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Abstract

This paper presents a micromechanics-based elastoplastic damage model for quasi-brittle rocks in compression

stress state. The plastic strain is considered to be related to frictional sliding along microcracks and inherently

coupled with damage evolution. By following a homogenization procedure, we first determine the free energy for

the matrix-cracks system. The thermodynamic force associated with the inelastic strain contains a back stress

which controls material hardening. Next, a Coulomb-type friction criterion serving as plastic yielding function

and a strain energy release rate based damage criterion are proposed for determination of plastic flow and crack

propagation. These micro-macro thermodynamic formulations allow to reducing significantly model’s parameters

with respect to phenomenological models. The proposed model is applied to simulate triaxial compression tests

on two sets of diabase samples, the first cored from a fresh diabase rock mass and the second from a slightly

weathered one. Comparisons between numerical predictions and test data are presented.
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1. Introduction

The Danjiangkou Water Reservoir, located in central China, is one of the most important water con-

servancy projects in China. As the water source of the South-to-north water diversion project, it provides

water to the naturally water deficient area in north China. Since it began to store water in 1970s, lots

of seismic activities were monitored, with a maximum earthquake magnitude of 4.7 recorded in 1973. To

make sure the stability and security of the water reservoir, it is pre-requisite to have sufficient recognition

of the mechanical behavior of the rocks that formed the base of the reservoir.

Various kinds of rocks are found in the area of Danjiangkou Water Reservoir, such as diabase rock,

sandstone, schist rock, etc. Among them, diabase is one of the most widely distributed. Hence, in this

paper, we choose to study the mechanical behavior of diabase rock samples to provide useful data for the

stability analysis of the reservoir.

As a typical brittle material, the mechanical behavior of diabase rock is characterized by high peak

strength, small deformation, scarce residual strength and strong pressure sensitivity. For brittle materials

such as rocks and concrete, it is widely accepted that the nucleation, growth and coalescence of microc-

racks are the main causes of the mechanical deterioration of the materials leading to failure (Brace and

Bombolakis, 1963; Wawersik and Brace, 1971; Wong, 1982; Kranz, 1983; Horii and Nemat-Nasser, 1985).

To this end, the concept of damage has been introduced to describe the material degradation and the me-

chanical response of such quasi brittle materials (Chow and June, 1987; Ju, 1989; Chaboche and P., 2005;

Murakami and Kamiya, 1996; Halm and Dragon, 1996). Generally, there are two families of constitutive

models describing the stress-strain relationship with damage. The first one is phenomenological models

and the other consists of the models based on micromechanical approaches. In the phenomenological

models, the free energy of the material is interpreted as a function of a series of internal variables, such

as plastic strain, damage, etc., with a scalar variable representing isotropic damage or a second or fourth

rank tensor representing anisotropic one. This kind of models can describe the main mechanical characters

of brittle materials to a certain extend. However, these models are generally based on some viewable phe-

nomena and experiences rather than solid mathematical derivation. Hence, there exist usually excessive

parameters to be determined in these models, and many of them have no definite physical significance.

On the other hand, in recent years, many researches proposed to use micromechanical approaches to

deal with damage problem in brittle materials (Andrieux et al., 1986; Gambarotta and Lagomarsino,

1993; Pensee et al., 2002; Dormieux et al., 2006; Zhu et al., 2008a,b). In such models, the stress-strain

relationship is first determined at relevant material scales, and then a homogenization procedure is used

to link the microscopic local stresses and strains to the macroscopic ones, leading finally to macroscopic
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behaviors of the material. Meanwhile, proper criteria for microcrack propagation and damage growth

should be proposed. Therefore, the micromechanical models are able to account for physical mechanisms

involved in damage process. These models have generally much less parameters compared with the phe-

nomenological ones, and many important factors, such as the unilateral effects due to opening-closure of

the microcracks, coupling between friction and damage on cracks faces, as well as interaction between

cracks can be taken into account in these models.

