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In this study, we propose a numerical technique which combines a perturbation approach
(asymptotic numerical method) and a multilevel finite element analysis. This procedure
allows dealing with instability phenomena in the context of heterogeneous materials where
buckling may occur at both macroscopic and/or microscopic scales. Different constitutive
relations are applied and geometrical non-linearity is taken into account at both scales.
Numerical examples involving instabilities at both micro and macro levels are presented.

Dans cette étude, nous proposons une technique numérique qui combine une technique de
perturbation (Méthode Asymptotique Numérique) et une analyse par éléments finis multi
échelles. Cette procédure permet de traiter les problèmes d’instabilités dans le cadre des
matériaux hétérogènes où ces instabilités peuvent survenir à la fois au niveau micro et au
niveau macro. Différentes relations de comportement sont utilisées et la non linéarité
géométrique est prise en compte à deux échelles. Des exemples numériques impliquant des
instabilités au niveau micro et macro sont présentés.

Keywords: asymptotic numerical method; nonlinear homogenisation; multiscale finite

element method; instabilities; buckling

Mots-clés: méthode asymptotique numérique; homogénéisation non linéaire; méthode

d’éléments finis multi échelles; instabilités; flambage

1. Introduction

The instability phenomena in heterogeneous materials containing dispersions of multiple phases

in the microstructure are of structural and/or material types. These phenomena can occur at both

the macro and micro scales and may influence each other. Prior work in this domain has been

carried out by Abeyaratne and Triantafyllidis (1984). They showed that unit elastomers with

periodic holes lose rank-one ellipticity even though the elastomer possessed rank-one ellipticity.

Afterwards, many authors have studied these phenomena in the heterogeneous materials; e.g.

(deBotton, Hariton, & Socolsky, 2006; Geymonat, Müller, & Triantafyllidis, 1993;
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Lopez-Pamies & Ponte Castañeda, 2005; Michel, Lopez-Pamies, Ponte Castanñeda, & Trian-

tafyllidis, 2007; Miehe, Schröder, & Becker, 2002).

In our previous works (Nezamabadi, Yvonnet, Zahrouni, & Potier-Ferry, 2009, 2010a), we

have proposed a numerical method, called “the Multiscale-ANM technique”, to solve non-linear

problems in the framework of heterogeneous materials. This technique combines two numerical

tools. The first one is the multiscale finite element method (FE2) (Feyel, 2003) which is based

on multiscale computational procedures. In this method, the macroscopic behaviour at every

material point of the macrostructure is found by solving a non-linear finite element problem on

the representative volume element (RVE) associated with the micro scale. The second tool

concerns the numerical procedure to solve the resulting non-linear multiscale problem. It is

based on the asymptotic numerical method (ANM) (Cochelin, 1994; Cochelin, Damil,

& Potier-Ferry, 2007). It consists of expanding the main variables of the problem into power

series with respect to a path parameter. By comparison with Newton–Raphson procedure, ANM

can be considered as a high-order predictor without the need of any iteration. Many applications

of ANM to structural and fluid mechanics show the performance of this technique.

In the framework of the multiscale-ANM, since the microscopic and macroscopic non-lin-

ear problems to be solved are transformed into a sequence of linear problems, localisation and

homogenisation tensors can be constructed for each linear local problem in the homogenisation

context. We then compute the tangent stiffness matrix which is the same for all the linear local

problems allowing a significant reduction of computation time since only one decomposition

of this matrix is needed for the asymptotic steps. The length of each step is a posteriori esti-

mated using the previously computed terms of the series. An algorithm which naturally adapts

the step length can then be obtained. Hence, instability phenomena can be analysed with high

accuracy and efficiency. In this paper, we revisit the multiscale-ANM technique, especially by

applications to bending strength of beams. The capability of this method to deal with the local

and global instabilities has been shown again through an application.

The layout of this paper is as follows: in Section 2, the formulation of micro–macro prob-

lem and the perturbation procedure applied to the multiscale problem are described briefly. In

Section 3, accuracy and efficiency of the approach are evaluated through a numerical example

involving instability phenomena.

