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Constrained Epsilon-Minimax Test for Simultaneous
Detection and Classification

Lionel Fillatre

Abstract—A constrained epsilon-minimax test is proposed to de-
tect and classify nonorthogonal vectors in Gaussian noise, with a
general covariance matrix, and in presence of linear interferences.
This test is epsilon-minimax in the sense that it has a small loss of
optimality with respect to the purely theoretical and incalculable
constrained minimax test which minimizes the maximum classifi-
cation error probability subject to a constraint on the false alarm
probability. This loss is even more negligible as the signal-to-noise
ratio is large. Furthermore, it is also an epsilon-equalizer test since
its classification error probabilities are equalized up to a negligible
difference. When the signal-to-noise ratio is sufficiently large, an
asymptotically equivalent test with a very simple form is proposed.
This equivalent test coincides with the generalized likelihood ratio
test when the vectors to classify are strongly separated in term of
Euclidean distance. Numerical experiments on active user identifi-
cation in a multiuser system confirm the theoretical findings.

Index Terms—Constrained minimax test, generalized likelihood
ratio test, linear nuisance parameters, multiple hypothesis testing,
statistical classification, user activity detection.

I. INTRODUCTION

T
HE problem of detecting and classifying a vector in noisy

measurements under uncertainty of vector presence often

appears in engineering applications. This problem has many

applications including radar and sonar signal processing [1],

image processing [2], speech segmentation [3], [4], integrity

monitoring of navigation systems [5], quantitative nondestruc-

tive testing [6], network monitoring [7] and digital communi-

cation [8] among others. This paper deals with the following

detection and classification problem. It is assumed that a mea-

surement vector consists of either a vector of interest

(for example, a target or an anomaly) plus an unknown nuisance

vector in additive Gaussian noise, or just an unknown nuisance

vector in additive Gaussian noise. If present, the vector of in-

terest must be detected and classified. The unknown nuisance

vector belongs to the nuisance parameter subspace spanned by

the columns of a known matrix . Hence, the observa-

tion model has the form

(1)

Manuscript received November 29, 2009; revised June 08, 2011; accepted
June 28, 2011. Date of current version December 07, 2011. This work was sup-
ported in part by the French National Agency of Research under Grant ANR-08-
SECU-013-02.

The author is with the ICD, LM2S, Université de Technologie de Troyes
(UTT), UMR STMR, CNRS 6279, BP 2060, 10010, Troyes, France (e-mail:
lionel.fillatre@utt.fr).

Communicated by M. Lops, Associate Editor for Detection and Estimation.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2011.2170114

where both the nuisance parameter vector and the

vector are unknown and deterministic. The zero-mean

Gaussian noise vector has the known positive definite general

covariance matrix . The vector belongs to the known set of

different vectors , also called

the vector constellation. The relation between the dimension

of the observed vector and the number of non-null vectors

is arbitrary but it is assumed that .

Three objectives are aimed to be achieved: i) vector detection

which is to decide if for a given false alarm probability

(probability to declare an alarm when the observation vector is

anomaly-safe), ii) vector classification which is to specify the

actual index of the vector and iii) insensitivity to the nui-

sance parameters which consists of taking the simultaneous de-

tection/classification decision independently from the value of

the unknown vector .

A. Relation to Previous Work

From the statistical point of view, this problem of simulta-

neous detection/classification can be viewed as an hypotheses

testing problem between several composite hypotheses [9], [10].

The goal is to design a statistical test which achieves the above

mentioned three objectives according to a prefixed criterion of

optimality.

The first approach to the design of statistical detection and

classification tests is the uncoupled design strategy where detec-

tion performance is optimized under the false alarm constraint

and the classification is gated by this optimal detection. On the

one hand, the classical Neyman-Pearson criterion of vector de-

tection [10] states that it is desirable to minimize the probability

to miss the target subject to a constraint on the false alarm prob-

ability. On the other hand, in terms of target classification, it

is desirable to minimize the probabilities to badly classify the

target. All the above mentioned probabilities generally vary as

a function of both the vector and the nuisance parameter .

Hence, the uniform minimization of these probabilities with re-

spect to and is in general impossible. There is no guarantee

that the global performance of this uncoupled strategy will be

acceptable. Consequently, a different approach must be taken,

namely the coupled design strategies for detection and classifi-

cation. These strategies have been studied by only a few authors.

Pioneering works include the papers [11]–[14]. The common

ground in each of these studies is the Bayesian point of view,

i.e., prior probabilities are assigned to all the parameters so that

average performance can be optimized. The problem of simulta-

neous detection and classification using a combination of a gen-

eralized likelihood ratio test and a maximum-likelihood classi-

fier is studied in [15], [16]. This strategy is optimal only in some

cases.

0018-9448/$26.00 © 2011 IEEE
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Contrary to a purely Bayesian criterion which needs a com-

plete statistical description of the problem, the minimax crite-

rion is well adapted to detection problems where some param-

eters are deterministic and unknown (typically the nuisance pa-

rameter ) and the appearance probability of each vector is

unknown. This criterion consists of minimizing the largest prob-

ability to make a decision error (typically a miss detection or a

classification error). In [17], the generalized-likelihood ratio test

approach is extended to multiple composite hypothesis testing,

by breaking the problem into a sequence of binary composite

hypothesis tests. In some cases, sufficient conditions for min-

imax optimality of this strategy are provided. Lastly, a general

framework to design minimax tests with a prefixed level of false

alarm, namely the constrained minimax tests, between multiple

hypotheses composed of a finite number of parameters is estab-

lished in [18].

It must be mentioned that some interesting papers like [19],

[20] study the asymptotic performance of Bayesian tests be-

tween multiple hypotheses in absence of constraints on the false

alarm probability. When the number of observations is very

large, these papers show that the error probabilities depend only

on the Kullback-Leibler information between the hypotheses.

These results are not yet extended to the case of multiple hy-

potheses testing with a constraint on the false alarm probability.

B. Motivation of the Study

The design of the optimal constrained minimax test mainly

depends on three major points: 1) the geometric complexity

of the vector constellation, 2) the covariance matrix of the

Gaussian noise and 3) the presence of nuisance parameters. To

underline the importance of these points, the three following

cases must be distinguished.

In the simplest case, the vectors are orthogonal and have

the same norm (the least complex vector constellation), the co-

variance matrix is the identity matrix (possibly multiplied by

a known scalar) and there is no nuisance parameter . The op-

timal solution of the problem is given in [9], [21]: this is the

so-called -slippage problem.

In a more difficult case, the vectors are not orthogonal

and/or they have different norms (the most complex vector con-

stellation), the Gaussian noise has a general covariance matrix

(not necessarily diagonal) and there is no nuisance parameter

. The theoretical optimal solution is given by the constrained

minimax test [18] but it is generally intractable. This optimal

test compares the maximum of weighted likelihood ratios to

a threshold to take its decision. Although the existence of the

optimal solution is established, this solution depends on some

unknown coefficients, namely the optimal weights and the

threshold. Furthermore, the presence of a general covariance

matrix plays a significant role in the calculation of the

optimal weights, even if the vector constellation is simple.

In fact, it is always possible to get a diagonal covariance

matrix after prefiltering but this operation may involve that

the vector constellation becomes more complex. For example,

orthogonal vectors of interest may be no longer orthogonal

after prefiltering. For all these reasons, it is often impossible

to easily calculate the optimal weights and, even, to reduce

the number of weights to be determined by using invariance

principles [10], [22]. The optimization problem to be solved for

calculating the optimal weights is highly nonlinear and leads to

a combinatorial explosion.

