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1. Introduction 34 

 35 

Near-surface geophysical techniques are of great potential to image subsurface structures in many 36 

geomorphological studies (Schrottand Sass, 2008; van Dam, 2010), and even more specifically for 37 

improving the knowledge on landslide features (JongmansandGarambois, 2007). Landslide analysis 38 

generally involves the combined use of several geophysical methods to image different petrophysical 39 

parameters (Bruno andMarillier, 2000; Mauritsch et al., 2000; Méric et al., 2011). Seismic surveys are 40 

particularly well adapted to detect and characterize specific features of landslides such as spatial 41 

variation in compaction and rheology of the material (Grandjean et al., 2007), variation in fissure 42 

density at the surface (Grandjean et al., 2012), and complex slip surface geometries (Grandjean et al., 43 

2006). As the wave propagation is mainly controlled by the elastic properties of the medium, seismic 44 

surveys are often well correlated with geotechnical observations.  45 

Among them, different approaches can be used for processing data depending on the analysisof 46 

the different kind of waves associated to particular propagation phenomena. Bichler et al. (2004) and 47 

Bruno andMarillier (2000) interpreted the late arrivals of P-waves to image the bedrock geometry 48 

using seismic reflection analysis. Mauristch et al. (2000) and Glade et al. (2005) analyzed refracted 49 

waves to define the internal geometry (e.g. layering) of the landslides. Grandjean et al. (2007) and 50 

Grandjean et al. (2011) studied the first arrival traveltimes to recover P-wave velocity distribution 51 

across landslides. More recently, Samyn et al. (2011) used a 3D seismic refraction traveltime 52 

tomography to provide a valuable and continuous representation of the 3D structure and geology of a 53 

landslide. Grandjean et al. (2007) and Grandjean et al. (2011) used also Spectral Analysis of Surface 54 

Waves (SASW) techniques to obtain S-wave velocity distributions along landslide cross-sections. 55 

Finally, based on the work of Pratt (1999) and VirieuxandOperto (2009), Romdhane et al. (2011) 56 

demonstrated the possibility to exploit the entire wave signal by performing a Full elastic Waveform 57 

Inversion (FWI) on a dataset acquired on a clayey landslide.  58 

These methods are based on more or less important assumptions on the soil type and their 59 

petrophysical characteristics, on the complexity of layers, and on their geometry, and are therefore not 60 



recommended for all case studies. Seismic refraction can be basically performed using the General 61 

Reciprocal Method (GRM; Palmer and Burke-Kenneth, 1980) or the Plus/Minus Method (Hagedoorn, 62 

1959). These methods are fast and easy to implement, but mostly based on simple hypotheses - such as 63 

a layered media - and are consequently not very efficient to recover important variations in lateral 64 

velocity. Reflection surveys need to record high frequency waves to obtain a good resolution of final 65 

stacked sections; they are difficult to set up for subsurface applications because of the strong 66 

attenuation affecting high frequencies and decreasing the signal to noise ratio (Jongmansand 67 

Garambois, 2007). Moreover, this method produces a reflection image that cannot be directly and 68 

easily interpreted asdirect information on the mechanical properties of the medium that could be 69 

derived from velocity fields. FWI appears to be the more advanced method since it is based on the 70 

realistic assumption of an elastic media and uses the whole seismic signal in the inversion scheme. 71 

However, it remains a complex method, requiring an important data pre-processing (source inversion, 72 

amplitude correction, initial model estimation) that is hardly applicable to near surface real data 73 

featured with a low signal to noise ratio and complex waves interactions (Romdhane et al., 2011). As a 74 

consequence, the issue of recovering the structural image of a landslide from the seismic velocity field 75 

estimated with an accurate method is still a challenge. 76 

The objective of this work is to refine the first arrival tomography approach applied to landslide 77 

analysis, which is a good compromise between the strong assumptions made in simple refraction 78 

methods and the complexity of the FWI approach when used in very heterogeneous soils. P-wave 79 

tomography is largely used, from crustal to shallow geotechnical studies and allows recovering, at a 80 

relatively low cost, a reliable image of the velocity distribution. In this perspective, Taillandier et al. 81 

(2009) proposed to invert first arrival traveltime tomography using the adjoint state method, but had to 82 

face the problem of gradient regularization. The proposed method is based on a Hessian formulation 83 

(Tarantola, 1987) to ensure an optimum convergence of the velocity model during iterations. We only 84 

use here the first arrivals of the seismic signal caused by direct or refracted waves. In that case, late 85 

arrival, including scattering, conversion effect are not taken into account in the inversion.  86 

In the next section, we detail the theory used to formulate the inversion equation and the related 87 

approximations introduced for optimizing the algorithm and ensuring the convergence toward the best 88 



solution. The final algorithm is tested on a synthetic case in order to estimate the quality of the 89 

velocity field reconstruction without considering noisy data. To compare our results with a reference 90 

case, the synthetic velocity model is identical to the one used by Romdhane et al. (2011). Then, we 91 

process a real seismic dataset obtained from a seismic survey at the Super-Sauze landslide (South 92 

French Alps) in clayey material. On this case study, we invert for the P-wave velocity field but also for 93 

the attenuation factor. The effects of noisy data on the quality of the reconstructed velocity field are 94 

analyzed, and the observed surface variation in the velocity field is discussed by integrating other 95 

sources of information (geotechnical tests and geomorphological interpretation). 96 

