N
N

N

HAL

open science

A formal approach ”a la Neukirch” of /-adic class field
theory

Stéphanie Reglade

» To cite this version:

Stéphanie Reglade. A formal approach ”a la Neukirch” of f-adic class field theory. 2013.

00749232v3

HAL Id: hal-00749232
https://hal.science/hal-00749232v3

Preprint submitted on 28 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-00749232v3
https://hal.archives-ouvertes.fr

A FORMAL APPROACH “A LA NEUKIRCH” OF ¢-ADIC CLASS FIELD
THEORY

Stéphanie Reglade

Abstract: Neukirch developed abstract class field theory in his famous book “Class Field Theory”. We show that it
is possible to derive Jaulent’s £-adic class field from Neukirch’s framework. The proof requires in both cases (local

case and global case) to define suitable degree maps, G-modules, valuations and to prove the class field axiom.
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Introduction:

The ¢-adic class field theory, developed by Jaulent [Jal], claims, in the local case, the existence of
an isomorphism between the Galois group of the maximal and abelian pro-¢-extension of a finite
extension K, of @, and the f-adification of the multiplicative group of this local field; in the
global case the existence of an isomorphism between the Galois group of the maximal and abelian
pro-¢-extension of a number field K and the ¢-adification of the group of ideles.

Our goal in this paper is to rederive this theory, following Neukirch’s abstract framework. It
requires to define the degree map, the G-module and the valuation in the local and in the global
case. We will have to check that the valuations are henselian with respect to the degree map, and
to prove in each case the class field axiom.

We start with the local case in §2: we define suitable cohomology groups Hé(G, V) in §1. After
recalling the keypoints of Neukirch’s abstract therory in §2.1, we define the group G, the G-
module,the degree map deg : G — Z; and the valuation in §2.2 to 2.4. Our main result is the class
field axiom:



Theorem For all cyclic £-extension Ly of a local field K, we have

|H§(G(pr/Kp),RLm)|{ [1Lq3:Kp] ﬁiiiiii?

We then treat the global case, our main result is:

Theorem Let L/K be a cyclic £-extension of algebraic number fields then we have:

G/l = { K 2=l

The proof requires first to compute the Herbrand quotient of the idele class ¢-group (theorem
3.2.1). We again define G, the G-module, deg : G — Z; and the valuation in & 3.3 to 3.5.

1 Preliminary

1.1 Notations

In the following ¢ is a fixxed rational prime number. Let’s introduce the notations:
For a local field K, with maximal ideal p and uniformizer m,, we let
Rk, = @k Ky /prek: the ¢-adification of the multiplicative group of a local field
Uk, = lim, Up/ng: the ¢-adification of the group of units U, of K,
U, : the group of principal units of K,
,ug: the subgroup of Uy, whose order is finite and prime to p
pp: the ¢- Sylow subgroup of ug

For a number field K we define
Rk = Zp @7 K* : the f-adic group of principal ideles

JIx = [lpepi, Ri, © the -adic idele group

Uk = [lpepi, Uk, + the subgroup of units
Cxk = Jx/Rk : the f-adic idele class group

1.2 The Z,~-cohomology

We use the following cohomology for Z,-modules.

Definition 1. Let F,, — -+ — Fy — Zy — 0 be a projective resolution of Z;[G]-modules,
where G is a £-group. Applying the functor Homg(.,Z¢ @ A) we obtain:

0 — Homg(Z¢,Z¢ @ A) — Homg(Fo,Z¢ @ A) — Homg(F1,Zi @ A) — - -

’

6 ’
<. — Homg(Fu1,Z¢ ® A) "= Home(Fp, Ze ® A) =25 Home(Fpsr,Ze ® A) - - -
We denote H} (G, Z¢ @ A) := Kers,, /Imé,, .
Theorem 1.2.1. If G is a £-group, and A a G-module then:

Hy(G,Zy © A) = Z, ® H'(G, A)



Proof. We start with the projective resolution of free F; Z[G]-modules:
F,—F,_1— - —FFN—F—7Z—0.

i)Applying the functor Homg(., A) we get:

0 — Homg(Z, A) — -~ — Homg(Fy_1, A) 2= Homg (F,, A) 2% Homeg (Fps1, A) —> -

and
H"(G, A) := Kerd,, /Tmd,, 1.

ii)Since Zy is a flat module, we obtain:
ZoyQF, — 7y QF, 1 — -+ —ZyQFy — Zy — 0.
Applying now the functor Homg(., Z; ® A) we get:

! ’

5, 5
0 — Homg(Z¢, Zy @A) — -+ — Homg(Zy @ Fy_1,Z¢ @A) 2= Homg(Zy @ Fp, Zy @ A) = - -

and ) )
H} (G,Z¢ ® A) := Kerd,, /Imd,,_;.

iii) We now show that Homg(Z, ® F;,Z¢ @ A) = Zy @ Homg(G, A).