Example 1 (Slippage Problem With Unstructured Noise):

This example is directly related to the important problem of

detecting outliers in multivariate normal data [23]. Let be a

Gaussian random vector with zero mean and a known general

covariance matrix under hypothesis . Under hypothesis

, the th component of has the known mean .

Hence, the vector to detect and classify corresponds to

where denotes the vector with a 1 in the th coordinate and

0’s elsewhere. Since the covariance is known but it differs from

the identity matrix, it is no longer possible to use the famous

principle of invariance to solve such a slippage problem [9].

The optimal solution is not known up to now. Example 6 shows

that the results proposed in this paper can be used to solve this

slippage problem.

In the most difficult case, the vectors ’s are not orthog-

onal and/or they have different norms, the Gaussian noise has

a general covariance matrix and there is an unknown nui-

sance parameter . To our knowledge, the optimal constrained

minimax test is unknown in this case. The main reasons which

explain this lack of results are the followings. First, the presence

of linear nuisance parameters certainly complicates the mutual

geometry between the vectors. Next, there is an unavoidable an-

tagonism between the detection and classification performances

of the test. For example, to get small classification errors, it is

necessary to accept a loss of sensibility for the probability of de-

tection. The tradeoff between these two requirements is essen-

tially based on the worst case of detection and the worst case of

classification which are generally difficult to identify. Finally, as

underlined in [24]–[27], the analytic calculation of the miss de-

tection probability and the classification error probabilities are

intractable, which makes difficult the derivation of an optimal

test.

Example 2 (Integrity Monitoring of Navigation Systems): Let

be a Gaussian random vector with the known covariance ma-

trix . Under hypothesis , its mean is where is the user

unknown parameters and is a matrix describing the measure-

ment system [5]. Under hypothesis is contaminated by

a scalar error with intensity . The common solution, namely

the parity space approach, involves two steps. First, the user un-

known parameters are eliminated by projecting on the null-

space of . This null-space is called the parity space in the ana-

lytical redundancy literature [28]. Next, the error is detected and

classified (isolated) directly in the parity space. Unfortunately,

the first step may generate some linear dependencies between

the possible error signatures in the parity space. In this case, the

problem is not theoretically solved. Example 7 shows that this

paper proposes a solution to this problem.

Example 3 (New User Identification in a Multiuser System):

In a multiuser system, after chip-matched filtering and chip rate

sampling, the received signal vector under hypothesis is

modeled as where the th column of the ma-

trix is the normalized unit energy signature waveform vector
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of user is the diagonal matrix of user amplitudes and

is the vector whose th component is the antipodal symbol,

or 1, transmitted by user [29], [30]. The random vector

has zero mean and the known covariance matrix where

is the identity matrix of size . Under hypothesis , the

vector is added to , i.e., a new user with the sig-

nature emits the symbol with the amplitude . It is

assumed that belongs to a finite set of predefined nonorthog-

onal signatures. The multiple-access interferences can be

eliminated by using the above mentioned parity space approach

[31]. The goal is to detect the new user arrival and to identify

the waveform . This is a difficult problem, especially when

the common length of each user’s signature is shorter than

the total number of simultaneously active users [32]. Section VI

will further elaborate upon this example.

When the optimal statistical test is unknown or intractable,

it is often assumed that the optimal weights are equal (since

it is the least informative a priori choice) and the threshold is

tuned to satisfy the false alarm constraint. The resulting test is

called the -ary Generalized Likelihood Ratio Test (MGLRT)

between equally probable hypotheses. It must be noted that the

optimality proof of the MGLRT is still an open problem.

C. Contribution and Organization of the Paper

The first contribution is the design of a constrained -min-

imax detection/classification test solving the detection/clas-

sification problem in the case of nonorthogonal vectors with

linear nuisance parameters and an additive Gaussian noise with

a known general covariance matrix. This test is based on the

maximum of weighted likelihood ratios, i.e., it is a Bayesian

test associated to some specific weights. It is -optimal (under

mild assumptions) in the sense that it is optimal with a loss

of a small part, say , of optimality with respect to the purely

theoretical minimax test. This loss of optimality, which is the-

oretically bounded, is unavoidable since the purely theoretical

minimax test is intractable due to the difficulties above men-

tioned. This loss is even more negligible as the signal-to-noise

ratio is large. It is also shown that this test coincides with

a constrained -equalizer Bayesian test which equalizes the

classification error probabilities over the alternative hypotheses

up to a constant .

Secondly, an algorithm is proposed to compute the optimal

weights of the proposed test with a reasonable numerical com-

plexity. This algorithm is based on a graph, namely the separa-

bility map, describing the mutual geometry between the vectors.

This separability map serves to identify the least separable vec-

tors, making possible the design of the associated constrained

-minimax test. This map is also used to calculate in advance

the asymptotic maximum classification error probability of the

constrained -minimax test as the Signal-to-Noise Ratio (SNR)

tends to infinity. Moreover, in the case of large SNR, an asymp-

totically equivalent test is proposed whose optimal weights have

a very simple form.

Finally, it is shown that the MGLRT is -optimal when the

mutual geometry between the hypotheses is very simple, i.e.,

when each vector has at most one other vector nearest to it in

term of Euclidean distance. In general, the MGLRT is subop-

timal and the loss of optimality may be significant.

The paper is organized as follows. Section II starts with the

problem statement and introduces the statistical framework that

will be used in this paper, including the presentation of the con-

strained -minimax criterion. Section III describes the general

methodology to reduce the detection/classification problem

between multiple hypotheses with nuisance parameters to a

detection/classification problem between multiple hypotheses

without nuisance parameters. This reduction is based on the fact

that it is sufficient to design a constrained -equalizer Bayesian

test to get the constrained -minimax one. Section IV defines

the separability map and proposes the main theorem of this

paper which establishes the constrained -equalizer Bayesian

test. The proof of this theorem is given in Appendix A. The

false alarm probability of this test is calculated in Appendix B.

Section V gives an asymptotically equivalent test to the con-

strained -minimax as the SNR tends to infinity. The derivation

of this test is given in Appendix C. It is also shown that the

MGLRT is asymptotically -optimal when the mutual geometry

between the hypotheses is very simple. Section VI deals with a

practical problem, namely the identification of a new active user

in a multiuser system, showing the efficiency of the proposed

-optimal test. Finally, Section VII concludes this paper.

II. PROBLEM STATEMENT

This section presents the multiple hypotheses testing problem

which consists in detecting and classifying a vector in the pres-

ence of linear nuisance parameters. A new optimality criterion,

namely the constrained -minimax criterion, is introduced and

motivated.

A. Multiple Hypotheses Testing

The observation model has the form (1). Without any loss

of generality, it is assumed that the noise vector follows a

zero-mean Gaussian distribution . In fact, it is always

possible to multiply (1) on the left by the inverse square-root

matrix of to obtain the linear Gaussian model with the

vector , the nuisance matrix and a Gaussian noise

having the covariance matrix . It is also assumed that is a

full-column rank matrix. If the matrix does not satisfy this

assumption, it suffices to keep the maximum number of linear

independent columns to get a full-column rank matrix spanning

the same linear space. It is then desirable to solve the multiple

Gaussian hypotheses testing problem between the statistical hy-

potheses

(2)

where . The following condition of

separability is assumed to be satisfied:

(3)

In other words, it is assumed that the intersection of the two

linear manifolds and (which are parallel to each other)

is an empty set for all (two parallel linear manifolds with

nonempty intersection are equal). Here, the parameter set

associated to hypothesis is not a singleton, hence, is

called a composite hypothesis [33]. Otherwise, the hypothesis is

simple and it is identified by the absence of an underscore, say
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. The set of decision strategies for the -ary hypotheses

testing problem (2) is specified by the set of test functions.

