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A FORMAL APPROACH “À LA NEUKIRCH” OF ℓ-ADIC CLASS FIELD

THEORY

Stéphanie Reglade

Abstract: Neukirch developed abstract class field theory in his famous book “Class Field Theory”. We show that it

is possible to derive Jaulent’s ℓ-adic class field from Neukirch’s framework. The proof requires in both cases (local

case and global case) to define suitable degree maps, G-modules, valuations and to prove the class field axiom.

Key words: class field theory, ℓ-adic class field theory.

AMS Classification: 11R37

Contents

1 Preliminary 2

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Zℓ-cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Local ℓ-adic class field theory 3

2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 G and the G-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 deg : G 7→ Zℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 The class field axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Global ℓ-adic class field theory 9

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Herbrand quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The class field axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 G and the G-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 deg : G 7→ Zℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 The valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Introduction:

The ℓ-adic class field theory, developed by Jaulent [Ja1], claims, in the local case, the existence of
an isomorphism between the Galois group of the maximal and abelian pro-ℓ-extension of a finite
extension Kp of Qp and the ℓ-adification of the multiplicative group of this local field; in the
global case the existence of an isomorphism between the Galois group of the maximal and abelian
pro-ℓ-extension of a number field K and the ℓ-adification of the group of ideles.
Our goal in this paper is to rederive this theory, following Neukirch’s abstract framework. It
requires to define the degree map, the G-module and the valuation in the local and in the global
case. We will have to check that the valuations are henselian with respect to the degree map, and
to prove in each case the class field axiom.
We start with the local case in §2: we define suitable cohomology groups Hi

ℓ(G, V ) in §1. After
recalling the keypoints of Neukirch’s abstract therory in §2.1, we define the group G, the G-
module,the degree map deg : G 7→ Zℓ and the valuation in §2.2 to 2.4. Our main result is the class
field axiom:

1



Theorem For all cyclic ℓ-extension LP of a local field Kp we have

|Hi
ℓ(G(LP/Kp),RLP

)| =

{
[LP : Kp] for i = 0
1 for i = 1

We then treat the global case, our main result is:

Theorem Let L/K be a cyclic ℓ-extension of algebraic number fields then we have:

|Hi
ℓ(G(L/K), CL)| =

{
[L : K] for i = 0
1 for i = 1

The proof requires first to compute the Herbrand quotient of the idele class ℓ-group (theorem
3.2.1). We again define G, the G-module, deg : G 7→ Zℓ and the valuation in & 3.3 to 3.5.

1 Preliminary

1.1 Notations

In the following ℓ is a fixxed rational prime number. Let’s introduce the notations:

For a local field Kp with maximal ideal p and uniformizer πp, we let

RKp
= lim
←−k

K×
p �K×ℓk

p : the ℓ-adification of the multiplicative group of a local field

UKp
= lim
←−k

Up�U ℓk

p : the ℓ-adification of the group of units Up of Kp

U1
p : the group of principal units of Kp

µ0
p: the subgroup of Up, whose order is finite and prime to p

µp: the ℓ- Sylow subgroup of µ0
p

For a number field K we define
RK = Zℓ ⊗Z K× : the ℓ-adic group of principal ideles

JK =
∏res

p∈PlK
RKp

: the ℓ-adic idele group

UK =
∏

p∈PlK
UKp

: the subgroup of units

CK = JK/RK : the ℓ-adic idele class group

1.2 The Zℓ-cohomology

We use the following cohomology for Zℓ-modules.

Definition 1. Let Fn −→ · · · −→ F0 −→ Zℓ −→ 0 be a projective resolution of Zℓ[G]-modules,
where G is a ℓ-group. Applying the functor HomG(.,Zℓ ⊗A) we obtain:

0 −→ HomG(Zℓ,Zℓ ⊗A) −→ HomG(F0,Zℓ ⊗A) −→ HomG(F1,Zℓ ⊗A) −→ · · ·

· · · −→ HomG(Fn−1,Zℓ ⊗A)
δ
′

n−1
−→ HomG(Fn,Zℓ ⊗A)

δ
′

n−→ HomG(Fn+1,Zℓ ⊗A) · · ·

We denote Hn
ℓ (G,Zℓ ⊗A) := Kerδ

′

n/Imδ
′

n−1.

Theorem 1.2.1. If G is a ℓ-group, and A a G-module then:

Hi
ℓ(G,Zℓ ⊗A) = Zℓ ⊗Hi(G,A)
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Proof. We start with the projective resolution of free Fi Z[G]-modules:

Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ Z −→ 0.

i)Applying the functor HomG(., A) we get:

0 −→ HomG(Z, A) −→ · · · −→ HomG(Fn−1, A)
δn−1
−→ HomG(Fn, A)

δn−→ HomG(Fn+1, A) −→ · · ·

and
Hn(G,A) := Kerδn/Imδn−1.

ii)Since Zℓ is a flat module, we obtain:

Zℓ ⊗ Fn −→ Zℓ ⊗ Fn−1 −→ · · · −→ Zℓ ⊗ F0 −→ Zℓ −→ 0.

