N

N

Implementation of Morphological Operators for Surface
Segmentation

Marcel Alcoverro

» To cite this version:

Marcel Alcoverro. Implementation of Morphological Operators for Surface Segmentation. 2007. hal-
00749115

HAL Id: hal-00749115
https://hal.science/hal-00749115

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00749115
https://hal.archives-ouvertes.fr

Implementation of Morphological Operators for
Surface Segmentation

Marcel Alcoverro Vidal

Supervisor : Sylvie Philipp-Foliguet
Ecole Nationale Supérieure de I’Electronique et de ses Applications

September 10, 2007

Acknowledgements

Dedico aquest treball a la Lara, sense tu no hagués estat possible. Gracies per haver-
me escoltat els rotllos dels watersheds i skeletons, per haver-me animat en els moments
dificils. També el vull dedicar als meus pares, que sou els qui heu aguantat tants maldecaps,
tants anys. Ja s’ha acabat per fi la carrera infinita !

Je veux remercier Sylvie Phillipp, Michel Jordan, Laurent Najman et Jean Cousty pour
m’accuellir dans leur équipes. Merci pour m’avoir découvert le monde de la recherche et
me permettre participer de trés bonnes discussions. Merci Jean pour consacrer ton temps
a m’aider a ne me perdre pas dans les chemins de la morphologie.

Resum

Aquest treball forma part del projecte Eros3d, el qual tracta la gestié de bases de dades
d’obres d’art. El C2RMF (Centre de Recherche et de Restauration des Musees de France)
ha organitzat durant uns anys les tasques de digitalitzacié dels museus francesos i actual-
ment es disposa d’una base de dades de 650 objectes 3D. El seu objectiu és dissenyar una
arquitectura de software capa¢ d’emmagatzemar i manejar (visualitzar, cercar, comparar)
les dades per diferents nivells d’usuari. Concretament el treball realitzat forma part d'un
sistema de recuperacié de dades segons el contingut.

Un sistema de recuperacié de dades segons el contingut (content-based retrieval system)
recupera els objectes de la base de dades basant-se en la similaritat entre els objectes. La
base de dades ha d’indexar-se per tal de dur a terme la classificacié i cerca, i per realitzar la
indexacio s’utilitzen vectors de caracteristiques per a cada objecte. El plantejament adoptat
per a I'obtencio de les caracteristiques de cada objecte és la segmentacié de la superficie del
model en diferents regions significatives. Posteriorment es realitza un calcul de diferents
trets caracteristics per a cada regié. Aquestes diferents caracteristiques obtingudes per a
cada model 3D serviran tant per a comparacions basades en 'objecte sencer, com també
per realitzar consultes parcials consistents en la cerca a partir d’'un conjunt de regions de
la superficie de 1'objecte.

La divisio de la superficie de ’objecte es realitza partint d’'un mapa de curvatura calculat
sobre la malla triangular que representa l'objecte. L’operador utilitzat per fer la particio és
la transformada watershed (linia divisoria d’aigiies) aplicada sobre el mapa de curvatura.
El watershed és un operador morfologic molt utilitzat en el processament d’imatge. Si
imaginem una funcié com un relleu topografic on els valors de cada punt séon l'algada
d’aquest punt en el relleu, un regié seria el conjunt de punts on si i caigués una gota
d’aigua, aquesta baixaria fins al fons d’'una mateixa vall. Partint d’una funcié en un espai
determinat, el watershed obté regions que extenen els minims regionals de la funcié. En
el nostre cas, representem la funcié curvatura sobre la malla 3D amb un graf valuat en les
seves arestes. Apliquem la transformada watershed sobre aquest graf utilitzant I’algorisme
presentat per Jean Cousty [5] de calcul de watersheds en grafs valuats en les arestes.

La transformada watershed aplicada sobre una funcié obté un nombre de regions equi-
valent al nombre de minims regionals de la funcié de partida. El resultat ens pot portar a
una sobre-segmentacié no desitjada. Per tal de controlar el nombre de regions obtingudes
pel watershed aixi com les caracteristiques d’aquestes regions, abans del calcul d’aquest,
filtrem la funcié original per tal de reduir-ne el nombre de minims regionals. L’operador
que implementem per al filtratge de la funcié de curvatura original és 1’arbre de compo-
nents. La combinacié arbre de components + watershed ha estat ampliament utilitzada en
processat d’imatge, video i senyal, i aporta robustesa als resultats de segmentacié obtinguts
amb el watershed. L’algorisme implementat és una adaptacié original de I'algorisme per
al calcul de l’arbre de components presentat per Najman i Couprie [14].

L’arbre de components és un estructura que ordena els components connexos d’un
graf. Considerem un graf valuat G. Un component connex d’aquest graf G és un subgraf
de GG connex en que els seus nodes o arestes tenen el mateix valor. L’arbre de compo-

nents estableix una jerarquia entre els diferents components connexos d'un graf. Aleshores
mitjancant aquest arbre podem modificar els valors del graf de manera que eliminem els
components connexos que no desitgem. En el nostre cas els valors del graf son els valors
de curvatura de la superficie de 'objecte que analitzem. Si per exemple considerem un
component connex petit de valor molt petit, aquest correspondra a una zona de la su-
perficie de I'objecte petita amb molta curvatura. Aquesta zona pot correspondre a una
irregularitat poc significativa de la superficie, o a sorolls en el procés d’obtencié del model.
Mitjancant ’arbre de components els valors de curvatura d’aquesta zona prendran els va-
lors dels punts adjacents, de manera que la irregularitat de la funci curvatura desapareix.
Mentre la transformada watershed obtindria una regié per aquesta zona petita del mapa
de curvatura original, al aplicar-la al mapa filtrat per ’arbre de components aquesta zona
no significativa ja no apareix.

Un cop obtingudes les diferents regions de la superficie es calculen tres caracteristiques
diferents per cada regié. Per una banda un histograma de la longitud de les cordes
(distancia d’un punt al baricentre) i angle amb els eixos principals de I'objecte. Un altre
s un histograma de valors de curvatura. Per tltim, I'histograma EGI (Ezxtended Gaus-
sian Images). Considerem una esfera de Gauss de l'objecte, I'histograma EGI compta les
projeccions de cada punt de 'objecte en aquesta esfera. En el nostre cas el recompte es
realitza per cada regio.

A partir dels histogrames de cada regio es poden construir els vectors de caracteristiques
necessaris per la indexacié de la base de dades d’objectes. El metode presenta avantatges
respecte tecniques d’extraccié de caracteristiques geometriques globals ja que permet trobar
similaritats i diferencies en objectes que tenen la mateixa forma i on els trets caracteristics
es troben en detalls de la superficie. Aquest és el cas per exemple de les escultures antigues
que trobem a la base Eros3d provinents del Museu del Louvre, on la forma d’aquestes
és practicament cilindrica, mentre que les particularitats es troben esculpides sobre la
superficie.