Definition 1: A test function for the mul-

tiple hypotheses is a -dimensional vector

function defined on such that and

Given , the test function decides the hypothesis

if and only if . In this case, the other components

, are zero. The study of randomized test functions

(a random test function satisfies for some )

is not considered in this paper since the probability distribution

of is continuous whatever the true hypothesis. The average

performance of a particular test function is determined by

the functions where

stands for the expectation of when follows the distribution

. The false alarm probability function is given by

when . The function for

describes the probability of miss detection. When

is the classification error proba-

bility. The maximum classification error probability for the test

function is denoted

For a test where is a given superscript, all the above men-

tioned notations are completed by the superscript . Let be

the set of test functions whose maximum

false alarm probability is less or equal to

B. Constrained Epsilon-Minimax Test

As mentioned in the introduction, the constrained minimax

criterion given in [18] is a very natural criterion for problem

(2). Unfortunately, as underlined in [18], since the geometry of

the set may be very complex, it is impossible

to infer the structure of the minimax test. Hence, to overcome

this difficulty, it makes sense to consider constrained -minimax

tests, i.e., tests that approximate optimal minimax test with a

small loss, say , of optimality.

Definition 2: A test function is a con-

strained -minimax test in the class between the hypotheses

if the following conditions are fulfilled :

i) ;

ii) There exists a positive function satisfying

as such that

for any other test function .

Obviously, Definition 2 assumes that the positive constant is

(very) small. In some cases, it is possible to get (see

Section VI) but, generally, because of the vector con-

stellation complexity. Contrary to a purely constrained minimax

test, the design of a constrained -minimax test tolerates small

errors on the classification error probabilities. Hence, it becomes

possible to use lower and upper bounds on these probabilities in

order to evaluate the statistical performances of the test. As un-

derlined in [25], the exact calculation of these probabilities is

generally intractable.

III. EPSILON-MINIMAX TEST FOR COMPOSITE HYPOTHESES

This section introduces the constrained -equalizer Bayesian

test of level . Proposition 1 shows that such a test is neces-

sarily a constrained -minimax one. The first step to design the

constrained -equalizer Bayesian test between composite hy-

potheses in presence of nuisance parameters consists in elim-

inating these unknown parameters. Proposition 2 shows that

this elimination, based on the nuisance parameters rejection,

leads to a reduced decision problem between simple statistical

hypotheses.

A. Constrained Epsilon-Equalizer Test

Let us recall the definition of the constrained Bayesian test

before introducing the definition of the constrained -equalizer

test. Let be a probability distribution over called the a priori

distribution. For all , this distribution induces

some a priori distributions on the linear manifolds and

some a priori probabilities such that

(4)

Let be the probability density function (pdf) of the ob-

servation vector following the distribution . To each

hypothesis is associated the weighted pdf (see de-

tails in [10]) defined by

Let be the weighted log-likelihood ratio defined by

(5)

for . The constrained Bayesian test function

of level associated to is given by

(6)

and for

(7)
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where the threshold is selected to satisfy the

constraint

(8)

The following -equalization criterion serves to design a con-

strained -minimax test.

Definition 3: A test function is

a constrained -equalizer test between the hypotheses

in the class if the following condi-

tions are fulfilled :

i) ;

ii) There exists a positive function satisfying

as such that

Proposition 1: Let be the Bayesian test function of

level associated to the a priori distribution such that

is a constrained -equalizer test between .

Then, for any other test function for

testing among the hypotheses , it follows that

where as .

Proof: Let be an arbitrary test in for testing among

the hypotheses . Let be the Bayesian

risk of the test for the a priori distribution

From the definition of the Bayesian test [9], [18], we get

. Since and

, we get

(9)

where

Since is a constrained -equalizer test, we get for all

and

where as . It follows that

(10)

One also obtain

(11)

Hence, (9), (10) and (11) yield to

which ends the proof.

B. Reduction to Epsilon-Equalizer Test for Simple Hypotheses

The presence of linear nuisance parameters complicates the

statistical decision problem. The theory of invariance [5], [9],

[10] is generally used to obtain a test which is independent of

them. It is well-known that the invariance principle leads to

some reduced (simplified) decision problems for which the op-

timal decision test is often a minimax one [10, chap. 8]. Hence,

it is proposed to eliminate the nuisance parameters by using

the invariance principle and to show that the constrained -min-

imax test can be derived from the reduced problem under certain

conditions.

The family of distributions for and

remains invariant (see [10] for details and definitions)

under the group of translations

which induces in the parameter space the group

that preserves all the sets , i.e., for all and

. Hence, the hypotheses testing problem (2) remains in-

variant under . It is shown in [5] that is a max-

imal invariant to the group of translations where the ma-

trix of size is com-

posed of the eigenvectors of the projection ma-

trix corresponding to eigenvalue

1. Here, denotes the inverse of . The matrix satisfies

the following conditions:

(12)

The multiple hypotheses testing problem between composite

hypotheses (2) is reduced to the following multiple Gaussian

hypotheses testing problem between simple hypotheses

(13)

for where and . From

(3), it follows that for all . Let

be the set of vectors signatures after the nuisance

parameter rejection. The Euclidean norm of is

where is known for all .

The following proposition shows that a constrained -equal-

izer Bayesian test for the reduced problem (13) is a constrained

-minimax test for the initial problem (2). Before presenting this

proposition, let us give the simplified form of the constrained

Bayesian test function (6)–(8) of level applied to the reduced
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problem (13). Obviously, this test function is defined on in-

stead of (see Definition 1) and the functions

depend on instead of . Define the

-dimensional unit simplex

For the problem (13), each a priori distribution is equivalent

to a weight vector . For arbitrary , (5) is rewritten

as follows:

(14)

Proposition 2: Let be the Bayesian test

function of level associated to the a priori distribution

such that is a constrained -equalizer test between

, i.e., there exists a positive function satis-

fying as such that

Then is a constrained -minimax test in

the class between hypotheses .

Proof: Let for all .

Let be the a priori distribution defined over by

where

Noting that , a short algebra immediately

shows that for all . Hence,

the test function is independent of the nuisance param-

eter since the statistical distribution of is independent

of . Consequently, is a constrained -equalizer test

in between . The proof is ended by using

Proposition 1.

According to the proof of Proposition 2, the loss of optimality,

say , for the -equalizer test between is equal

to the loss of optimality, say , for the -equalizer test be-

tween , i.e., . This comes from the fact

that the rejection principle is equivalent to assume that the pa-

rameter follows under a degenerate a priori distribution

whose support consists of only one value for all

. Strictly speaking, it is certainly possible to reduce

by designing and using some nondegenerate a priori distribu-

tions specifically adapted to the statistical performances

of the -equalizer test between . However, in

practice, the expected diminution in the loss of opti-

mality is not sufficiently significant to justify the effort required

to look for such specific a priori distributions .

IV. EPSILON-EQUALIZER TEST FOR SIMPLE HYPOTHESES

The main result of this section is Theorem 1. It proposes

a constrained -equalizer Bayesian test for the problem (13),

which means the calculation of the weight vector and

the threshold for the test in Proposition 2.

A. Principle of Epsilon-Equalization

Designing a constrained -equalizer Bayesian test for

the problem (13) is difficult for mainly three reasons: i) the

common value of the classification error probabilities is

unknown, ii) the weight vector ensuring the -equalization

of the classification error probabilities is not easily calculable

and iii) the threshold must be chosen accordingly to the pre-

scribed false alarm probability .