Applying now the functor HomG(.,Zℓ ⊗A) we get:

0 −→ HomG(Zℓ,Zℓ⊗A) −→ · · · −→ HomG(Zℓ⊗Fn−1,Zℓ⊗A)
δ
′

n−1
−→ HomG(Zℓ⊗Fn,Zℓ⊗A)

δ
′

n−→ · · ·

and
Hn

ℓ (G,Zℓ ⊗A) := Kerδ
′

n/Imδ
′

n−1.

iii) We now show that HomG(Zℓ ⊗ Fi,Zℓ ⊗A) = Zℓ ⊗HomG(G,A).

The Fi are free Z[G]-modules, using the additivity of the functor HomG(., A) it suffices to check
the property on Z[G]. But

HomG(Z[G], A) ≃ A and HomG(Zℓ[G],Zℓ ⊗A) ≃ Zℓ ⊗A.

iv) We now show that: Kerδ
′

n = Zℓ ⊗Kerδn and Imδ
′

n−1 = Zℓ ⊗ Imδn−1.

Indeed, given a Z-linear map u : M −→ N and the corresponding u
′

: Zℓ ⊗M −→ Zℓ ⊗ N ; we
have, since Zℓ is flat, the exact sequence:

0 −→ Zℓ ⊗Ker(u) −→ Zℓ ⊗M −→ Zℓ ⊗ Im(u) −→ 0.

Usually we also have Im(u) ⊂ N and Zℓ ⊗ Im(u) ⊂ Zℓ ⊗N by flatness of Zℓ. Finally,

Kerδ
′

n/Imδ
′

n−1 ≃ Zℓ ⊗ (Kerδn/Imδn−1).

Corollary 1. Let G be a finite cyclic ℓ-group, and A a G-module then the Herbrand quotient

hℓ(G,A) :=
Hℓ(G,Zℓ⊗A)

H
−1
ℓ

(G,Zℓ⊗A)
satisfies:

i) if A is a finite G-module, hℓ(G,A) = 1.

ii) if we have an exact sequence of G-modules: 0 −→ A −→ B −→ C −→ 0 then hℓ(G,B) =
hℓ(G,A) · hℓ(G,C).

iii) H1
ℓ(G,Zℓ ⊗A) ≃ H−1

ℓ (G,Zℓ ⊗A).

2 Local ℓ-adic class field theory

2.1 Framework

The fundamental local ℓ-adic theorem is:
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Theorem 2.1.1. [Ja1, theorem 2.1] Given a local field Kp/Qp, the reciprocity map induces

an isomorphism of topological Zℓ-modules between RKp
= lim
←−k

K×
p /Kℓk

p and the Galois group

Dp = Gal(Kab
p /Kp) of the maximal and abelian pro-ℓ-extension of Kp. Trough this isomorphism,

the image of the inertia sub-group Ip is the sub-group of units UKp
of RKp

. The reciprocity map
induces a one to one correspondence between closed sub-modules of RKp and abelian ℓ-extensions
of Kp: in this correspondence, finite abelian ℓ-extensions are associated to closed sub-modules of
finite index of RKp

; it means to open sub-modules of RKp
.

Our purpose is to prove the existence of the local reciprocity map using Neukirch’s abstract
class field theory, which we now briefly recall [Ne1, p. 18-36]. We consider the following general
framework: G is an abstract profinite group, whose closed subgroups are denoted by GK , those
indices K are called “fields”. G is equipped with a continuous and surjective homomorphism
deg : G −→ Ẑ.

1. We denote by k the field such that Gk = G.

2. We denote by k̄ the field such that Gk̄ = {1}.

3. If GL ⊂ GK , we write K ⊂ L.

4. L/K is said finite if GL is open ( closed of finite index) in GK ; the degree [L : K] is then
defined by [L : K] = (GK : GL).

5. We write K =
∏

Ki for GK = ∩iGKi .

6. We write K = ∩Ki if GK is topologically generated by the GKi .

7. If GL is normal in GK we say that L/K is a Galois extension and we write Gal(L/K) :=
GK/GL.

8. The kernel of deg is a subgroup of G denoted by Gk̃ = I such that G/Gk̃ ≃ Ẑ. We can
restrict deg to GK and define:

fK = (Z : deg(GK)) eK = (Gk̃ : GK̃) IK = GK̃ .

If L/K is an extension we put:

fL/K = (deg(GK) : deg(GL)) eL/K = (IK : IL).

They satisfy the following relations:

fL/K = fL/fK [L : K] = eL/K · fL/K .

9. If K is a finite extension k we define K̃ = K · k̃.

Neukirch’s theory requires a G-module and a henselian valuation with respect to deg

[Ne2, p. 288]: a multiplicative G-module A is an abelian multiplicative group endowed with a
continuous right action

σ : A → A
a 7→ aσ

i.e such that A =
⋃

[K:k]<∞ AK , where AK := {a ∈ A | aσ = a, ∀σ ∈ GK} = AGK and where K
runs through all finite extensions of k.

This allows to define a new map, the norm map, which goes to the G-module AK in Ak:

4



NK/k(a) =
∏

σ a
σ

where σ runs through a representative coset of GK/GL.

A henselian valuation of Ak with respect to deg : G → Ẑ is a homomorphism satisfying the
following properties:s [Ne2, p. 288]

(i) v(Ak) = Z such that Z ⊂ Z and Z/n · Z ≃ Z/n · Z for all n > 0

(ii) v(NK/kAK) = fK .Z for all extensions K of k.

