.
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In numerical example 6.1, we only use the polynomial chaos representa-
tion defined by Eq. (24), associated with the identification technique pro-
posed in [39], since the components of random vector Ψ are random variables
with uni-modal probability density functions. This method is denoted by
strategy (UM). However, in numerical example 6.2, since the components of
the random vector Ψ are characterized by multi-modal probability density
functions, we also use the representation (28) based on mixture of polynomial
chaos proposed in Sec. 4.2. This technique is denoted strategy (MM). In this
example, and in the mesoscopic application 6.3, the performances of the two
strategies (UM) and (MM) are compared.

6. Applications

In this section, we detail three numerical examples to demonstrate the
efficiency of the proposed approach. Numerical examples 6.1 and 6.2 aim
at identifying the apparent (or effective) mechanical properties for two dif-
ferent sets of parameters for the probabilistic model of the geometry of the
microstructure. In example 6.1, the components of random vector Ψ are
uni-modal (i.e. the probability density function only possesses one local
maximum) while in example 6.2, the components of random vector Ψ are
multi-modal (i.e. the probability density functions possesses several local
maxima). Numerical example 6.3 consists in a mesoscale structural prob-
lem for which the apparent mechanical properties are computed with the
microscale problem studied in Sec. 6.2. For each application, the proposed
approach is compared with reference solutions computed with classical meth-
ods in order to show its efficiency.

6.1. Application 1: microstructural problem (A)

6.1.1. Problem definition

At the microscopic level, we consider a hyperelastic heterogeneous mate-
rial characterized by a compressible Neo-hookean model given by the poten-
tial defined in Eq. (5). For the matrix, the Young modulus is Em = 109 Pa
and the Poisson ratio is νm = 0.4. For the inclusions, Ef = 1011 MPa and
νf = 0.3. One should notice the large contrast between the two phases which
is not an issue with the NEXP method. The large scale strain domain ∆C is
chosen such as ∆C = ∆C1

×∆C2
×∆C6

= [0.9 , 1.5]×[0.9 , 1.5]×[−0.1 , 0.5] and

we use p = 7 points along each axis C i. The random vector Ψ to determined
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Figure 3: Finite element meshes of two realizations of the geometry of the microstructure.

is thus made of 343 components. The input parameters for the random gen-
erator are the following ones: number of random variables m = 6, 000, spatial
correlation parameter ρ = 10−5, number of realizations µ = 350, coefficient of
variation δ = 0.5 and number of fibers Nf = 80. Fig. 3 illustrates two finite
element meshes corresponding to two realizations of the microstructure.

6.1.2. Analysis of the reduced-order model

In this section, we propose to analyze the efficiency of the expansion (21).
Fig. 4 displays the graph of error function ǫMKL defined by (22) according to
the number of modes M . A very fast convergence of the error can be ob-
served. Indeed, with only M = 5 modes, an error inferior to 10−3 is reached.
Fig. 5 displays the probability density function of Ψ for C11 = 1.5, C22 = 1.5
and C12 = 0.5 and the probability density functions of each retained reduced-
order random variable ζj. It can be observed that the probability density
functions of components of random vector Ψ are uni-modal. The same re-
mark can be made for each reduced-order random variable ζj . In the following
sections, we focus on the identification of the reduced-order random variables
{ζj j = 1, . . . , 5} on polynomial chaos expansions with strategy (UM) only
since the various reduced-order random variables ζj are not characterized
by probability density functions which possess several modes. Convergence
analysis with respect to the length Ng of the germ Ξ and the maximum
degree Nd of the polynomial chaos are carried out.
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Figure 4: Graphs of the error function M �→ εMKL for M = 1, . . . , 100 (a) and for M =
1, . . . , 5 (b).

6.1.3. Identification of the reduced-order model

In this section, the calculation of the vector-valued coefficients y1, . . . ,yN

in R
M of the polynomial chaos expansion (24) is performed using the random

search algorithm introduced in [39]. A convergence analysis is carried out
using the L1-log error function defined by Eqs. (29) and (30) with respect
to the length of germ Ng = 1, . . . , 4 and maximum degree Nd = 8, . . . , 22
of the polynomial chaos. Each recurrent optimization problem Pl for l =
1, . . . , 5 is solved using µrs = 5, 000 independent realizations. The total
number of independent realizations performed with the algorithm is then
2 × ∑5

j=1 µrs = 50, 000. The number µPC of independent realizations of Ξ

used to estimate the probability density functions of ζPC
j is µPC = 15, 000.