 97 

2. Theoretical approach 98 

a. General inverse problem 99 

Solving the inverse problem requires a modeling step (e.g. the direct problem) for computing the 100 

residuals (e.g. the difference between computed and observed data). An updated model can be 101 

estimated by back-projecting the data residuals on each cell of the model discrete grid. The direct 102 

problem thus consists in finding a relation between the data t, taken here as the first arrival traveltimes, 103 

and the physical P-wave velocity models, such as:  104 

 105 

 𝑡 = 𝑓(𝑠) (1)  

 106 

This problem is generally solved using the asymptotic high frequency wave propagation 107 

assumption in a non-homogeneous isotropic medium. The wave propagation equation is then 108 

simplified into the eikonal equation that computes the first arrival traveltimes over a discrete grid for 109 

example by using a finite-difference scheme (Vidale, 1998). This technique has been improved for 110 

sharp velocity contrasts (PodvinandLecomte, 1991), optimized by PopoviciandSethian (1998) who 111 

proposed the Fast Marching Method (FMM), by Zhao (2005) who proposed the Fast Sweeping 112 

Method, and recently adapted to non-uniform grids (Sun et al., 2011). The technique is actually largely 113 

used because of its efficiency and accuracy. In this study, we use the FMM algorithm 114 



(PopoviciandSethian, 1998) to compute the direct problem. The computation of the first arrival 115 

traveltime is generally followed by a ray tracing that uses the traveltimes maps to propagate the 116 

wavepath from the sources to the receivers. The traveltime t can then be expressed using the following 117 

matrix form:  118 

 𝑡 = 𝐿𝑠 (2)  

 119 

where L is the length of the ray segment crossing each cell of the slowness model S. Generally, the 120 

Fermat principle allows the Fréchet derivatives matrix to be approximated by the matrix 𝐿 (Baina, 121 

1998). This principle establishes that a small perturbation  𝛿𝑠  on the initial model does not change the 122 

ray paths, and therefore, only affect the traveltime 𝛿𝑡 at the second order. This linearization of the 123 

problem around the slowness model 𝑠𝑘  implements the Quasi-Newton (Q-N) assumption and makes 124 

the resolution of the nonlinear problem to be solved by the following tomographic linear system:  125 

 126 

   𝐿𝑘 𝑇𝐿𝑘  𝛿𝑠 =   𝐿𝑘 𝑇𝛿𝑡  (3)  

 127 

where k and T represent respectively the iteration index and the transpose operator. Several 128 

techniques can be used to solve Eq. 3. The Simultaneous Iterative Reconstruction Technique (SIRT) is 129 

the most common because it does not require a large computer memory; consequently, SIRT is widely 130 

used to invert large sparse linear systems (Trampertand Leveque, 1990). Its convergence toward a 131 

least-square solution has been proved (Van der Sluisand Van der Vorst, 1987) but this method suffers 132 

from few drawbacks: SIRT introduces an intrinsic renormalization of the tomographic linear system 133 

that modifies slightly the final solution. For that reason, we propose to use in our approach the LSQR 134 

(Least-Square QR) algorithm (Paige and Saunders, 1982) that has been proved to be superior to SIRT 135 

or Algebraic Reconstruction Techniques ART algorithms in terms of numerical stability and 136 

convergence rates (Nolet, 1985). 137 

b. From rays to Fresnel volumes 138 



Revisiting seismic traveltimes tomography also needs to consider the ray approximation, e.g. the 139 

infinite spectral bandwidth assumption. The main issue of this approximation lies in the traveltime 140 

computation taken as line integrals along the rays spreading over the slowness model. Because the 141 

slowness values are only considered along ray paths, the problem is often underdetermined and leads 142 

to numerical instability (Baina, 1998). In practice, this difficulty is generally by-passed using 143 

regularization operators to reduce the non-constrained part of the model, and then, to reinforce the 144 

numerical stability. Generally, a simple smoothing of the reconstructed slowness model (Zeltand 145 

Barton, 1998), the application of a low-pass filter on the gradient (Taillandier, 2009) or the elimination 146 

of the lowest eigenvalues in the Hessian matrix (Tarantola, 1987) can be used. However, such 147 

regularization operators require the selection of appropriate parameters (filter length, eigenvalue cutoff 148 

and more generally the size and weights of the smoothing operators). Kissling et al. (2001) 149 

demonstrated the dependency of these parameters on the resolution and the quality of the final model 150 

in poor wavepath coverage areas. This is the reason why the use of physically-based regularization 151 

operators such as Fresnel volumes or sensitivity kernels is preferable since they are based on non-152 

subjective principles completely defined by the problem.  153 

With this assumption, several methods have been developed including those using the concept of 154 

Fresnel volumes as a regularization factor. Nolet (1987) proposed to use the size of the Fresnel zone to 155 

constrain the size of a spatial smoothing operator. Vasco et al. (1995), Watanabe et al. (1999), 156 

Grandjean and Sage (2004) or Ceverny (2001) use the Fresnel volume in the back projection of the 157 

residuals. 158 

More recently, the concept of sensitivity kernels or Fréchet Kernel introduced by Tarantola (1987) 159 

has been reformulated for traveltime tomography. It represents a good compromise between the strong 160 

assumption of the asymptotic ray theory and the high computational cost of the complete full wave 161 

inversion tomography (Liu et al., 2009). While ray theory is well adapted in media characterized by 162 

geological structures larger than the first Fresnel zone, the use of sensitivity kernels allows to 163 

overcome this constraint and then, to increase the spatial resolution (SpetzlerandSnierder, 2004). 164 

Several authors have developed this concept and investigated the properties of the sensitivity kernels 165 

for traveltime tomography in homogeneous media, mainly at the spatial scale of the earth crust 166 