In this paper, based on experimental observations upon the diabase rocks, an improved micromechanics-

based isotropic elastoplastic damage model is developed, with coupling between friction and damage taken

into consideration. Damage is assumed to be isotropic for the sake of simplicity and the emphasis is put

on the coupling between damage and friciton. Triaxial compression test results of two groups of diabase

samples, fresh and slightly weathered ones, are shown respectively. Using the micromechanical model,

predictions of mechanical responses for both groups of samples are performed and compared with the

testing data. The weathering effect on mechanical behavior of diabase rock is detailed with some remarking

analysis.

2. Description of material and testing results

Triaxial compression tests were performed on two sets of diabase samples. One set is cored from a

fresh rock mass, and the other from a slightly weathered one. Both the two rock masses were drilled

from Danjiangkou water reservoir, the base of which consists of rocks of Presinian Period mainly. After

extraction on site, the rock masses were stored in a sealed container to keep the natural water content.

The dimension of the testing samples is Φ50mm × 100mm. Other tests were also carried out in order

to collect the different physical characteristics between the fresh samples and the slightly weathered ones.

The results are shown in Table 1. The porosity and bulk density of rock samples were determined by

the saturation-buoyancy techniques recommended by ISRM. Other parameters are also obtained by the

standard methods recommended in ISRM.

Visually, the slightly weathered sample has a darker colour compared with the fresh one, and there are

a few weathering fissures in it. In Table 1, we can see that the dry density and specific gravity of these

two rocks are quite close, indicating the weathering extent is moderate (Bozkurtoglu et al., 2006), and the

cement structures of these two materials are basically unchanged. The most important difference between

the fresh samples and the slightly weathered ones is the difference in porosity (see Table 1), which has

important influences on the mechanical behaviour of the samples, as will be shown in the following.
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Table 1

Comparison of physical parameters of two sets of diabase rock samples

Samples Dry density (g/cm3) Water content (%) Porosity (%) Specific gravity

Fresh diabase 2.97 0.059 0.37 2.98

Slightly weathered diabase 2.91 0.59 2.69 2.99

The triaxial compression tests were carried out on MTS (material testing system), a testing system for

various materials. In particular, this equipment is famous for its great rigidity and the ability to provide

high pressure. Therefore it is very suitable for testing rock samples.

Testing results for both two sets are shown in the figures 1 and 2. It can be seen that for fresh rock

samples (Fig. 1), the stress-strain curves show obvious brittleness, the nonlinear deformation before peak

strength is fairly small, and that the resistance drops dramatically afterwards. Besides, when confining

pressure increases to 40MPa, the stress-strain curve still exhibits obvious brittleness. There seems no

transition from brittleness to ductility as confining pressure increases, which is mainly due to the quite

small porosity of the samples.

For the slightly weathered rock samples (see Fig. 2), the stress-strain curves also show obvious brit-

tleness. But when confining pressure gets to 20MPa, the nonlinear deformation before peak strength

becomes obvious, which is because of the relatively greater porosity and initial cracks compared with

the fresh samples. On the other hand, significant reduction in peak strength can be found between fresh

samples and slightly weathered ones. Although the amount of mineral alteration is small, the strength

of the slightly weathered rock decreases due to the augmentation of porosity in the form of microcracks.

Similar conclusions can be found in Tugrul (2004).

3. Formulation of the constitutive model

Consider a representative elementary volume (r.e.v.), occupying geometric domain Ω (boundary ∂Ω)

and composed of the solid matrix with the elasticity tensor Cs and penny-shaped microcracks randomly

distributed in the matrix. To make direct use of the Eshelby’s solution, all microcracks are approximated

as flat ellipsoids. Geometrically, such cracks can be identified by the unit vector n normal to crack plane

and characterized via the aspect ratio c
a
, noted ǫ, with a and c being the radius of the circular crack and
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the half-length of the small axis, respectively. The volume fraction φr of the rth family of microcracks of

normal nr then reads

φr =
4

3
πa2rcrNr =

4

3
πǫdr, (1)

where Nr denotes the crack density (number of cracks per unit volume) of the family in consideration,

and dr = Nra
3
r is defined as crack damage parameter (Budiansky and O’Connel, 1976) and serves as

internal variables in micromechanical analysis.

