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(Received 30 March 2012; published 22 August 2012)

We investigate theoretically the deterministic generation of quantum states with negative Wigner functions,
by using giant nonlinearities due to collisional interactions between Rydberg polaritons. The state resulting from
the polariton interactions may be transferred with high fidelity into a photonic state, which can be analyzed using
homodyne detection followed by quantum tomography. Besides generating highly nonclassical states of the light,
this method can also provide a very sensitive probe for the physics of the collisions involving Rydberg states.
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The generation and characterization of highly nonclassical
states of the light have accomplished considerable progress
during recent years. This includes, for instance, the production
and analysis of one-photon [1] and two-photon [2,3] Fock
states, and of superpositions of coherent states, often called
“Schrödinger’s cat” states [4]. In these experiments, the desired
states are obtained by using so-called “measurement-induced
nonlinearities,” where a measurement is performed on one part
of an entangled state. Then the other part is projected onto the
desired state, conditional to obtaining the good result in the
projecting measurement. This method works quite well, but
it is intrinsically nondeterministic: The probability of success
is usually low, and the desired state cannot be created “on
demand,” when needed for applications, e.g., for quantum
communications.

Here we would like to investigate another scheme, which
can, at least in principle, be made more deterministic, by using
Rydberg interactions in a cold atomic gas. Rydberg states
are highly excited atomic states that interact very strongly
at distances R of order a few μm, through either dipole-dipole
(1/R3) or van der Waals (1/R6) interactions [5,6]. The idea
is first to change a generic photonic state, for instance, a
weak coherent state, into a so-called “polariton” state, where a
long-lived excitation is distributed over many atoms [7]. Here
we will consider Rydberg polariton states, where many atoms
share a few delocalized Rydberg excitations [5]. The prepared
polariton state will then evolve under the action of these
Rydberg-Rydberg interactions, generating highly nonclassical
(typically non-Gaussian) states [8]. When the desired state
is obtained, the polariton state can be converted back into a
free-propagating photonic state, using a control laser beam
(see Fig. 1). The phase-matching condition between the input,
write, read, and signal beams leads to a collective enhancement
effect ensuring that the state of the light is emitted in a
well-defined spatial and temporal mode [9]. The conversion
of the polariton state back to photons is then expected to
deterministically produce highly nonclassical states [10–13].
In addition, the analysis of the generated state will give
information about the collisional mechanisms which take place
between the Rydberg atoms.

Let us emphasize that a particularly useful method to fully
characterize highly nonclassical states is quantum tomography,
which allows one to reconstruct the Wigner function W (q,p) of
the state in phase space, where q̂ and p̂ are the quadrature oper-
ators of the quantized electric field, measured using homodyne

detection [1–4]. Such a method provides a full characterization
of the measured quantum state, which is very intuitive because
the “nonclassicality” of the measured state, and especially
its purity, directly translate into the negativity of the Wigner
function [14]. We will thus use such Wigner functions to
characterize both the photon and the polariton states.

In this Rapid Communication we will study the first two
steps of such a deterministic preparation of non-Gaussian
states. (i) Preparing the coherent polariton state using a weak
laser pulse: We will introduce the phase-matched symmetric
Dicke states [15,16] as a convenient way to describe the states
of the ground and excited atoms (this is essentially equivalent
to the polariton picture [7]). (ii) Leaving the polariton state
evolve for some time (shorter than its decoherence time): The
state will then be modified in a nonlinear way, depending on
the nature of the Rydberg-Rydberg interactions. We will obtain
simple analytic expressions for this evolution, that are the main
results of the present Rapid Communication.

Finally, we will characterize the generated polariton states
by computing their Wigner functions, and we will discuss
various experimental considerations, including the remapping
of the polariton into a photonic state.

The calculation is performed by splitting the evolution
of the system in two steps: First, an excitation step using
a short (typically ∼1 ns) and weak laser excitation pulse,
creating a few Rydberg states; and second, a free evolu-
tion of the generated state under the effect of Rydberg-
Rydberg interactions. We will show that we can consis-
tently ignore the interactions during the first step, and then
ignore the laser in the second step, since it is turned
off.

In order to describe the excitation step for an ensemble of
N atoms from a ground state g, we consider a two-photon
excitation, off resonant from the intermediate level r , and
resonant with the Rydberg state e (see Fig. 1). It can thus
be described using an effective two-level model [6] with the
Hamiltonian H = H� + Hc, where

H� = h̄�(t)

2

N∑
i=1

(σ̂ i
eg + σ̂ i

ge), Hc =
N∑

i=1,j>i

h̄κij σ̂
i
eeσ̂

j
ee.