(Dahlen et al., 2000; Dahlen, 2005; Zhao et al.; 2006). The strategies proposed by these authors are 167 

generally limited to smoothly heterogeneous media (Liu et al., 2009; Spetzler et al., 2008) and are 168 

barely applied to real datasets, mainly because of prohibitive calculation costs (Liu et al., 2009). 169 

Sensitivity kernels and Fresnel volumes are constructed on the single scattering (Born) 170 

approximation. This approximation considers that a part of the wave can be delayed by velocity 171 

perturbation in the vicinity of the ray path. For highly heterogeneous media, this approximation is not 172 

valid anymore because multiple scattering should be taken into account to fully explain observed first 173 

arrivals.  174 

In the particular case of subsurface soil investigation where highly heterogeneous media are 175 

observed, the use of sensitivity kernels is not recommended since it would involve complex algorithms 176 

and computing times similar to those featuring the FWI approach. In this context, we decided to solve 177 

empirically the problem of complex multiple scattering inside the first Fresnel zone, this approach 178 

allowing to address issues of regularization by using increasing finite frequencies bandwidths. 179 

Therefore, the developed algorithm assumes thathigh spatial heterogeneities of the soil around the 180 

Fresnel wavepath affect, through complex multiple scattering, the first arrivals of the signal. 181 

In the next section, we explain how the Fresnel volumes are defined as a simplification of the 182 

sensitivity kernels and implemented in a Q-N algorithm. 183 

 184 

We first express the Fresnel weights proposed by Watanabe et al. (1999) and used by Grandjean and 185 

Sage (2004), in order to materialize the wavepath in the model. They classically decrease linearly from 186 

a value of one (when the cell is positioned on the ray path) to a value of zero (when it is out of the 187 

Fresnel volume): 188 

 189 

 𝜔 =

 
 

 1 − 2𝑓Δ𝑡, 0 ≤ Δ𝑡 <
1

2𝑓

0,
1

2𝑓
≤ Δ𝑡

  (4)  

 190 



Watanabe et al. (1999) and Grandjean and Sage (2004) defined these weightsω as the probability 191 

that a slowness perturbation delay the arrival of the wave by a Δt, where f is the considered frequency 192 

of the wave. This definition is interesting because of its simple expression that allows fast computing 193 

while taking into account the global shape of the 2D traveltime sensitivity kernel given of 194 

SpetzlerandSnieder (2004), corresponding to a decrease of sensitivity until the first Fresnel zone.  195 

Because the size of the Fresnel volume is depending on the considered source frequency, a new 196 

inversion strategy based on increasing frequency can be proposed. To consider the entire source 197 

frequency content, some authors compute wavepaths in a band-limited sensitivity kernel, stacking the 198 

monochromatic kernels with a weight function similar to the amplitude spectrum of the wavelet 199 

(SpetzlerandSnieder, 2004; Liu et al., 2009). From our side, we propose to compute the Fresnel 200 

weights for a monochromatic wave, increasing its frequency at each step of the inversion. The 201 

considered frequency sampling with an increasing rule ranging from the lower to the higher frequency 202 

of the source signal. We also choose to give the same weight to all frequencies in order to limit the 203 

number of iteration and to preserve the rapid convergence of the algorithm. Taillandier et al. (2009) 204 

showed that this method, applied on the gradient filtering permit to overcome the non-linearity of the 205 

problem. For low frequency values, the Fresnel zone will be wider and the slowness model will be 206 

reconstructed with large wavelengths. Conversely, for high frequency values, the Fresnel zone will be 207 

thinnerand the slowness model will be reconstructed with sharp wavelengths. This strategy appears 208 

efficient to improve the resolution during the inversion - and so the convergence of the algorithm - in 209 

full wave inversion where it prevents from cycle-skipping issues (Sirgueand Pratt, 2004; 210 

VirieuxandOperto, 2009; Romdhane, 2011). Recovering slowness variations whose sizes are in 211 

agreement with each wavelength transmitted by the source should lead to better images of local 212 

heterogeneities while preserving the algorithm convergence.  213 

With these assumptions, the traveltime perturbation can be expressed as the integral over a Fresnel 214 

volume multiplied by the slowness perturbation field observed for all points r in the volume (Liu et al, 215 

2009). This linear relationship among traveltime and slowness perturbation is the result of the first 216 

Born approximation that is only valid for small perturbation (Yomogida, 1992): 217 

 218 



 𝛿𝑡 =   𝑊 𝑟 𝛿𝑠 𝑟 𝑑𝑟 (5)  

 219 

where𝑊 is the Fresnel weight operator (Fig. 1) normalized by the area of the Fresnel ellipse 220 

perpendicular to the raypath𝑎, for each shot and receiver such as: 221 

 222 

 𝑊 𝑟 =
1

𝑎
𝜔(𝑟) (6)  

 223 

This normalization allows linking our approach to the geometrical ray theory in the case of a plane 224 

wave propagation (Vasco et al, 1995; Spetzler and Snieder, 2004; Liu et al, 2009), so that the integral 225 

of W over a surface perpendicular to the wavepath is equal to one, which is generally verified for 226 

sensitivity kernels: 227 

 228 

  𝑊 𝑠, 𝑟, 𝑓 𝑑𝑠 = 1
+∞

−∞

 (7)  

 229 

The Fresnel volume thus defined, also called Fréchet kernel corresponds to the Fréchet derivative 230 

(Yomogida, 1992; Tarantola, 1987) or Jacobian matrix of the forward problem, similar to the length of 231 

ray segment matrix 𝐿 defined in the asymptotic ray theory. The problem, considered in 2D, can then 232 

be written in its matrix form (Vasco et al, 1995): 233 

 234 

 𝛿𝑡 =  𝑊 𝛿𝑠 (8)  

