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1 Introduction

Discontinuous problems with imperfect interfaces are often encountered in mechanics and engineering
science, and their influences on the mechanical behavior of materials and structures has long been rec-
ognized. Among all the imperfect interface models in elastostatic context, the spring-layer interface
model and the coherent interface model are the two most widely used ones. Initially provoked from
phenomenological reasons, these two interface models have been derived by using asymptotic methods
through an equivalent replacement of the three-phase configuration by a two-phase configuration (Figure
1). However, analytical results available are still limited to some very simple cases.

In the context of the extend finite element method (XFEM) [1][2], numerical techniques have been devel-
oped for modelling imperfect interfaces with complex geometries [3][4]. The present work is devoted to
further studies on this topic. For each of the aforementioned interface models, the weak form of the initial
problem and an appropriate enrichment function are delivered. Particularly, a unified material-dependent
formulation linking two specific functions is proposed. Moreover, a simple numerical application to
spring-layer imperfect interface problem is presented.
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Figure 1: Equivalent replacement of the perfectly bonded three-phase configuration by a two-phase
configuration involving imperfect interface .7

2 Problem statement

Let Q) and Q@ be two adjoining bulk phase in a solid, as shown in Figure 1(right). The interface
between Q1) and Q@) denoted by .7, is imperfect and geometrically characterized by the zero level-set
of a function ¢ : R® — R: ¥ = {x € R?| ¢(x) = 0}. Assuming that ¢ is continuously differentiable and
its gradient V¢(x) # 0 for all x € ., the unit normal vector field n(x) defined on .%’ and directed from
Q@ toward Q1 is calculated by
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As one of the significant advantages in XFEM-framed modelling and simulation, meshes are not needed
to conform to the geometry of discontinuities. Usually, we first generate a regular mesh and then intro-
duce therein the discontinuity via its level set function. Four types of elements may arise in this process,
as those shown in Figure 2.

The key step in numerical modelling by XFEM consists in applying appropriate functions to describe the
discontinuity of physical field by means of superimposing one or several enrichments to the conventional
continuous interpolation, such that [2]
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u(x) = Y Ni(x)a; + Y N.(x)y,(x)b,. 2)
i=1 r=1

for an elasticity problem. Above, N;(x) are the shape functions for a standard finite element. The

functions y,(x), known as enrichment functions, influence significantly computational convergence and

computational accuracy especially in the zones close to discontinuities.
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Figure 2: Four probable types of elements generated by the interface

3 Interface models and enrichment functions

In this part, we discuss two widely-used imperfect interface models and their modelling by XFEM.

3.1 Spring-layer imperfect interfaces

Among all the models describing imperfect interfaces, the spring-layer interface model is probably the
simplest one and also the most widely used one. According to this model, the displacement vector u(x)
is discontinuous across an interface while the traction vector t(x) = 6.1 is continuous across the same
interface and proportional to the displacement vector jump

[w]#£0. [=0. t=Kl[u] 3

where the second order tensor K denotes the local interface stiffness. The weak form of the problem
reads [4]

/ o(u) : £(5u)dQ + / t.[u]ds = / 1.5udS )
Q N oQ;
To describe the strong discontinuity across the interface, we propose the following enrichment function
.. L
Wi (x) = Ssign(0x) [1 - sign(9)sign(9,)] ®)
where §x = Y7, Ni(x)®; and ¢, is the value of the level set at node x". It follows the displacement jump
[ul(x) = }_ N:(x)b, ©)
r=1

The function (5) possesses the salient features: i) it is node-dependent; ii) it contains three parts where
the coefficient 1/2 allows no factor to be involved in (6), the first sign(¢y) provides the required discon-
tinuity across the interface, and the third term [1 — sign((ﬁx)sign((]),)] describes the relative position of
integration point x and node X'; iii) it allows removing numerical issues of some blending elements [4].