Abstract

A content-based retrieval system needs feature vectors for database indexation. We adopt
the surface segmentation approach to obtain several features for a 3D object which can
be used to retrieve objects in a database from a partial request composed from a set
of regions. To achieve the segmentation of the surface into several regions we apply the
watershed transform on a curvature map computed on the 3D surface mesh. The watershed
applied directly on the original curvature map produces an over-segmentation of the object
surface. Thus, we previously filter the original curvature map by using the component tree.
After this filtering, the watershed transform is computed on the filtered curvature map and
we obtain the desired number of regions. Then we proceed by computing some features
for each region obtained, which will serve as feature vectors for a content-based search
and retrieval system. The techniques we apply on the surface of 3D objects have been
presented for image applications.

Consider a 3D triangular mesh (a set of points, triangles and sides of triangles). We
build an edge weighted graph to represent the mesh. Weights on edges of the graph corre-
spond to the curvature map computed on the mesh. The component tree is a structure to
order the connected components of a weighted graph. We implement an original algorithm
to build the component tree of an edge weighted graph based on the one presented by
Najman and Couprie [14]. This structure allows to reduce the number of minima of the
original map on edges of the graph. We implement the algorithm proposed by Cousty [5]
to compute the watershed transform on an edge weighted graph. By using the watershed
transform we obtain a number of regions of the map which equals the number of minima
of the input map.

Once we obtain the partition of the mesh into several regions we compute features of
each region. These features consist in histograms for each region considering three differ-
ent approaches: Extended Gaussian Images (EGI) [8]; a cords histogram (considering the
cords lenght and a principal angle); a curvature histogram (considering principal curva-
tures). These histograms form feature vectors for each region which will help the database
indexation and classification.

Contents
1 Introduction

2 Mesh characterization and surface analysis
2.1 Edge-weighted graphs L
2.2 Simplicial complexeso
2.3 Curvature
2.4 Vertex per-face grapho
2.5 Mesh Repair

3 Watershed
3.1 Extensions and graph cuts oo Lo
3.2 Watersheds and catchment basins
3.3 Minimum spanning forests and watershed optimality
3.3.1 Minimum spanning forests and minimum spanning trees
3.4 Watershed algorithm oo
3.5 Border thinning on simplicial complexes

4 Component tree

4.1 Connected components notions
4.2 Component tree definition 0000
4.3 Component tree and minimum spanning tree
4.4 The Union-Find method
4.5 Component tree algorithm 00

4.5.1 High-level view

4.5.2 Detailed view

4.5.3 Exampleo
4.6 Node Attributes
4.7 Filtering oL

5 Region attributes
5.1 Cords histogram
5.2 Extended Gaussian Images oo
5.3 Curvature histogram Lo

6 Experimental results

7 Conclusion

~J

o

12
12

14
15
15
17
18
19
21

23
24
25
25
27
28
28
29
32
35
37

38
38
39
40

40

42

1 Introduction

The recent development of 3D object acquisition methods involve a need to handle this kind
of information. Nowadays 3D object databases appear in various areas for leisure as well
as for scientific applications (medical, industrial part catalogues, cultural heritage, etc.).
Large database can be quickly populated using 3D mesh acquisition and reconstruction
tools which have become easy to use. As database size is growing, tools to retrieve infor-
mation as indexing methods, search algorithms and data classification techniques become
more and more important.

A significant amount of work has been done in the past two decades on text-based
document retrieval. The Google search engine has become a standard as text-based search
engine. Indexing by keywords and search achieved through text retrieval techniques has the
advantage that it is “high level” (semantic level), but keywords are external information
which is often manually assigned. More recently content-based retrieval systems have been
developed for images, audio, and video to automatically index and retrieve information
from digital libraries. Content-based retrieval systems retrieve objects based on the integral
similarity of objects.

In search-by-similarity, the goal is to find objects which are “close” to the example. It is
done with respect to a given similarity measurement and thanks to object indexes computed
on object features. These features may be of various kinds (points, segments, regions, etc.)
and may have different properties such as scale invariance, rotation invariance, etc.

Different techniques can be used to extract features of the 3D object, that can be
obtained from a shape representation (Global feature-based techniques, graph-based tech-
niques, recognition-based techniques). Surface segmentation can be applied also for feature
detection.

This work is part of the Eros3d project. The Eros3d project deals with artwork database
management. C2RMF (Centre de Recherche et de Restauration des Musees de France) has
organized digitalization lobbying in french museums for some years. 650 3D objects are
available in the database. Its aim is to design a software architecture that is supposed to
store and handle (view, research, compare) data at different user levels.

2 Mesh characterization and surface analysis

Segmentation of a polygonal mesh is a method of splitting the mesh into regions in a
“meaningful” manner. A mesh consists of a set of n points (z; € E3;0 < i < n) and a set
of planar convex polygons made up of these points. A first question to consider in order
to partition the mesh is to define which components of the mesh will form the regions and
how their boundaries will be defined. Two different approaches that have been used before
are summarized in [17], called vertex based method and edge based method.

The vertex based methods consider a value associated at each vertex (i.e curvature)
and define the segmentation as regions that consist of connected vertices that have the
same property. A major drawback in this approach is that no boundaries are created

7

for the regions and each vertex has its own region information. Therefore triangles have
multi-region information, so the three vertices of a triangle can be part of three different
regions, whereas the triangle itself would not belong to any region.

The edge based methods define an edge as boundary if it is shared by two planes whose
normal vectors make an angle greater than a certain threshold. This results in disconnected
boundary edges and thereby open regions.

Our approach defines regions as sets of connected faces with edges as their boundaries,
that leads to obtain a surface divided in closed independent regions consisting of connected
triangles after the segmentation process. We illustrate our approach in fig. 3.

We represent the mesh by a graph, and the curvature will we defined as a weight
function on edges, so we will introduce some notations for edge-weighted graphs. Also we
will introduce some notions on simplicial complexes, since it is a structure that allows to
describe the topological properties of a mesh.

2.1 Edge-weighted graphs

We define a graph as a pair X = (V(X), E(X)) where V(X) is a finite set and F(X) is
composed of unordered pairs of V(X),i.e, E(X) is a subset of {{z,y} C V*(X) | z # y}.
Each element of V' (X) is called a verter and each element of F(X) is called an edge.

Let X be a graph. Let z and y be vertices of X. We say that z and y are adjacent
if {x,y} is an edge of X. A sequence m = (zy, ..., x;) of vertices of X is a path in X (from
xo to x1) if z; and x;41 are adjacent for each ¢ =0,...,l — 1. We say that X is connected
if, for any pair of vertices (x,y) in X, there is a path in X from x to y.