Finally we introduce the class field axiom:

Axiom: For all cyclic extension L/K, we have:

|Hi(G(L/K), AL)| =

{
[L : K] for i = 0
1 for i = −1

In this context Neukirch proves the following fundamental theorem: [Ne1, p. 28]

Theorem 2.1.2. Let L/K be a finite Galois extension, σ ∈ G(L/K)ab, σ̃ ∈ Gal(L̃/K), (which is
the Frobenius lift of σ) and Σ i be the fixed field of σ̃, then the homomorphism

rL/K : G(L/K)ab −→ AK/NL/K(AL)

σ 7−→ NΣ/K(πΣ) mod NL/KAL

is an isomorphism, where πΣ is a prime element of AΣ.

We now define all necessary ingredients to obtain the main theorem of ℓ-adic class field theory:
theorem 2.5.1.

2.2 G and the G-module

We consider the following context:

. k is a local field, (we use this notation instead of kp).

. knr is the maximal unramified pro-ℓ-extension of k: the compositum of all unramified ℓ-
extensions.

. k̂ is the maximal pro-ℓ-extension of k: the compositum of ℓ-extensions of k.

Classically Gal(knr/k) ≃ Zℓ [Ne1, p. 41-42].

We write

G = Gal(k̂/k)

We consider the following Z-module:
A = lim

−→
LP

RLP

where LP runs through all finite extensions of Kp, and RLP
= lim
←−k

L×
P�L×ℓk

P . It is canonically
identified to

A =
⋃

[LP:Kp]<∞

RLP
.

If LP is a finite extension of Kp,
ALP

= RLP

is a Gal(LP/Kp) module. The group G now axts on A acts component by component.
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2.3 deg : G 7→ Zℓ

Definition 2. Let φ ∈ G, its restriction to knr defines an element of Zℓ, due to the isomorphism
Gal(k̂/k) ≃ Zℓ. We define:

deg : G −→ Zℓ

φ 7−→ φ|knr

deg is a surjective homomorphism whose kernel is Gknr so that: G/Gknr ≃ Gal(knr/k) ≃ Zℓ.

Definition 3. Given a finite ℓ-extension K of k ,we define:

fK := (Zℓ : deg(GK) eK := (Gknr : IK)

IK = GKnr ∩GK = GK·knr := GKnr

Definition 4. If L/K is a finite ℓ-extension we define:

fL/K = (deg(GK) : deg(GL)) eL/K = (IK : IL)

Proposition 2.3.1. We have the following fundamental relations:

fL/K = fL/fK eL/K · fL/K = [L : K]

Proof. [Ne2, p. 286]

2.4 The valuation

In ℓ-adic class field theory, the degree is a homomorphism from G to Zℓ, and the valuation v is a
homomorphism from Ak to Zℓ. In this part, we denote by Kp a local field.

For a finite extension LP, we defined

ALP
= RLP

= lim
←−
k

L×
P�L×ℓk

P

a Gal(LP/Kp)-module. Jaulent proved that [Ja1, proposition 1.2]:

RLP
≃ U1

P · π
Zℓ

P if P | ℓ

RLP
≃ µP · π

Zℓ

P if P ∤ ℓ

This allows to define the valuation vP as giving the power in Zℓ of the uniformising element.

Proposition 2.4.1. This valuation vP is henselian with respect to deg : G 7→ Zℓ.

Proof. The valuation associated to RKp
, vp, is a surjective homomorphism; hence

vp(RKp
) = Zℓ := Z; and indeed Z/n.Z ≃ Z/n.Z for all n > 0.

We now check that vp(NLP/Kp
RKp

) = fLP/Kp
·Z. The valuation vL : RLP

−→ Zℓ can be viewed
as an extension of the usual normalized valuation of LP, denoted by wP. In fact, we have the
following commutative diagrams:

L×
P −−−−→ RLP

K×
p −−−−→ RKp

wP

y
yvP wp

y
yvp

Z −−−−→ Zℓ Z −−−−→ Zℓ
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The valuation wp extends uniquely to LP by: 1
[LP:Kp]

(wp ◦ NLP/Kp
) and thus vp extends

uniquely to LP. As 1
eLP/Kp

· wP is the continuation of wp, we get:

1

eLP/Kp

· vP(RLP
) =

1

[LP : Kp]
· vp(NLP/Kp

RKp
) =

1

eLP/Kp
.fLP/Kp

· vp(NLP/Kp
Rk)

So we deduce that:

fLP/Kp
· vP(RLP

) = vk(NLP/kRk)

Yet we have the relation fLP/Kp
= fLP

/fKp
, and due to the definition of fKp

we have fKp
= (Zℓ :

d(GKp
)) = 1 as the degree is surjective. Finally, we get:

fLP/Kp
· vP(RLP

) = fLP/Kp
· Zℓ = vp(NLP/Kp

RKp
)

for all finite extension LP/Kp of Kp, the second point point (ii) is also checked.