The F; are free Z[G]-modules, using the additivity of the functor Home(., A) it suffices to check
the property on Z[G]. But

Homg(Z[G], A) ~ A and Homg(Zg[G], Zy ® A) ~ 7y R A.

iv) We now show that: Keré;l =7y ® Kerd,, and Iméil_l =7y @ Imd,,_1.

Indeed, given a Z-linear map v : M — N and the corresponding Wi Ze @M — 7 @ N; we
have, since Zy is flat, the exact sequence:

0 —Z/Ker(u) — Zy @M — Zp @ Im(u) — 0.
Usually we also have Im(u) C N and Z, ® Im(u) C Z¢ ® N by flatness of Z,. Finally,
Kers, /Imd,, | ~ Z; @ (Kerd,, /Imé,, _1).
O

Corollary 1. Let G be a finite cyclic £-group, and A a G-module then the Herbrand quotient
H,(G,Z,®A .
he(G, A) := % satisfies:
i) if A is a finite G-module, ho(G, A) = 1.

i) if we have an exact sequence of G-modules: 0 — A — B — C' — 0 then hy(G, B) =
hl(Gv A) ! hl(Ga C)

i) Hy(G,Zy @ A) ~ H, ' (G, Z ® A).

2 Local /-adic class field theory

2.1 Framework

The fundamental local ¢-adic theorem is:



Theorem 2.1.1. [Jal, theorem 2.1] Given a local field K,/Q,, the reciprocity map induces
an isomorphism of topological Z¢-modules between Ry, = ]&nk KpX/Kﬁk and the Galois group

D, = Gal(Kgb/Kp) of the mazimal and abelian pro-C-extension of K. Trough this isomorphism,
the image of the inertia sub-group I, is the sub-group of units Ui, of Ri,. The reciprocity map
induces a one to one correspondence between closed sub-modules of Rip and abelian {-extensions
of Ky: in this correspondence, finite abelian £-extensions are associated to closed sub-modules of
finite index of Ry, ; it means to open sub-modules of Ry,

Our purpose is to prove the existence of the local reciprocity map using Neukirch’s abstract
class field theory, which we now briefly recall [Nel, p. 18-36]. We consider the following general
framework: G is an abstract profinite group, whose closed subgroups are denoted by G, those
indices K are called “fields”. G is equipped with a continuous and surjective homomorphism
deg: G — Z.

1. We denote by k the field such that G, = G.

2. We denote by k the field such that G = {1}.

3. If G, € Gk, we write K C L.

4. L/K is said finite if G, is open ( closed of finite index) in G; the degree [L : K] is then
defined by [L: K] = (Gk : G1).

5. We write K = [[ K; for Gx = N;G,.
6. We write K = NK; if Gk is topologically generated by the Gk, .

7. If G, is normal in Gx we say that L/K is a Galois extension and we write Gal(L/K) :=
Gk /Gr.

8. The kernel of deg is a subgroup of G denoted by Gj = I such that G/G ~ Z. We can
restrict deg to G and define:

fK:(Z:deg(GK)) GK:(G%:GR) IK:G[(.
If L/K is an extension we put:
fL/K = (deg(Gk) : deg(GL)) eL/K = Uk :1IL).

They satisfy the following relations:
foye=fo/fxk  [L:K]l=er/x fi/x-
9. If K is a finite extension k we define K = K - k.

Neukirch’s theory requires a G-module and a henselian valuation with respect to deg
[Ne2, p. 288]: a multiplicative G-module A is an abelian multiplicative group endowed with a
continuous right action

A

a(T

c : A —
a

i.e such that A = U[K:k]<oo Ak, where Agx :={a € A|a’ =a,Vo € Gk} = ACGx and where K
runs through all finite extensions of k.

This allows to define a new map, the norm map, which goes to the G-module Ax in Ayg:



Nisila) =[], a”

where o runs through a representative coset of Gx /G

A henselian valuation of Ay with respect to deg : G — Z is a homomorphism satisfying the
following properties:s [Ne2, p. 288]

(1) v(Ax) = Z such that Z C Z and Z/n-Z ~7Z/n-Z for alln > 0
(i) v(Ng/kAk) = fr.Z for all extensions K of k.