Let X and Y be two graphs. If V(Y) C V(X) and E(Y) C E(X), we say that Y is
a subgraph of X and we write Y C X.

Let X and Y be two graphs and Y C X, Y a subgraph of X. We say that Y is a
connected component of X, or simply a component of X, if Y is a connected subgraph of
X which is maximal for this property, i.e, for any connected graph Z, Y C Z C X implies
Z =Y.

Throughout this paper GG denotes a connected graph.

We denote by F the set of all maps from F to R. Let F' € F. If u is an edge of G,
F(u) is the altitude of u. In our application the curvature will define the altitude of
the edges of the graph. We also will denote by F' the map from V to R such that for any
x € V, F(x) is the minimal altitude of an edge at z, i.e., F(z) = min{F(u) |u € E,x € u}

Let X C G and k € R. A subgraph X of G is a minimum of F (at altitude k) if:
- X is connected;

- k is the altitude of any edge of X;

- the altitude of any edge adjacent to X is strictly greater than k.
We denote by M(F') the graph whose edge set is the union of the edge sets of all minima
of F.

2.2 Simplicial complexes

We extract from [2] and [3] some notions and notations of complexes.

A (finite simplicial) complex X is a finite family composed of finite nonempty sets such
that, if f is an element of X, then every nonempty subset of f is an element of X. Each
element of a complex is called face. The dimension of a face f is the number of its elements

minus one. We call an m-face a face of dimension m. We denote by K the collection of all
complexes.

In fig. 1(a) we ilustrate a graphical representation of a 0-face, a 1-face and a 2-face.

L. L/
VA VAVAVA

(a) (b) () (d)

Figure 1: (a) A set of faces (one 2-face, one 1-face, one O-face). (b) A set of faces X which
is not a complex. (¢) The set X, all the facets of X. (d) The set X, the closure of X,
which is a complex.

Let f be a finite nonempty set. We set f={glg C f,g#0}and f* = f\ {f}. Any
g € f is a face of f, and any g € f is a proper face of f. If X is a finite set of faces in
Fy, we write X~ = U{f|f € X}, X~ is the closure os X. Thus, a finite family X of finite
nonempty sets is a complex if and only if X = X .

Any subset Y of a complex X which is also a complex is a subcompler of X, and we
write Y < X. If X is a complex in K we also denote X < K.

Let X < K. A face f € X is a facet of X if there isno g € Y such that f € g*. We denote
by X+ the set composed of all facets.

In fig. 1 we ilustrate these notions. The set of faces X of fig. 1(b) are not a complex.
As it can be observed, X does not equal its closure X~ depicted in fig. 1(d).

9

2.3 Curvature

The computation of the curvature has been done with the software Trimesh provided by
Princeton University [18]. This software provides a method based on computing first the
curvature per-face and then estimates the value at each vertex as a weighted average over
the immediately adjacent faces.

The normal curvature k,, of a surface in some direction is the reciprocal of the radius
of the circle that best approximates a normal slice of surface in that direction. The normal
curvature can be expressed as k,, = K15+ kot? where k1 and k9 are the principal curvatures
and (s,t) are the principal directions, which are the directions where the normal curvature
reaches its minimum and maximum. These directions are ortogonal.

The Gaussian curvature K is equal to the product of the principal curvatures: K =
K1k2, and the mean curvature H is their average: H = (k1 + Kk2)/2.

Figure 2: Curvature scalar functions of the object in (a) in grayscale.
After the computation of Trimesh algorithm on a 3D mesh we obtain the values x; and

10

ko on each vertex of the mesh. These values increase with the convexity of the surface.
They decrease into negative values on concave zones , getting low absolute values on flat
zones. Considering the combination of the principal curvatures x; and ko on a surface we
have convex zones when both values are great positive, concave zones when both are great
negative and saddle zones when one value is great positive and the other great negative,
meaning convexity in one direction and concavity in the other. The flat zones have both
values low.

As the curvature map will be used to partition the surface by using the watershed
operator, a single scalar function is desired. Several approaches can be done to obtain
this height function by combining values k; and ko. Mainly, the choice will depend on the
desired further applications. Also the class of objects or their shape characteristics may
determine which are the “meaningful” regions. For example, if we are dealing with objects
made of flat smooth poligonal parts (cars, manufactured pieces, furniture, etc.), we should
be interested in obtaining regions of this flat parts, thus the divide line between regions
would be placed on high curvature edges. In the case of art objects, the pieces could be
characterized by their carved features, thus it would be interesting to place the lines on
the concave zones dividing convex parts.

Mangan and Whitaker [11] use as magnitude for curvature the deviation from flatness

D = +v4H? — 2K?

where H is the mean curvature and K the gaussian curvature. This function gives high
values on convex and concave zones, while it is low on flat and saddle zones.
Other approach we adopted is to use mean curvature H in the form

H;p, = arctan (—H + 7/2)

This function has the behavior of the inverse of the mean curvature, but taking always
positive values. It gives high values to concave zones and low values to convex zones.

We consider also a maz curvature as
M = max(ki, K3)

and that gives high values on convex and concave zones, as H2. The max curvature has
also high values on zones that are flat in one direction, and convex or concave in the other.
This zones are commonly the edges that divide planes of an object, as the division between
the roof and the doors of a car.

We have used this different treatments of the principal curvatures and, for the art
objects we deal with, the H;,, function is the one with which we obtained the best results,
while the max curvature M gives better results for manufactured objects.

In fig. 2 are depicted the values of these scalar functions in grayscale for the sculpture
in fig. 2(a). Low values are black, while great values are white.

11

(a) (b) (c)

Figure 3: (a) A triangle mesh and a vertex per-face graph. (b) Segmentation on edges of
the graph (in bold). (c) Segmentation on the mesh.

2.4 Vertex per-face graph

Consider a 3D surface mesh M (composed of points,triangles, sides of the triangles) so
that for any side e in M there is exactly one pair of triangles (g, h) such that e € g and
e € h. We build a graph G = (V, E, F)) with one vertex for each face of M and an edge
connecting two vertices if the corresponding two faces share a side. We will call this graph
a vertex per-face graph. An example of a vertex per-face graph is depicted in fig. 3(a).

Let be e any side of a triangle in M and (z,y) the pair of points such that e = {z, y}.
As described in section 2.3 we have computed the curvature values in each point of the
mesh. We denote them as k1, K2, and k1, Koy for the points x and y respectively. Then
we will compute for each e in M,

Riz + Kfly Rog + K'Qy
T T

Considering then the scalar curvature functions explained above (section 2.3) we obtain
then a map from F into R that we denote by F', that will represent the curvature between
each two adjacent faces of the mesh.