In terms of computational costs, the CPU times are respectively 9 and 93
minutes for configurations Ng = 1 and Nd = 8, and configuration Ng =
4 and Nd = 22, using a computer with 8 cores. Fig. 6 (a) displays the
graph of the L1-log error function Nd �→ err(Ng, Nd) for Ng = 1, . . . , 4.
We can observe a bad rate of convergence of the error indicator for lengths
of germ Ng = 1 and Ng = 2 and a slow convergence for length of germ
Ng = 3. Increasing the number µrs of independent realizations could slightly
improve the results in terms of the error level, but would significantly increase
the CPU times. On the other hand, we can notice a good convergence for
length of germ Ng = 4 for which a reasonable convergence is reached for
maximum degree of polynomial chaos Nd = 18. Moreover, on Fig. 6 are
also displayed the comparison of the probability density functions in log-
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Figure 5: (a): PDF of Ψ(C) for C11 = 1.5, C22 = 1.5 and C12 = 0.5; (b) to (f): PDFs of
each reduced-order random variable ζj for j = 1, . . . , 5.
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scale of random variables ζj obtained with the µ realizations of the reduced-
order model (e.g. reference solution) and estimated with the polynomial
chaos expansions corresponding to Ng = 1, . . . , 4 and for Nd leading to the
lowest value of the L1-log error function. We have thus retained the following
solutions: Ng = 1 with Nd = 20, Ng = 2 with Nd = 8,Ng = 3 with Nd =
20 and Ng = 4 with Nd = 18. We can clearly observe that the solution
corresponding to Ng = 4 with Nd = 18 leads to a very good identification
of all the reduced-order random variables ζj while the other approximated
solutions, i.e. for Ng = 1, . . . 3, lead to poor results regarding the reference
solution.

6.1.4. Quality assessment of the apparent constitutive law

We now focus on the analysis of the apparent mechanical quantities Ψ, S
and L characterizing the apparent constitutive equations. We propose to use
the best solutions for each length of germ Ng according to the L1-log error
function also used for Fig. 6. The computation of quantities S11 and L1111 is
done using the approximation of the apparent quantities Ψ, S and L through
Eqs. (13) and (14) to (16). This step requires to compute the separated vari-
ables representation for each realizations generated by the polynomial chaos
expansions. Fig. 7 illustrates the probability density functions for quantities
Ψ, S11 and L1111 for the two following large scale strain states: (i) C11 = 1.5,
C22 = 1.5 and C12 = 0.5, (ii) C11 = 1.35, C22 = 0.95 and C12 = 0.15.
The reference solutions correspond to independent nonlinear FEM compu-
tations according to apparent strain states (i) and (ii) for geometries of the
microstructure generated from the set of geometrical parameters {ξ(k)}µk=1.
We can observe that solutions corresponding to Ng = 1 up to Ng = 3 lead to
bad approximations of the apparent quantities while solution corresponding
to Ng = 4 leads to a very good approximation with respect to the reference
solution. Finally we can notice that the statistic fluctuations are very low:
indeed, the coefficient of variation of S11 is equal to 0.57% for the solution
corresponding to Ng = 4 and to 0.58% for the reference solution. The appar-
ent mechanical properties can thus be considered as deterministic and this
model at the small scale can be used in a structural problem where the two
scales are the microscale and the macroscale.
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Figure 6: (a): Graph of function Nd �→ err(Ng ,Nd) for Ng = 1, . . . , 4 and Nd = 8, . . . , 22;
(b) to (f): PDFs of ζj , j = 1, . . . , 5 respectively computed with the reference solution and
the identification strategy (UM).
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Figure 7: (a), (c) and (e): PDFs of Ψ(C), S11(C) and L1111(C) computed with strategy
(UM) for large scale strain states (i); (b), (d) and (f): PDFs of Ψ(C), S11(C) and L1111(C)
computed with strategy (UM) for large scale strain states (ii) .
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Figure 8: Finite element meshes of two realizations of the geometry of the microstructure.