Finally we introduce the class field axiom:
Axiom: For all cyclic extension L/K, we have:

[L:K] fori=0

e/m.an = { Pzt

In this context Neukirch proves the following fundamental theorem: [Nel, p. 28]

Theorem 2.1.2. Let L/K be a finite Galois extension, o € G(L/K)™, & € Gal(L/K), (which is
the Frobenius lift of o) and X i be the fized field of &, then the homomorphism
TL/K: G(L/K)ab — AK/NL/K(AL)
o r— NE/K(TFZ) mod NL/KAL

s an isomorphism, where ms; is a prime element of Ay.

We now define all necessary ingredients to obtain the main theorem of ¢-adic class field theory:
theorem 2.5.1.

2.2 (G and the G-module

We consider the following context:
. k is a local field, (we use this notation instead of k).

k™ is the maximal unramified pro-f-extension of k: the compositum of all unramified ¢-
extensions.

. % is the maximal pro-f-extension of k: the compositum of /-extensions of k.
Classically Gal(k™" /k) ~7Z; [Nel, p. 41-42].
We write

G = Gal(k/k)

We consider the following Z-module:
A =

—

i R py,
Ly

where Ly runs through all finite extensions of Ky, and Ry, = @k L% / L%ek. It is canonically
identified to
A= |J  Riy
[Lop:Kp]<oo

If L is a finite extension of K,
Ary =ReLy

is a Gal(Ly/K,) module. The group G now axts on A acts component by component.



2.3 deg:G— 7y

Definition 2. Let ¢ € G, its restriction to k™" defines an element of Z¢, due to the isomorphism
Gal(k/k) ~ Z,. We define:

deg: G — Zy

O Dnr
deg is a surjective homomorphism whose kernel is Gynr so that: G/Ggnr ~ Gal(k™ [k) =~ Zy.
Definition 3. Given a finite {-extension K of k ,we define:
fi = (Z¢ : deg(Gk) ek = (Grnr @ Ik)
Ix = Grnr NG = Ggpnr := Ggnr

Definition 4. If L/K s a finite £-extension we define:

fL/K = (deg(Gk) : deg(G1)) eL/K = (I : 11)

Proposition 2.3.1. We have the following fundamental relations:
fryx =fu/fx evx - foyx = [L: K]

Proof. [Ne2, p. 286] O

2.4 The valuation

In ¢-adic class field theory, the degree is a homomorphism from G to Zy, and the valuation v is a
homomorphism from Ay to Z,. In this part, we denote by K, a local field.

For a finite extension Ly, we defined
- — 1 G
AL‘ﬁ = RL‘B = 1%1L5<3/L5<3
a Gal(Ly/Ky)-module. Jaulent proved that [Jal, proposition 1.2]:
Ry ~ Up - my i P | £

Rig = g - Toy if P 1L
This allows to define the valuation vy as giving the power in Z, of the uniformising element.
Proposition 2.4.1. This valuation vy is henselian with respect to deg : G — Zj.
Proof. The valuation associated to Ry, , vp, is a surjective homomorphism; hence
vp(RK,) = Z¢ == Z; and indeed Z/n.Z ~ Z/n.Z for all n > 0.
‘We now check that Up(NLm/Kp Rik,) = thp/Kp - Z. The valuation vy, : Rp, — Z, can be viewed

as an extension of the usual normalized valuation of Ly, denoted by wg. In fact, we have the
following commutative diagrams:

L% RL‘B K; —_— RKp
I
7 —— Dy 7 —— Zy



The valuation wp extends uniquely to Lg by: m(% © NiLg,«,) and thus v, extends
1

-wsp is the continuation of wy, we get:
eLm /Ky

uniquely to L. As

1 1 1
“op(Rry) = m : UP(NL‘;G/KPRK)J) =

! ’UP(NL\B/KPRIC)

€Ly /Ky eL‘v/Kp'fLm/Kp

So we deduce that:
fry/r, v (Rig) = vk(Npg /1 Re)

Yet we have the relation fr,,/x, = Jry/ fK,, and due to the definition of fx, we have fr, = (Z; :
d(Gk,)) = 1 as the degree is surjective. Finally, we get:

frp/i, - vp(Rig) = fry/k, - Ze = vp(NLg /k, Ri, )

for all finite extension L3/ K, of K, the second point point (i¢) is also checked. O

2.5 The class field axiom

‘We must show:

Theorem 2.5.1. For all cyclic {-extension Ly of a local field K, we have

|H§(G(Lq3/Kp),RLm)|{ [1L<n:Kp] ;Z;i(l)

Proof. Let G := G(Ly/K))
We consider the following exact sequence:
X div X X X div
1 — Ly™ — Ly — Loy /L™ — 1
where L%dw is the (-divisible part of L%. We recall that a multiplicative abelian group is said

{-divisible if each element is a ¢”-th power for an integer n. Since G is cyclic, we obtain the
Herbrand hexagon:

HY(G, LE™) H(G, L)

" T

H (G, Ly /L;div) H(G, Ly /Lgd“)

\ /

H™ (G, L) <— H (G, L")

i) Hilbert’s theorem 90 states that H™ (G, Ly)=1.

ii)We show that HO(G,Lgdi”) =1 and H_I(G,L%di”) = 1. By Hensel’s lemma we have:
qu3 ~ ,u% . Uql3 . m% and ,u% ™~ Uy - pep,div Where psg is the ¢-Sylow subgroup of the group of
roots of units and g g4, is its ¢-divisible part.



e case 1: If P 1 £ then Uqg is a Zyp-module, as P is invertible in Zg, so Uql3 is £ -divisible and
S0 1S s, div - Uqg. We have h(G, psp,div - Uql}) = h(G, pp,aiv) - h(G, Uq%); but h(G, pp,aiv) = 1 (as
fisp,div 18 a finite group ) and h(G, Ug) = 1 s [Nel, p. 40] so: h(G, pip aiv - Ugy) := W(G, L%d”) =1
Moreover, if A is a G-module by definition H°(G, A) = Ker(§)/Im(v) where

0:A— B u:A— B
ar— (o0 —1)a ar—Trp, k,(a)

If a € Ker(é) N L%d” then a € (g, div - U%)G = (Up,div - Upl) since the extension is Galois, where

Ky~ pp - . div - Up1 . ﬂ%. Consequently a € Kde” and so we can choose b € K, such that
Kp]

= N(b). Tt follows that HO(G,L%diU) =1, as h(G,L%diU) = 1 and we finally get
H™ (G, L") = 1.

[Loy:
a=0b"

e case 2: If P | £ the group u% is /-divisible, and as the group of principal units is a noetherian

Z¢-module, it is isomorphic to the inverse limit of its finite quotients: L% ~ Moq:z -Uql3 -71'%3. Since
~—~
div part

ug% is finite we have h(G, M%) = 1; using the same arguments as in case 1, we finally obtain that
H'(G, Lglédi”) is trivial and so is H™(G, L%di”).

iii)Using Herbrand’s hexagon, we get H™*(G, L%/Lgd”) =1

iv) From Herbrand’s hexagon we obtain H°(G, Lqé) ~ H°(G, L%/L%v). But due to the local

class field axiom, we have: [H°(G, Lg§)| = [Ly : K,). Finally, we get |H(G, L%/Lg}”ﬂ = [Lyp : K.

v) We show that h/(G,RrL,) = [Ly : Kp].

We now consider the following exact sequence, where Zy is considered as a trivial G-module:
1 — Upy — Rpy —> Ly — 1.
Recall that

DIfP L Rpy ~Up-myf  and U, ~Ug
selse Rpy, = g - ﬂ'éf’ and  Up, >~ sy

So,
hé(GvT\)’Lgp) = he(GvuLgp) ’ h’f(Gv Zl)

Since Zy is a trivial G-module we have:
H(G,Z) ~Z¢/(|G|-Z¢) H NG, Z¢) =1 and h(G,Z) = [Lyp : K.

Consequently it suffices to show that h¢(G,Ur,) = 1.

For B t £: as usgp g is the ¢-Sylow subgroup of the group of units in L it is a finite group, so a
finite G-module; we use Herbrand’s property, we get h(G,Ur,,) = 1.

For B | £: we use h(G,UL,) =1 [Nel, p. 40] and the exact sequence:

1—Up, — ULy — Uy /UL, — 1



By Hensel’s lemma Up,, /Uim ~ r* where r is the residue field. So h(G,UL,) = h(G, Ui‘n) .
WG, ULy /Uy,,)- In this case we also obtain, h(G, U ) = 1.

In both cases, we have h¢(G,Ur,,) = 1. Finally h¢(G,RL,) = [Ly : Kp).

vi) Hence, we have:
MG, LG /L) = [Ly s Ky), MG LE/LE) =1, ha(GyRoy) = Ly : K.