2. Multiscale formulation of the mechanical problem

2.1. Macroscopic and microscopic variational formulations

Let X a domain in R
d, d being the space dimension, associated with a macroscopic structure

and @X its external boundary, both in their reference configuration. The structure is subjected

to prescribed displacements and forces on the disjoint complementary parts of the boundary

@Xu (the Dirichlet boundaries) and @Xt (the Neumann boundaries), respectively. In the

framework of a total Lagrangian formulation, the weak form of the macroscopic equilibrium

equation can be written in the absence of body forces as follows:

Find �u 2 SðXÞ satisfying the essential boundary conditions, i.e. �u ¼ ~u on @Xu, with ~u

being the prescribed displacements, and SðXÞ the space of sufficiently smooth functions, such
that:

Z t

X

�P : d�F dX ¼ k

Z

@Xt

�f � d�u dC in X; ð1Þ

where �P is the first macroscopic Piola–Kirchhoff stress tensor, �F (�F ¼ r�uþ I) denotes the

macroscopic deformation gradient tensor and hence, d�F ¼ rd�u. �f represents the prescribed
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load on the external boundary @Xt, k is a loading parameter and d�u 2 S
0ðXÞ, S0ðXÞ being

the space of all displacement fields vanishing on @Xu and sufficiently smooth on X. Note that

A : B ¼ Aij Bji.

For the microscopic scale, the material is assumed to be heterogeneous with a periodic

microstructure, characterised by a RVE that occupies a domain x 2 R
d in its reference con-

figuration. The weak form associated with the microscopic problem is:

Find u 2 SðxÞ satisfying the microscopic boundary conditions, i.e. Equation (6), such that:

Z t

x

P : dF dx ¼ 0 in x; ð2Þ

where du 2 S
0ðxÞ, and SðxÞ and S0ðxÞ being defined as previously and u is the microscopic

displacement.

At the microscopic scale, we assume that the constitutive relations are known in each phase

of the RVE. Generally, the material behaviour of each microstructural constituent (r) (e.g.

matrix, inclusion, etc.) can be described by a relationship between the second Piola–Kirchhoff

stress tensor, S and the Green–Lagrange strain tensor, c (c ¼ 1
2
ðtFFþ IÞ):

S ¼ F
ðrÞðcÞ; ð3Þ

where S is related to P through P ¼ FS. By this definition, we emphasise that the present

framework is not specifically designed for any particular constitutive law; the microstructural

material behaviour may be very complex and includes a physical and/or geometrical evolution

of the microstructure, when modelled on the microstructural level. Moreover, in the context

of the ANM, other constitutive laws (including inelastic behaviours) have been developed

(see examples in hyperelasticity, viscoplasticity and plasticity in previous ANM papers;

(Assidi, Zahrouni, Damil, & Potier-Ferry, 2009; Descamps, Cao, & Potier-Ferry, 1997;

Nezamabadi, Zahrouni, & Yvonnet, 2011; Zahrouni, Aggoune, Brunelot, & Potier-Ferry,

2004)).

The macroscopic and microscopic problems are coupled through two main relations. First,

as the constitutive relation is not explicitly given at the macroscopic level, the effective stress

tensor �P is obtained by considering an average value of the microscopic stress field over the

RVE. This relation is expressed as follows:

�P ¼ hPi ¼
1

jxj

Z

x

Pdx; ð4Þ

where jxj represents the volume of the considered RVE. The second relation concerns the

mean value of the microscopic deformation gradient assumed in the form:

�F ¼ hFi ¼
1

jxj

Z

x

Fdx: ð5Þ

This relation is deduced from the boundary conditions (BC) imposed on the RVE (Miehe,

2003). Generally, three main BC can be considered for the RVE as linear deformations, uni-

form tractions or periodic constraints. Here, we consider periodic conditions on the boundary

of the RVE which can be recasted into the following form:

uþ � �u ¼ ð�F� IÞ � ðXþ � �XÞ on @x; ð6Þ
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where the exponents þ and � are associated with node indices on opposite sides of the

RVE. Note that the BC depend on the macroscopic deformation tensor �F.