2.5 Mesh Repair

The triangle meshes obtained from acquisition of real-objects and also CAD generated
models often have defects that may cause problems in further processing. In our case the
condition that will allow us to proceed properly would be a triangular surface mesh that
forms a manifold without boundaries. Thus, the set of points, edges and triangles that
form a mesh should be a complex K, in which V 1-face u € K there exists exactly two
2-faces f € K, g € K, such that f N g = u. If this is acomplished we can obtain the vertex
per-face graph described previously.

The degeneracies that usually appear may be holes, tubes, duplicated faces, intersecting
faces or borders, and not all of them can be solved in the same way. We have tried different

12

approaches, which have been based on available software, as it was out of our scope to
implement a new application for mesh repairing purposes.

The application ReMESH [1] provides an interactive environment for repairing meshes.
A visualization tool is provided, and the software allows to detect several degeneracies, as
duplicated faces, holes, intersecting triangles. It provides also tools to remove the defects,
to fill holes after, and also has utilities to build again the mesh. We have not used this
application for repairing our objects, as with it meshes should be repaired manually, and
for our purposes the approach should be automatic. Even though, it has been useful to
visualize the kind of degeneracies we deal with, to plan other approaches and to test if the
other approaches worked well.

In order to get the proper meshes, we use two different automatic approaches. Both of
them rebuild the mesh as it assures that the definitive mesh acomplishes our conditions.
Also for both of them the steps involved have been the same, vozxelization, isosurface extrac-
tion, mesh smoothing and mesh size optimization similar as it is presented by Nooruddin
and Turk [15] . The differences are on the techniques adopted on the voxelization step.

Voxelization Voxelization means converting a polygonal model into a volume. The first
approach used to reach the volume from the original mesh has been using the library Pink
[4] to proceed with the following steps:

- obtain the points (i.e vertices of each triangle) of the mesh, and build a 3D grid
where we place the points.

- calculate a distance map of this grid. Each cell of the grid get a value which is the
minimum distance to a point, while point cells get 0 value.

- apply a watershed segmentation on the inverse of the distance map. We use markers
for the watershed that are: a point in the interior of the object; a frame of the grid
as marker for the exterior.

The watershed operator produces a divison of the grid into two regions, that are the interior
and the exterior of the object. We found problems in this approach due to the need for
automatisation. One problem comes from obtaining a point of the interior of the object as
marker for the watershed. A implementation of a method in a step before the extraction
of the vertices of the mesh into the grid is needed. We used the barycenter of the object as
marker, but it fails as it is not always in the interior. Other problem is that the resulting
volume may have broken parts corresponding to thin parts of the original mesh.

The other approach we tested for the voxelization is the one presented at [15], which
has been implemented at Princeton [13]. The method used is called parity count which
consists in classify a voxel V' by counting the number of times that a ray with its origin at
the center of V intersects polygons of the model. An odd number of intersections means
that V is interior to the model and even number means that it is outside. To improve
the technique for models that have cracks or holes, that will cause a bad classification,
a voting scheme is adopted, by using more directions for the rays, and classifying by a

13

majority vote. This approach worked well, even though it creates some tunnels due to
degeneracies not solved by the voting scheme. At [15] is proposed to apply morphological
operators to fill this tunnels, as erosion and dilation, but it has not been tested.

Isosurface extraction After the voxelization step we extract an isosurface from the
volumetric representation to create a manifold polygonal model. We used the library Pink
for this computing, which implements a topologically correct Marching Cubes algorithm
[10].

Mesh smoothing The isosurfaces extracted after the marching cubes algorithm result
in a staircase surface. We use Taubin’s smoothing technique implemented in Trimesh [18]
wich creates a new surface smoother than the original by using a low-pass filter over the
position of the vertices.

Mesh size optimization The surface mesh produced by the marching cubes algorithm
is usually over-tessellated. We used the software Yams [6] to optimize the triangle count
of the mesh. The remeshing algorithm produce a mesh where elements size is related to
local curvature.

After these steps we obtain a new mesh free of degeneracies that acomplishes our
conditions of a maniflod without boundaries. Even though, the method should be improved
to perform better in some cases, as when it generates tunnels in the resulting object, or
broken thin parts. Also the automatisation of resolution related parameters should be
improved.

3 Watershed

The watershed transform has been widely used as a fundamental step in many segmenta-
tion procedures. This algorithm operates on a height function which is defined over the
corresponding domain. It was introduced for image segmentation and also has been used
on 3D surfaces [11]. We use the algorithm introduced by Cousty [5] which is defined on
the framework of edge-weighted graphs.

The watershed method derives the name from the manner how it segments its height
function domain in catchment basins. Imagine a drop of water falling on a relief described
by the height function. It will follow the steepest descent path until it reaches a local
minimum. The set of points whose steepest descent paths terminate at the same minimum
of the function forms a catchment basin. The watershed line will be the line that separates
the different catchment basins.

In our case the height function F' is the curvature defined on the edges of a graph
G = (V, E, F) and the regions of the watershed are computed as a extension of the minima
of that graph.

14

3.1 Extensions and graph cuts

The notions of extension and graph cut are important to define the method used to compute
the watershed. The following definitions are extracted from [5] and formalize both notions
for the framework of graphs.

Definition 1. Let X and Y be two non empty subgraphs of G. We say that Y is an
extension of X (in G) if X CY and if any component of Y contains exactly one component

of X.

The subgraphs drawn in bold in Fig.4(b) and Fig.4(c) are extensions of the subgraph
in Fig.4(a).

Producing an extension until it covers all the vertices of the graph will form a separation
that is called a graph cut.

Definition 2. Let X C G and S C E. We say that S is a (graph) cut for X if S is an
extension of X and if S s minimal for this property, i.e., T C S and T is an extension of
X mmply T = S.

The set S depicted in Fig.4(d) is a cut for the subgraph X in Fig.4(a). S in Fig.4(c) is
an extension of X, and it can be seen that it is a maximal extension.

C
(o] g O
(a) (b) () (d)

Figure 4: A graph G where in bold there is: (a) a subgraph X of G. (b) an extension of
X. (c) an extension Y of X which is maximal. (d) a cut S for X such that S =Y.

3.2 Watersheds and catchment basins

The notion of a watershed can be defined by its catchment basins or by the properties of
the divide line. Usually the first approach is used on a vertex-weighted graph framework,
and the catchment basin of a minimum M is defined as the points from which M is reached
by a steepest descent path. Following this definition, several catchment basins may overlap
each other, as some points could have a steepest descent path to different minimas. To
avoid this situation, some autors define the catchment basins as the points from which only
a unique minimum is reached by a path with steepest descent, but in this latter definition
some sets of points appear not belonging to any catchment basin.