2.5 The class field axiom

We must show:

Theorem 2.5.1. For all cyclic ℓ-extension LP of a local field Kp we have

|Hi
ℓ(G(LP/Kp),RLP

)| =

{
[LP : Kp] for i = 0
1 for i = 1

Proof. Let G := G(LP/Kp)

We consider the following exact sequence:

1 −→ L×div
P −→ L×

P −→ L×
P/L

×div
P −→ 1

where L×div
P is the ℓ-divisible part of L×

P. We recall that a multiplicative abelian group is said
ℓ-divisible if each element is a ℓn-th power for an integer n. Since G is cyclic, we obtain the
Herbrand hexagon:

H0(G,L×div
P ) // H0(G,L×

P)

((Q
QQ

QQ
QQ

QQ
QQ

Q

H−1(G,L×
P/L×div

P )

66mmmmmmmmmmmm

H0(G,L×
P/L×div

P )

vvmm
mm
mm
mm
mm
mm

H−1(G,L×
P)

hhQQQQQQQQQQQQQ

H−1(G,L×div
P )oo

i) Hilbert’s theorem 90 states that H−1(G,L×
P) = 1.

ii)We show that H0(G,L×div
P ) = 1 and H−1(G,L×div

P ) = 1. By Hensel’s lemma we have:

L×
P ≃ µ0

P · U
1
P · π

Z
P and µ0

P ≃ µP · µP,div where µP is the ℓ-Sylow subgroup of the group of
roots of units and µP,div is its ℓ-divisible part.
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• case 1 : If P ∤ ℓ then U1
P is a ZP-module, as P is invertible in Zℓ, so U1

P is ℓ -divisible and

so is µP,div · U
1
P. We have h(G,µP,div · U

1
P) = h(G,µP,div) · h(G,U1

P); but h(G,µP,div) = 1 (as

µP,div is a finite group ) and h(G,U1
P) = 1 s [Ne1, p. 40] so: h(G,µP,div ·U

1
P) := h(G,L×div

P ) = 1.

Moreover, if A is a G-module by definition H0(G,A) = Ker(δ)/Im(ν) where

δ : A −→ B µ : A −→ B

a 7−→ (σ − 1)a a 7−→ TrLP/Kp
(a)

If a ∈ Ker(δ) ∩ L×div
P then a ∈ (µP,div · U

1
P)

G = (µp,div · U
1
p ) since the extension is Galois, where

K×
p ≃ µp · µp,div · U

1
p · π

Z
p . Consequently a ∈ K×div

p and so we can choose b ∈ K×
p such that

a = bℓ
[LP:Kp]

= N(b). It follows that H0(G,L×div
P ) = 1, as h(G,L×div

P ) = 1 and we finally get

H−1(G,L×div
P ) = 1.

• case 2 : If P | ℓ the group µ0
P is ℓ-divisible, and as the group of principal units is a noetherian

Zℓ-module, it is isomorphic to the inverse limit of its finite quotients: L×
P ≃ µ0

P︸︷︷︸
div part

·U1
P ·π

Z
P. Since

µ0
P is finite we have h(G,µ0

P) = 1; using the same arguments as in case 1, we finally obtain that

H0(G,L×div
P ) is trivial and so is H−1(G,L×div

P ).

iii)Using Herbrand’s hexagon, we get H−1(G,L×
P/L×div

P ) = 1.

iv) From Herbrand’s hexagon we obtain H0(G,L×
P) ≃ H0(G,L×

P/L
div
P ). But due to the local

class field axiom, we have: |H0(G,L×
P)| = [LP : Kp]. Finally, we get |H0(G,L×

P/L
div
P )| = [LP : Kp].

v) We show that hℓ(G,RLP
) = [LP : Kp].

We now consider the following exact sequence, where Zℓ is considered as a trivial G-module:

1 −→ ULP
−→ RLP

vP
−→ Zℓ −→ 1.

Recall that

: if P | ℓ RLP
≃ U1

P · π
Zℓ

P and ULP
≃ U1

P

: else RLP
≃ µP · π

Zℓ

P and ULP
≃ µP

So,
hℓ(G,RLP

) = hℓ(G,ULP
) · hℓ(G,Zℓ).

Since Zℓ is a trivial G-module we have:

H0(G,Zℓ) ≃ Zℓ/(|G| · Zℓ) H−1(G,Zℓ) = 1 and h(G,Zℓ) = [LP : Kp].

Consequently it suffices to show that hℓ(G,ULP
) = 1.

For P ∤ ℓ: as µP,ℓ is the ℓ-Sylow subgroup of the group of units in LP it is a finite group, so a
finite G-module; we use Herbrand’s property, we get h(G,ULP

) = 1.

For P | ℓ: we use h(G,ULP
) = 1 [Ne1, p. 40] and the exact sequence:

1 −→ U1
LP
−→ ULP

−→ ULP
/U1

LP
−→ 1

8



By Hensel’s lemma ULP
/U1

LP
≃ κ∗ where κ is the residue field. So h(G,ULP

) = h(G,U1
LP

) ·

h(G,ULP
/U1

LP
). In this case we also obtain, h(G,U1

LP
) = 1.

In both cases, we have hℓ(G,ULP
) = 1. Finally hℓ(G,RLP

) = [LP : Kp].

vi) Hence, we have:

|H0(G,L×
P/L

div
P )| = [LP : Kp], |H−1(G,L×

P/Ldiv
P )| = 1, hℓ(G,RLP

) = [LP : Kp].

As RLP
= lim
←−k

L×
P�L×ℓk

P = Zℓ ⊗ L×
P/L×div

P we get H0(G,L×
P/L×div

P ) = H0
ℓ(G,RLP

) and we
obtain

|H0(G,L×
P/L×div

P )| = |H0
ℓ (G,RLP

)| = [LP : Kp]

But h(G,RLP
) = [LP : Kp] so we deduce:

H−1
ℓ (G,RLP

) = 1.