2.2. Numerical algorithm

The micro and macro formulations are described by the non-linear system of Equations

(1)–(6). Solution of this non-linear multiscale problem is sought using the ANM. In the

context of ANM, both variables of macroscale and microscale of the considered multiscale

problem are expanded into power series. We propose to represent these variables in a mixed

vector U ¼ ð�u; �P; u;P; . . .Þ. The perturbation technique is applied to U and to the load param-

eter k, leading to the following expression:

UðaÞ
kðaÞ

� �

¼
U0

k0

� �

þ
X

N

p¼1

ap
Up

kp

� �

: ð7Þ

where ð:ÞðaÞ refers to quantities defined continuously with respect to a scalar path parameter

a to be defined, ð:Þ0 denotes a known initial solution such that ð:Þð0Þ ¼ ð:Þ0, N is the trunca-

tion order of the series, and ð:Þp indicates a term at order “p” that has to be determined.

By using Equation (7), the problem (1) is transformed to a sequence of problems:

Z t

X

�Pp : d�FdX ¼ kp

Z

@XF

f � d�udC 8p ¼ 1; . . . ;N : ð8Þ

Since the macroscopic constitutive relation is unknown, it is needed to carry out a compu-

tation on the microscopic problem to extract it.

The microscopic problem is defined as follows:

R

x
tP : dF dx ¼ 0

S ¼ F
ðrÞðcÞ

P ¼ F � S
c ¼ 1

2
ðtF � Fþ IÞ

F ¼ ruþ I

8

>

>

>

>

<

>

>

>

>

:

in x;

þBC : uþ � u� ¼ ð�F� IÞðXþ � X�Þ on @x:

ð9Þ

The ANM expansion of Equations (9) leads also to a sequence of linear problems which can

be solved partly at each order by considering the coupling relations between macroscopic and

microscopic problems. In this context, the obtained solution permits one to construct numeri-

cally a localisation tensor. Hence, one can obtain the following relation between microscopic

and macroscopic deformation gradient at any order “p” (see Nezamabadi et al., 2009, 2010a):

Fp ¼ A;X : �Fp þ unl
p;X; ð10Þ

where A; X is a fourth-order tensor identified as a localisation tensor and unlp;X is a second-

order tensor. This latter is a residual term depending on the solutions of the computed orders

before the order “p”.

To obtain the homogenised constitutive relation, we consider the microscopic constitutive

relation at order “p”:
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Pp ¼ H
ðrÞ

: Fp þ Pnl
p : ð11Þ

where H
ðrÞ represents the constitutive tensor associated with phase (r) and Pnl

p is a residual

term which depends on the solutions at the previous “p – 1” orders. By replacing the relation

(10) in (11):

Pp ¼ H
ðrÞ

: A;X : �Fp þH
ðrÞ

: unl
p;X þ Pnl

p : ð12Þ

and by setting P�nl
p ¼ H

ðrÞ
: unlp;X þ Pnl

p and L ¼ H
ðrÞ

: A;X, we obtain:

Pp ¼ L : �Fp þ P�nl
p : ð13Þ

The effective stresses can be obtained at each order “p” by averaging the Equation (13):

�Pp ¼ L : �Fp þ Pnl
p ; ð14Þ

where �L ¼ 1
jxj

R

x
Ldx and �P

nl

p ¼ 1
jxj

R

x
P�nl
p dx.

By introducing (14) in Equation (8), we obtain the final linear form of the macroscopic

problem at order “p”:

Z

X

t �Fp :
�L : d�FdX ¼ kp

Z

@Xt

f � d�ud� �

Z

X

t �P
nl

p : d�FdX: ð15Þ

The tangent modulus, �L, is computed numerically from constructed problems at the micro-

scopic level. The procedure is to solve the problem (15) which gives the displacements at the

macrostructure �u. Then, at each integration point, the tensor �F can be calculated which allows

one to finish the computations of different variables at the microscopic level.

Details of the solving procedure of multiscale problems using ANM are given in our pre-

vious papers; (Nezamabadi et al., 2009, 2010a).

Furthermore, in the finite element procedure, the discretisation of the RVE (microscopic

level) and of the macrostructure induces p and P integration points, respectively. The compu-

tational cost in terms of local and global variables is then of order Oðp� PÞ. This cost

increases quickly according to the structure size (number of elements) which is studied. Here,

the parallelisation procedure is employed to reduce computational costs. For that purpose,

computations associated with groups of integration points are distributed on several

processors. As a result, computational costs are drastically reduced without developing

specific algorithm.