 235 

where𝑊 is the [number of datax number of cells] Fresnel weight matrix, calculated for each shot and 236 

for each receiver such as for the cell j and for the couple source-receiver i: 237 

 238 

 𝑊𝑖𝑗 =
𝜔𝑖𝑗

𝑙
 (9)  

 239 



where𝑙 is the length of the Fresnel surface along a direction perpendicular to the ray path. 240 

We are however aware that the use of the Fresnel weight as defined previously is a rough 241 

approximation of the wavepath. This is the reason why we prefer to keep the ray assumption to 242 

compute traveltimes, avoiding the introduction of any error due to this approximation. Thischoice has 243 

been justified by Liu et al. (2009) who observed small differences between traveltime values computed 244 

with both approaches.  245 

 246 

c. New implementation of the inverse Problem 247 

In the previous section, we showed that the Born approximation combined with Fresnel volumes 248 

allowed the estimation of Fréchet derivative. To solve the nonlinear inverse problem, we use a steepest 249 

descent iterative algorithm to minimize the 𝐿2 norm misfit function l (Tarantola, 1987) that can be 250 

written in this particular case: 251 

 252 

𝑙 𝑠 =
1

2
  𝑓(𝑠) − 𝑡𝑜𝑏𝑠  

𝑇𝐶𝑇
−1 𝑓(𝑠) − 𝑡𝑜𝑏𝑠  +  𝑠 − 𝑠𝑝𝑟𝑖𝑜𝑟  

𝑇
𝐶𝑆

−1(𝑠 − 𝑠𝑝𝑟𝑖𝑜𝑟 )  (10)  

 253 

where𝐶𝑇 and 𝐶𝑆 are respectively the covariance operators on data and model, 𝑓 represents the 254 

theoretical relationship between the model 𝑠 and the traveltimes 𝑡, 𝑡𝑜𝑏𝑠  the observed data and 𝑠𝑝𝑟𝑖𝑜𝑟  255 

the a priori information on the model.  256 

The Q-N method consists in minimizing the misfit function iteratively using its gradient and 257 

approximated Hessian matrix. The gradient gives the direction of steepest descent of the misfit 258 

function while the Hessian matrix is used as a metric indicating its curvature, approximated locally by 259 

a paraboloïd (Tarantola, 1987). Compared to the gradient method, the Hessian is here used to improve 260 

the assessment of direction and norm of the update vector that is applied to the slowness model, so that 261 

each step is performed in the good direction and with an optimized length. The tomographic linear 262 

system in the case of no a priori information on the model can be written in its matrix form: 263 

 264 



   𝑊𝑘 𝑇𝐶𝑇
−1 𝑊𝑘   𝛿𝑠 =   𝑊𝑘 𝑇𝛿𝑡  (11)  

 265 

This linear tomographic system can be solved by using a LSQR algorithm. The Fresnel weights 266 

matrix employed is a [number of data x number of cells] matrix. Its computation is straightforward on 267 

classical personal computers. The Q-N algorithm is based on the inverse of the Hessian matrix that is a 268 

square matrix of size [number of data x number of data] that can be difficult to invertfor large dataset. 269 

In our case, we used cluster computing to invert our data and optimized the step size along the 270 

direction given by the Hessian using a scalar to weight the slowness update thanks to a parabolic 271 

interpolation (Tarantola, 1987).  272 

 273 

d. Validation on a synthetic dataset  274 

To compare the performance of our algorithm with full wave inversion, it was tested on the synthetic 275 

transverse section used by Romdhane (2011) representing a typical cross-section of a landslide (Fig. 276 

2a). The performance of the method is discussed by taking as a reference the SIRT algorithm of 277 

Grandjean and Sage (2004). 278 

The synthetic dataset has been calculated with a simple 2D eikonal equation solver, so that traveltimes 279 

are not perturbed by scattering effects. The dataset is composed of 50 shots recorded on 100 280 

geophones. The model consists in 209x68 cells of 1 m in width. The seismic sources are spaced 281 

regularly every 2 m and the geophones every 1 m. The synthetic model is composed of ten layers with 282 

P-wave velocity ranging from 110 m.s
-1

 to 3300 m.s
-1

. It represents a transversal cross-section of the 283 

landslide body lying on a homogeneous consolidated bedrock. Except between the landslide body and 284 

the bedrock, the changes in P-wave velocity are small, so that it is difficult to reconstruct the detailed 285 

shape of the landslide body. The stopping criterion is a change in the cost function lower than 1% and 286 

the inversion is limited to 20 steps.  287 

Figure 2b and 2c compare the results obtained with the SIRT algorithm (Grandjean and Sage, 2004) 288 

and the Q-N one. They converge respectively in 15 and 20 iterations. The convergence of the misfit 289 

function is better for the Q-N algorithm with a value 3.6 times lower than the SIRT. Globally, the Q-N 290 



algorithm succeeds in recovering the shape of the bump at 2000 m.s
-1

 located on the left side of the 291 

cross-section and renders a more spatially detailed shape of the bedrock topography (Fig. 2b, 2c). The 292 

SIRT algorithm does not retrieve those initial structures. We can notice that both algorithms have 293 

difficulties to reproduce the low velocity of the very near surface layer, because of the poor ray 294 

coverage occurring in this area. 295 

Figure 2d, 2e and 2f compare the results on three vertical cross-sections chosen to highlight the ability 296 

of the algorithm to recover P-wave velocity with a better accuracy than the SIRT. We can notice that 297 

for the top-soil, P-wave velocity are the same for both algorithms and are equal to the P-wave 298 

velocities of the initial model in that zone. Moreover, The Q-N algorithm seems to be able to recover 299 

lowest wavelengths than the SIRT one as on figure 2d between 55 and 60 m of depth.  300 