Under loading, the total strain E in the cracked medium is attributed by two sources: the first, Em,

related to the elastic solid matrix and the second, denoted by E
c, due to displacement discontinuities

between crack lips. By defining E as the integration of the strain field ε(x) over the above-described

elementary volume, i.e. E = 1

Ω

∫

Ω
ε(x)dV , the following strain decomposition is justified

E = E
m +E

c. (2)

Further, the inelastic deformation induced by a family of microcrakcs of normal n, noted εc, takes the

general form:

ε
c(n) = β(n)n⊗ n+ γ(n)⊗ n. (3)

Above, the vector γ and the scalar β represent the relative shear sliding and the averaged opening between

cracks lips, respectively. The macroscopic inelastic strain E
c is then obtained by taking integration of

εc(n) over the surface S2 of a unit sphere:

E
c =

1

Ω

∫

Ωc

ε
cdV =

1

4π

∫

S2

(βn⊗ n+ γ ⊗ n)dS. (4)

Under isotropic consideration, Ec is also written explicitly as a sum of a mean part and a deviatoric part:

E
c =

1

3
βδ + Γ, (5)

with

β = trEc, Γ =
1

4π

∫

S2

γ ⊗ ndS, (6)

where use has been made of the identity 1

4π

∫

S2 ninjdS = 1

3
δij with δ being the second order identity

tensor in the three-dimensional setting.

3.1. Determination of free energy

The key to develop an elastoplastic damage model consists in determining the Helmholtz free energy

of the material. Various studies confirm when cracks are closed and frictional, the total free energy

in microcracked media contains two additional parts: the elastic reversible energy contributed by the

matrix and the blocked energy due to the rugosity of cracks (e.g., Andrieux et al., 1986; Gambarotta and

Lagomarsino, 1993; Pensee et al., 2002; Zhu et al., 2008a)
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Ψ =
1

2
(E −E

c) : Cs : (E −E
c) +

1

2
E

c : Cp : Ec. (7)

Remark that the energy 1

2
E

c : Cp : E
c is stored in the matrix. It may be cumulated or dissipated

progressively during frictional sliding. The fourth rank tensor Cp relating linearly the inelastic strain

to the local stress upon microcracks is derived by using problem decomposition and the superposition

principle (Zhu et al., 2008a)

C
p =

[

(I− A
c)

−1
: Ac : Ss

]−1

, (8)

where Ss = (Cs)
−1

is the elastic compliance tensor of the matrix. The solid matrix assumed to be isotropic,

this tensor takes the form Cs = 3ksJ+ 2µsK with ks and µs being the bulk modulus and shear modulus

of the matrix, respectively. The components of the fourth order isotropic and deviatoric operators J and

K is given by

Jijkl =
1

3
δijδkl, Kijkl =

1

2
(δikδjl + δilδjk)−

1

3
δijδkl. (9)

The averaged strain concentration tensor Ac links the strain E
c to the macroscopic uniform strain E

such that Ec = Ac : E. Note that the estimate developed by Ponte-Castaneda and Willis (1995) allows

to taking into account the effect of spatial distribution of phases by introducing, complementarily to the

Eshelby tensor Se, the fourth order tensor Sp. According to this scheme, the strain concentration tensor

Ac,r for the rth family of cracks is given as (Ponte-Castaneda and Willis, 1995)

A
c,r = (I− S

r
e)

−1
:

[

I+

r=N
∑

r=1

ϕr
Sp : (I− S

r
e)

−1

]−1

, (10)

where I = J+K are the fourth order identity tensor.