To overcome these difficulties, this paper proposes an original

tool, namely the separability map, which describes the mutual

geometry between the vectors. Loosely speaking, the separa-

bility map is a graph [34], [35] whose topology is deduced from

the Euclidean distances between the vectors to be classified. In

this map, the neighborhood of a vector, say , is composed of

the nearest vectors of according to the Euclidean distance.

The neighborhood of characterizes the maximum classifica-

tion error probability of . There is a natural compromise be-

tween the number of neighbors of and their distances to .

Hence, the separability map is used both to identify the least sep-

arable vectors and to calculate in advance the asymptotic max-

imum classification error probability of the constrained

-minimax test. Once is known, the weights associated

to the least separable vectors are easily deduced from the separa-

bility map. The remaining weights are more difficult to calculate

because they depend on the distances between all the remaining

vectors. Thus, it is proposed to solve an original linear program-

ming problem whose solution gives the remaining weights. Ba-

sically, the principle of this linear programming problem is to

equalize the classification error probabilities by exploring the

space of possible weights subject to some constraints depending

on the distances between all the vectors. Finally, the threshold

is deduced from . To the authors’s knowledge, such an ap-

proach has never been addressed before in the literature.

B. Mutual Geometry for Simple Gaussian Hypotheses

The distance between the null hypothesis and the alterna-

tive one is defined as

(15)

where is a real depending on the prescribed false alarm prob-

ability . Generally, is a decreasing function of (see The-

orem 1) but it is not crucial to derive the following results. The

minimum detectability distance between the null hypothesis

and the alternative hypotheses is given by

where . Let be the distance between

two alternative hypotheses and given by:

(16)

Finally, the separability value of hypothesis is given by
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and the minimum separability distance between all the alterna-

tive hypotheses is

Definition 4: The separability map associated to the set

is the undirected graph , where and

is the set of all 2-subsets of , defined by

Strictly speaking, it would be more rigorous to precise that the

separability map depends on the false alarm probability , for

instance by using the terminology -separability map, but it is

not necessary since is fixed a priori. Two vectors and of

are adjacent if . Two vectors and are connected

if there exists a family of different vectors

such that for all

and . Since the connection is an equivalence re-

lation [34], there is a partition of into nonempty subsets

such that two vertices and are connected

if and only if both and belong to the same subset . Let

be the subgraph of such that contains all

the 2-subsets of with . The subgraphs

are called the components of .

To avoid too complicated vector constellations (see Remark

2), it is assumed that

A1) All separability map components are star graphs.

The star graph of order is a graph on vectors with one

vector, called the star’s center, having adjacent vectors.

The other vectors have only one adjacent vector, the star’s

center. The star’s center of is denoted . The standard al-

gorithms of the graph theory [34], [35] can be efficiently used to

compute the separability map (representing by an adjacency

matrix for example) and its components. Let the well-known

function be defined by

(17)

Definition 5: Consider the vector with and assume

that it belongs to the component containing elements.

The critical value of is where is the

unique solution of one of the following equations:

• if ;

• if and

• if or .

By definition of the separability map, all the vectors belonging

to the same component have the same critical value. The crit-

ical value characterizes the common maximum classification

error which can be achieved simultaneously by all the

vectors within the component containing .

Remark 1: To justify Definition 5, it is necessary to estab-

lish the existence and uniqueness of . Suppose . Let

be defined for .

The function is a continuous and strictly decreasing func-

tion. The existence and uniqueness of follows from

and as . The same

reasoning shows that the second case also has a unique solution.

The following lemma gives the asymptotic value of when

becomes arbitrary large. Here, the notation as

stands for and stands

for as .

Lemma 1: Suppose that the component contains

elements with . As , the real value associated

to satisfies the asymptotic relation where:

• if ;

• if and : .

The asymptotic behavior of is unique in the sense that

has necessary the form .

Proof: For a large value of , it is well-known that [29]

Hence, a bit of algebra yields to

It follows that

if and only if . This limit

is achieved if and only if

This leads to .

Following the same reasoning, we get that

(18)

Hence, (18) tends to 1 if and only if

This leads to .

The critical value of is defined by

(19)

It is clear that . A critical component of is a compo-

nent such that the common critical value of its elements is .

Lemma 2: A critical component has at least two elements.

Proof: Let be a critical component such that all its ele-

ments have the common critical value . Suppose that has

only one element . Then, according to the definition of the

critical value, and one obtain . Since is a

critical component, then . Hence, . Using
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Fig. 1. Vector constellation with two components � and � .

the fact that , it follows that . The

minimum value is achieved at for . Hence,

there exists an other element which necessarily belongs to

and, consequently, has at least two elements.

The vectors are separated into three sets according to their role

in the separability map. Let be the set of strongly critical

vectors defined by

(20)

be the set of weakly critical vectors

(21)

and be the set of noncritical vectors

(22)

Remark 2: Assumption A1) may be not satisfied in practice.

In such a case, the approach proposed above still works but it

is more difficult to calculate the critical values . In fact, when

the component of is a star graph, the center is naturally the

least separable vector and it is possible to calculate the common

maximum classification error probability of the compo-

nent. When the component is not a star graph, the least sepa-

rable vector is not easily identifiable and it becomes necessary

to study in details the internal geometry of the component in

order to calculate .

Example 4 (Discrete Location Parameter): To illustrate the

above definitions, this toy example considers 5 real 1-D vec-

tors and

(see Fig. 1) with and .

Computing all the separability values for is

straightforward: and .

The separability map and its two components and are

represented in Fig. 2. According to Definition 5, for

. The critical component is with star’s center

and . A solution to this

detection and classification problem is discussed in Example 5.

C. Constrained Epsilon-Equalizer Test for Simple Hypotheses

To derive the constrained -equalizer test, some bounds on

the classification error probabilities and also on the false alarm

probability are used. Hence, to ensure the sharpness of these

bounds and the relevance of the following results, the false alarm

probability must be sufficiently high with respect to the SNR.

For this reason, it is assumed that:

A2) The prescribed false alarm probability satisfies

.

Fig. 2. Separability map� and its two components � and � .

Let be the separability map associated to

and and be the sets defined by (20)-(21)-(22). Let

be the weight vector

(23)

where is the normalizing constant. The co-

efficients are defined as follows: for all

for all and the other positive coefficients for

are the solutions of the linear programming problem

(LP) defined by

(24)

(25)

(26)

(27)

(28)

where is the critical value of and

. A bit of calculus immediately shows that

with

(29)

where denotes the number of elements in the set .

The interpretation of the constraints is the following. Con-

straint (25) means that the weight of the noncritical vector

is necessary smaller than the weight of a (strongly or weakly)

critical vector. On the contrary, constraint (26) means that the

weight of the noncritical vector does not be too small com-

pared to the weight of a critical vector. Constraint (27) means

that the difference between the weights of two noncritical vec-

tors and must be balanced in regard to the geometric

distances between them. Finally, constraint (28) means that the

weight of the noncritical vector must not exceed a certain

level imposed by the prescribed false alarm probability. If this

constraint is violated, the maximum classification error proba-

bility increases due to the presence of the null hypothesis .

More generally, if one of these constraints is violated, it is im-

possible to equalize the classification error probabilities. The

value of is assumed to be large enough to warrant the pos-

itivity of constraints (26), (27) and (28). Let be the number
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of active inequality constraints (equality holds) for each coef-

ficient with and

. Let be the inverse of the function

given in (17).

Theorem 1: Under the assumptions A1) and A2), there exist

a weight vector given by (23) and (29) and a threshold

(30)

where , for which the test

is a constrained -equalizer test between such

that . As , the function associated to the

loss of optimality of converges to

(31)

Finally, as , this test satisfies

(32)

where is given in (19).