6.2. Application 2: small scale problem (B)

6.2.1. Problem definition

The aim of this example is also to demonstrate the efficiency of the pro-
posed method and the accuracy of the resulting solution through comparisons
with standard approaches. The parameters of the hyperelastic heterogeneous
material are the same as the ones used in example 6.1. The input parameters
for the random generator are also the same except for the spatial correlation
parameter ρ which is taken equal to 0.5. This choice involves significant
changes in the random geometry of the microstructure (volume fraction and
shape of the fibers) as it can be seen in Fig. 8 which displays two finite
element meshes corresponding to two realizations of the microstructure.

6.2.2. Analysis of the reduced-order model

In this section, we propose to analyze the efficiency of the expansion (21).
Fig. 9 displays the graph of error function ǫMKL defined by (22) according to
the number of modes M . As in numerical example 6.1, we can observe a very
fast convergence of the error (error inferior to 10−3 with M = 5). Fig. 10
displays the probability density function of Ψ for C11 = 1.5, C22 = 1.5 and
C12 = 0.5 and the probability density functions of each retained reduced-
order random variable ζj. We can clearly observe that the strain energy
density function is multi-modal, which is the case for all large scale strain
states. This multi-modal nature is mainly due to the variability of the aspect
ratio involving variations in the volume fraction as it can be seen in Fig. 8.
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Figure 9: Graphs of the error function M �→ εMKL for M = 1, . . . , 100 (a) and for M =
1, . . . , 5 (b).

Thus, random variable ζ1, which is the most important in the reduced-order
model, presents also the same kind of modes. We can also notice that the
probability density function of random variable ζ3 possesses several modes
which may be important to capture. In the following sections, we focus on
the identification of the reduced-order random variables ζj for j = 1, . . . , 5
on polynomial chaos expansions with the two proposed strategies (UM) and
(MM). Convergence analysis with respect to the length Ng of the germ Ξ

and the maximum degree Nd of the polynomial chaos are performed.

6.2.3. Identification procedure with strategy (UM)

In this section, the calculation of the vector-valued coefficients y1, . . . ,yN

in R
M of the polynomial chaos expansion defined by Eq. (24) is performed us-

ing the random search algorithm introduced in [39]. The multi-modal nature
of random variables ζj is not specifically taken into account. A convergence
analysis is carried out using the L1-log error function defined by Eqs. (29)
and (30) with respect to the length of germ Ng = 1, . . . , 4 and maximum
degree Nd = 8, . . . , 22 of the polynomial chaos. Each recurrent optimization
problem Pl for l = 1, . . . , 5 is solved using µrs = 5, 000 independent real-
izations. The total number of independent realizations performed with the
algorithm is then 2 ×∑5

j=1 µrs = 50, 000. The number µPC of independent

realizations of Ξ used to estimate the probability density functions of ζPC
j

is µPC = 15, 000. Fig. 11 (a) displays the graphs of L1-log error function
Nd �→ err(Ng, Nd) for Ng = 1, . . . , 4. We can observe a bad rate of conver-
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Figure 10: (a): PDFs of Ψ(C) for C11 = 1.5, C22 = 1.5 and C12 = 0.5; (b) to (f): PDFs
of each reduced-order random variable ζj for j = 1, . . . , 5.
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gence of the error indicator for lengths of germ Ng = 1 and Ng = 2 and slow
convergences are observed for Ng = 3 and Ng = 4. Moreover, in Fig. 11 are
also displayed the comparison of the probability density functions in log-scale
of random variables ζj obtained with the µ realizations of the reduced-order
model (e.g. reference solution) and estimated with the polynomial chaos ex-
pansions corresponding to Ng = 1, . . . , 4 and for Nd leading to the lowest
value of the L1-log error function. We can indeed notice bad results for all
the displayed solutions and more particularly for the reduced-order random
variables ζ1 and ζ3 which present several modes. Regarding the results given
in Fig. 11, we propose to analyze two ways for improving the results: in-
creasing the maximum order Nd of the polynomial chaos expansions for a
fixed length of germ Ng = 1, and increasing the length of germ Ng for a
fixed maximum order Nd = 10. Fig. 12 displays the graphs of error function
Nd �→ err(Ng, Nd) for a fixed length of the germ, Ng = 1, and maximum
order, Nd = 25, . . . 60, and of error Ng �→ err(Ng, Nd) for Ng = 1, . . . , 7 and
a fixed maximum order Nd = 10. Both strategies allows decreasing the level
of error, however, we can notice that increasing the length Ng of the germ
leads us to better results, with a convergence reached for Ng = 5, and an
inferior level of error regarding the results for Ng = 1 and Nd = 35 for which
the convergence seems to be reached. Nevertheless, Fig. 12 also illustrates
the graphs of error Nd �→ err1(Ng, Nd) and Ng �→ err1(Ng, Nd) corresponding
to the reduced-order random variable ζ1, for which the probability density
function possesses several modes. We can observe that increasing the max-
imum order, Nd, allows a better representation of random variable ζ1 to be
obtained while increasing the length Ng of the germ does not. It can thus be
concluded that the best way to represent the reduced-order random vector
ζ on a polynomial chaos basis would consists in using high values of both
Ng and Nd. However, such a basis would involve a very high number of
coefficients in the polynomial chaos expansions and would lead to too large
computational times. It is thus proposed to use the strategy (MM) based
on mixture of polynomial chaos detailed in Sec. 4.2 in order to improve the
convergence of the identification procedure with similar computational times.
The results are given in the following subsection.