For the case of isotropic damage, Ac =
∑r=N

r=1
ϕrAc,r is developed into the form

A
c =

48
(

1− ν2
)

d

27 (1− 2ν) + 16(1 + ν)
2
d
J+

480 (1− ν) (5− ν) d

675 (2− ν) + 64 (5− ν) (4− 5ν) d
K, (11)

where ν is the Poisson’s coefficient of the matrix and d is the crack density parameter used as the damage

variable. Remark that d is scalar-valued since the hypothesis of isotropic damage distribution is adopted

here.

By introduction of (11) into (8), Cp is then recast into the same form as that of Cs:

C
p = 3kpJ+ 2µp

K, (12)

with the blocked bulk and shear moduli

kp =

(

9 (1− 2ν)

16 (1− ν2) d
+

4ν − 2

3 (1− ν)

)

ks, µp =

(

45 (2− ν)

32 (1− ν) (5− ν) d
+

5ν − 7

15 (1− ν)

)

µs. (13)

Provided the system free energy Ψ(E,Ec, d) in (7), the thermodynamic force associated with the inelastic

strain E
c is determined by standard derivation of Ψ with respect to E

c
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σ
c = −

∂Ψ

∂Ec = C
s : (E −E

c)− C
p : Ec. (14)

According to Zhu et al. (2008a), σc corresponds to the local stress upon cracks, which, within the ther-

modynamic framework, should serve as the driving force of the evolution of inelastic strain E
c.

3.2. Opening-closure transition condition

The mean part pc = trσc/3 of the local mean stress acts as being the opening-closure transition

indicator for microcracks. To be definite,

– when trσc ≥ 0, all cracks are opened. In this case, we easily establish the explicit relations between the

strain E
c by microcracks and the macrosopic uniform strain E via the strain concentration tensor Ac;

– when trσc < 0, all microcracks are closed. The inelastic strain is then the consequence of frictional

sliding along crack faces and related directly to the relative displacement (discontinuities) between

crack lips. Under such condition, explicit relation between E
c and E is no longer obtainable.

In fact, the inelastic strain E
c can be viewed as friction-induced plastic strain so as that its evolution

will be determined by using a friction criterion formulated at the microscopic scale. This criterion then

plays the role of yielding function, just like in the classic theory of plasticity .

Remark that in both open and closed cases, the strain E
c by microcracks is related to crack propagation

which is characterized by damage evolution. On the one hand, the development of crack opening and

frictional sliding may cause damage evolution. On the other hand, damage evolution brings redistribution

of stress field, which in turn affects the evolution of the strain E
c through the friction criterion. Especially

in the closed case, energies may dissipate during damage evolution or frictional sliding, more generally,

during their coupling process.

3.3. Friction criterion

We adopt here the generalized Coulomb criterion to describe the dissipative friction occurring on

microcracks. As the local stress σc is the thermodynamic force associated with the strain E
c, the friction

criterion should be a function of some invariants of σc and formulated at microscopic scale. Note that

the macroscopic stress-strain relation can be derived from the free energy (7) within the irreversible

thermodynamic framework

Σ =
∂Ψ

∂E
= C

s : (E −E
c) . (15)

The insertion of (15) into (14) yields the relation

σ
c = Σ− C

p : Ec. (16)
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Next, we perform a two-part decomposition on σc. Combination of (16) with (4) and (12) allows to

rewritting σc in the form

σ
c = pcδ + S

c, (17)

with pc = 1

3
trσc = p−kbβ and S

c = S− 2µbΓ where p and S are the mean part and the deviatoric part

of the macroscopic stress tensor Σ, respectively.

The Coulomb friction criterion is thus a function of pc and S
c and takes the usual form