As Ry = lim, L /qu,_fk = 7y © L/ L™ we get H(G, L /LE™) = H)(G, Ry,,) and we
obtain _
[H(G, L3 /LE™)| = HY(G, Rpy)| = [Lap : K]

But h(G, Ry ) = [Lg : K] so we deduce:
H, ' (G, RL,) = 1.

And since G is cyclic, we obtain
Hy(G,Rp,) = 1.

O

Corollary 2. (deg,v) is a class field pair, and Ax = Ry, satisfies the class field axiom. Thus for
all Galois {-extension Ly of a finite extension K, of Q, we get an isomorphism:

Gal(ng/Kp)“b ~ Rk, /NL‘n/Kp Riy-

In particular, we get a one to one correspondence between finite abelian (-extensions of a local field
and the closed subgroups of finite index of Ry, -

3 Global /-adic class field theory

3.1 Introduction

The fundamental global ¢-adic class field theory is the following;:

Theorem 3.1.1. [Jal, theorem 2.3] Given a number field K, the reciprocity map induces a contin-
uous isomorphism between the (-group of ideles Jx of K and the Galois group G4 = Gal(K*/K)
of the mazimal abelian pro-C-extension of K. The kernel of this morphism is the subgroup Ry
of principal ideles. In this correspondence, the decomposition subgroup Dy of a prime p of K is
the image in G of the sub-group Rk, of Jk; and the inertia sub-group I, is the image of the
subgroup of units U, of Ri,. The reciprocity map leads to a one to one correspondence between
closed sub-modules of Jx containing Ri and abelian {-extensions of K. FEach sub-extension of
K s the fized field of a unique closed sub-module of Jx containing Ry . In this correspondence,
finite and abelian (-extensions of K are associated to closed sub-modules of finite index of Jk
containing Ry, it means to open sub-modules of Jx containing Ry .

Our goal is to prove the existence of the reciprocity map in the global case using Neukirch’s
abstract theory. We now define all necessary ingredients to obtain the main theorem of ¢-adic class
field theory: Theorem 2.



3.2 The Herbrand quotient

Lemma 3.2.1. Let L/K be a finite extension of number fields, then the injection of Jk in JL,
induces an injection between their £-adic idele class groups: a- Rk — a-Rp.

Proof. The injection of Jx in Jr maps Ri to Ry thus the map is well-defined and yields a
homomorphism between Cx and Cr. To show that this homomorphism is injective it suffices to
prove that Jx N R, = Ri. Let M/K be the Galois closure of L/K, with Galois group G. We
have

Ik €I CIu and Rrg CRL CRum
thus

JxNRL C Ik NRur € (T NRm)E C Ik NRS; = Ik "R = Rk
O

Lemma 3.2.2. Let L/K be a finite Galois {-extension, G its Galois group, then the (-adic idele
class group Cr, of L is canonically a G-module and C¢ = Ck.

Proof. J, is a G-module which contains R, as a sub-G-module. The action (o,a-Rp) — o(a) Ry
endows Cy, with a G-module structure. As we have the exact sequence:

1—R, —J,—Cr —1
we obtain:
1 —RE — JF — €Y — H}(G,RyL).

But RY = (Zy ® LX)G =Z¢® (LX)G =Rk and J& = Jx. Theorem 1.0.1 and Hilbert’s theorem

90 imply H;(G,Rr) = 1 and we are done. O

Theorem 3.2.1. The Herbrand quotient of the (-adic idele class group.
Let L/K be a Galois cyclic £-extension of finite degree €™, G its Galois group then we have

mn

H(G.CL)
he(G.Cp)) = —/————— =
AGC) = 1G.en)

In particular (Cx : NpygCr) > £".

Proof. The proof runs in four steps.
Step 1:

We show in this part that for S a big enough set of primes we have:

Jx =Ji Rk where Jx =|JI% and JZ=[[(Rx,) []WUx,)
S pes pgS

where S runs through finite sets of primes of K.

10



Dg = @MOO IJZE ®p\m pi/Q‘Zf. We consider the topological direct sum: Jx = D @ Uk and the
map:
¢Z jK — DK
o = (ay)r— [ o

ptoo

This homomorphism is surjective and its kernel is jﬁ“, where Soo = {p | c0}. So we get the
isomorphism: jK/jg‘” ~ Dk . Let Pk be the the image of R in Dk, we get: Ry -jfg‘”/jjg“’ ~
Pk That is why:

T /Ri - Jo= ~ Dg [P ~ Clk

where Clk is the class group of divisors, [Jal, p. 364]. In particular Dy /Py is finite.