3. Numerical application to the plastic microbuckling of long fibre composites

In our previous works cited above, the multiscale-ANM technique has shown its efficiency in

dealing with the microscopic and/or macroscopic instabilities. In this work, we show once

more the robustness of this method through a main example: the microbuckling of long fibre

composites. As is well known (Grandidier, Casari, & Jochum, 2012), the failure of these

materials yields from a local fibre microbuckling and this instability is mainly governed by

fibre waviness and matrix plastic behaviour. Nevertheless, the failure level is not a pure mate-

rial property and it depends also on macroscopic structural quantities like specimen thickness

or stacking sequence and it is not the same in bending and in pure compression(Wisnom,
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1991; Wisnom, Atkinson, & Jones, 1997; Drapier, Grandidier, & Potier-Ferry, 1999, 2001;

Grandidier et al., 2012). In this paper, we only focus on plate thickness. To our knowledge,

this thickness effect has not yet been described by a multiscale concurrent modelling.

The proposed problem has been discretised using two-dimensional finite elements in the

plane stress framework. The macrostructure has been meshed with eight-node quadrangular

elements whereas the microstructure has been meshed with nine-node quadrangular elements.

In the context of ANM, the truncation order N of the series and the accuracy parameter d

which allows limiting the length of each asymptotic step in a continuation procedure, have to

be determined. In all the tests presented here, we have solved the non-linear problems using

ANM with N = 15 and d ¼ 10�8. For all the examples, Poisson’s ratio is equal to .3.

The influence of microbuckling of the fibre with the initial imperfection on the

macrostructure is assessed here by studying the bending of a beam made of a fibre-reinforced

composite material. We consider a bidimensional representation of a laminate (see Figure 1),

where e2 is the 90° direction corresponding to the loading direction. The imperfection magni-

tude (v0) is constant through the thickness. One fibre is chosen as the microstructure and the

periodic BC at microscopic scale as described in Equation (6) are used. For the applications

that we target in the present work, we consider a linear Saint–Venant Kirchhoff constitutive

relation for the fibre and an elastoplastic constitutive law based on the Ramberg–Osgood

relation (see, e.g. Zahrouni, Potier-Ferry, Elasmar, & Damil, 1998) for the matrix. The latter

relation is written in the 3D case in the following form:

Ec ¼ ð1þ mÞ Sd � ð1� 2mÞP Iþ
3

2
a

Seq

ry

� �n�1

Sd; ð16Þ

where E, m, a, n and ry denote, respectively, the Young’s modulus, Poisson’s ratio, yield off-

set, hardening component and the yield stress. P ¼ �1
3
S : I is the equivalent hydrostatic

stress, Sd is the stress deviator defined by Sd ¼ Sþ P I. Seq is the von-Mises equivalent stress

defined as follows:

Seq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
Sd

: Sd

r

: ð17Þ

1
e

e
2

v0

Figure 1. The microstructure of long fibre composite with the imperfection magnitude.

6



The mechanical properties employed are shown in Table 1 which corresponds to a T300/

914 composite. The parameters of the non-linear behaviour of the matrix are deduced from

the work presented in Wisnom (1991). Figure 2 shows the responses under compression

mode for different imperfection magnitudes (Drapier et al., 2001).

To show the influence of plastic microbuckling on the macrostructure response, we use a

microstructure in which the imperfection magnitude of fibre is 3 lm. As the macrostructure,

we consider a simply supported beam submitted to the force distribution kP on the top edge

(see Figure 3); but, in order to evaluate the influence of the thickness on the failure of

composites, two thicknesses of beam are studied: 1.5 and 3mm.

λ P

40 mm

80 mm80 mm

Figure 3. Geometries and BC of the rectangular beams made of the fibre reinforced composites; two
considered beam thicknesses: 1.5 and 3mm, and p= 1N/mm.
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Figure 2. The macroscopic stress–strain diagrams for the different imperfection magnitudes.

Table 1. Characteristics of T300/914 material and data used for the plastic microbuckling study.