6.2.4. Identification procedure with strategy (MM)

In this section, we show the results obtained with the strategy based on
the prior stochastic model relying on the mixture of probability laws model
described in Section 4.2 and for which the calculation of the vector-valued
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Figure 11: (a): Graph of function Nd �→ err(Ng ,Nd) for Ng = 1, . . . , 4 and Nd = 8, . . . , 22
for strategy (UM); (b) to (f): PDFs of ζj , j = 1, . . . , 5 computed with the reference solution
and strategy (UM).
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Figure 12: (a): Graphs of functions Nd �→ err(Ng ,Nd) and Nd �→ err1(Ng,Nd) for Ng = 1
and Nd = 1, . . . , 60; (b): Graphs of functions Ng �→ err(Ng,Nd) and Nd �→ err1(Ng,Nd)
for Ng = 1, . . . , 7 and Nd = 10; (c) and (d) PDFs of ζ1 and ζ4 computed with the
identification strategy (UM) and the reference solution.
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coefficients of the polynomial chaos expansion defined by Eq. (28) is also
performed using the random search algorithm detailed in [39]. The aim is
to accelerate the identification which means obtaining better results without
increasing the number of coefficients in the polynomial chaos expansions. The
multi-modal nature of the probability density function of random variables ζj
is thus taken into account. The number of modes Mmode

j (i.e. number of local
maxima) for each ζj are: Mmode

1 = 5, Mmode
2 = 2, Mmode

3 = 6, Mmode
4 = 3

and Mmode
5 = 7. One should note that all detected modes have been taking

into account, even the smallest ones which can appear as spurious modes
and are not visible in Fig. 10. However, this greatly allows improving the
identification procedure. As in the previous section, a convergence analysis
is carried out using the L1-log error function defined by Eqs. (29) and (30)
with respect to the length of germ Ng = 2, . . . , 4 and maximum degree Nd =
8, . . . , 22 of the polynomial chaos. All recurrent optimization problems are
solved using µrs = 1, 000 independent realizations. Since, the mixture of
probability laws is here used, the number of recurrent optimization problems
Pl is increased to the value corresponding to the total number of modes
Mmode = 23. The total number of independent realizations performed with
the algorithm is then 2×∑23

j=1 µrs = 46, 000. The number µPC of independent
realizations of Ξ used to estimate the probability density functions is µPC =
15, 000.
Fig. 13 (a) displays the graphs of L1-log error function Nd �→ err(Ng, Nd)
for Ng = 2, . . . , 4 and Nd = 8, . . . , 22. For Ng = 2, a bad rate of convergence
of the error indicator is observed. However, the values of the L1-log error
function are lower than the ones obtained with the strategy (UM). A slow
convergence is observed for Ng = 3 and a good rate of convergence of the L1-
log error function is clearly seen for Ng = 4 for which a reasonable solution
seems to be reached for Nd = 17. Fig. 13 also displays the comparison of
the probability density functions in log-scale of random variables ζj obtained
with the µ realizations of the reduced-order model, and estimated with the
polynomial chaos expansions corresponding to Ng = 2, . . . , 4 and for Nd

leading to the lowest value of the L1-log error function. We can clearly notice
better results than those obtained with the strategy (UM). For instance,
concerning random variable ζ1, we can see that the different modes are well
represented especially for the solution corresponding to Ng = 4 and leading
to the smallest value of the L1-log error function. In terms of computational
costs, the PCU times are respectively 6 and 65 minutes for configuration
Ng = 1 andNd = 8, and configuration Ng = 4 andNd = 22, using a computer
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cluster with 8 cores. One should note that the CPU times are lower than the
ones obtained with strategy (UM) mainly because the number of independent
realizations corresponds here to µrs = 1000.