Let a1, as, ..., ap be representatives for classes in Dy /Pk; let py, ..., p; be the primes which divide
ai,az,...,ap and let S := Soo U{p1,...,p} Let a@ = (ap) € Tk, we write ¢(a) = a; - d where
d€Rgk. Then a-d~' e JZ.

Step 2: the cohomology of J; and J;
We first define for L/K a finite Galois extension (whose Galois group is G):

Il = HRL(;” Uy = l_[Z/ngp
Blp Blp

for each prime p of K. As an element of G permutes the primes over p, 7, f and L{E are G-modules
and we have:

JL = HPJE, Uy, = HPUE

Let P be a fixed prime of L over p, Gy = Gal(Ly/K,) C G the decomposition subgroup and o
run through the cosets G/Gy then: o(P) runs through the different primes of L over p, and

Ji = H Ri,p) = H o(Rry), Up = H UL, )
GGG/G{Q O’EG/G(p G’GG/G{Q
Thus we deduce that 7, f et Uz are induced G-modules and
JP =Mdg, (Rry), U =Indg (Us,).

We write for S a set of primes of K : Jf = JLg, where S is the set of primes of L over S. Then
we have the decomposition of G-modules:

jLS = H(HRL‘B) H(HUL‘I!) = ij ’ Huf

peS Plp PES PBlp pes pes

Proposition 3.2.1. Let S be the set of primes containing the infinite and the ramified primes, let
B be a prime of L over p and Gsp the decomposition sub-group; then for i = 0,1 we have:

Hé(GajI?):@Hé(GmaRLm) and Hé(GajL):@Hz(Gm’RLm)
peS p

11



Proof. We have Jp = Dpes Jl®V where V = [pes UF. That is why we obtain the isomor-
phism for ¢ =0, 1:

H)(G,J.) = PHG, Jf) ©H)(G,V) and the injection Hy(G,V) — [ Hy(G,U}).
pes pgs

Moreover by the previous proposition J f and Z/li are induced G-modules, so
i i G i
Hy(G, J}) ~ Hy(G, Mg*Rry) ~Hy(Gp, Rey)

i i G i
HZ(G’UE) = HZ(Ga MGmqus) = Hz(G%ULm)

Due to the choice of S, if p € S then Ly /K, is an unramified ¢-extension, hence Hé(Gm,ULm) =1
by the next proposition. O

Proposition 3.2.2. Let Ly /K, be an unramified {-extension then we have:

Hy(Gal(Leyp/Kyp),Ury,)) =1 fori=0,1.

Proof. The exact sequence: 1 — Ur,, — R, — Z¢ — 1 induces a long sequence of coho-
mology:
1 — Uk, — Rk, — Zy — Hy(Gal(Ly/K,),UL,,)

where the map Rrpy — Zy is the restriction of the valuation vy. As Ly/K, is an unramified
extension: er,, /x, = 1; this restriction is surjective so:

Hy(Gal(Ly/Ky),Ury,)) = 1.
But due to the proof p. 9, we have

he(Gal(Ly/Kp),Ur,)) =1 thus Hy(Gal(Ly/K,),Ury,)) = 1.

Consequently we obtain

pes
and . _ ' '
Hy(G, J1) = lim Hy(G, T) = lim P H (G, Rey) = D HY(Gop, Ry
S S p p
Step 3:

The ¢-group of S-units is € IS’( =RxNJ I? Let S be a set of primes containing the infinite and the
ramified primes, we show:

1
he(G,EF) = " [Tpes e,

12



where n, denotes the index of the decomposition sub-group. We are done as that the Herbrand
quotient, linked to a Galois module in a cyclic extension, only depends to the character of the
representation which is associated: it gives the structure of G-module up to a finite; and we use
the property which says that if you consider a sub-module of finite index then its Herbrand quotient
is trivial. This character is given by the Herbrand’s representation character.

Step 4: conclusion

Let S be the set of primes described before, then we have:
1—& — TP — TP Ru/RL=C, — 1.
As L/K is a cyclic (-extension we get:
he(G, TE) = he(G,ER) - he(G,Cp).
But

peS

for 4 = 0,1. From the local class field axiom we get:
[Hy (G, Rig) =np  and  [Hy(Gop, Riy)| =1

Thus, h(G,J}) = [1,esnp- By step 3: he(G,E7) = & Tyes . 50 hu(G,CL) = " n

3.3 The class field axiom

This subsection is devoted to prove:

Theorem 3.3.1. The class field axiom Let L/K be a cyclic {-extension of algebraic number
fields then we have:

; [ L:K] fori=0
/K.l ={ P
Proof. Since ho(G(L/K),Cr) = [L : K] = ¢", it suffices to show that
H; '(G(L/K),CL) = Hy(G(L/K),Cr) = 1.
We do it by induction on n.
(1) If n =0 then L = K and the result is true.