Fibre T300 (isotropic) Matrix 914 (isotropic) Imperfection

Ef= 230GPa Em= 4500MPa k0 = 200p μm
mf = .3 Gm= 1600MPa v0 = 3 μm
rf= 5 μm mm = .4 /0=3
f= .6 n= 3

rmy = 60MPa

emy = 2%
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The load-displacement responses for two beam thicknesses are presented in Figure 4(a),

which shows the vertical displacement of the point located on the top middle of beam. This

figure demonstrates the influence of microscopic instability on the macroscopic one: we can

observe a slight change after the points B and B’, the loss of ellipticity points. This is mainly

caused by the occurrence of microscopic instabilities at this point. The deformed shapes of the

microstructure at the integration point located in the top middle (in a 3� 3 integration point

scheme) of the top middle element at points A, B and C of the load-displacement curve for the

beam with thickness of 3mm (see Figure 4(a)) are presented in Figure 4(c). There is a signifi-

cant difference between these deformed microstructural shapes despite the small variation of

macroscopic load, which illustrates the relationship between local and global instabilities.

Figure 4(b) shows the macroscopic stress–strain diagrams at the considered integration

point for the two beam thicknesses. In this figure, it can be observed that the thinner beam

has the greater failure stress in comparison with the thicker beam (see points B and B’ in

Figure 4(b)). This phenomenon coincides with the fact shown in Drapier et al. (1999, 2001)

that a decrease in thickness yields an increase in failure stress of fibre-reinforced composite.

In the present case, the influence of beam thickness is moderate, but it can be larger for very

thin plates (Grandidier et al., 2012). It is also worth noting that the points B and B’, the

maximum stress, correspond the points of the loss of ellipticity (see Figure 4(a) and (b)).

4. Conclusion

The multiscale-ANM technique that seems an efficient numerical technique in the context of

heterogeneous materials to deal with instabilities which may occur on both the macro and

micro levels, was revisited in this paper. This technique is the combination of the multiscale
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Figure 4. (a) The load-displacement diagrams of the plastic microbuckling problem for beam
thicknesses of 3 and of 1.5mm; (b) The macroscopic stress–strain diagrams at the integration point
located in the top middle (in a 3� 3 integration point scheme) of the top middle element for beam
thicknesses of 3mm and of 1.5mm; and (c) Deformed shapes of microstructure at the considered
integration point at points A, B and C for beam thickness of 3mm, deformation scale = 10.
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FE2 and the ANM. In this model, large displacements are taken into account in both macro

and micro levels, and linear and non-linear constitutive relations can be implemented. The

accuracy and the efficiency of the proposed procedure have also been shown in our previous

papers; (Nezamabadi et al., 2009, 2010a).

The studied numerical example concerns the compression of a fibre-reinforced composite

material with a microstructure in which we have considered only one fibre with initial imper-

fection. This example presents elastoplastic behaviour of the matrix and an elastic buckling of

the fibre. The obtained results illustrate another time the capability of the proposed algorithm

to deal with instabilities in the context of heterogeneous materials. Moreover, by considering

two different values of the beam thickness at macroscopic scale, we show that the thinner the

beam, the larger its strength for a beam under bending loads.

However, in this example, we have observed an accumulation of asymptotic steps and the

loss of ellipticity close to the maximum load. These reasons reinforce the idea of extending

our algorithms to a formulation based on the second-order homogenisation. Indeed, this formu-

lation allows improving the conditioning of the problems that exhibit a loss of ellipticity and,

also, dealing with the multiscale problems for which the microstructure size is of the same

order as the characteristic structure size; (Nezamabadi, Zahrouni, Yvonnet, & Potier-Ferry,

2010b). Ongoing work concerns applications of this technique to the modelling of local

instabilities with loss of ellipticity.

References

Abeyaratne, R., & Triantafyllidis, N. (1984). An investigation of localization in a porous elastic material
using homogenization theory. Journal of Applied Mechanics, 51, 481–486.

Assidi, M., Zahrouni, H., Damil, N., & Potier-Ferry, M. (2009). Regularization and perturbation
technique to solve plasticity problems. International Journal of Material Forming, 2, 1–14.

Cochelin, B. (1994). A path following technique via an asymptotic numerical method. Computers and
Structures, 53, 1181–1192.

Cochelin, B., Damil, N., & Potier-Ferry, M. (2007). Méthode asymptotique numérique, (Asymptotic
numerical method). Paris: Hermès Science.

deBotton, G., Hariton, I., & Socolsky, E.A. (2006). Neo-Hookean fiber reinforced composites in finite
elasticity. Journal of the Mechanic and Physics of Solids, 54, 533–559.