And since G is cyclic, we obtain
H1

ℓ(G,RLP
) = 1.

Corollary 2. (deg, v) is a class field pair, and AK = RKp
satisfies the class field axiom. Thus for

all Galois ℓ-extension LP of a finite extension Kp of Qp we get an isomorphism:

Gal(LP/Kp)
ab ≃ RKp

/NLP/Kp
RLP

.

In particular, we get a one to one correspondence between finite abelian ℓ-extensions of a local field
and the closed subgroups of finite index of RKp

.

3 Global ℓ-adic class field theory

3.1 Introduction

The fundamental global ℓ-adic class field theory is the following:

Theorem 3.1.1. [Ja1, theorem 2.3] Given a number field K, the reciprocity map induces a contin-
uous isomorphism between the ℓ-group of ideles JK of K and the Galois group Gab

K = Gal(Kab/K)
of the maximal abelian pro-ℓ-extension of K. The kernel of this morphism is the subgroup RK

of principal ideles. In this correspondence, the decomposition subgroup Dp of a prime p of K is
the image in Gab

K of the sub-group RKp
of JK ; and the inertia sub-group Ip is the image of the

subgroup of units UKp
of RKp

. The reciprocity map leads to a one to one correspondence between
closed sub-modules of JK containing RK and abelian ℓ-extensions of K. Each sub-extension of
Kab is the fixed field of a unique closed sub-module of JK containing RK . In this correspondence,
finite and abelian ℓ-extensions of K are associated to closed sub-modules of finite index of JK
containing RK , it means to open sub-modules of JK containing RK .

Our goal is to prove the existence of the reciprocity map in the global case using Neukirch’s
abstract theory. We now define all necessary ingredients to obtain the main theorem of ℓ-adic class
field theory: Theorem 2.
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3.2 The Herbrand quotient

Lemma 3.2.1. Let L/K be a finite extension of number fields, then the injection of JK in JL
induces an injection between their ℓ-adic idele class groups: α · RK 7−→ α · RL.

Proof. The injection of JK in JL maps RK to RL thus the map is well-defined and yields a
homomorphism between CK and CL. To show that this homomorphism is injective it suffices to
prove that JK ∩ RL = RK . Let M/K be the Galois closure of L/K, with Galois group G. We
have

JK ⊆ JL ⊆ JM and RK ⊆ RL ⊆ RM

thus

JK ∩RL ⊆ JK ∩RM ⊆ (JK ∩RM )G ⊆ JK ∩R
G
M = JK ∩RK = RK .

Lemma 3.2.2. Let L/K be a finite Galois ℓ-extension, G its Galois group, then the ℓ-adic idele
class group CL of L is canonically a G-module and CGL = CK .

Proof. JL is a G-module which contains RL as a sub-G-module. The action (σ, α·RL) 7→ σ(α)·RL

endows CL with a G-module structure. As we have the exact sequence:

1 −→ RL −→ JL −→ CL −→ 1

we obtain:

1 −→ RG
L −→ J

G
L −→ C

G
L −→ H1

ℓ (G,RL).

But RG
L = (Zℓ ⊗ L×)

G
= Zℓ ⊗ (L×)

G
= RK and JG

L = JK . Theorem 1.0.1 and Hilbert’s theorem
90 imply H1

ℓ (G,RL) = 1 and we are done.

Theorem 3.2.1. The Herbrand quotient of the ℓ-adic idele class group.

Let L/K be a Galois cyclic ℓ-extension of finite degree ℓn, G its Galois group then we have

hℓ(G, CL) =
|H0

ℓ(G, CL|

|H1
ℓ(G, CL)|

= ℓn.

In particular (CK : NL/KCL) ≥ ℓn.

Proof. The proof runs in four steps.

Step 1:

We show in this part that for S a big enough set of primes we have:

JK = J S
K · RK where JK =

⋃

S

J S
K and J S

K =
∏

p∈S

(RKp
)
∏

p6∈S

(UKp
)

where S runs through finite sets of primes of K.
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DK :=
⊕

p∤∞ pZℓ
⊕

p|∞ pZℓ/2·Zℓ . We consider the topological direct sum: JK = DK ⊕ UK and the
map:

φ : JK −→ DK

α = (αp) 7−→
∏

p∤∞

pvp(αp)

This homomorphism is surjective and its kernel is J S∞

K , where S∞ = {p | ∞}. So we get the

isomorphism: JK/J S∞

K ≃ DK . Let PK be the the image of RK in DK , we get: RK · J
S∞

K /J S∞

K ≃
PK That is why:

JK/RK · J
S∞

K ≃ DK/PK ≃ CℓK

where CℓK is the class group of divisors, [Ja1, p. 364]. In particular DK/PK is finite.

Let a1, a2, . . . , ah be representatives for classes in DK/PK ; let p1, . . . , pl be the primes which divide
a1, a2, . . . , ah and let S := S∞ ∪ {p1, . . . , pl} Let α = (αp) ∈ JK , we write φ(α) = ai · d where
d ∈ RK . Then α · d−1 ∈ J S

K .