Proof: See Appendix A.

Let us discuss this theorem. First, the problem (LP) has not nec-

essarily an unique solution; hence, may be not unique. The

vector is called an “optimal equalization weight vector” since

it ensures that is a constrained -equalizer test. Second,

assuming that with a small is equivalent to as-

sume that is large. In this case, from (32), it is clear that

depends only on . Third, the loss of optimality in

(31) depends on both the parameters and . The

integers and are unknown a priori. They depend

on the geometry of the separability map. Since for all

, it is clear that . Hence, can be chosen

as a default value. Besides, there exists at least one ideal param-

eter which minimizes but it is impossible to guess it easily

in the case of a complex separability map. In practice, a possible

solution consists of testing several values of and to choose the

best one. As established in Appendix A–C, especially in (49),

(50) and (52), the function decreases exponentially to .

Lastly, the false alarm probability is upper bounded by

but the tightness of this bound depends on the geometry of the

separability map. The following proposition shows that it is pos-

sible to have a value close to by keeping unchanged

the optimal maximum error probability .

Proposition 3: Consider the test given in Theorem 1.

If there exists vectors such that and , then

(33)

as . Otherwise, it is possible to find a special

such that the test keeps the same maximum

error probability and satisfies (33) where

is an integer (unknown a priori) depending on the mutual

geometry of the vector constellation.

Proof: See Appendix 3.

The following corollary directly follows from Theorem 1 and

Proposition 2.

Corollary 1: Under the assumptions A1) and A2), the test

, where is defined in Theorem 1, is

a constrained -minimax test in the class between

hypotheses where

According to Proposition 3, the class can be very close to

the class by changing adequately the value of .

Example 5 (Discrete Location Parameter—Continued): The

constrained equalizer test solving the simultaneous detection

and classification problem of discrete location parameter is pro-

posed in [36]. The optimal weight vector is computed by using

an iterative algorithm. The approach proposed in this paper

leads to the same solution. However, three main drawbacks of

[36] are overcome. First, the proof of existence of the -equal-

izer test is established in this paper, not in [36] which considers

that the convergence of the algorithm proves the existence of

the equalizer test. Second, the numerical solution proposed

in [36] involves nonlinear optimization to obtain the optimal

weight vector. Third, the classification error probabilities are

numerically evaluated in [36] but no closed-form is proposed.

Example 6 (Slippage Problem—Continued): Let

where is defined in Section II. Then, the slippage problem

with unstructured noise (see example 1) is equivalent to de-

tecting and classifying a vector from . The

solution of this problem is given by Theorem 1. It is now es-

tablished that the performances of the test essentially depend

on the Euclidean distances between the columns of or,

equivalently, on the correlations between the components of the

random vector .

Example 7 (Integrity Monitoring—Continued): Example 2

can be solved by using Corollary 1. The performances of the

test essentially depend on the structure of the columns of .

In practice, the matrix is deduced from the satellite constel-

lation geometry [5]. Hence, the proposed results could be used

to evaluate the capacity of the navigation system to preserve its

integrity with respect to its geographical position.

V. ASYMPTOTICALLY EQUIVALENT TEST

This section proposes some asymptotically equivalent tests to

the constrained -minimax one given in Theorem 1. These tests

have the same asymptotic maximum classification error but their

form is simpler.

A. Simplified Asymptotic Form of the Epsilon-Minimax Test

Let be the positive real where

with and
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Let be cut into the three disjoint subsets and

such that

where denotes the component containing . The two

subsets and are clearly incompatible: if is the

center of a component then is necessarily empty and, re-

ciprocally, if is not the center of a component then is

necessarily empty. Let be the family of reals

Let be defined by for all

where

and let be the threshold

(34)

Proposition 4: Under the assumptions A1) and A2), the

test with the threshold (34) satisfies

and is asymptotically equivalent to the con-

strained -minimax test between as

Proof: See Appendix C.

According to Proposition 3, the exact comparison between

and is not relevant. It must be noted that

is not necessarily a constrained -equalizer test.

B. Optimality of the MGLRT

Let be the uniform weight vector such that for all

. The MGLRT is the Bayesian test

associated to the uniform weight vector . Its statistical proper-

ties and its optimality are established, respectively, in Proposi-

tion 5 and in Corollary 2. Let

Define as the number of vectors at distance from and

Proposition 5: The test , with the threshold

satisfies and

(35)

Proof: From (55) applied to the weight vector with the

threshold , we get for and

for . Using the lower and upper bounds given

in [25] for equally-likely vectors, we get

and

as . The end of the proof is straightforward.

Generally, the test is not a constrained -minimax test be-

cause . However, under the assumption

A3) All the components of the separability map have at

most two elements, i.e., for all ,

Corollary 2 shows that this test is asymptotically equivalent to

the constrained -minimax test.

Corollary 2: Under the assumptions A1), A2) and A3), the

test such that is asymptotically equivalent to

the constrained -minimax test as

(36)

Proof: Under the assumptions A1) and A3), we get .

The rest of the proof is straightforward by considering together

Proposition 5 and Theorem 1.

It is important to note that the assumption A3) is very severe in

practice since it imposes very strict requirements on the mutual

geometry between the hypotheses. If this assumption is not sat-

isfied (an example is shown in Section VI), then the test is

clearly suboptimal.

VI. APPLICATION TO NEW ACTIVITY DETECTION IN A

MULTIUSER SYSTEM

This section is focused on example 3. The goal is to show that

the proposed approach could be used to detect the entrance of a

new user into a multiuser communication channel and to iden-

tify both the transmitted binary digit and the user’s signature.

A. Detection of a New User Entrance

In order to make the simulation free of secondary details,

let us consider the plainest, yet general enough, model of

Direct-Sequence/Code-Division Multiple-Access (DS/CDMA)

involving real signatures and Binary Phase Shift Keying

(BPSK) data transmission [29], [30]. The model covers, among

others, any system with BPSK signature and data modulation.

The simulation considers a fully synchronous case when both

chips and borders of data symbols (bits) of all users are strictly
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aligned in time. This, along with the assumption of the inde-

pendence of consecutive data bits of any user, permits limiting

the observation interval to a single bit duration . The group

signal of users during the bit duration is

(37)

where is the real amplitude of the th user signal,

is the vector of data bits of users and

is the th user’s signature. The bit takes antipodal

values, 1 or . For simplicity, it is assumed that the values

are known. It is also assumed that there exists a set of

nonorthogonal signal signatures . This numerical example

is specially adapted to the case of an overloaded CDMA system

for which is larger than .

After chip-matched filtering and signal rate sampling, the re-

ceived signal vector under hypothesis (no new user) is

where is the diagonal ma-

trix of user amplitudes and is the matrix whose th column

is the signature waveform vector obtained from

during the bit duration. Here, to seek simplicity, it is assumed

that is Gaussian distributed with an identity covariance ma-

trix. Following [31], the fact that is not explic-

itly taken into account. At a certain time, a new user enters in

the system with the discrete signature where .

The user known amplitude is . The unknown transmitted

bit is . Hence, there are alternative hy-

potheses (entrance of a new user)

where and for .