F = ‖Sc‖+ c̃fp
c ≤ 0, (18)

where c̃f is the current effective friction coefficient, which, in view of asperities on crack faces, is not a

constant but dependent of the local confining pressure pc. The theoretical determination of the relationship

between c̃f and the pressure pc as well as the matrix intrinsic friction coefficient is quite difficult, mainly

due to the fact that cracks surfaces are generally complex in geometry and evolving (degraded) during

the cumulation of frictional sliding. For simplicity, we propose the following empirical expression, which

is based on laboratory observations for conventional triaxial compression tests:

c̃f =

(

1−
〈pref − pc〉

pref

)m

cf , (19)

where the operator 〈x〉 is such that 〈x〉 = x+|x|
2

, pref serves as a reference confining pressure, m is

a parameter used to control the evolution and cf is interpreted as the natural friction coefficient in

its perfectly compact state. Thus, the physical significance of (19) consists in taking into consideration

the compacting effect of compression on the friction coefficient. Precisely, when pc is less than pref , the

nominal (effective) friction coefficient c̃f is smaller than the value cf ; c̃f will increase as pc becomes larger.

This implies that as pc increases, crack faces are getting more compressed and the occlusion between crack

faces becomes tighter, which increases the contact area between crack faces and consequently the effective

friction coefficient c̃f increases. When pc approaches pref , the crack closure occurs at its critical state

where the effective friction coefficient c̃f equals to the friction coefficient cf and the crack is considered

completely compacted. Therefore, we can take pref as the stress that makes microcracks completely

occluded. It is worth noting that the value of pref should not be too large, because excessive compression

will cause some crash of asperities on crack surfaces, which in turn decreases the friction coefficient.

The friction criterion (18) can be rewritten in the following more explicit form

F =
∥

∥S − 2µbΓ
∥

∥+ c̃f
(

p− kbβ
)

≤ 0. (20)

Above, in the framework of plasticity theory, 2µbΓ and kbβ provide kinematic hardening/softening and

isotropic hardening/softening on yielding surface, respectively. In this sense, (Cp : Ec) appeared in (16)

plays a role of back stress. Remark that in widely used phenomenological, modelling of material plastic

hardening/softening is usually carried out by introduction of complementary laws.
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3.4. Potential function

It is more appropriate for geomaterials to use a non-associated flow rule to describe volumetric defor-

mation. To this end, the following plastic potential function is proposed:

G = ‖Sc‖+ cfp
c = 0. (21)

To be consistent, this function G is similar to that of the friction criterion F . The evolution rate of the

plastic strain E
c is determined by following the normality rule:

Ė
c
= λ̇

f ∂G

∂σc
= λ̇

f
(

V +
1

3
cfδ

)

. (22)

It follows the evolution rate of the variables β and Γ :

β̇ = λ̇
f
cf ; Γ̇ = λ̇

f
V , (23)

where V = S
c/ ‖Sc‖ denotes the sliding direction, and λ̇

f
is a non-negative multiplier which can be

calculated by using the consistency condition (F = 0, Ḟ = 0).

3.5. Damage criterion

Within the framework of irreversible thermodynamics, damage criterion should be a function of the

thermodynamic force that conjugates with damage variable d. The damage conjugate force F d is derived

from the total free energy (7):

F d = −
∂Ψ

∂d
= −

1

2
E

c :
∂Cp

∂d
: Ec. (24)

By combining (4) and (12), the above formulation can be recast into the form:

F d =
9 (1− 2ν)

32 (1− ν2) d2
ksβ2 +

45 (2− ν)

64 (1− ν) (5− ν) d2
µsΓ : Γ. (25)

The following damage criterion in exponential form is used:

fd = dc − (dc − d0)
[

exp
(

−c1F
d
)]

− d ≤ 0. (26)

where d0 and dc are respectively the initial and critical value of damage variable, and the model parameter

c1 controls damage hardening. Particularly, it is seen from (12) that damage is directly related to the

stored energy via the plastic blocked stiffness Cp. Inversely, the induced damage causes degradation of Cp

and further influences the evolution of inelastic deformation. From physical point of view, it is possible

to derive dc from the condition µp ≥ 0, which yields

dc =
675(2− ν)

32(5− ν)(7− 5ν)
. (27)

Finally, suppose also that damage evolution rate obeys the normality rule, i.e.