Step 2: the cohomology of JL and J S
L

We first define for L/K a finite Galois extension (whose Galois group is G):

J p
L =

∏

P|p

RLP
, Up

L =
∏

P|p

ULP

for each prime p of K. As an element of G permutes the primes over p, J p
L and Up

L are G-modules
and we have:

JL =
∏

pJ
p
L , UL =

∏
p U

p
L

Let P be a fixed prime of L over p, GP = Gal(LP/Kp) ⊆ G the decomposition subgroup and σ
run through the cosets G/GP then: σ(P) runs through the different primes of L over p, and

J p
L =

∏

σ∈G/GP

RLσ(P) =
∏

σ∈G/GP

σ(RLP
), Up

L =
∏

σ∈G/GP

ULσ(P)

Thus we deduce that J p
L et Up

L are induced G-modules and

J p
L = IndG

GP
(RLP

), Up
L = IndG

GP
(ULP

).

We write for S a set of primes of K : JS
L := JS

L , where S is the set of primes of L over S. Then
we have the decomposition of G-modules:

J S
L =

∏

p∈S

(
∏

P|p

RLP
)
∏

p6∈S

(
∏

P|p

ULP
) =

∏

p∈S

J p
L ·

∏

p6∈S

Up
L.

Proposition 3.2.1. Let S be the set of primes containing the infinite and the ramified primes, let
P be a prime of L over p and GP the decomposition sub-group; then for i = 0, 1 we have:

Hi
ℓ(G,J S

L ) ≃
⊕

p∈S

Hi
ℓ(GP,RLP

) and Hi
ℓ(G,JL) ≃

⊕

p

Hi
ℓ(GP,RLP

)

11



Proof. We have J S
L =

⊕
p∈S J

p
L ⊕ V where V =

∏
p6∈S U

p
L. That is why we obtain the isomor-

phism for i = 0, 1:

Hi
ℓ(G,JL) =

⊕

p∈S

Hi
ℓ(G,J p

L)⊕Hi
ℓ(G, V ) and the injection Hi

ℓ(G, V ) −→
∏

p6∈S

Hi
ℓ(G,Up

L).

Moreover by the previous proposition J p
L and Up

L are induced G-modules, so

Hi
ℓ(G,J p

L) ≃ Hi
ℓ(G,M

GP

G RLP
) ≃ Hi

ℓ(GP,RLP
)

Hi
ℓ(G,Up

L) ≃ Hi
ℓ(G,M

GP

G ULP
) ≃ Hi

ℓ(GP,ULP
)

Due to the choice of S, if p 6∈ S then LP/Kp is an unramified ℓ-extension, hence Hi
ℓ(GP,ULP

) = 1
by the next proposition.

Proposition 3.2.2. Let LP/Kp be an unramified ℓ-extension then we have:

Hi
ℓ(Gal(LP/Kp),ULP

)) = 1 for i = 0, 1.

Proof. The exact sequence: 1 −→ ULP
−→ RLP

−→ Zℓ −→ 1 induces a long sequence of coho-
mology:

1 −→ UKp
−→ RKp

−→ Zℓ −→ H1
ℓ(Gal(LP/Kp),ULP

)

where the map RLP
−→ Zℓ is the restriction of the valuation vP. As LP/Kp is an unramified

extension: eLP/Kp
= 1; this restriction is surjective so:

H1
ℓ(Gal(LP/Kp),ULP

)) = 1.

But due to the proof p. 9, we have

hℓ(Gal(LP/Kp),ULP
)) = 1 thus H0

ℓ(Gal(LP/Kp),ULP
)) = 1.

Consequently we obtain

Hi
ℓ(G,J S

L ) ≃
⊕

p∈S

Hi
ℓ(GP,RLP

)

and
Hi

ℓ(G,JL) = lim
←−
S

Hi
ℓ(G,J S

L ) = lim
←−
S

⊕

p

Hi
ℓ(GP,RLP

) =
⊕

p

Hi
ℓ(GP,RLP

)

Step 3:

The ℓ-group of S-units is ESK = RK ∩J
S
K . Let S be a set of primes containing the infinite and the

ramified primes, we show:

hℓ(G, ESL ) =
1

ℓn
∏

p∈S np,
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where np denotes the index of the decomposition sub-group. We are done as that the Herbrand
quotient, linked to a Galois module in a cyclic extension, only depends to the character of the
representation which is associated: it gives the structure of G-module up to a finite; and we use
the property which says that if you consider a sub-module of finite index then its Herbrand quotient
is trivial. This character is given by the Herbrand’s representation character.

Step 4: conclusion

Let S be the set of primes described before, then we have:

1 −→ ESL −→ J
S
L −→ J

S
L · RL/RL = CL −→ 1.

As L/K is a cyclic ℓ-extension we get:

hℓ(G,J S
L ) = hℓ(G, ESK) · hℓ(G, CL).

But
Hi

ℓ(G,J S
L ) ≃

∏

p∈S

Hi
ℓ(GP,RLP

)

for i = 0, 1. From the local class field axiom we get:

|H0
ℓ(GP,RLP

)| = np and |H1
ℓ(GP,RLP

)| = 1

Thus, hℓ(G,J S
L ) =

∏
p∈S np. By step 3: hℓ(G, ESL ) =

1
ℓn

∏
p∈S np, so hℓ(G, CL) = ℓn

3.3 The class field axiom

This subsection is devoted to prove:

Theorem 3.3.1. The class field axiom Let L/K be a cyclic ℓ-extension of algebraic number
fields then we have:

|Hi
ℓ(G(L/K), CL)| =

{
[L : K] for i = 0
1 for i = 1

Proof. Since hℓ(G(L/K), CL) = [L : K] = ℓn, it suffices to show that

H−1
ℓ (G(L/K), CL) = H1

ℓ(G(L/K), CL) = 1.