This synthetic example demonstrates the ability of the Q-N algorithm to recover the shape of the 301 

internal layers of a landslide body. Contrary to the SIRT result, the Q-N allows to interpret correctly 302 

the thickness and geometry of the different layers.  303 

 304 

3. Application of the Q-N algorithm on a real dataset 305 

a. Study site presentation 306 

The Q-N algorithm has been applied on a real dataset acquired at the Super-Sauze landslide (South 307 

French Alps). The landslide has developed in Callovo-Oxfordian black marls. Its elevation is between 308 

2105 m at the crown which is established in in-situ black marls covered by moraine deposits and 1740 309 

m at the toe. The landslide is continuously active with displacement rates of 0.05 to 0.20 m.day
-1

 310 

(Malet et al., 2005a). The detachment of large blocks of marls from the main scarp (Fig. 3) and their 311 

progressive mechanical and chemical weathering in fine particles explain the strong grain size 312 

variability of the material especially in the topsoil (e.g. decametric blocks of marls at various stages of 313 

weathering, decimetric and centimetricclasts of marls, silty-clayed matrix; Maquaire et al., 2003). The 314 

bedrock geometry is complex with the presence, in depth, of a series of in-situ black marl crests and 315 

gullies, partially or totally filled with the landslide material (Flageollet et al., 2000; Travelletti and 316 

Malet, 2012). This complex bedrock geometry delimits sliding compartments of different 317 



hydrogeological, rheological and kinematical pathways. The variable displacement rates and the 318 

bedrock geometry also control the presence of large fissures at the surface (Fig. 3b, 3c) that can be 319 

imaged with joint electrical and electromagnetic methods (Schmutz et al., 2000). Many kinds of 320 

heterogeneities are observed at different scales, and they control directly the mechanical behavior of 321 

the landslide by creating excess pore water pressures (Van Asch et al., 2006; Travelletti and Malet, 322 

2012). The top soil surface characteristics have also a large influence on the surface hydraulic 323 

conductivity (Malet et al., 2003) and therefore, on the water infiltration processes (Malet et al., 324 

2005b;Debieche et al., 2009). In this context, we tested the Q-N P-wave tomography inversion scheme 325 

to provide a high-resolution characterization of structures and detect small scale heterogeneities along 326 

aN-S transect of the landslide. 327 

 328 

b. P-wave velocities inversion 329 

 330 

The seismic profile is parallel to the main sliding direction of the material, and is located in the upper 331 

part from the secondary scarp to the middle part of the accumulation zone (Fig. 3). The base seismic 332 

device has a length of 94 m long and consisted of 48vertical geophones (with a central frequency of 10 333 

Hz) regularly spaced every 2 m. The 60 shots have been achieved with a hammer every 4 m. We used 334 

a roll-along system to translate the acquisition cables with a 24 geophones overlap and then investigate 335 

a 238 m long linear profile. The recording length is 1.5 s with a sample rate of 0.25 ms and the 336 

acquisition central consists in a Geometrics Stratavizor seismic camera (48 channels). The shots show 337 

a relatively good signal to noise ratio until the last geophone in the upper part of the section. The shots 338 

of the lower part are affected by the higher density of soil fissures. The attenuation and the signal to 339 

noise ration are consequently higher in this part of the profile. The signal is dominated by the surface 340 

waves but the first arrivals are clearly visible for all seismic shots. 341 

 342 

 343 
 344 



To estimate the pick uncertainty, the timedifference of the picks from reciprocal source-receiver pairs 345 

was examined. Two different people picked the first arrival of the waves, and for each created dataset 346 

we studied the difference between reciprocal traveltimes. From each dataset, we created 3 subsets: a 347 

first one kept intact, a second one where we corrected the picks having more than 10 ms of difference 348 

in traveltime reciprocity, the picks being removed when not possible and a third one removing picks 349 

having a difference of traveltime reciprocity greater than 10 ms. We inverted the 6 datasets and kept 350 

the one which gave the lower final misfit function value and the P-wave tomogram the most reliable 351 

with our a priori knowledge of the studied zone. The differences between P-wave tomograms were not 352 

so important, but the dataset selected permitted to interpret the results unequivocally. The error in 353 

reciprocity of traveltimes can be approximated by a Gaussian belt with a standard deviation of 2.2 ms 354 

(Fig. 5).  355 

 356 

The inversion has been performed with the Q-N algorithm on a 358 x 153 grid. Each square cell of 357 

the grid measures 0.67 m. The hammer source gave frequencies comprised between 30 Hz and 120 Hz 358 

with a dominant frequency of 40 Hz. Those frequencies are also present in the P-wave up to the end of 359 

the profile (Fig. 4b). Regarding the different amplitude spectra, we considered those values as constant 360 

for each shot. For the first iteration, the frequency was set to 30 Hz and then increases at each step to 361 

respectively 45 Hz, 60 Hz, 75 Hz, 90 Hz, 105 Hz and 120 Hz; after the eighth steps, the frequency was 362 

kept constant at 120 Hz. 363 

 364 

 365 

The initial model is of a first importance for a good convergence. Indeed, the linearization of the 366 

problem around the initial model is only valid for model close to the real one. This reason motivates 367 

the automated calculation of the initial model from the data by using a simplified slant-stack algorithm 368 

transforming the dataset in the velocity - intercept times domain. Then, theoretical traveltime curves 369 

were calculated in a double loop for a velocity v rangingfrom 𝑣𝑚𝑖𝑛  to 𝑣𝑚𝑎𝑥  (defined by the user) and 370 

for a range of intercepts 𝜏 such as: 371 

 372 



 𝑡 = 𝜏 +
𝑜𝑓𝑓𝑠𝑒𝑡

𝑣
 (12)  