(i4) If n = 1 then L/K is a cyclic extension of prime degree /.

The exact sequence 1 — Ry — Jr, — Cr, leads to the Herbrand hexagon:

H?(GaRL) H%(GaJL)

— .

H,(G,Cp) HY)(G,Cp)

T 7

H,'(G,JL) =—H; (G, Ry)

13



By prop.3.2.4 we have Hj(G, J5) ~ HpESHé(Gm’RLm)' By the local class field axiom (theorem

2.5.1), we deduce Hy(G,Jy) = 1. Thus it suffices to prove that the map from H)(G,Rz) to
H)(G, J1) is injective: this follows from the f-adic Hasse norm theorem (theorem 3.3.2).

(14)If n > 1 then £ < €™, let M /K be a sub-extension of L/K of prime degree ¢.
We have
1 — Hy(G(M/K),Cn) — Hy(G(L/K),Cr) — Hy(G(L/M),Cr)
Indeed, if g is a normal subgroup of GG, and A a G-module, then the following sequence is exact:

0 — HY(G/g,A%) — HY(G, A) — H'(g, A)

By assumption Hy (G(M/K),Cy) = 1 as |G(M/K)| = £, and Hj(G(L/M),Cr) = 1 as |G(L/M)| =
¢n=1 < ¢n. Tt follows that H; (G(L/K),Cr) = 1. O

Theorem 3.3.2. (The (-adic Hasse Norm Theorem) If L/K is a cyclic extension of prime
degree €, an element of the (-group of principal ideles is a norm from L/K if and only if it is a
norm everywhere locally, i.e a norm from each completion Ly /K, where P | p.

Proof. Let x be a principal idele such that = = NL/K(y) where y € Rp. Since R, injectes in Jr,,
which surjectes to RL‘B we deduce that = is a norm everywhere locally.

Conversely assume x € Ry and write down & = Z.3/°, where Z denotes the image of = in K * /Kxe ~
R/ R%. Since L/K is a cyclic extensionof prime degree £, y* is a norm. Moreover, by hypothesis
x is a norm everywhere locally which means that each component Z,, for all p, is a norm. Using
the usual Hasse norm theorem we conclude that x is a norm. O

3.4 (G and the G-module

Let G be the Galois group of the maximal abelian pro-¢-extension of Q. The G-module is the union
of the f-adic iddele class groups Cx where K runs through the finite extensions of K: U[ K:Ql<oo Ck.
and Cy, is a Gal(L/K)-module.

3.5 deg:G+— 7y

We fix an isomorphism such that : Gal(Q/Q) ~ Z,. This allows to define :

deg : G=Gal(Q®/Q) — Z
o R

Q

Let K/Q a finite extension, we define: fx = [K NQ : Q] and we obtain, by analogy with the local
case, a surjective homomorphism deg; = fLK - deg such that deg, : Gx — Zy.

14



3.6 The valuation
Definition 5. Let L/K be a finite and abelian £-extension, we then define the map:
[ ! aL/K] = Hp(O‘PvLP/KP) fOT a € Jk

where Ly, denotes the completion of K, with respect to an arbitrary place B | p and (o, Ly /Ky) is
the local symbol.

Proposition 3.6.1. Let L/K and L'/K' be finite and abelian (-extensions of number fields such
that K C K' and L C L', then the following diagram is commutative:

T A cain k)

o !

T L Gan) k)

Proof. Take a = (asp) € Jrr. We get for P | p: (O“BvL;p/K;n)ILp = NK;,/KP (caup), Ly/K,) and

[Nir/x (@), L/ K] = H(NK//K(a)paLp/Kp) = H HNK(B/K,, (agp)
p P Blp

SO

[Niryx(a), L/ K] = [ [ (o, L/ Kop) 1 = [, L' /K] 1
B

Proposition 3.6.2. For all roots of units { and for all a € Rk we have
[a, (K(Q)/K) =1
where (K (¢)/K)¢ denotes the projection on the £- Sylow sub-group of Gal(K(¢)/K).