Strictly speaking, the goal is to estimate both the entry time,

the signature waveform vector and the transmitted bit of the new

user. This is a change detection/classification problem between

hypotheses [31]. As it is stressed in [37], when the moni-

tored (typically large-scale) system has a variable structure, this

leads to an extremely complicated sequential strategy which

must take into account the structural changes in the system. In

fact, the theory of sequential decision is only well-developed in

the case of stationary systems in the prechange state. In contrast

to the sequential strategy, the repeated Fixed Size Sample (FSS)

one is easily applicable to systems with a variable structure for

quickest detection and classification of changes. As explained in

[37], [38], the repeated FSS strategy is based on the following

rule: samples are collected successively and, at the end of each

sample, a decision function (the “snapshot test”) is computed to

test between the hypotheses. The detailed relations between

the error probabilities of the “snapshot test” and the mean de-

tection delay, the mean time between false alarms and the prob-

abilities of false classification can be found in [37], [38]. For all

these reasons, this simulation is focused on the numerical study

of the optimal constrained -minimax test which can be used as

the “snapshot test” in the FSS strategy.

Fig. 3. Vector constellation with the three components � � � and � of the
associated separability map�.

B. Simulation Results

For simplicity, it is assumed that the signatures

are chosen such that the rejection mechanism (see

Subsection III.B) leads to the reduced model where

and is either or one of the

following vectors:

for . The vectors are plotted in Fig. 3 on a cir-

cular grid (see Remark 3). Clearly,

and for

. Here, is a known scale factor which serves to adjust

the Worst Signal-to-Noise Ratio (WSNR) defined by

in decibels (dB). Under the assumption that

, it is straightforward to verify that

the separability map associated to this vector constellation

is composed of three components and (see Fig. 3).

The first one is a star of order 4 containing and .

Its center is . All vectors in have the same separability

value . The common critical value of these vec-

tors, which coincides with , is a nonlinear function of . The

second component is a star of order 4 containing

and . It has the same separability values and critical values

than . The third component is a star of order 3 containing

and . Its center is . The separability value of

and is and its critical value

is . The separability map leads to

and .

Numerical results, in term of classification error probabilities,

are presented in Table I. Due to the symmetry in the vector con-

stellation, only the estimates of probabilities for

are presented. The estimates for have very
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TABLE I
ESTIMATION, CONFIDENCE INTERVAL AND BOUNDS OF THE

CLASSIFICATION ERROR PROBABILITIES FOR � � �

similar values. The false alarm probability is and

( dB). The problem (LP) is solved with

and . The optimal solution

satisfies for all ; hence, . The optimal

weight vector associated to the constrained -equalizer test

is given by

and . The other weights satisfy

for . The threshold is . The

asymptotic maximum classification error probability is

. The classification error

rate is an estimation of obtained from

Monte-Carlo simulations with random samples. This

estimate belongs to the 99% confidence interval .

Moreover, as shown in Appendix A, especially in (41) and

(44), each classification error probability is upper bounded

by and lower bounded by . These two bounds

are very close to each other. Clearly, all the classification

error probabilities are almost equal (see the column with bold

numbers in Table I). Denoting

and , a conservative upper bound

of the loss of optimality is

(38)

Here, shows that the loss of optimality is very small.

Fig. 4 compares the performances of the constrained -min-

imax test and the MGLRT for varying from 3 to 10 with a

sampling step of 0.25(WSNR varying from 9.54 to 20 dB). For

the step , the prescribed probability of false

alarm is fixed at . To ensure that the

MGLRT satisfies the prescribed false alarm, the threshold is

fixed at instead of using

. This second threshold war-

rants that as but it does not warrant that

for a small value of . In Fig. 4, the maximum clas-

sification error zone of the constrained -minimax test is the re-

gion defined by the two following curves. The first one, at the top

of the region, is the upper bound , plotted

as a function of , where is the index of the vector

associated to the maximum upper bound . The second

one, at the bottom of the region, is the lower bound .

These two curves rapidly converge toward the common func-

tion as grows. This zone contains the maximum

classification error probability . The MGLRT maximum

classification error zone is defined similarly. The -minimax test

becomes rapidly more powerful than the MGLRT. The MGLRT

Fig. 4. Comparison of the maximum classification error probability, as a func-
tion of �, between the constrained �-minimax test and the MGLRT.

Fig. 5. Comparison of the false alarm probability, as a function of �, between
the constrained �-minimax test and the MGLRT.

is not optimal in this example because the vector constellation

under consideration does not satisfy the restrictive assumption

A3).

The false alarm probability of the tests is studied in Fig. 5. The

false alarm zone of the constrained -minimax test is the region

defined by the two following curves. The first one, at the top of

the region, is the upper bound given in (57). The second

one, at the bottom of the region, is the lower bound given

in (58). This zone contains the false alarm probability of the

test. The false alarm zone of the MGLRT is defined similarly.

Visually, the upper bound and the lower bound of each zone

coincide (the gap between them is very small). The prescribed

false alarm curve is plotted with a dashed-dotted line. As shown

in Proposition 3, the false alarm of the constrained -minimax

test tends to zero as grows. The false alarm of the MGLRT is

closer to the prescribed level but does not achieve the prescribed

curve since we use the threshold .

Fig. 6 shows the evolution of as a function of . Clearly,

the larger (or equivalently the WSNR) is, the smaller the loss

of optimality is. It must be noted that the loss of optimality is

small even for low values of . The exponential decay of the

curve comes from the exponential nature of the -function (17)

which appears in the classification error probability bounds (see

Appendix A–B). It converges to the theoretical value .

Finally, Fig. 7 compares the performance of the constrained

-minimax test and the asymptotically equivalent one given in
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Fig. 6. Upper bound �� of the loss of optimality � as a function of �.

Fig. 7. Comparison of the maximum classification error probability, as a func-
tion of �, between the constrained �-minimax test and the asymptotically equiv-
alent test.

Proposition 4 as a function of for . The weights

of the equivalent test are

and for . Its

threshold is . The max-

imum classification error zones of the tests are defined as in

Fig. 4. They overlap each other. The performances of the tests

are clearly comparable, even for moderate values of .

Remark 3: Several approaches are possible to choose the

signal signatures , or equivalently the sig-

nature waveform vectors , in the case of an over-

loaded CDMA system. Some details and examples are given in

[39]–[41]. The goal of this simulation is to illustrate the perfor-

mances of the proposed -minimax test, not to deal with a real

practical situation. For this reason, the simulation is based on

an arbitrary vector constellation. It must be noted that a similar

constellation can be designed with realistic signature waveform

vectors proposed in [39], [41]. If the resulting constellation is

simpler, it is still interesting to use the -minimax test but the

loss of optimality of the MGLRT may be less significant.

VII. CONCLUSION

This paper has proposed a constrained -minimax test to

detect and classify nonorthogonal vectors in presence of linear

nuisance parameters. Proposition 2 shows that these nuisance

parameters can be rejected without any significant loss of

optimality. Theorem 1 proposes a test which classifies the

nonorthogonal vectors obtained after this rejection by equal-

izing the classification error probabilities up to a small constant

under a constraint on the false alarm probability. The test design

is based on some weighting coefficients which are computed

by solving a linear programming problem deduced from the

separability map. It is established that the critical value of

the separability map defines the maximum classification error

probability achievable by the constrained -minimax test. When

the SNR is large enough, Proposition 4 shows that the optimal

weights can be directly calculated by avoiding the resolution of

the linear programming problem. Finally, Proposition 5 proves

that the proposed test clearly outperforms the famous MGLRT

when the vector constellation is too complex.

APPENDIX A

PROOF OF THEOREM 1

The proof of Theorem 1 is composed of four parts. First, the

optimal weight vector is calculated. Second, asymptotic tight

upper and lower bounds of the classification error probabili-

ties are established. Third, it is shown that the proposed optimal

weight vector equalizes the classification error probabilities up

to a small difference . Finally, it is shown that the false alarm

probability of the proposed test is upper bounded by .

A. Optimal Weight Vector

Let and be the sets defined by (20), (21) and (22).