Here σ̂ i
αβ = |α〉〈β|e±(1−δαβ )i�k· �Ri , �Ri is the position of atom i,

and �k the total wave vector of the exciting light, with an
effective (pulsed) Rabi frequency �(t); h̄κij is the pairwise
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FIG. 1. An ensemble of N three-level atoms is initially prepared
in a coherent Rydberg polariton state, with only a few atoms excited.
After a time shorter than the decoherence time, the collisions have
modified in a nonlinear way the coefficients of the polariton state,
which is “remapped” onto a photonic state, and analyzed using an
homodyne detection.

interaction energy of the excited atoms, and δαβ the Kronecker
symbol.

For short times and very low excitation fractions, let us
first neglect the interaction term Hc and keep only the laser
excitation H�. The result of laser excitation is then a coherent
polariton state that is a superposition of symmetric “phase-
matched” Dicke states |n〉, where n is the number of excited
atoms [see Appendix (A1)]. The amplitude Cn corresponding
to the collective states |n〉 directly follows from the single-atom
amplitudes

Cn = (−i)n
√

B(N,n) sinn ω

2
cosN−n ω

2
, (1)

where B(N,n) is the binomial coefficient, N is the total number
of atoms, and ω = ∫

�(t)dt is the pulse area. In the limit of
very small n/N , one has

lim
n/N→0

Cn/Cn−1 = α/
√

n, (2)

where α = −i
√

N tan(ω/2) ≈ −i
√

Nω/2. The amplitude α

is related to the averaged number of excited atoms 〈Nexc〉 =
Nω2/4 = |α|2. Relations (2) yields the well-known expression
Cn/C0 = αn/

√
n! for the amplitudes of a coherent state, with

C0 determined by normalization. For this calculation to be con-
sistent, we need to fulfill the condition 〈n| exp (−iHcτ/h̄)|n〉 ∼
1 at the end of the laser pulse of duration τ , where Hc is the
collisional part of the Hamiltonian; this point will be discussed
below.

After the laser pulse is off, we consider the evolution of
the previous coherent Rydberg polariton state under the only
action of the Rydberg interaction Hamiltonian Hc. A crucial
remark is that during the excitation and deexcitation phases
(see Fig. 1), only the symmetric phase-matched Dicke states
[see Appendix (A1)] will be mapped coherently between the
polariton and photonic states [7]. In addition, the Hamiltonian
Hc preserves the number of excitations n, and therefore it only
mixes symmetric Dicke states with nonsymmetric ones, which
are uncoupled from the laser readout process.

In order to characterize the phase-matched part of the
state after an evolution time T , we need therefore to evaluate
the matrix elements 〈n|U |n〉, where U = e−iHcT /h̄. For this
purpose we use the following transformation:

e−iκij T σ̂ i
eeσ̂

j
ee = 1 + σ̂ i

eeσ̂
j
ee(e−iκij T − 1). (3)

For a low number of excited atoms, the probability to
have p interacting atoms close to each other vanishes very
quickly as p increases. Therefore, the leading interaction order
originates from two-body interactions, the next-to-leading
order originates from three-body interactions, and so forth.
The transformation (3) can facilitate this expansion because the
term (e−iκpqT − 1) is zero if the two atoms do not interact, i.e.,
if they are far from each other. One can then use these types of
terms to select pairs of interacting atoms in various interaction
orders, and the expectation values 〈n|U |n〉 can be evaluated
by bookkeeping various combinations and contributions of
p excited atoms, with p � n. The expansion is finite (since
p � n), however, the number of terms and their complexity
rapidly increase for p � 4; we will therefore look first at low
n, and then find an excellent ansatz for higher n.

Denoting as η(r) the atom number density at point r, and
dNi = d3ri η(ri), we define

I2 = 1

N2

∫ ∫
dNi dNj (e−iκij T − 1), (4)

J3 = 1

N3

∫ ∫ ∫
dNi dNj dNs(e

−iκij T − 1)(e−iκisT − 1), (5)

I3 = 1

N3

∫ ∫ ∫
dNi dNj dNs

× (e−iκij T − 1)(e−iκisT − 1)(e−iκjsT − 1), (6)

and one gets the successive terms

〈0|U |0〉 = 〈1|U |1〉 = 1,

〈2|U |2〉 = 1 + I2,

〈3|U |3〉 = 1 + 3I2 + 3J3 + I3,

〈n|U |n〉 = 1 + B(n,2)I2 + 3B(n,3)J3 + B(n,3)I3 + · · · .
For each 〈n|U |n〉, the coefficients of the quantities I2,3 and
J3 correspond to the numbers of different choices of excited
atoms (i,j ) and (i,j,s) that appear in the expressions (4)–(6).
Though this approach is rigorous and can work in principle
at any order, it has the disadvantage that the integrals In are
more and more complicated to evaluate when n increases.
Whereas I2 can easily be calculated analytically [see Appendix
(A2)], this is more tedious for I3, and In>3 are only numerical.
We therefore introduce now a much simpler approach, giving
analytical results at any order, which works surprisingly well
when compared with numerical calculations.