ḋ = λ̇
d ∂fd
∂F d

. (28)
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3.6. Coupling between friction and damage

It is seen from (24) that F d is only dependent of the blocked energy by microcracks, that is to say,

damage evolution is totally driven by frictional sliding along microcrack surfaces. On the other hand, as

shown in (14) and (16), damage propagation can bring redistribution of the stress via the term (Cp : Ec),

which in turn influences the progress of frictional sliding. In fact, the Coulomb-type criterion F is also

implicitly function of the damage variable d through µb and kb. Therefore, damage and friction are

generally strongly coupled. Remark that compared to phenomenological models, the present coupling

formulation between plasticity and damage seems more natural and consistent without introduction of

other laws.

To determine the multipliers λ̇
d
and λ̇

f
, one has to take into account both the damage and friction

criteria because of their potential coupling. When they are saturated at the same time, the combination

of consistency conditions corresponding to these two criteria gives














Ġ =
∂G

∂d
ḋ+

∂G

∂β
β̇ +

∂G

∂Γ
: Γ̇+

∂G

∂E
: Ė = 0

ḟd =
∂fd
∂d

ḋ+
∂fd
∂β

β̇ +
∂fd
∂Γ

: Γ̇ = 0

(29)

whose resolution leads finally to the multipliers λ̇
f
and λ̇

d



















λ̇
f
=

1

H

∂F

∂E
: Ė

λ̇
d
= −

∂fd
∂β

cf + ∂fd
∂Γ

: V
∂fd
∂d

H

∂F

∂E
: Ė

(30)

with H = ∂F
∂d

(

∂fd
∂β

cf + ∂fd
∂Γ

: V
)

/∂fd
∂d

−
(

∂F
∂β

cf + ∂F
∂Γ

: V
)

.

4. Numerical simulations

In this part, the developed micromechanics-based elastoplastic damage model is applied to describe

experimental triaxial compression data from diabase samples at two weathering levels.

4.1. Parameters and computational algorithm

The proposed micromechanics-based model is now applied to simulate the triaxial compression tests.

The key feature of this isotropic model consists in taking into consideration the coupling between damage

and friction (friction-induced plasticity) at the microscopic scale. When comparing with phenomenolog-

ical models, the number of model parameters has been significantly reduced. In total, there are seven

parameters to be determined: two elastic constants E and ν which can be obtained from the elastic phase

of the stress-strain curves; the friction coefficient cf which can be identified from the envelope of peak
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strengths under different confining pressures; pref and m control the variation of the effective friction

coefficient; damage parameters d0 denotes initial state of damage and c1 controls the damage evolution

rate. When lack of experimental measure, one can take a small value for d0 for material in its initial state.

The proposed model is numerically implemented in a computer code by using the operator-split algo-

rithm, which contains an elastic predictor and a plastic-damage corrector. Since damage is totally induced

by the friction-induced plastic deformation, it is convenient to perform plastic iteration and damage iter-

ation in sequence, i.e. damage corrector can be performed after plastic corrector. The general procedure

goes in the following sequences as shown in Fig. 3.

4.2. Simulation of fresh diabase rock samples

The aforementioned model constants and parameters for two sets of diabase samples are listed in table

2. Comparisons between simulation results and experimental data under different confining pressures are

shown in Fig. 4. It is seen that the proposed model can describe the brittle features. A good agreement

is recorded between the simulation results and experimental data under all confining pressures, both in

axial and lateral strains.

4.3. Simulation of slightly weathered diabase rock samples

In this section, two methods are used to simulate the mechanical behavior of slightly weathered rock

samples. The purpose is to verify the applicability of the proposed model to slightly weathered rocks and

reveal the effect of weathering on mechanical properties of rocks at the same time.

– Method 1: The first method consists in treating the weathered rock as a different material. All pa-

rameters involved in the model have been determined from experimental data (see Table 2). Compared

with the fresh rock samples, the elastic modulus E as well as the peak strengths of the slightly weath-

ered rock under different confining pressures decrease significantly. The mechanical behavior for slightly

weathers rock samples are simulated and the numerical results are shown in Fig. 5.