6.2.5. Quality assessment of the apparent constitutive law

After the study of the identification of the reduced-order model on the
polynomial chaos expansions, we propose to analyze the results on the appar-
ent mechanical quantities Ψ, S and L characterizing the apparent constitu-
tive equations. We propose to use the best solutions of the two identification
strategies according to the L1-log error function. Thus, we have retained
the two following solutions: strategy (UM) with Ng = 4 and Nd = 22 and
strategy (MM) with Ng = 4 and Nd = 18. We first focus on the apparent
strain energy density function. Fig. 14 illustrates the probability density
functions of Ψ(C) for the following large scale strain states: (i) C11 = 0.9,
C22 = 0.9 and C12 = −0.1,(ii) C11 = 1.1, C22 = 1.3 and C12 = 0.3,(iii)
C11 = 1.4, C22 = 1.2 and C12 = 0.2, and (iv) C11 = 1.5, C22 = 1.5 and
C12 = 0.5. On this figure, the different PDFs have been plotted with a lin-
ear scale since the authors want to point out the capacity of the different
identification strategies to capture the multi-modal nature of the apparent
strain energy density function. We can thus clearly observe that the strategy
(UM) is unable to capture the different modes of the various PDFs whereas
strategy (MM) leads to very good solutions according to the reference solu-
tion. Indeed, this approach leads to the better results for the approximation
of Ψ. We then focus on the post-processing of the identified solutions and its
quality. We thus focus on three quantities, Ψ(C), S11(C) and L1111(C) for
particular values of tensor C which do not belong to the initial set of realiza-

tions {Ψ(k)}µk=1 used in the principal component analysis. Thus, we use, as
post-processing, the separated variables representation leading to the approx-
imation of the apparent quantities Ψ, S and L through Eqs. (13) and (14)
to (16). This step requires to compute the separated variables representation
for each realizations generated by the polynomial chaos expansions computed
with the two strategies (UM) and (MM). We have chosen four different cases
of large scale strain states: (v) C11 = 0.95, C22 = 0.95 and C12 = −0.05,(vi)
C11 = 1.22, C22 = 1.22 and C12 = 0.22,(vii) C11 = 1.47, C22 = 1.33 and
C12 = 0.43, and (viii) C11 = 1.18, C22 = 1.12 and C12 = 0.42. The reference
solutions correspond to independent nonlinear FEM computations according
to apparent strain states (v) to (viii) for geometries of the microstructure
generated from the set of geometrical parameters {ξ(k)}µk=1. Figs. 15, 16
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Figure 13: (a): Graph of function Nd �→ err(Ng ,Nd) for Ng = 2, . . . , 4 and Nd = 8, . . . , 22
for strategy (MM); (b) to (f): PDFs of ζj , j = 1, . . . , 5 computed with the reference
solution and strategy (MM).
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Figure 14: PDFs of Ψ(C) computed with strategies (UM), (MM) and the reference solu-
tion; (a) large scale strain state (i); (b) large scale strain state (ii); (c) large scale strain
state (iii); (d) large scale strain state (iv).

34



3 3.5 4 4.5
0

0.5

1

1.5

2

ψ

P
D

F

 

 

(UM) N
g
=4 N

d
=22

(MM) N
g
=4 N

d
=18

reference

(a) C11=0.95 C22=0.95 C12=−0.05

40 45 50 55
0

0.05

0.1

0.15

ψ

P
D

F

 

 

(UM) N
g
=4 N

d
=22

(MM) N
g
=4 N

d
=18

reference

(b) C11=1.22 C22=1.22 C12=0.22

100 110 120 130 140 150 160
0

0.01

0.02

0.03

0.04

0.05

0.06

ψ

P
D

F

 

 