15

From the notions of extension and graph cut we will introduce the watershed cut, as
the “lines” that separate catchment basins, and their properties will be formalized by the
drop of water principle. Later we will show that the watershed can be defined by the divide
lines or the catchment basins. The following definitions are extracted from [5].

Let m = (xg, ..., ;) be a path in G. Path 7 is descending (for F') if, for any i € [1,1—1],
F({zioy,xi}) > F({@i; wia }).

Definition 3 (drop of water principle). Let S C E. We say that S satisfies the drop
of water principle (for F) if S is an extension of M(F) and if for any u = {x9,y0} € S,
there exist 1 = (Tq,...,T,) and T = (Yo, ..., Ym) which are two descending paths in S
such that:

-z, and y,, are vertices of two distinct minima of F'; and

- F(u) > F({xo,x1}) (resp. F(u) > F({yo,y1})), whenever m (resp. ms) is not trivial.

If S satisfies the drop of water principle, we say that S is a watershed cut, or simply a
watershed of F'.

We will illustrate the previous definition with the graph GG and the map F' depicted in
Fig. 5. In Fig. 5(a) it can be observed the set that composes the minima M (F") (in bold).
Consider the set of edges S at Fig. 5(b). It can be seen that S (Fig. 5(c)) is an extension
of M(F). Let so = {e, f} € S the edge at altitude 6 at the corner bottom left of the graph
G. There exists a descending path m = (f, k, 0) with o a vertex of the minima at altitude
1. Also there is the path m = (e, a) with a a vertex of a different minima at altitude 3. The
first edge of m; (resp.my) is lower than sg, F'(so) > F({f,k}) (resp. F(so) > F({e,a})). As
this properties can be verified for each edge in S, S satisfies the drop of water principle.
Thus S is a watershed cut of F'.

In the framework of edge-weighted graph, we define a catchment basin as a component
of the complementary of a watershed. In the following we will show that the watershed can
be defined equivalently by the catchment basins or by the divide lines. We will introduce
the notion of a path with steepest descent in order to later establish the consistency of the
watershed cuts.

From now on, we also denote by F' the map from V' to R such that for any = € V, F(x)
is the minimal altitude of an edge which contains x.

Let m = (xg,...,2;) be a path in G. The path 7 is a path with steepest descent for F
if, for any ¢ € [1,1], F({xi—1,2;}) = F(z;-1).

Definition 4 (steepest descent). Let S C E be a cut for M(S). We say that S is a
basin cut of F' if, from each point of V to M(F), there exists, in the graph induced by S,
a path with steepest descent for F.

Theorem 1 (consistency). Let S C E. The set S is a basin cut of F if and only if S is
a watershed cut of F.

Consider the three components of the set depicted in bold in Fig. 5(c). It can be seen
that there is a path with steepest descent from each vertex V' to the minima, thus these

16

Figure 5: A graph G and a map F' where in bold there is. (a) The minima M (F). (b) S a
watershed cut of F'. (c) An extension of M (F) which is also S. (d) A MSF relative to M (F')
where dashed edges represent the induced cut.

components are the catchment basins (regions) and its complementary (Fig. 5(b)) the
basin cut.

3.3 Minimum spanning forests and watershed optimality

We will introduce the notion of minimum spanning forests. From this notion we will derive
in next sections the algorithm for the watershed computation. Also, as we will see, as
minimum spanning forests of the minima of a map induce the watershed of the map, we
will be able to state an optimality of the watershed cuts.

Let X and Y be two non-empty subgraphs of G. We say that Y is a forest relative to

17

X if:
i) Y is an extension of X; and
ii) for any extension Z C Y of X, we have Z =Y whenever V(Z) = V(Y).
We say that Y is a spanning forest relative to X (for G)if Y is a forest relative to X and
V(Y)=V.
Usually the notion of forest is defined as a graph which does not contain any cycle.

Let X a subgraph of G, the weight of X (for F) is the value F/(X) = }_ px) F(u).

)

Definition 5. Let X and Y be two subgraphs of G. We say that Y is a minimum spanning
forest (MSF) relative to X (for F', in G) if Y is a spanning forest relative to X and if the
weight of Y is less than or equal to the weight of any other spanning forest relative to X.
In this case, we also say that'Y is a relative MSF.

The minimum spanning forest (MSF) relative to the minima (depicted in bold in fig.
5(a)) is depicted in bold in the graph G of fig. 5(d).

The following statement will help to intuitively establish later the optimality of water-
sheds.

Let X be a spanning forest relative to M(F). The graph X is a MSF relative to M (F) if
and only if, for any x in V| there exists a path in X from = to M (F') which is a path with
steepest descent for F.

Let X be a subgraph of G and let Y be a spanning forest relative to X. There exists
a unique cut S for Y and this cut is also a cut for X. We say that this unique cut is the
cut induced by Y. Furthermore, if Y is a MSF relative to X, we say that S is a MSF' cut
for X.

Theorem 2 (optimality). Let S C E. The set S is a MSF cut for M(F) if and only if
S is a watershed cut of F.

In fig. 5(d) dashed edges represent the cut induced by the MSF, which is also the
watershed of G (fig.5(b)).

3.3.1 Minimum spanning forests and minimum spanning trees

A tree is usually defined [21] as a connected graph with no circuits, and a spanning tree of

a connected graph G is a tree in G which contains all nodes of GG. If we define the weight

of a tree as the sum of the weights of its constituent edges, the minimum spanning tree of

a graph G is a spanning tree whose weight is minimum among all spanning trees of G.
We can derive a definition of the tree from the notion of forest.

Let X C G. We say that X is a tree (resp. spanning tree) if X is a forest (resp. spanning

forest) relative to the subgraph ({z},), 2 being any vertex of X.

Let X C G. The graph X is a minimum spanning tree (for F', in G if X is a MSF relative

to the subgraph ({z},0), x being any vertex of X.

18

We will present a construction that allows to give an equivalence of finding the minimum
spanning tree and finding a MSF rooted on any subgraph X of G.
Let us consider first a subgraph X C G composed of isolated vertices. Let us construct a
new graph G’ = (V', E’) which contains an additional vertex z ¢ V linked by an edge to
each vertex of X, thus V' =V U{z} and E' = EU E., where E, = {{z,z}|z € V(X)}.
Let us consider the map F’ from E’ to R such that, for any v € E, F'(u) = F(u), while
for any u € E,, F'(u) = kpin — 1, where kp;;, is the minimum value of F.
Let Y be any subgraph of G and let Y’ be the graph such that V(Y’) = V(Y) U {z} and
E(Y') = E(Y)U E,. It may be seen that Y’ is a minimum spanning tree for " in G’ if
and only if Y is a MSF relative to X for F'in G.