Let us consider the problem (LP) defined by (24)–(26). It is

straightforward to verify that

(39)

for all . Hence, noting that , the

constraints (28), (27) and (26) have positive right-hand terms

provided that is large enough to ensure that be-

comes very small. It follows that is a

feasible solution of (LP). Moreover, the ’s are necessarily

bounded since they must satisfy the constraints (25) and (28).

Hence, the feasible region of problem (LP) is nonempty and

bounded, which implies that the linear programming problem

(LP) has an optimal solution, namely for all . Each

necessarily activates at least one constraint in which it ap-

pears. Otherwise, it would be possible to increase the value of

, which would lead to a better solution since would

increase. Consequently, it is clear that the coefficient , associ-

ated to , is related to other anomalies via the activated

constraints where depends on the vector constel-

lation complexity. Let be the set such that

if and only if is related to via an activated con-

straint (hence, ). Then, for all has the

form



8068 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

Let be the optimal weight vector (23) associated to the

’s. Let be the test function defined by (6),

(7) and (14) with the threshold given in (30).

B. Classification Error Probability

By definition, the th classification error of

is given by

(40)

where and stands for the

probability of event when follows the distribution .

The most common upper bound of is the union bound

given by

(41)

where is defined in (17) and

(42)

(43)

This bound is asymptotically tight: it approaches the true error

probability as .

Tight lower bounds are less studied. Here, the proposed lower

bound is an extension of Swaszek’s one (which is detailed in

[25] in the case of equally-likely vectors). The probability is

decomposed into a sum of two errors

The first term corresponds to a subregion of the whole

error region composed of several nonoverlapping cylinders with

precisely known geometric descriptions. This probability can be

easily calculated. The second term is the residual probability

calculated on the rest of the whole error region. This second

term is generally very difficult to calculate. Fortunately, it is

negligible with respect to which constitutes the proposed

lower bound. By definition, each nonoverlapping cylinder is as-

sociated to a single vector . This cylinder is the cross-product

of the semi-infinite interval along the ray from trough

with a -sphere of radius to be determined. Following

[25, Section II], we obtain the following lower bound:

(44)

where is the (normalized) incomplete gamma function

The expression is the probability that

Gaussian variables fall within a -sphere of radius .

Fig. 8. Plane formed by ��� and two of its neighbors ��� and ��� .

As explained below, this radius is chosen such that the cylin-

ders have no overlaps. Fig. 8 depicts the plane formed by three

different vectors and . For simplicity, and due to the

spherical symmetry of the Gaussian pdf, has been placed at

the origin. The shaded regions are the intersections of the two

cylinders and the plane formed by the three vectors. This figure

shows the angle between the two vectors and with

respect to and the associated maximum admissible radius

ensuring no overlaps. The axis is the bisector of the

angle . Clearly, we must have

(45)

A bit of calculus immediately shows that

for all . Let where

and . It follows that

such a choice of satisfies (45), which confirms the relevance

of the lower bound (44).

C. Epsilon-Equalizer Test

To calculate the epsilon-approximation of the probabilities

for , we must treat separately the three following cases:

and . From (42) and (43), it is easy to

verify that

(46)

(47)

1) Case of : Let be the component whose

is the star’s center. Since is a critical component, it has

at least two elements according to Lemma 2. Let be an other

element of . If , we directly get . If
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, it means that , which leads to .

From (47), we obtain

If , we get . Hence, since

and . From the definition of and the fact that

(48)

as , (41) immediately yields to

where as . From (44), we immedi-

ately get

where as . Finally, we obtain

(49)

where and

as .

2) Case of : Let be the star’s center of . If

, we clearly get . If , we get

since when .

Let be an other element of such that and

. If , we get . Since is a star

graph, we necessarily have . Hence,

. If , we necessarily have since

. Using (39), it follows from (47) that

for sufficiently large since and

as (see Lemma

1).

Finally, let . If , we get . Since

and , we get . If

, using again (39), we get for sufficiently

large since .

Hence, from (41) and (44), we get

(50)

with as .

3) Case of : According to the definition of the con-

straints (26), (27) and (28) of the problem (LP), we get that

for all and for all . Hence,

from (41) and (44), we get

(51)

where and vanish as . Using (48), it must

be noted that . Hence, using (51) to

bound , we obtain that

(52)

with and as .

For an other , (51) can be used to bound . Com-

bining the two inequalities (the one for and the one for

yields to

(53)

with and as

.

4) Epsilon-Equalization: Using the triangular inequality

with (49), (50), (52) and (53), it follows that

where as with

Furthermore, from the above equations, the maximum classifi-

cation error probability is achieved by for at least one

index . Hence

(54)

Besides, from (49) and (50), we get

which leads to

where as . Hence, from (54), we get

where . Replacing the condition by

the equivalent condition is possible because

if and only if .

D. False Alarm Probability

By definition, the false alarm probability is

given by

(55)
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where

(56)

To find , we need the distribution of the right hand term of

(55). This involves to take into account the statistical corre-

lations between the variables , which is analytically in-

tractable. Upper and lower limits for the false alarm probability

can be obtained by using the methodology given in the previous

subsection. It follows that

(57)

(58)

where is the number of such that

and is a known positive constant satisfying

as .

Since , it follows that

for all and, finally, . Combining

with (56), this leads to . It follows that , which

concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 3

Suppose there exist vectors such that

and . It follows that or

since . The condition implies

that according to (56). Using Lemma 1, we

get

From Subsections A–D, it is clear that as

for all other vectors . From (57) and (58), it

follows that

Otherwise, suppose there is no vector such that

and . According to (56), for all , we get

as , which means that .

Besides, the critical components do not contain . In fact, if a

critical component contains , there exists necessarily a vector

in this component (satisfying ) such that

. This implies that , which is impossible. Hence,

the critical value of the separability map does not depend on

. Consider an other real such that . Clearly,

increases but not the other ’s. Hence, remains independent

from . Replacing by in Theorem 1 gives a test

with the same maximum classification error but with a

larger threshold. In fact, the right hand term in the constraint (28)

has increased (the other constraints (26) and (27) do not depend

on ). It means that the ’s for remain constants

or become larger, which implies that increases and, also,

. Hence, we can find a value of (depending on

) such that at least one coefficient (see (56)) is equal to

. In this case, we get

where is the number (unknown a priori) of coefficients

achieving simultaneously the value .

APPENDIX C

PROOF OF PROPOSITION 4

Using the definition of in (29) and the asymptotic ex-

pression of given in Lemma 1, it is straightforward to

verify that as . Hence, .

It is clear that for all is a solution of the

linear program (LP). Hence, from (42), (43) and the definition of

constraints (26), (27) and (28), we necessarily get for

all since . From the results given in Appendix A–C,

we immediately get

for all where and as

. Using the upper bound (41) and the lower bound

(44) with the weights leads to

for all since the asymptotic expression of the ’s

is used in the definition of the ’s. From the above results, we

get

(59)

Finally, from Appendix A–D and the definition of in (34),

it follows that

(60)

From (59) and (60), it follows that is asymptotically

equivalent to the constrained -minimax test .

ACKNOWLEDGMENT

The author would like to thank Prof. Igor Nikiforov from the

Troyes University of Technology (UTT), France, for his very

helpful comments. He would also like to thank M. P. Z. for

his support to write this paper. Finally, the author is grateful to

the anonymous reviewers for their suggestions to improve the

quality of the paper.

REFERENCES

[1] H. L. V. Trees, Detection, Estimation, and Modulation Theory: Radar-

Sonar Signal Processing and Gaussian Signals in Noise. Melbourne,
FL: Krieger, 1992.