(UM) N
g
=4 N

d
=22

(MM) N
g
=4 N

d
=18

reference

(c) C11=1.47 C22=1.33 C12=0.43

25 30 35 40 45
0

0.05

0.1

0.15

ψ

P
D

F

 

 

(UM) N
g
=4 N

d
=22

(MM) N
g
=4 N

d
=18

reference

(d) C11=1.18 C22=1.12 C12=0.42

Figure 15: PDFs of Ψ(C) computed with strategies (UM), (MM) and the reference solu-
tion; (a) large scale strain state (v); (b) large scale strain state (vi); (c) large scale strain
state (vii); (d) large scale strain state (viii).

and 17 respectively illustrate the PDFs of quantities Ψ, S11 and L1111 for
strain states (v) to (viii). We can first notice that, as previously, strategy
(MM) leads to better results than strategy (UM). Then, we can observe that
the results are very good for ψ, but slightly deteriorating for components of
S and a little more for components of L. However, results obtained with
strategy (MM) remain completely acceptable. A simple way to improve the
results would be to increase the number Q of components in vector Ψ, that
is to say to refine the discretization of the large scale strain space. However,
this action would increase the CPU times required to compute the numerical
database.

6.3. Application 3: large scale structural problem

In this example, we propose to study the efficiency of the proposed ap-
proach with a large scale structural problem. The aim is to compare the
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Figure 16: PDFs of component S11(C) computed with strategies (UM), (MM) and the
reference solution; (a) large scale strain state (v); (b) large scale strain state (vi); (c) large
scale strain state (vii); (d) large scale strain state (viii)
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Figure 17: PDFs of component L1111(C) computed with strategies (UM), (MM) and the
reference solution; (a) large scale strain state (v); (b) large scale strain state (vi); (c) large
scale strain state (vii); (d) large scale strain state (viii)
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results obtained with the different strategies ((UM) and (MM)) proposed
for the stochastic representation of the apparent constitutive equations and
discussed in Sec. 6.2.

6.3.1. Problem definition

We consider a structure made of a hyperelastic heterogeneous material
where the geometry of the microstructure associated to the material is ran-
dom. At the small scale, the length of the square plate is l = 10−3 m. At the
large scale, the dimensions of the structure lying in a domain Ω are L = 0.1
m, H = 0.1 m and e = 0.02 m and displacements ∆u = 10% are imposed on
a part Γu of the structural domain presented on Fig. 18(a). The mesh of the
mesoscopic domain is composed of 372 3-nodes triangular finite elements de-
picted on Fig. 18(b). The small scale problem corresponds to the one studied
in Section 6.2 and the apparent constitutive behavior is characterized by the
apparent strain energy density functions determined with strategies (UM)
and (MM) for which the identification on the polynomial chaos leads to the
better approximation according to the L1-log error function (30). In [7], the
properties of the random field generated by the proposed stochastic model of
the microstructure has been studied by the authors which have shown that
the spatial correlation length is 7 times superior to the size of the elementary
cell which explains the statistical fluctuations observed in the previous study
of Ψ. Considering the dimensions of the problem, the distance of two inte-
gration points at the large scale is superior to the spatial correlation length.
Thus, the large scale problem is a mesoscopic problem for which the appar-
ent quantities still present stochastic fluctuations. During the mesoscopic
computation, integration points must be associated with a microstructure,
represented by a potential Ψ, which corresponds to independent realizations
of Ψ generated with its polynomial chaos representation.

6.3.2. Results

In this section, we propose to analyze the statistical properties of several
mesoscopic quantities. To achieve this, we run µmeso = 1, 000 Monte-Carlo
simulations of the structural problem for each characterization of the ap-
parent strain energy density function related to the identification strategies.
A reference solution is computed consisting in relating a novel realization
of Ψ to each integration point generated with the random generator pre-
sented in Sec. 3 for which a separated variables representation is then cal-
culated. Those numerical simulations can be summarized in three steps: (i)
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Figure 18: (a): Geometry and boundary conditions for the large scale structural problem;
(b): Finite element mesh associated with the microstructure.

using the random generator to get new realizations of the geometry of the
microstructure associated with each integration point; (ii) using the deter-
ministic NEXP approach to determine an explicit form of the potential with
respect to the large scale strains; (iii) compute the large scale response with
nonlinear FEM simulations. In this procedure, step (ii) is very expensive
since a full NEXP strategy is used for each integration point. Indeed, the
proposed methodology allows performing one large scale simulation with a
laptop computer in less than an hour, when it takes around two days with
the reference solution.