Descamps, J., Cao, H.L., & Potier-Ferry, M. (1997). An asymptotic numerical method to solve large
strain viscoplastic problems. In D.R.J. Owen, E. Oñate, & E. Hinton (Eds.), Computational plastic-
ity, fundamentals and applications (Vol. 13, pp. 393–400). Barcelona: C.I.M.N.E.

Drapier, S., Grandidier, J.C., & Potier-Ferry, M. (1999). Towards a numerical model of the compressive
strength for long fihre composites. European Journal of Mechanics A/Solids, 18, 69–92.

Drapier, S., Grandidier, J.C., & Potier-Ferry, M. (2001). A structural approach of plastic micro buckling
in long fibre composites: Comparison with theoretical and experimental results. International
Journal of Solids and Structures, 38, 3877–3904.

Feyel, F. (2003). A multilevel finite element method (FE2) to describe the response of highly nonlinear
structures using generalized continua. Computer Methods in Applied Mechanics and Engineering,
192, 3233–3244.

Geymonat, G., Müller, S., & Triantafyllidis, N. (1993). Homogenization of nonlinearly elastic materials:
Microscopic bifurcation and macroscopic loss of rank-one convexity. Archive for Rational Mechan-
ics and Analysis, 122, 231–290.

Grandidier, J.C., Casari, P., & Jochum, C. (2012). A fibre direction compressive failure criterion for long
fibre laminates at ply scale, including stacking sequence and laminate thickness effects. Composite
Structures, 94, 3799–3806.

Lopez-Pamies, O., & Ponte Castañeda, P. (2005). Second-order estimated for the macroscopic response
and loss of ellipticity in porous rubbers at large deformations. Journal of Elasticity, 76, 247–287.

Michel, J.C., Lopez-Pamies, O., Ponte Castanñeda, P., & Triantafyllidis, N. (2007). Microscopic and
macroscopic instabilities in finitely strained porous elastomers. Journal of the Mechanics and
Physics of Solids, 55, 900–938.

9



Miehe, C. (2003). Computational micro-to-macro transitions for discretized micro-structures of heteroge-
neous materials at finite strains based on the minimization of averaged incremental energy.
Computer Methods in Applied Mechanics and Engineering, 192, 559–591.

Miehe, C., Schröder, J., & Becker, M. (2002). Computational homogenization analysis in finite elastic-
ity: Material and structural instabilities on the micro- and macro-scales of periodic composites and
their interactions. Computer Methods in Applied Mechanics and Engineering, 191(4), 4971–5005.

Nezamabadi, S., Yvonnet, J., Zahrouni, H., & Potier-Ferry, M. (2009). A multilevel computational
strategy for microscopic and macroscopic instabilities. Computer Methods in Applied Mechanics and
Engineering, 198, 2099–2110.

Nezamabadi, S., Zahrouni, H., & Yvonnet, J. (2011). Solving hyperelastic material problems by
asymptotic numerical method. Computational Mechanics, 47, 77–92.

Nezamabadi, S., Zahrouni, H., Yvonnet, J., & Potier-Ferry, M. (2010a). A multiscale finite element
approach for buckling analysis of elastoplastic long fiber composites. International Journal for
Multiscale Computational Engineering, 8, 287–301.

Nezamabadi, S., Zahrouni, H., Yvonnet, J., Potier-Ferry, M. (2010b). Multiscale second order homogeni-
zation using asymptotic numerical method, IV European Conference on Computational Mechanics,
16–21 May 2010, Paris, France.

Wisnom, M.R. (1991). The effect of specimen size on the bending strength of unidirectional carbon
fibre-epoxy. Composite Structures, 18, 47–63.

Wisnom, M.R., Atkinson, J.W., & Jones, M.I. (1997). Reduction in compressive strain to failure of
unidirectional carbon fibre-epoxy with increasing specimen size in pin-ended buckling tests.
Composites Science and Technology, 57, 1303–1308.

Zahrouni, H., Aggoune, W., Brunelot, J., & Potier-Ferry, M. (2004). Asymptotic numerical method for
strong nonlinearities. Revue Européenne des Eléments Finis, 118, 13–97.

Zahrouni, H., Potier-Ferry, M., Elasmar, H., & Damil, N. (1998). Asymptotic numerical method for
nonlinear constitutive laws. Revue Européenne des Eléments Finis, 7, 841–869.

10