3.2 Coherent imperfect interfaces

The coherent imperfect interface model is appropriate for modelling the interface effect in nanomaterials
and nanostructures. This model stipulates that the displacement vector is continuous across an interface
whereas the stress vector suffers a jump across the same interface, which must comply with the Young-
Laplace equation

[ul =0, [t]#0, divs(cs)=—[t] @)

The weak formulation corresponding to this model takes the form [3]
/ o(u) : e(Bu)dQ / divy(0,(u)).5udS = / 1.5udS @®)
Q Js Jogy

We propose the following enrichment function for coherent imperfect interfaces:

Wi (%) = b [1 = sign(b)sien(o,)] ©

According to the level-set method, the term (f)x, which replaces the first sign((f)x) of (5), allows guarantee-
ing the continuity in displacement. Again the issues of blending elements can be removed automatically.
Note that when one of element edges in 2D case or one of element sides in 3D case locates on the in-
terface, the function W (x) = Y| N;(x) [¢;] — |Xi— | Ni(x)®;], which were proposed by Moés et al. [7] for
perfect interface problem and followed in [3] for coherent interface problem, takes zero for all integra-
tion points inside such elements and therefore fails in describing the discontinuity of traction across the
interface segment .}, (shown in Figure 2) shared as one common side by the triangular linear elements
Q124 and Q,12g. In this sense, the proposed function (9) can remedy the above shortcoming.

3.3 Unified formulation of enrichment functions

Above, enrichment functions for spring-layer interfaces and coherent interfaces are proposed separately.
A linear combination of the two specific functions (5) and (9) leads to a unified formulation

1. - L L
1 (X) = E [glq’x + izSIgn(fo)] [1 - Slgn(q)x)Slgn(q)r)} (10)
which involves two coefficients &; and &, for which we propose the following material-dependent forms
E'. _ min{i/fo,.//fl,.///z} E_, _ maX{//f],.///z} (11)
T min{, Ay 0 T max{ o, M, Mo}

in which .#; and .5, scalar-valued or norms of tensorial quantities, represent the material properties of
the matrix and inclusion phases, respectively, while .# characterizes that of the initial thin interphase
which has been replaced by the interface. Obviously, as expected, i) when the interphase is very soft
(My < M and My < M), & ~ 0 and &, = 1, the function (10) reduces to (5); ii) when the interphase
is very rigid (Ao > ) and My > M), & = 1 and &, =~ 0, the function (10) reduces to (9). As it is
the case in mathematical derivation, the contrast between .#; and .#, is assumed to be comparable.

4 A simple numerical example

As shown in Figure 3, the composite occupying the unit square domain is composed of the matrix and
a circular rigid inclusion. The contrast in shear modulus is chosen as /u; = 15. The interface .
between the bulk phases is assumed to be imperfect and can be described by the spring-layer model.
For numerical computation, the domain is first discretized by a regular mesh of triangular elements. The
interface is then introduced into the regular mesh via the level set function

fooy) = Va2 +y2—r (12)

The circular inclusion domain centered at (0.5,0.5) has the radius » = 0.3. The boundary conditions are
such that u,(x = 0) = 0 and u,(y = 0) = 0. The structure is subjected on the side x = 1 to a uniform
displacement u,(x = 1) = 0.001.



The displacement field over the deformed configurations are reported in Figure 3 (left). As expected, we
observe a pronounced displacement jump in the loading direction. The smoothness of the crescent dis-
placement discontinuity shows that the enrichment function and the relevant numerical treatment allow
describing the field of the imperfect interface problem quite well (otherwise, the field of displacement
jump will be saw-toothed). The right one in Figure 3 shows the distributions of the normal stress along
some chosen lines passing the center and inclined at different angles 8 with respect to the x-axis. We no-
tice that the required condition on continuity of traction vector across the interface is completely satisfied,
which justifies the robustness and efficiency of the proposed numerical treatments.
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Figure 3: Displacement distributions on deformed structures (left) and distributions of the normal stresses
along some lines inclined at different angles with respect to the loading direction (right)

5 Conclusion

The present study together with the previous works [3][4][5][6] confirm the suitability and performance
of the extended finite element method in numerical modelling and simulation of discontinuous problems
with typical imperfect interfaces. Enrichment functions proposed here are of unified nature and show
geometric and physical consistencies. Along this line, problems with complex geometries of imperfect
interfaces will be handled in future work.
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