One should note that this procedure is very expensive in terms of com-
putational times because of the independent generations of vector Ψ.
As an illustration of the mesoscopic numerical simulations, Fig. 19 presents
the von Mises stress fields σeq for two different cases of applied displacements
corresponding to ∆u1

= 5% and ∆u2
= 10% for a particular realization of the

mesoscopic structure. We clearly observe two areas where the stresses are
concentrated located on the right side of the structure where the displace-
ments are imposed.
We first focus on the mesoscopic von Mises stress σeq for a particular finite
element Eelem depicted in Fig. 18(b). Fig. 20 illustrates the convergence of
the mean and standard deviation of σeq for Eelem according to the number of
realizations as well as the probability density functions corresponding to the
different identifications strategies. From this figure, it appears that running
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Figure 19: Stress fields σeq for one particular mesoscopic simulation; (a): solution cor-
responding to imposed displacements ∆u1

= 5%; (b) solution corresponding to imposed
displacements ∆u2

= 10%.

µmeso = 1000 Monte-Carlo simulations yields to reasonably converged results
in terms of mean and standard deviation of σeq. As we can deduce from the
various PDFs, σeq for Eelem still presents statistical fluctuations: coefficients
of variation are indeed of 15.7% and 16.2% respectively for strategies (UM)
and (MM) while the coefficient of variation for the reference solution is equal
to 16.4%. Surprisingly, the two identification strategies lead to similar re-
sults which appear acceptable comparing to the reference solution. However,
we can notice that strategy (MM) leads to the best results for the probability
density functions since the two modes, appearing in the reference solution,
are well captured by this strategy.

We then focus on the maximum of the von Mises stresses defined as
σmax
eq = max

x∈Ω
|σeq(x)|. Fig. 21 illustrates the convergence of the mean and

standard deviation of σmax
eq according to the number of realizations as well

as the probability density functions of σmax
eq corresponding to the different

identifications strategies. We also notice a good agreement between the two
strategies and the reference solution and, here again, strategy (MM) seems
to lead to the best results for the probability density functions. Moreover,
results coming from strategy (UM) are very acceptable even if this strategy
has led to a coarse identification of the apparent strain energy density func-
tion (c.f. results shown in Sec. 6.2).
We then focus on the horizontal displacement ux(Pref) of point Pref depicted
on figure 18(b). Fig. 22 illustrates the evolution of component ux(Pref) ac-
cording to the displacements ∆u applied to the part Γu of the boundary and
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Figure 20: (a) and (b): Convergence of mean and standard deviation of σeq for Eelem,
computed with strategies (UM), (MM) and the reference solution, according to the number
of Monte-Carlo simulations; (c): Pdfs of σeq for Eelem.
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Figure 21: (a) and (b): Convergence of mean and standard deviation of σmax
eq , computed

with strategies (UM), (MM) and the reference solution, according to the number of Monte-
Carlo simulations; (c) PDFs of σmax

eq .
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(a) Strategy (UM). (b) Strategy (MM).

(c) Reference solution.
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Figure 22: (a) to (c): Evolution of component ux of displacement at point Pref according
to ∆u computed with strategies (UM), (MM) and the reference solution; (d) PDFs of ux

at point Pref corresponding to ∆u = 10%.

corresponding to the different identification strategies and the reference so-
lution. We can observe that all the solutions match the reference solution for
both linear and nonlinear parts of the response surfaces. On Fig. 22 are also
plotted the PDFs of each solution corresponding to the maximum imposed
displacements which are very similar and also close to the reference PDF.
Finally we can notice that the statistic fluctuations are very low allowing
considering the displacements as a deterministic quantity: indeed, the coef-
ficient of variation of ux(Pref) is equal to 0.9% for both strategies (UM) and
(MM) when the coefficient of variation of the reference solution is 1%. This
is mainly due to the Dirichlet boundary conditions applied on the mesoscopic
structure.
We finally focus on an integrated quantity linked to the mesoscopic stress
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field. We introduce the mesoscopic resultant force F computed on the bound-
ary Γu according to the following relationship