 373 

For each of these theoretical curves, the model was compared to the observed traveltimes; the 374 

number of points with a difference of less than 0.5 ms was stored in the 𝜏-p plan (Fig. 6a). For each 375 

intercept, the velocity corresponding to the maximum number of point was used to create a profile of 376 

velocity that is further used under the shot point (Fig. 6b).  377 

The depth 𝑑 corresponding to each velocity was then deduced from the velocities by using Eq. 13:  378 

 379 

 𝑑 𝑖 = 𝑑 𝑖 − 1 + 𝑣 𝑖 ∗ 𝛿𝑡 (13)  

 380 

where𝛿𝑡 represents the sample rate of intercepts (Fig. 6c).  381 

The velocity profiles were gathered to form the initial model that was finally smoothed to 382 

avoid lateral artifacts. With a misfit function value of 0.3612, this initial model is supposed to be as 383 

much as possible close to the final one which is the best way to avoid divergence or convergence in 384 

local minimum. The stopping criterion was set to a percentage change lower than 1 % and the number 385 

of iteration was limited to 20. The misfit function value associated to the final model is 0.0122 and has 386 

been obtained after 17 iterations.Figure 7 shows the misfit functions related to the Q-N and SIRT 387 

algorithms for comparison. 388 

Figure 8 shows respectively the initial velocity model and the inverse models obtained with both SIRT 389 

and Q-N algorithms.  390 

 391 

c. Seismic wave attenuation tomography 392 

 393 

The amplitude of the first arrival is exploited here to image the wave attenuation. Seismic wave 394 

attenuation is an efficient physical property because it is directly linked to porosity and to the presence 395 

of fissures in the media (Schön, 1976). Several attenuation parameters can be used to invert seismic 396 

attenuation: spectral ratio, centroid frequency shift and peak frequency shift (De Castro Nunes et al., 397 



2011). In our analysis, we used the simple method proposed by Watanabe andSassa (1996) 398 

considering that in a homogeneous attenuation media the amplitude of the spherical wave verifies: 399 

 𝐴 𝑟 =
𝐴0

𝑟
𝑒−𝛼𝑟  (14)  

 400 

where𝐴0 is the amplitude of the source signal, r the distance from the seismic source along the raypath 401 

and α the attenuation coefficient.  402 

Applying a logarithm function, the equation becomes linear in 𝛼. We proposed to compute the 403 

attenuation tomography after the P-wave velocity field so that the problem is reduced to a simple 404 

linear problem: 405 

 𝛼 = 𝛼 + 𝑊𝑇𝛿𝐴 (15)  

 406 

where α is the attenuation coefficient, 𝛿𝐴, the amplitude update and W the Fresnel weights matrix. 407 

We performed five iterations starting from a simple homogeneous media with an attenuation 𝛼 =408 

1.0 𝑒−03 Np.m
-1

 and calculated the Fresnel weights matrix for the Q-N inverted Vp model and for five 409 

frequencies (30 Hz, 45 Hz, 60 Hz, 90 Hz, 120 Hz). Although the results are generally presented 410 

through the dimensionless quality factor, in our case, the dominant source frequency is almost constant 411 

for each shot (40 Hz) and the raw results are more contrasted. Moreover, because the definition of the 412 

quality factor can be different for lossy (highly attenuating) materials (Schön, 1976), we image 413 

directly the attenuation map. In order to compare the attenuation map with surface fissuring, a 414 

geomorphological inventory of the fissures was created by direct observations in the field along the 415 

seismic profile. All the fissures of width larger than 0.05 m were mapped. The Surface Cracking Index 416 

(SCI), defined as the total length of fissures per linear meter of the seismic profile, is represented in 417 

Figure 9a. 418 

 419 

4. Interpretation and discussion 420 

 421 

 422 



The velocity model is firstly compared to the geometrical model proposed by Travelletti and Malet 423 

(2012) proposed from the integration of multi-source data (e.g. electrical resistivity tomographies, 424 

dynamic penetration tests and geomorphological observations) at coarser scale. 425 

The bedrock depths obtained from penetration tests were used to deduce the minimum velocity of the 426 

bedrock fixed at 850 m.s
-1

. The bedrock position thus obtained is compared to the one of Travelletti 427 

and Malet (2012) along the profile (Fig. 10a, b). The thickness was calculated for both models with the 428 

topography observed in 2011. The depth interval observed is the same (2 to 13 m) and the global 429 

shape of the bedrock is identical. The main differences are lower than 4 m and are located downhill of 430 

the profile, from the abscissa 100 to 230 m where the bedrock topography is more complex. It shows 431 

important high frequencies variations that are less pronounced on the topography from Travelletti and 432 

Malet (2012). 433 

 434 

To assess the quality of the Q-N algorithm result, we compare the bedrock depth variation with the 435 

topography visible on a black and white orthophotograph of 1956 before the landslide (e.g. when the 436 

original relief was not covered by the landslide material). The figure 11a shows the orthophotograph 437 

of 1956 overlaid on the digital elevation model available for the same date. The seismic profile is also 438 

represented. We can notice on the picture the very irregular geometry of the relief composed of 439 

alternating crests and gullies of different sizes. The studied profile crosses different geometries. From 440 

the point A to B (Fig. 11a), the topography seems first regular, before crossing a large thalweg. After 441 

crossing this thalweg, the profile goes across a long transversal crest that forms a bump and then, 442 

plunges along the downstream slope. Those patterns are also present in the P-wave tomogram, 443 

respectively at 125, 140 m and 160 m.  444 

Near the abscissa 180 m, a zone of low velocities (< 900 m.s
-1

) is observed in depth that can be 445 

interpreted as an old small-sized gully, also visible as a black dot on the orthophotograph. 446 