Following this construction we can extend it to the case of X being any subgraph of
G. In this case, first we will contract each component of X into a single vertex, and if two
vertices of this resulting graph must be linked by more than one edge we will keep only
the one with minimal value. After we will proceed with the construction explained above.

The minimum spanning tree computational construction has been widely studied. Con-
sidering this construction the relative MSF can be computed using any minimum spanning
tree algorithm.

3.4 Watershed algorithm

In order to introduce the method used to compute the watershed we will define first an edge

classification based on local properties. Then we will also define the lowering operation

and the thinning that will let us understand the strategy used to compute the watershed.
As we said before if x is a vertex of G, F(z) is the minimal altitude of an edge at z.

Definition 6. Let u= {z,y} € E.

We say that u is locally separating (for F') if (F(u) > maz(F(x), F(y)).

We say that u is border (for F) if (F(u) = mazx(F(x), F(y)) and (F(u) > min(F(z), F(y)).
We say that v is minimum-border (for F'), written M-border if u is border and if exactly
one of the vertices in u is a vertex of M(F).

We say that u is inner (for F) if F(z) = F(y) = F(u).

Fig. 6 illustrates this classification. In fig. 5(a) edges {k, f} or {l,g} are examples
of border edges, {e, f} or {m,i} are locally-separating, {k, o} or {¢,n} are m-border, and
{a,b} or {w, ¢} are examples of inner edges.

locally-separating border m-border nner
k k k k
K <k kK <k K <k k K <k k k k

Figure 6: Edge classification in a weighted graph. In the m-border case the black vertex
means that belongs to a minimum.

19

Definition 7. Let uw € E. The lowering of F' at u is the map in F, denoted by [F \ ul,
such that:

-[F\ ul(u) = minge {F(x)}; and

-[F\ u](v) = F(v) for any edge v € E \ {u}.

Definition 8 (border cut (and M-border cut)). Let H € F. We say that H is a
border thinning of (resp. M-border thinning of) F' if:

i) H=F; or

it) there ezists I € F a border thinning of F' (resp. M-border thinning of F') such that H
is the lowering of 1 at a border (resp. M-border) edge for I.

If there is no border (resp. M-border) edge for H, we say that H is a border kernel (resp.
M-border kernel). If H is a border thinning (resp. M-border thinning) of F and if it is a
border kernel (resp M-border kernel), we say that H is a border kernel of F' (resp. border
kernel of F').

If H is a border kernel (resp. M-border kernel) of F', any cut for M(H) is called a border
cut for F' (resp. M-border cut for F').

Consider the illustrations at fig. 7. The map H of fig. 7(b) is a border thinning of the
map F of fig. 7(a). It is also a M-border thinning as the edge {d, e} lowered has the vertex
d € M(F). The map I of fig. 7(c) depicts a M-border kernel of F. Edges in dashed show
the M-border cut for F' induced by M ().

Figure 7: Graphs where the minima of the corresponding functions is depicted in bold. (b)
A M-border thinning of (a). (¢) An M-border kernel I of (a), where dashed edges correspond
to the cut induced by M(I).

It can be proved [5] that the border thinning transformation preserves some MSF
relative to the minima of the original map. The border kernels allow the extraction of the
MSF relative to the minima, as the minima of a border kernel is itself a MSF relative to
the minima of the original map. As we state above (theorem 2) a MSF relative to the
minima induces a unique cut that is a watershed cut of the original map. Thus, obtaining

20

a border kernel, as it is a sequence of local operations, is a promising approach to produce
a globally optimal structure as the MSF relative to the minima, hence the watershed cut.

A possible algorithm to compute the border kernel would be: 1) take an edge of the
graph, check if it is a border, and lower its value; 2) repeat step 1) until no border edge
remains. Due to the cost of this approach, the particular case of border kernel, M-border
kernel, is considered. As an edge which is in a minimum in a given step of the border
thinning sequence, will never become border again in later steps, the strategy will be to
lower first the edges adjacent to the minima.

As well as the minimum of a border kernel of a map F' is a MSF relative to M (F), the
minimum of a M-border kernel is also a MSF relative to M(F'). Hence, it can be stated
the following theorem.

Theorem 3. Let S C E. The following statements are equivalent:
(i) S is a M-border cut for F;

(i) S is a border cut for F;

(i11) S is a watershed cut for F';

The following algorithm presented by Cousty [5] computes the M-border kernel, hence
the watershed cut, using these previous notions.

Algorithm 1: M-Border
Data: (V, E, F) - edge-weighted graph
Result: F'; a M-border kernel of the input map and M its minima.

1 L« 0;

2 Compute M (F) = (Vyy, Eyr) and F(zx) for each x € V;

3 foreach u € E outgoing from (Var, Ey) do L — LU {u};
4 while there exists u € L do

5 | L L\{up

6 if (u is border for F') then

7 x « the vertex in u such that F(z) < F(u);

8 y < the vertex in u such that F(y) = F(u);

o | | Flw) = P(a) P(y) — Fu)

10 VM — VM U {y}7 EM — f?]\/[{u}7

11 foreach v = {y',y} € E such that y' ¢ V)y do L — LU {v};

3.5 Border thinning on simplicial complexes

In this section we will introduce some notions on operators defined in [3] on the framework
of simplicial complexes, and then we will be able to extend the notions introduced for
border thinnings on edge weighted graphs into the case of simplicial complexes. Let us
first introduce some notions for complexes, not considering weights in their faces for the
moment.

21

Let X be a complex in K and let f € X*. The face f is a border face for X if there
exists one face g € f* such that f is the only face of X which contains g. Such a face g
is said to be free for X and the pair (f,g) is said to be a free pair for X. We say that
f € X is an interior face for X if f is not a border face.

Let X be a complex, and let (f,g) be a free pair for X. The complex X \ {f, ¢} is
an elementary collapse of X.

We ilustrate in fig. 8(a) a complex X where g is a border face of X and j is a free face
of X. Fig. 8(b) depicts the set X \ {g, 7} an elementary collapse of X.

Let us consider weights on the 1-faces of a complex. Let X < K, we denote by A the
set of all 1-faces of X, and T the set of all 2-faces of X. Let us denote by F the set of all

maps from A to R. Let F' € F, we will denote also by F' the map from 7" to R such that for
any g € T, F'(g) is the minimal weight of its 1-faces, i.e F'(g) = min{F(u)|lu € A,u € §*}.

XRK7 XRKr XRK
W\X/ WX/

(f)

Figure 8: (a) A complex X and a free pair (j,g) for X. (b) An elementary collapse for X.
(¢) A weighted complex K with the map F' on 1-faces (consider the 1-faces with no weight
that have a weight greater than 4). (d) The section Fy of F. (h,i) is a free pair of Fy. (e)
An elementary collapse for Fy. (f) A border thinning of K.