Proof. We follow [Nel, prop 6.3, p. 92|. By the previous proposition: [Nk /q(a), (Q(¢)/Q)¢] =
[a, (K(C)/K)djqc)- Consequently it suffices to show the property for K = Q. But

[a, (QO)/Q)J¢ = [ (@, (@p($)/Qp))e-

p

Let g be a prime and ¢ be a ¢™-root of unity, with ¢"* # 2. We take a € Rg, and write a = up~pvp(a)
where v, is the usual normalized valuation on Q,. For p # ¢ and p # oo the extension Q,({)/Qp
is an unramified extension. The fundamental principle [Nel, theorem 2.6, p. 25| states that the
local symbol associates the uniformising element to the Frobenius, one gets that (p, (Q,(¢)/Qp))e
corresponds to the Frobenius automorphism ¢, : ( — (?. Moreover the following diagram is
commutative:

RS TLOINERT

| !

Ric L Gallly /Kp))e, Gal(Ly/Ky)e

P
where the symbol on the top is the usual local symbol, and the symbol on the bottom is the ¢-adic
local symbol. Consequently, one deduces

(a, (Qp(€)/Qp)e)C = ¢

15



with
pr(@  forp #qet p# oo
1

np = U, forp=gq

sgn(a) for p=o0
So
[a, (QQ)/Q)el¢ = [ [ (e, (@p()/Qp)e) = ¢°
p
And due to the product formula, a =[], n, = sgn(a) - [[,. prl@) . g=1 =1, O

Definition 6. We define the valuation vk : Cx — Zy as follows:

[-K/K]

Cx GK/K) -2, 7,

Lemma 3.6.1. vk is well defined.

Proof. We show that Va € Ry, [a, K/K] = 1. As K/K is contained in the extension of K ob-
tained by adjoining roots of units it sufficies to show that, for a € Ri and ¢ a root of unit,
[a, (K(¢)/K)e] = 1, this is proposition 3.6.2. Thus we deduce that Rx C Ker([-, K/K]) . O

Lemma 3.6.2. vk is surjective and [Cx, Gal(K /K)) is closed in Gal(K/K).

Proof. We follow [Nel, prop 6.4, p. 93] . The local symbol is surjective, [Tk, Gal(L/K)] con-
tains all decomposition groups Gal(Ly/K,). Thus all p splits completely in the fixed field M of
[Jx,Gal(L/K)]. This implies M = K ansso [Jx, Gal(L/K)] = Gal(L/K) and that [ 7, Gal(K /K)].
This yields furthermore that [Jx, Gal(K /K) = [Cx, Gal(K /K)] is dense in Gal(K /K). O

Lemma 3.6.3. [Cx, Gal(K /K)] is dense in Gal(K/K).

Proof. We have [Jx,Gal(K/K) = [C{(,Gal(f(/K)] as [Ri,Gal(K/K) = 1. Let Gal(K/L) be a
neighborhood of the neutral in Gal(K/K), where L is a finite Galois extension of K of degree
0" As Jx = Uk % @ﬂ'?f where U is the f-adic group of units, a neighborhood of the neutral

is of the shape: L{}( X @Wﬁkpzf where L{}( is an open submodule of Ux and k, an integer. We

can choose k, > n. Thus the image of ﬁgkpzf is trivial through the local symbol. Moreover if

p | ¢ then the local extension is unramified and the image of an element of U;( is trivial. If p t ¢
then thanks to the filtration of the group of units we can obtain a trivial image. Therefore the
map [ - ,Gal(K/K)] : Jx + Gal(K/K) is continuous and as Cr is compact, we deduce that
[Cx,Gal(K /K)] is dense in Gal(K /K). O

Lemma 3.6.4. vk is henselian with respect to deg.
Proof. We have:
vk (N kCr) = v (N J1) = degk o [Nk T, K /K]

(as [Rx, Gal(K/K)] = 1). Moreover degx = fLK -deg and fr,x = fr/fk that is why degx =
Jr/K - degr. By proposition 3.6.1, the diagram is commutative:

g L Gali)n)

| !

T S Gal(R k)
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consequently [Ny, x JrL, K/K] = |J1, L/L] thus we deduce, by the surjectivity of vy, that

vk (N kCr) = fr Kk - degr o [Jp, L/L] = fr/x - vn(CL) = fr/x - Za

Corollary 3. vk is well defined and both surjective and henselian with respect to deg.

Corollary 4. (deg,v) is a class field pair, and Ax := Cx satisfies the class field axiom. Thus for
all Galois C-extension of a number field K we get an isomorphism:

Gal(L/K)*™ ~ C /N kCr.

In particular, we get a one to one correspondence between finite and abelian (-extensions of a
number field K and open subgroups of Ck .
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