We do it by induction on n.

(i) If n = 0 then L = K and the result is true.

(ii) If n = 1 then L/K is a cyclic extension of prime degree ℓ.

The exact sequence 1 −→ RL −→ JL −→ CL leads to the Herbrand hexagon:

H0
ℓ(G,RL) // H0

ℓ(G,JL)

&&N
NN

NN
NN

NN
NN

H−1
ℓ (G, CL)

77ppppppppppp

H0
ℓ (G, CL)

xxpp
pp
pp
pp
pp
p

H−1
ℓ (G,JL)

ggNNNNNNNNNNN

H−1
ℓ (G,RL)oo
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By prop.3.2.4 we have Hi
ℓ(G,J S

L ) ≃
∏

p∈S Hi
ℓ(GP,RLP

). By the local class field axiom (theorem

2.5.1), we deduce H1
ℓ(G,JL) = 1. Thus it suffices to prove that the map from H0

ℓ(G,RL) to
H0

ℓ(G,JL) is injective: this follows from the ℓ-adic Hasse norm theorem (theorem 3.3.2).

(iii)If n > 1 then ℓ < ℓn, let M/K be a sub-extension of L/K of prime degree ℓ.

We have

1 −→ H1
ℓ(G(M/K), CM ) −→ H1

ℓ(G(L/K), CL) −→ H1
ℓ (G(L/M), CL)

Indeed, if g is a normal subgroup of G, and A a G-module, then the following sequence is exact:

0 −→ H1(G/g,Ag) −→ H1(G,A) −→ H1(g,A)

.

By assumption H1
ℓ (G(M/K), CM ) = 1 as |G(M/K)| = ℓ, and H1

ℓ(G(L/M), CL) = 1 as |G(L/M)| =
ℓn−1 < ℓn. It follows that H1

ℓ (G(L/K), CL) = 1.

Theorem 3.3.2. (The ℓ-adic Hasse Norm Theorem) If L/K is a cyclic extension of prime
degree ℓ, an element of the ℓ-group of principal ideles is a norm from L/K if and only if it is a
norm everywhere locally, i.e a norm from each completion LP/Kp where P | p.

Proof. Let x be a principal idele such that x = NL/K(y) where y ∈ RL. Since RL injectes in JL,
which surjectes to RLP

we deduce that x is a norm everywhere locally.

Conversely assume x ∈ RK and write down x = x̄.yℓ, where x̄ denotes the image of x in K×/K×ℓ
≃

RK/Rℓ
K . Since L/K is a cyclic extensionof prime degree ℓ, yℓ is a norm. Moreover, by hypothesis

x is a norm everywhere locally which means that each component x̄p, for all p, is a norm. Using
the usual Hasse norm theorem we conclude that x is a norm.

3.4 G and the G-module

Let G be the Galois group of the maximal abelian pro-ℓ-extension of Q. The G-module is the union
of the ℓ-adic iddele class groups CK where K runs through the finite extensions of K:

⋃
[K:Q]<∞ CK .

and CL is a Gal(L/K)-module.

3.5 deg : G 7→ Zℓ

We fix an isomorphism such that : Gal(Q̃/Q) ≃ Zℓ. This allows to define :

deg : G = Gal(Qab/Q) → Zℓ

φ 7→ φ|
Q̃

Let K/Q a finite extension, we define: fK = [K ∩ Q̃ : Q] and we obtain, by analogy with the local
case, a surjective homomorphism degK = 1

fK
· deg such that degK : GK −→ Zℓ.
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3.6 The valuation

Definition 5. Let L/K be a finite and abelian ℓ-extension, we then define the map:

[ · , L/K] =
∏

p(αp, Lp/Kp) for α ∈ JK

where Lp denotes the completion of Kp with respect to an arbitrary place P | p and (αp, Lp/Kp) is
the local symbol.

Proposition 3.6.1. Let L/K and L′/K ′ be finite and abelian ℓ-extensions of number fields such
that K ⊆ K ′ and L ⊆ L′, then the following diagram is commutative:

JK′

[ · ,L′/K′]
−−−−−−→ Gal(L′/K ′)

NK′/K

y
y

JK
[ · ,L/K]
−−−−−→ Gal(L/K)

Proof. Take α = (αP) ∈ JK′ . We get for P | p: (αP, L
′

P/K
′

P)|Lp
= NK

′

P
/Kp

(αP), Lp/Kp) and

[NK′/K(α), L/K] =
∏

p

(NK′/K(α)p, Lp/Kp) =
∏

p

∏

P|p

NK
′

P
/Kp

(αP)

so
[NK′/K(α), L/K] =

∏

P

(αP, L
′

P/K
′

P)/L = [α,L′/K ′]|L.

Proposition 3.6.2. For all roots of units ζ and for all a ∈ RK we have

[a, (K(ζ)/K)ℓ] = 1

where (K(ζ)/K)ℓ denotes the projection on the ℓ- Sylow sub-group of Gal(K(ζ)/K).