The idea is to evaluate Un>m, assuming that Um = 〈m|U |m〉
is known. For this purpose, we first note that the value of Un for
a set {n} = {i1,i2, . . . ,in} of n excited atoms can be formally
divided into a product of terms involving set {m} of m < n

atoms in the following way (we note that the total number of
excited atoms is always conserved):

〈exp(−iKc)〉{n} =
∏

i1<···<im
im�in

〈exp(−iλnmKc)〉{m}, (7)

where Kc = HcT/h̄, and λnm = B(n,2)/[B(n,m)B(m,2)] is
due to the fact that each κij appears in several subsets.

We also note that the calculation of Um for a given set {n}
of atoms will involve an average over all random positions
of atoms, which is essentially the continuum limit of the
above expressions. Taking into account this averaging, the
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FIG. 2. (Color online) Real and imaginary parts, and modulus
of Um = 〈m|U |m〉 as a function of time in units of TR = R6/|C6|,
for attractive van der Waals interactions. For repulsive interactions
one has only to change the sign of Im(Un). All red solid curves are
obtained by scaling from the corresponding U2 using Eq. (9). All blue
dashed lines are obtained using the scaling formula (8) with the exact
numerical result for U3, and all green dotted lines are the results of
the full numerical calculation. Similar results (not shown here) can
be obtained for dipole-dipole interactions rather than van der Waals
interactions.

quantities 〈exp(−iλnmKc)〉{m} are the same for all m subsets.
As a consequence, we use as a crucial ansatz that the right-hand
side of Eq. (7) is just a product of B(n,m) identical factors
〈exp(−iλnmKc)〉{m}:

〈n|U |n〉 = 〈exp(−iKc)〉{n}

≈ 〈exp(−iKc)〉B(n,m)λnm

{m} = 〈m|U |m〉 n(n−1)
m(m−1) . (8)

For m = 2, one has then simply

〈n|U |n〉 = (1 + I2(T ))n(n−1)/2, (9)

where I2(T ) can be calculated analytically by integrating on
the positions of two atoms within a sphere of constant atomic
density, and the result is given in Appendix (A2).

Figure 2 shows the plots of 〈n|U |n〉, n = 2, 3, and 4 for van
der Waals interactions as a function of the scaled interaction
time t . For each n three different curves are almost perfectly
overlapping: The green dotted curves are the numerical results,
the red solid ones show the scaling from n = 2 using the
expression of I2(t) given in Appendix (A2), and the blue
dashed ones show the scaling from n = 3. In the numerical
calculation, groups of four atoms are generated and 〈n|U |n〉
is essentially the averaged U over random n groups of atoms.
The calculations are done for a sphere with a uniform density,
but can be generalized for arbitrary density profiles.

Summarizing, we have thus obtained a series of simple
approximate expressions of 〈n|U |n〉, valid for any n. This
surprisingly simple derivation can be understood as an approxi-
mate but efficient way to resum the terms appearing in the more
rigorous expansion quoted before. Using these results, we can
now check that the effect of the interactions during the initial
short laser pulse is negligible; this is done in Appendix (A3).

In order to analyze the generated polariton states, it is
convenient to use Wigner functions that show the evolution of

FIG. 3. (Color online) Evolution of the Wigner function of an
initial coherent state |α〉 with |α| = 1, between the scaled times 0.004
(left side) and 4 (right side), which is close to the truncated state
|0〉 + α|1〉. The corresponding physical times are 0.72 ns (left) and
720 ns (right), with van der Waals interactions only.

the initial Gaussian into non-Gaussian states. Simple analytical
calculations give easily W (q,p) in a suitably truncated Fock
state basis, as a function of the coefficients 〈n|ρ̂|m〉 of
the density matrix, obtained from the evolution of the initial
Dicke state using previous formulas. For long interaction
times, the result is rather simple: Since the coefficients for
n = 0 and 1 are unaffected, and all other ones go to zero,
the Rydberg medium behaves as deterministic near-perfect
“quantum scissors” [17], cutting the initial coherent state into
the subspace of Fock states with zero and one photon:

|α〉 → |0〉 + α|1〉.
This is in agreement with the recent result of Bariani et al. [8]
that considered only the one-photon part of the output state,
from a numerical analysis. Here we get explicit analytical
expressions that allow one to calculate the full evolution of
the Wigner function between the initial Gaussian coherent
state, and the final truncated non-Gaussian state, as illustrated
in Fig. 3.