We will define also for weighted complexes the lowering operation on 1-faces, as pre-
sented for edge weighted graphs in def. 7.
Let u € A. The lowering of F' at u is the map in F, denoted by [F'\ u|, such that:
-[F\ u](u) = min{F(g), F(h)lg N h = u}; and
-[F'\ u](v) = F(v) for any 1-face v € A\ {u}.

22

We denote Fj, = {u € A,g € T|F(u) > k,F(g) > k} with k£ € R, and we called it a
section of F.

Consider X be a complex in K and F' € F the weights on the 1-faces of X. Let Fj
be a section of F'. We define also a 1-face u € A a border 1-face for F if u is a free face
for F}, with k£ = F(u). It can be seen an elementary collapse of a section Fj, as a low-
ering operation on a border 1-face for F. Thus, we can observe an equivalence with the
notions explained for border thinnings on edge-weighted graphs. Furthermore, this justify
our choice of the vertex per-face graph as a representation for the mesh to proceed in a
proper segmentation.

We illustrate with an example these previous notions. Consider the complex K depicted
in fig. 8(c) with a map F. The figure only shows values on 1-faces which are lower than 4.
2-faces have the values corresponding to the minimal weight of its 1-faces. We illustrate
in fig. 8(d) the section F» of F', where h is a border 1-face for F, as it is a free face for
F, and F(h) = 2. Fig. 8(e) depicts an elementary collapse of Fy, and fig. 8(f) depicts
the lowering on the border 1-face h. In can be observed the equivalence with the border
thinning explained in def. 8 applied on the vertex per-face graph of K.

4 Component tree

The component tree is a tree structure used to organize the connected components of a
level function. It has been used for several image processing applications, although it was
first introduced in statistics for classification and clustering. Different variations have been
implemented as the Max-Tree introduced by Salembier et al. [19] used as a data structure
for antiextensive connected operators, which is analysed and improved by Meijster and
Wilkinson [12]. The algorithm we implemented is based on the one described by Najman
and Couprie [14].

We will describe briefly the building process of the tree in order to give an idea of the
properties of this structure, and later it will be introduced formally. The tree can be build
as a Max-Tree (focusing on regional maxima) or a Min-Tree (focusing on regional minima),
and for our purposes the Min-Tree approach has been used. Consider a discrete map as a
topographical relief with the level of each point corresponding to its altitude. We will start
flooding by water this surface starting at the lowest points. At beginning there will appear
various lakes that will form the leafs of the tree. As water level increases the lakes will
grow building the branches of the tree. By the time at some levels the lakes will merge into
one connected piece becoming the forks of the tree. When the water reaches the highest
level the process stops and the flooded area forms a unique component that is the root of
the tree.

The tree can be used for filtering the original level function to obtain, for example as in
our purposes, a new map with a reduced number of regional minima. Some attributes will
be computed for each leaf and branches of the tree, and they will set an order of preference.
As in the analogy explained before, the smaller valleys (considering their area for example)

23

1 1 1 1 1 1 /N0 AN 1V1 1

SAKA SAMT. &AW

NAVAVA AVA 4

WAVAVANVAVAY VANWAVA. /-

(b) Fy (¢) Fy (d) Fs

A\ AVA AVE VA 4

o\ /0N o\ A N\ NN/

V. >1AVA1 A\ o\
NAVA /\ AVAVA

(e) I (f) F1

[

,_.
—
—
—

Figure 9: A weighted face set F' and its cross-sections at levels 5, 4, 3, 2, 1 (in white).

of the topographical relief will be removed. Hence, removing the corresponding branches
of the tree.

We implemented a quasi-linear time algorithm for computing the component tree of
functions defined on edge-weighted graphs that is based on the Tarjan’s union-find proce-
dure [20]. We will define the component tree on the framework of graphs, and it will be
illustrated with the case of a vertex-per-face graph on a complex as described in section
2.4. We will explain the union-find method and after introduce the algorithm to build the
tree. Later we will describe the methods used for filtering the mesh curvatures values using
the component tree in order to obtain the desired watershed segmentation.

4.1 Connected components notions

We introduce some notions and notations for connected components in weighted graphs in
order to define properly the component tree in the following section.

We denote by F the set of all maps from £ to R. For a map F' € F let us consider
(V,E, F) an edge-weighted graph. We also denote by F' the map from V' to R such that
for any x € V, F(z) is the minimal altitude of an edge which contains . We define
Fi, ={u € E|F(u) < k} with k € R; F}, is called a (cross-)section of F. It can be noticed
that for any u € Fj and z,y the vertices at u, also F(z) < k,F(y) < k. A connected
component of a section Fj, is called a (level k) component of F. A level k component of
F that does not contain the level (k — 1) is called a (regional) minimum of F. We define
kmin = min{F(u)|lu € E} and k4, = maz{F(u)|u € E}, which represent respectively the
minimum and the maximum level in the map F'.

We illustrate this notions on the framework of triangular face sets with fig. 9 where the
different cross-sections can be observed. In this case we have weights on faces, and their
connectivity is determined by the vertex per-face graph explained in section 2.4.

24

4.2 Component tree definition

The following definition for the component tree is extracted from [14].

Let F' € F. For any component c of F' we set h(c) = min{k|cis a level k component of F'}.
Note that h(c) = maz{F(z)|x € c}. We define C(F') as the set composed of all pairs [k, c],
where ¢ is a component of F' and k = h(c). We call altitude of [k,c/ the number k. Remark
that any two distinct elements of C(F') correspond to distinct subgraphs.

Let F' € F, let [ky, c1],[ke, co] be distinct elements of C(F'). We say that [ky, ;] is the
parent of [ks, ca] if co C ¢y and if there is no other [k, ¢3] in C(F) such that co C ¢3 C .
In this case we also say that [kq, co] is a child of [k1,¢1]. With this relation “parent”, C(F')
forms a directed tree that we call the component tree of F, and that we also denote by
C(F). Any element of C(F) is called a node. An element of C(F') which has no child is
called a leaf, the node which has no parent is called the root.

We define the (vertex) component mapping CM as the map from V to C(F') which
associates to each vertex p € V the node CM(p), such that the altitude of CM(p) is F(p)
and p € CM(p). We also define the edge component mapping CME as the map from FE
to C(F') which associates to each edge u € E the node CM E(u), such that the altitude of
CME(u) is F(u) and u € CME(u).

Fig. 10(a) shows the component tree of the vertex per-face graph of F' the face weighted
set of fig. 9 and fig. 10(b) shows the associated component mapping depicted on the faces
of the set F.

level 5

level 4 c7 cl c9 c4

c9 cl0 cl0 c3
cl0 c2 c8 c3

Figure 10: The component tree (a) of the vertex per-face graph of the face weighted set of
fig.9 and its associated component mapping (b).