FILLATRE: CONSTRAINED EPSILON-MINIMAX TEST FOR SIMULTANEOUS DETECTION AND CLASSIFICATION 8071

[2] A. Frakt, W. Karl, and A. Willsky, “A multiscale hypothesis testing ap-
proach to anomaly detection and localization from noisy tomographic
data,” IEEE Trans. Image Process., vol. 7, no. 6, pp. 825–837, Jun.
1998.

[3] N. Merhav and Y. Ephraim, “A Bayesian classification approach with
application to speech recognition,” IEEE Trans. Signal Process., vol.
39, no. 10, pp. 2157–2166, Oct. 1991.

[4] A. Abramson and I. Cohen, “Simultaneous detection and estimation
approach for speech enhancement,” IEEE Trans. Audio, Speech, Lang.

Process., vol. 15, no. 8, pp. 2348–2359, Aug. 2007.
[5] M. Fouladirad and I. Nikiforov, “Optimal statistical fault detection with

nuisance parameters,” Automatica, vol. 41, no. 7, pp. 1157–1171, 2005.
[6] L. Fillatre and I. Nikiforov, “Non-Bayesian detection and detectability

of anomalies from a few noisy tomographic projections,” IEEE Trans.

Signal Process., vol. 55, no. 2, pp. 401–413, Feb. 2007.
[7] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide

traffic anomalies,” presented at the ACM SIGCOMM, 2004.
[8] J. G. Proakis, Digital Communications. New York: McGraw-Hill,

1983.
[9] T. Ferguson, Mathematical Statistics : A Decision Theoretic Ap-

proach. New York: Academic, 1967.
[10] E. Lehman, Testing Statistical Hypotheses, 2nd ed. New York:

Chapman & Hall, 1986.
[11] D. Middleton and R. Esposito, “Simultaneous optimum detection and

estimation of signals in noise,” IEEE Trans. Inf. Theory, vol. 14, no. 3,
pp. 434–444, Mar. 1968.

[12] D. Middleton and R. Esposito, “New results in the theory of simulta-
neous optimum detection and estimation of signals in noise,” Probl.

Peredachi Inf., vol. 6, no. 2, pp. 3–20, 1970.
[13] A. Fredriksen, D. Middleton, and D. Vandelinde, “Simultaneous signal

detection and estimation under multiple hypotheses,” IEEE Trans. Inf.

Theory, vol. IT-18, no. 5, pp. 760–768, Sep. 1972.
[14] T. Birdsall and J. Gobien, “Sufficient statistics and reproducing densi-

ties in simultaneous sequential detection and estimation,” IEEE Trans.

Inf. Theory, vol. IT-19, no. 6, pp. 760–768, Nov. 1973.
[15] E. J. Kelly, I. S. Reed, and W. Root, “The detection of radar echoes in

noise I,” J. SIAM, vol. 8, no. 2, pp. 309–341, 1960.
[16] E. J. Kelly, I. S. Reed, and W. Root, “The detection of radar echoes in

noise II,” J. SIAM, vol. 8, no. 3, pp. 481–505, 1960.
[17] J. Stuller, “Generalized likelihood signal resolution,” IEEE Trans. Inf.

Theory, vol. IT-21, no. 3, pp. 276–282, May 1975.
[18] B. Baygün and A. O. Hero, “Optimal simultaneous detection and es-

timation under a false alarm constraint,” IEEE Trans. Inf. Theory, vol.
41, no. 3, pp. 688–703, Mar. 1995.

[19] C. Leang and D. H. Johnson, “On the asymptotics of M-hypothesis
Bayesian detection,” IEEE Trans. Inf. Theory, vol. 43, no. 1, pp.
280–282, Jan. 1997.

[20] M. B. Westover, “Asymptotic geometry of multiple hypothesis testing,”
IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3327–3329, Jul. 2008.

[21] E. Paulson, “An optimum solution to the k-sample slippage problem
for the normal distribution,” Ann. Math. Statist., vol. 23, no. 4, pp.
610–616, 1952.

[22] L. Scharf, Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis. New York: Addison-Wesley, 1990.
[23] A. C. Rencher, Methods of Multivariate Analysis. Hoboken, NJ:

Wiley, 1995.
[24] B. Hughes, “On the error probability of signals in additive white

Gaussian noise,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 151–155,
Jan. 1991.

[25] P. F. Swaszek, “A lower bound on the error probability for signals
in white Gaussian noise,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp.
837–841, Mar. 1995.

[26] G. E. Séguin, “A lower bound on the error probability for signals in
white Gaussian noise,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp.
3168–3175, Jul. 1998.

[27] L. Birgé, “A new lower bound for multiple hypothesis testing,” IEEE

Trans. Inf. Theory, vol. 51, no. 4, pp. 1611–1615, Apr. 2005.
[28] P. M. Frank, “Fault diagnosis in dynamic systems using analytic and

knowledge-based redundancy—A survey and some new results,” Au-

tomatica, vol. 26, no. 3, pp. 459–474, 1990.
[29] S. Verdú, Multiuser Detection. Cambridge, U.K.: Cambridge Univ.

Press, 1998.
[30] V. P. Ipatov, Spread Spectrum and CDMA: Principles and Applica-

tions. Chichester, U.K.: Wiley, 2005.
[31] T. Oskiper and H. V. Poor, “Online activity detection in a multiuser

environment using the matrix CUSUM algorithm,” IEEE Trans. Inf.

Theory, vol. 48, no. 2, pp. 477–493, Feb. 2002.
[32] A. Kapur and M. K. Varanasi, “Multiuser detection for overloaded

CDMA systems,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.
1728–1742, Jul. 2003.

[33] A. A. Borovkov, Mathematical Statistics. Amsterdam, The Nether-
lands: Gordon and Breach, 1998.

[34] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications.
London, U.K.: Macmillan, 1976.

[35] R. Diestel, Graph Theory. New York: Springer-Verlag, 2005.
[36] B. Baygün and A. O. Hero, “An iterative solution to the min-max si-

multaneous detection and estimation problem,” in Proc. IEEE Work-

shop on Statistical Signal and Array Processing, 1996, pp. 8–11.
[37] L. Fillatre and I. Nikiforov, “A fixed size sample strategy for the se-

quential detection and isolation of non-orthogonal alternatives,” Seq.

Anal., vol. 29, pp. 176–192, 2010.
[38] I. Nikiforov, “Two strategies in the problem of change detection and

isolation,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 770–776, Feb.
1997.

[39] J. Ross and D. Taylor, “Multiuser signaling in the symbol-syn-
chronous AWGN channel,” IEEE Trans. Inf. Theory, vol. 41, no. 4,
pp. 1174–1178, Apr. 1995.

[40] H. Sari, F. Vanhaverbeke, and M. Moeneclaey, “Extending the capacity
of multiple access channels,” IEEE Commun. Mag., vol. 38, no. 1, pp.
74–82, 2000.

[41] P. Pad, F. Marvasti, K. Alishahi, and S. Akbari, “A class of errorless
codes for overloaded synchronous wireless and optical CDMA sys-
tems,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2705–2715, Jun.
2009.

Lionel Fillatre received the M.Sc. degree in deci-
sion and information engineering and the Ph.D. de-
gree in systems optimization from the Troyes Univer-
sity of Technology (UTT), France, in 2001 and 2004,
respectively.

From 2005 to 2007, he worked at Télécom Bre-
tagne, Brest, France. Since 2007, he is an Associate
Professor at the Systems Modelling and Depend-
ability Laboratory, UTT. His current research
interests include statistical decision theory, signal
and image processing, and network monitoring.