Proof. We follow [Ne1, prop 6.3, p. 92]. By the previous proposition: [NK/Q(a), (Q(ζ)/Q)ℓ] =
[a, (K(ζ)/K)ℓ]|Q(ζ). Consequently it suffices to show the property for K = Q. But

[a, (Q(ζ)/Q)ℓ]ζ =
∏

p

(a, (Qp(ζ)/Qp))ℓ.

Let q be a prime and ζ be a qm-root of unity, with qm 6= 2. We take a ∈ RQp and write a = up·p
vp(a)

where vp is the usual normalized valuation on Qp. For p 6= q and p 6= ∞ the extension Qp(ζ)/Qp

is an unramified extension. The fundamental principle [Ne1, theorem 2.6, p. 25] states that the
local symbol associates the uniformising element to the Frobenius, one gets that (p, (Qp(ζ)/Qp))ℓ
corresponds to the Frobenius automorphism φp : ζ −→ ζp. Moreover the following diagram is
commutative:

K×
p

( · ,̇Gal(LP/Kp))
−−−−−−−−−−−→ Gal(LP/Kp)y

y

RKp

( · ,̇Gal(LP/Kp))ℓ
−−−−−−−−−−−−→ Gal(LP/Kp)ℓ

where the symbol on the top is the usual local symbol, and the symbol on the bottom is the ℓ-adic
local symbol. Consequently, one deduces

(a, (Qp(ζ)/Qp)ℓ)ζ = ζnp
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with

np =





pvp(a) for p 6= q et p 6=∞

u−1
p for p = q

sgn(a) for p =∞

So
[a, (Q(ζ)/Q)ℓ]ζ =

∏

p

(a, (Qp(ζ)/Qp)ℓ) = ζα

And due to the product formula, α =
∏

p np = sgn(a) ·
∏

p6=∞ pvp(a) · a−1 = 1.

Definition 6. We define the valuation vK : CK −→ Zℓ as follows:

CK
[ · ,K̃/K]
−−−−−−→ G(K̃/K)

degK
−−−−→ Zℓ

Lemma 3.6.1. vK is well defined.

Proof. We show that ∀a ∈ RK , [a, K̃/K] = 1. As K̃/K is contained in the extension of K ob-
tained by adjoining roots of units it sufficies to show that, for a ∈ RK and ζ a root of unit,
[a, (K(ζ)/K)ℓ] = 1, this is proposition 3.6.2. Thus we deduce that RK ⊆ Ker([ · , K̃/K]) .

Lemma 3.6.2. vK is surjective and [CK ,Gal(K̃/K)] is closed in Gal(K̃/K).

Proof. We follow [Ne1, prop 6.4, p. 93] . The local symbol is surjective, [JK ,Gal(L/K)] con-
tains all decomposition groups Gal(LP/Kp). Thus all p splits completely in the fixed field M of

[JK ,Gal(L/K)]. This implies M = K ans so [JK ,Gal(L/K)] = Gal(L/K) and that [JK ,Gal(K̃/K)].
This yields furthermore that [JK ,Gal(K̃/K) = [CK ,Gal(K̃/K)] is dense in Gal(K̃/K).

Lemma 3.6.3. [CK ,Gal(K̃/K)] is dense in Gal(K̃/K).

Proof. We have [JK ,Gal(K̃/K) = [CK ,Gal(K̃/K)] as [RK ,Gal(K̃/K) = 1. Let Gal(K̃/L) be a
neighborhood of the neutral in Gal(K̃/K), where L is a finite Galois extension of K of degree
ℓn. As JK = UK × ⊕π

Zℓ
p where UK is the ℓ-adic group of units, a neighborhood of the neutral

is of the shape: U
′

K × ⊕π
ℓkpZℓ
p where U

′

K is an open submodule of UK and kp an integer. We

can choose kp > n. Thus the image of πℓkpZℓ
p is trivial through the local symbol. Moreover if

p | ℓ then the local extension is unramified and the image of an element of U
′

K is trivial. If p ∤ ℓ
then thanks to the filtration of the group of units we can obtain a trivial image. Therefore the
map [ · ,Gal(K̃/K)] : JK 7→ Gal(K̃/K) is continuous and as CK is compact, we deduce that
[CK ,Gal(K̃/K)] is dense in Gal(K̃/K).

Lemma 3.6.4. vK is henselian with respect to deg.

Proof. We have:

vK(NL/KCL) = vK(NL/KJL) = degK ◦ [NL/KJL, K̃/K]

(as [RK , Gal(K̃/K)] = 1). Moreover degK = 1
fK
· deg and fL/K = fL/fK that is why degK =

fL/K · degL. By proposition 3.6.1, the diagram is commutative:

JL′

[ · L̃/L]
−−−−−→ Gal(L̃/L)

NL/K

y
y

JK
[ · K̃/K]
−−−−−−→ Gal(K̃/K)
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consequently [NL/KJL, K̃/K] = [JL, L̃/L] thus we deduce, by the surjectivity of vL that

vK(NL/KCL) = fL/K · degL ◦ [JL, L̃/L] = fL/K · vL(CL) = fL/K · Zℓ

Corollary 3. vK is well defined and both surjective and henselian with respect to deg.

Corollary 4. (deg, v) is a class field pair, and AK := CK satisfies the class field axiom. Thus for
all Galois ℓ-extension of a number field K we get an isomorphism:

Gal(L/K)ab ≃ CK/NL/KCL.

In particular, we get a one to one correspondence between finite and abelian ℓ-extensions of a
number field K and open subgroups of CK .
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