 447 

From this observation, we constructed an interpreted geological model that gathers geophysical and 448 

geomorphological information (Fig. 11b). This model is composed of three different materials. The 449 

first one is the Callovo-Oxfordian intact black marls that constitute the bedrock, characterized by 450 



velocities greater than 3000 m.s
-1

 (Grandjean et al., 2007) and with a topography following the one 451 

visible on the DEM from 1956. The second one is the unconsolidated material that presents P-wave 452 

velocities between 400 and 1200 m.s
-1

, characteristic of unconsolidated deposits (Bell, 2009). It 453 

constitutes the active unit of the landslide, e.g. the layer that presents most displacements. The third 454 

material, characterized by an interval of velocities between 1500 and 2500 m.s
-1

 is interpreted as 455 

compacted landslide material, because it is only present at a higher depth, where the height of soil 456 

above is sufficient to compact the landslide deposit. This layer is not involved in the dynamics of the 457 

landslide andis quasi-impermeable (Malet, 2003; Flageollet et al., 2000; Travelletti and Malet, 2012). 458 

 459 

Now that we proved the reliability of the Q-N algorithm tomography to recover the paleotopography, 460 

we can assess its contribution by comparing this result from the SIRT tomography of Grandjean and 461 

Sage (2004). We can notice on figure 8b and 8c, that the upper part of the profile (between the 462 

abscissa 0 and 100 m) presents a smoother contrast between the active unit and the bedrock for the 463 

SIRT result. Although two bumps are visible at the abscissa 100 and 140 m, the large in-between 464 

depression is not visible. In the lower part, the active layer is deeper than for the Q-N algorithm 465 

tomography and presents little lateral heterogeneity that prevent the interpreter from delimitating the 466 

landslide layer with accuracy. Globally, the SIRT tomography and the Q-N one are in agreement, but 467 

SIRT algorithm does not permit to recover the geotechnical unit limits with the same accuracy and 468 

prevents from distinguishing the “Dead body” represented in figure 11b. 469 

 470 

To summarize, we proved that the Q-N algorithm previously developed presented a better horizontal 471 

and vertical resolution than the SIRT algorithm (Grandjean and Sage, 2004) and gives the possibility 472 

to interpret the bedrock geometry as geomorphological and geological patterns with more details and 473 

better resolution than previously. Thanks to the algorithm, we were able to clearly distinguish three of 474 

the four geotechnical units proposed by Flageollet et al. (2000). The active unit composed of C1a and 475 

C1b geotechnical layers, the “dead body” that represents the C2 layer and the bedrock.  476 

 477 



The seismic attenuation field obtained is in agreement with the P-wave velocities inversed. Although 478 

P-wave velocity and seismic attenuation are not linked during the inversion, the attenuation field also 479 

permits to distinguish to main materials. The first one presents a relatively low attenuation, that 480 

correspond to the bedrock and the “dead body” gathered. The values obtained for this material are 481 

around 10
-3

 Np.m
-1

, which corresponds to consolidated soils attenuation at 40 Hz (Schön, 1976). The 482 

second one is a more attenuating and heterogeneous material that corresponds to the landslide deposit. 483 

The attenuation of the landslide layer varies from 4 to 12 10
-3

 Np.m
-1

which are more typical values for 484 

unconsolidated soils at this frequency (Schön, 1976). The lateral heterogeneity of the attenuation is 485 

important. Areas of high attenuation show attenuation values three times higher than others. The 486 

correlation between the SCI and the attenuation is very good, so that we can affirm that attenuation 487 

variations are mainly caused by cracking. 488 

The seismic wave attenuation tomography highlights two important attenuation zones. The first one, in 489 

the upper-part at the abscissas 20-30 seems to be concentrated at the interface between the landslide 490 

layer and the bedrock (Fig. 11b). In this area the landslide material undergoes significant shear stresses 491 

due to friction between the landslide layer and the bedrock topography. At the surface, cracks wider 492 

than 15 cm and measuring several meters in length are visible and the soil is completely remolded.The 493 

second zone seems to be associated to the influence of the local bedrock geometry that forms a bump 494 

followed by a steep slope (Fig. 11b). Its concave shape is responsible of the tension cracks well visible 495 

at the surface and clearly perpendicular to the major change of topography direction (Fig. 3c). 496 

Moreover, the soil seems dryer in that zone, certainly because of the geometry of the area that 497 

facilitates the drainage of the groundwater table toward lower areas. This phenomenon can even 498 

intensify the presence of cracks.  499 

We can notice that P-wave velocity and seismic wave attenuation produce complementary results. 500 

Only the P-wave velocity tomography can reproduce the sharp geometry of the bedrock topography 501 

and differentiate the “dead body” from the bedrock (Fig. 11b). On the other hand, the seismic wave 502 

attenuation provides more information on the landslide layer lateral heterogeneity.  503 