As an example of realistic experimental parameters, let us
consider 2500 atoms in a sphere of radius R = 10 μm so nat =
6 × 1011 cm−3. For the (repulsive) 70-s state of 87Rb, one has
|C6|/(2π ) = 880 GHz μm6 [18], so the time scaling is TR =
R6/|C6| = 180 ns. An initial coherent state with amplitude
|α| ∼ 1, excited by a pulse of duration 0.72 ns (0.004TR)
will evolve into a non-Gaussian state within a time of 720 ns
(4TR), as shown in Fig. 3. If the atoms are inside a low-finesse
optical cavity, these numbers also warrant a large cooperativity
parameter C with high outcoupling mirror transmission Tc

(C ∼ 180 for Tc = 0.01), which should in turn warrant a good
recovery of the photonic state [10,11,13].

As a conclusion, we have studied the evolution of a
coherent (Dicke) Rydberg polariton state under the effect
of Rydberg-Rydberg collisions. The nonlinearities are clearly
large enough to have an effect at the few-photon level, even
outside the dipole blockade range. They are able to turn an
input coherent state into a non-Gaussian state, at the expense of
significant losses due to the decoherence of states containing
more that one polariton. Whether or not such decoherence
effects can be avoided in order to reach a high input-output
recovery of photonic states is still an open question. Let us
emphasize, however, that this decoherence does not prevent
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the polariton state, once created, to be remapped with high
efficiency on a photonic state, and then analyzed using an
homodyne detection [13]. This may also provide an interesting
way to investigate Rydberg-Rydberg collisions.
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Appendix. (A1) The Dicke state |n〉 corresponding to n

excited atoms among N atoms is defined as the eigen-
state with eigenvalues [n − N/2,r(r + 1)] of the opera-
tors (Ĵ (z)

�k ,Ĵ 2
�k ), with Ĵ

(z)
�k = ∑N

i=1(|e,i〉〈e,i| − |g,i〉〈g,i|)/2,

Ĵ
(+)
�k = ∑N

i=1 |e,i〉〈g,i| exp(i�k · �Ri), Ĵ
(−)
�k = (Ĵ (+)

�k )† and Ĵ 2
�k =

(Ĵ (+)
�k Ĵ

(−)
�k + Ĵ

(−)
�k Ĵ

(+)
�k )/2 + (Ĵ (z)

�k )2, where �Ri is the position

of atom i, and �k is the total wave vector of the exciting
light. Symmetric Dicke states are obtained for r = N/2, and
nonsymmetric ones for r � N/2 − 1.

(A2) Defining t as a scaled time related to the physical time
T by t = T/TR , where TR = R6/|C6|, and R is the radius of
the spherical volume of the sample, the analytical expression
of I2(t) is

I2(t) = −1 − 8 exp

[
it

64

]
+ 1

32

(
− πt − it Ei

[
it

64

])

+ (1 + i)

2

√
2πt

(
i − erfi

[(
1

8
+ i

8

)√
t

2

])

+ 3t2/3

16
(1 − i

√
3)

(
�

[
− 2

3
, − it

64

]

+ 3�

[
1

3
, − it

64

])

≈ (i − 1)

√
πt

2
+ 9

32
(1 − i

√
3)�

[
1

3

]
t2/3,

where the second expression is a short-time approximation
valid up to t ∼ 0.1.

(A3) To estimate the action of the collisions during the
short excitation phase of duration τ , two points must be
considered. The first one is that the excitation of a Rydberg
atom creates a “blockade sphere” around it, where a second
atom cannot be excited. The second one is that the quantities
Un calculated above should remain close to one during τ ,
so that the excitation and the collisions act on different time
scales. To evaluate the first correction we can use the following
correlation function Gij derived in Ref. [19] for two-level
atoms and small ω:

Gij ≡
〈
σ̂ i

eeσ̂
j
ee

〉
〈
σ̂ i

ee

〉 〈
σ̂

j
ee

〉 = 4
∣∣ ∫ τ

t0
dt1 eiκij t1�(t1)ω(t1)

∣∣2

|ω(τ )|4 . (10)

This function prevents two excited atoms to be closer to each
other than a distance rb with magnitude given by C6τ/r6

b ∼ 1,
where τ is the duration of the excitation pulse. It is thus clear
that rb will be small if τ is small. More quantitatively, the modi-
fication of Eq. (9) would be to substitute I2(T ) by c(τ,T )I2(T ),
where c(τ,T ) is a correction factor evaluated numerically.
For the parameters quoted in the text, we numerically get
c(τ,τ ) ≈ 0.984 at the end of the excitation pulse, and this effect
is thus negligible. Similarly, using the results in Appendix (A2)
one gets for t = τ/TR = 0.004 the values U2 ≈ 0.94 + 0.05i,
U3 ≈ 0.82 + 0.13i, U4 ≈ 0.66 + 0.21i, which is acceptably
close to one if |α| is small enough (see also Fig. 2).
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