Table 2

Collections of parameters for numerical modelling

Samples E (MPa) ν c′
f

c1 d0 pref m

Fresh diabase 52 0.18 1.0 0.8 0.001 150 0.8

weathered (method 1) 40 0.18 0.8 0.6 0.001 150 0.8

weathered (method 2) 52 0.18 0.9 0.55 0.2 150 0.8

11



– Method 2: The main impact of weathering on the mechanical properties of rocks is the increase in

porosity, as we can see in Table 1. Especially in slightly weathered state, the cement structure of the

material is almost unchanged. From mechanical viewpoint, it is reasonable to relate the increase in

porosity to the initial damage state before loading. That is to say, there exist a priori microcracks

induced by weathering process, which leads to some deterioration in mechanical behaviour. There-

fore, instead of redetermining the material constants and model parameters from mechanical tests on

weathered rock samples, we can use an initial damage value to describe the material degradation due

to weathering. We adopt here d0 = 0.2. One has

E = (1− d0)E0, cf = (1− d0)cf0 (31)

where E0 and cf0 correspond to the measures for fresh rocks. With these parameters, simulation results

under different confining pressures are shown in Fig. 6.

It is seen from Fig. 5 that the mechanical behaviour of weathered rock can be predicted by adjusting the

initial damage value and damage evolution rate (parameter c1), with elastic constants E and ν identical

to those for fresh rock. A satisfactory agreement is reported between simulation results and testing data,

although room still exists to improve the method 2. For example, a large number of experimental data

for different weathering levels is required to establish the relation between porosity and initial damage.

5. Conclusions

A micromechanics-based elastoplastic damage model is developed for the description of mechanical

behaviors of quasi brittle rocks. This model takes into account coupling between frictional sliding and

damage evolution as well as unilateral effects.The model is formulated in a proper framework of dissipative

thermodynamics by considering local physical mechanisms of inelastic behaviors. The proposed Coulomb-

type friction criterion takes into account the effect of local confining on the effective friction coefficient.

The proposed model contains a relatively small number of parameters whose physical meanings are clearly

identified. Numerical simulations of laboratory tests on two series of rock samples have shown that the

proposed model is able to describe the main features of mechanical responses of quasi brittle rocks.

However, for rock materials in weathered conditions or with higher porosity, plastic deformation of rock

matrix before failure becomes an important mechanism. This suggests an extension of the present work

consisting in accounting for inelastic deformation in rock matrix coupled with microcrack growth. Finally,

another future work will be considered on the hydromechanical coupling in porous rocks exhibiting plastic

deformation and damage evolution.
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Figure 1. Stress-strain curves in triaxial compression tests for fresh diabase rock samples

Figure 2. Stress-strain curves in triaxial compression tests for slightly weathered diabase rock samples
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j = j + 1j = j + 1

Strain increment ¢Ek¢Ek comes in, do elastic prediction 

Start kkth loading step with the following known variables: 

strain Ek-1, stress §k¡1§k¡1 and internal variables (dk-1, ¯k¡1¯k¡1and ¡k¡1¡k¡1)
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j = 1j = 1, iteration loop starts 
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 ! and .k j
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dk;j = dk;j¡1 + ¢dk;jdk;j = dk;j¡1 + ¢dk;j,

Check dk;j ¡ dk;j¡1 > »dk;j ¡ dk;j¡1 > », with »» being the maximum tolerance  

   Yes No

k = k + 1k = k + 1

Figure 3. Computational iteration algorithm

15



16



Figure 4. Comparisons between model predictions (thick lines) and experimental data (thin lines) under different confining

pressures (fresh samples , Pc =5, 10, 20 and 40 MPa)
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Figure 5. Comparisons between model predictions (thick lines) and experimental data (thin lines) under different confining

pressures (slightly weathered samples, Pc = 5, 10, 20 MPa): method 1
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Figure 6. Comparisons between model predictions (thick lines) and experimental data (thin lines) under different confining

pressures (slightly weathered samples, Pc = 5, 10, 20 MPa): method 2
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