F =

∫

Γu

P N̂ dΓ. (31)

where N̂ is the outward unit normal vector to the boundary ∂Ω. The com-
ponent F y of F for the mesoscopic structure with respect to the applied dis-
placements ∆u is depicted on Fig. 23 for the different identification strate-
gies and the reference solution. As for the displacement ux(Pref), we can
observe a very good match between all the results in comparison of the refer-
ence solution. Moreover, we notice that the stochastic fluctuations increase
according to the applied displacements ∆u leading to coefficients of varia-
tion corresponding to ∆u = 10% equal to 4.8% and 5.2% respectively for
strategies (UM) and (MM). Those results also match the reference solution
whose coefficient of variation is equal to 4.9%. As opposed to the horizontal
displacements showing on Fig. 22, the resultant force presents significant
statistic fluctuations directly related to the statistic fluctuations of the ap-
parent strain energy density function. Once again, strategy (UM), which has
led to coarse results shown in Sec. 6.2, presents satisfying performances for
the mesoscopic problem.

7. Conclusion

We have proposed a novel approach dedicated to the approximation of
random apparent (or effective) constitutive equations for hyperelastic hetero-
geneous microstructures. This work is an extension to the stochastic frame-
work of a non-concurrent computational homogenization approach called the
Numerical EXplicit Potential method (NEXP) which consists in character-
izing the effective constitutive behavior by an explicit continuous form of
the effective strain energy density function (potential). Such a form simply
allows obtaining the large scale (mesoscopic or macroscopic) tensors, needed
in a structural analysis, by derivation of the potential. In a recent work by
the authors [7], this methodology has been extended to the stochastic case
but greatly suffers from the “curse of dimensionality” since a high number
of random parameters involves drastic computational times.
To circumvent this difficulty, we have proposed a reformulation of the prob-
lem leading us to the identification of the apparent (or effective) potential
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(c) Reference solution.
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Figure 23: (a) to (c): Evolution of component F y of the resultant force F according to
∆u computed with strategies (UM), (MM) and the reference solution; (d): PDFs of F y

corresponding to ∆u = 10%.
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represented on a polynomial chaos expansion. We have considered fiber re-
inforced polymer composites for which the geometry of the microstructure is
random and is governed by a high number of random parameters. Using a
specific random generator of microstructures, which can be replaced by any
other generator with the same capabilities, we use the deterministic NEXP
method to compute realizations of the strain energy density function for pre-
scribed mesoscopic (or macroscopic) scale strain states. Starting from this
numerical database, a statistical reduction of the discretized potential is per-
formed and the reduced-order random variables are identified on polynomial
chaos expansions. Once the identification on the polynomial chaos of the
apparent potential is done, the explicit continuous form of each realization
of the apparent potential, generated from its polynomial chaos expansion, is
easily obtained thanks to a separated variables representation coupled to an
appropriate interpolation scheme.
In this work, the main difficulty comes from the identification of the apparent
(or effective) potential on polynomial chaos expansions which is not a trivial
task since a high number of coefficients may be needed in the polynomial
chaos expansion. We have thus used the novel identification technique pro-
posed and successfully employed in [39, 41]. In a first numerical example,
for which the random parameters to be identified were uni-modal random
variables, this technique has led us to very satisfying results. However, in
a second example, we have shown that the random apparent potential may
be of multi-modal nature which increases the difficulty of the problem since
a high order of the polynomial chaos is needed to well represent such ran-
dom variables. To circumvent this difficulty, we have proposed to use a prior
stochastic model based on mixture of polynomial chaos. This prior stochastic
model has allowed improving the identification procedure without increasing
the order of the polynomial chaos expansions and thus, has prevented from
increasing the computational costs. Finally, a third numerical example con-
sisting in a mesoscopic problem has been proposed to show the usefulness
and the efficiency of the approach. In this illustration, the two identification
strategies have been used to characterize the apparent constitutive equations
and their performances have been compared. Surprisingly, the two strategies
have both led to good results regarding the reference solution, whereas the
identification strategy not based on the mixture of polynomial chaos had led
to a rather poor identification of the apparent constitutive potential.
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[25] M. Loève, Probability Theory. I, fourth edition, in: Graduate Texts in
Mathematics, vol. 45, Springer-Verlag, New-York, 1977.

[26] O. Lopez-Pamies, P. Ponte Castañeda, Second-Order Estimates for the
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