Here, we can notice that the two high attenuation zones are not correlatedwith low P-wave 504 

velocity as expected (Grandjean et al., 2011). This is explained by the seismic wavepaths going 505 

through this weathered material, that are probably too short to impact the velocity, so that only 506 

scattering and diffusion effects affect the wave amplitudes. 507 

Those complementary results highlight the importance of seismic attenuation tomography when 508 

characterizing weathering state of soils in near surface application. 509 

It is finally important to note that this geophysical method is, in theory, not adapted to image the 510 

near surface zone (first meters in depth). Indeed, the poor Fresnel weighs coverage in that zone 511 

prevents to obtain high accuracy results. Moreover, cracks and attenuating objects size is certainly 512 

comparable or smaller than the cell size (0.67 m). So, we have to be cautious when interpreting those 513 

results because the real attenuation zones could be closer to the surface than those presented on the 514 

seismic attenuation tomography.      515 

 516 

5. Conclusions 517 

 518 

We present a P-wave tomography inversion algorithm for highly heterogeneous media which 519 

combine improvement of resolution and inversion regularization. We use the Fresnel wavepaths 520 

calculated for different sources frequencies to retropropagate the traveltime residuals, assuming that in 521 

highly heterogeneous media, the first arrivals are affected by velocity anomalies present in the first 522 

Fresnel zone through complex multiple scattering. After verifying the ability of the algorithm to 523 

recover complex structures on a synthetic dataset, we apply it on a real dataset acquired on the upper 524 

part of the Super-Sauze landslide. We verify that our results are in accordance with previous results 525 

from Travelletti and Malet (2012) and dynamics penetrometer tests. It appears that the sharp geometry 526 

of the bedrock topography is well recovered. This result is of first importance because bedrock 527 

topography is one of the main controlling factors of landslide displacement. Using the wavepaths 528 

calculated for P-wave velocity tomography inversion, we invert separately the seismic wave 529 

attenuation of the same dataset. Although barely applied in landslide environment, we show that with 530 



few efforts it was possible to use the amplitude of the first peak of the wave to get an accurate image 531 

of the seismic wave attenuation of the landslide layer. The results are in agreement with the observed 532 

surface crack inventory and bring complementary information for the construction of an interpreted 533 

model. The use of traveltimes and amplitude of waves permit to create an interpreted geological model 534 

that gathers those different details.  535 

Such geological models are generally created for hazard assessment through numerical modeling. 536 

For this work, the use of geophysical tomography is essential because it is the only tool that can 537 

provide continuous and integrated imaging of the soil. In this perspective, our algorithm contribution 538 

is to answer one of the major issues raised by Travelletti and Malet(2012), namely, the lack of 539 

resolution of geophysical tomography compared to geotechnical tests and geomorphological 540 

observations. 541 

This is why we believe that the  Q-N algorithm could really improve the resolution of the 542 

geological model, and thus any numerical hydro-mechanical modeling using this variable as a 543 

parameter.  544 

 545 

 546 
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Figure Captions 693 
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 695 

 696 

Figure 1: Fresnel weights (e.g. distance versus depth) computed for a medium characterized by a 697 

constant velocity of 500 m.s-1 and for three frequencies: a) 100 Hz, b) 200 Hz and c) 300Hz. The 698 

source is located at x=0 m and the receptor at x=25m, both at 12.5 m of depth. 699 

 700 



 701 

 702 

Figure 2: Algorithm validation on a synthetic dataset: a) Synthetic initial model, b) Final velocity 703 

model inverted with the SIRT algorithm, c) Final velocity model inverted with the Q-N algorithm. 704 

Vertical cross-sections extracted from the three models at a distance of 46 m d), 110 m e) and 145 m 705 

f). 706 

 707 



 708 

 709 

Figure 3: Location of the investigated area within the Super-Sauze landslide. The seismic profile 710 

(red) is represented on an orthophotograph overlaid on a digital elevation model of the landslide. The 711 

main scarp and the landslide limit. Picture a) shows the seismic device on the field. Picture b) and c) 712 

represent the observed fissure state of the soil along the profile. 713 

 714 

Figure 4: Data quality: a) Seismic shot# 13. b) Source amplitude spectrum of the total seismic shot 715 

(blue) and source amplitude spectrum of the P-wave of the selected area (red). 716 



 717 

 718 

Figure 5: Picking quality: Frequency distribution of differential traveltime errors (e.g. due to 719 

reciprocal differences). The standard deviation has a value of 2.2047 ms for 427 tested reciprocal 720 

traveltimes. The grey color indicates the data rejected in the inversion process. 721 

 722 



 723 

 724 

Figure 6: Example of vertical P-wave velocity profile for the seismic shot #4: a) Slant-stack 725 

transformation in the t-v (time-velocity) domain for the seismic shot #4, b) Estimated vertical velocity 726 

profile for each t0, c) Vertical velocity profile inverted for the shot #4. 727 

 728 

 729 

 730 



Figure 7: Misfit function values for the Q-N and SIRT algorithms. 731 

 732 



 733 



 734 

Figure 8: Inversion results of the real dataset acquired on the Super-Sauze landslide: a) initial 735 

velocity model, b) inverted model with the SIRT algorithm of Grandjean and Sage (2004), and c) 736 

inverted model with the Q-N algorithm. 737 

 738 

 739 

 740 

Figure 9: Seismic wave attenuation tomography: a) Surface Craking Index (SCI) and b) 741 

attenuation section inverted from the Super-Sauze data. 742 

 743 



 744 

 745 

Figure 10: Comparison of the bedrock geometry interpreted with the Q-N algorithm and with a 746 

geological modeler by integration of multi-source information at coarser spatial resolution (Travelletti 747 

and Malet, 2012) in terms of bedrock depth a) and layer thickness b). 748 

 749 



 750 

 751 

Figure 11: a) Pre-event topography before the landslide and location of the seismic profile, b) 752 

Interpreted geological cross-section in 3 layers: the active unit corresponds to the moving landslide 753 



layer, the dead body is a compacted and quasi-impermeable layer showing low displacements and the 754 

bedrock constituted of in-situ black marls. 755 