4.3 Component tree and minimum spanning tree

As our work is settled on edge-weighted graphs, some considerations will be introduced in
order to understand the algorithm for the construction of the component tree implemented,
and its differences with the previous algorithms [14] [19].

25

We present the notion of line graph that will allow us to apply the notions for vertex-
weighted graph on edge-weighted graphs.

Definition 9. The line graph of G = (V, E) is the graph (E,T), such that {u,v} belongs
to T" whenever u € E, v € E, and u and v are adjacent, i.e, luNv| = 1.

We can associate to each graph G whose edges are weighted by a cost function F', a
line graph G’. The vertices of G’ are weighted by F' and thus any transformation can be
performed either in G or in G'.

We could apply the algorithm introduced by Najman [14], which focus on vertex-
weighted graphs, on an edge-weighted graph G, by using the line graph of G, G’. Then,
once the component tree would be built, we would obtain the component mapping of the
vertices F of G'. Thus we would have the component mapping on the edges E of G. Then,
by removing nodes of the tree, we would reduce the number of minima on the edge-weighted
graph G.

The purpose of the filtering of a map F' on edges of a graph G is to reduce the over-
segmentation produced by the watershed operator. Considering this purpose our compo-
nent tree will be computed only on the minimum spanning tree edges of the graph. On
the following of this section we will explain this consideration.

As introduced in section 3.3 the watershed cut of F' is induced by the minimum spanning
forest relative of the minima of the map F. Furthermore, in section 3.3.1 we derived that
the minimum spanning tree of a graph X is a MSF relative to the subgraph ({z},0),
being any vertex of X.

Following the construction presented in section 3.3.1 we can state also the following.
Let Y be the MSF relative to M(F) for F' in G. For any edge u € Y \ M(F') it can be
observed that u belongs to a minimum spanning tree for F in G.

We will give some notations concerning minimum spanning trees (MST) in order to
introduce later a theorem that will help us understand the approach adopted to construct
the component tree.

Let us define a partition of the vertices of a graph G as a division into two disjoint non-
empty subsets of vertices (P, Q). The distance p(P, Q) across a partition is the smallest
weight among all edges which have one vertex in P and other in). The cut-set C(P, Q) is
the set of edges that span a partition (P, Q). A link is any edge in C'(P, Q) whose weight
is equal to the distance p(P, @), while the set of all links in C'(P, Q) is called the link-set
AP, Q).

A main theorem concerning a MST is the following.
Theorem 4. Any MST contains at least one edge from each A(P, Q).

Let Y be a MSF relative to M (F) for F'in G, and X be any component of Y. Let P be
the set V(X) and @ the set V/(Y') \ V(X). The cut-set C(P, Q) thus, belongs to the basin
cut of F'. By the theorem stated above it may be seen that the MST of F' will contain the
edge with lowest weight of C'(P, Q).

26

Thus, by this latter considerations the MST will contain all edges of the MSF relative
to M(F') excluding the edges of M(F') that make a cycle. Also, considering S the basin
cut of F', the MST will contain any edge v € S such that u is the lowest edge outgoing
from a component of S.

Consider we obtain the component tree of G taking into account only the edges of the

MST. Then we filter the map F' by removing a branch of the tree. Hence we give at the
nodes of the branch the level value of the parent of the highest node of branch. Let us call
X the subgraph corresponding to the removed component. After the filtering, the edges
not considered in the component tree, i.e edges that not belong to a MST, will get a oo
value. We call this filtered map F”.
Consider now S the watershed cut of F', and S’ the watershed cut of F’. Consider Y a
component of S (a catchment basin). As the component X forms a branch of the tree,
X CY. We give to each edge of X the weight of the edge u € S, such that F(u) is the
lowest cost from the ones outgoing from Y, and also the edges of Y \ X get oo value. For
this two latter reasons, there is no descending path from u in Y for F’ to M(F’). Thus, Y
is not a catchment basin for F”.

Our algorithm for the component tree is then based on a classical algorithm for the
minimum spanning tree presented by Kruskal [9]. It consists in sorting first the edges of the
graph by increasing order of their weight, and then selecting them, making sure to select
only edges that do not form a circuit with the previously selected. In our case, during this
stage we will proceed on the building of the component tree.

4.4 The Union-Find method

The Union-Find algorithm proposed by Tarjan allows keeping track of disjoint sets, per-
forming three useful operations to manage a collection Q of disjoint sets. Each set is
represented by an arbitrary member called the canonical element. The algorithm uses
rooted trees to represent sets in which the root is chosen as the canonical element. Two
objects x and y are members of the same set if and only if x and y are nodes of the same
tree, which is equivalent to saying that they share the same root of the tree they are stored
in. The collection is managed by the following operations:

e MakeSet(x): add the set {z} to collection Q. This operation assumes that x is not
a member of any other set in Q.

e Find(x): return the canonical element of the set in @ which contains z.

e Link(x,y): let X and Y be two non empty set in Q represented by x and y (z and
y must be different). Both sets are removed from Q, their union Z = X UY is added
to O and a canonical element for Z is selected and returned.

The implementation of the algorithm is the one presented at procedure MakeSet and
functions Find and Link. To each element x is associated a parent Par(z) and a rank

27

Rnk(z). A technique used to reduce the run cost of the function Find called path com-
pression consists, after finding the root r of a tree which contains x, in setting the parent
of each element of the parent path from = to r to be r. Another technique used is the one
called union by rank. The rank Rnk(z) is incremented by one if = becomes parent of y.
The technique consists in always choosing the representing element with the greatest rank
while performing the Link operation. If both elements have the same rank one of them is
chosen arbitrarly.

Procedure MakeSet (element x)
1 Par(x):=x; Rnk(x) :=0;

Function element Find(element)
1 if (Par(z)# x) then Par(x) := Find(Par(x));
2 return Par(x);

Function element Link(element z, element y)

1 if (Rnk(z) > Rnk(y)) then exchange(x,y);

2 if (Rnk(x) == Rnk(y)) then Rnk(y) := Runk(y) + 1;
3 Par(x):=y;

4 return Par(x);

4.5 Component tree algorithm

In this section we explain the algorithm implemented to build the component tree C(F’) on
an edge-weighted graph in the context of a vertex per-face graph on a mesh surface. The
algorithm is based on the one presented by Najman and Couprie with some modifications
to better perform on edge-weighted graphs as explained in sec. 4.3. We first will describe
the algorithm from a high point of view and later some details will be explained.

4.5.1 High-level view

The process will simulate a flooding as described before. This flooding is realized by scan-
ning the edges of the graph by increasing order of their level. Two disjoint set collections
Onode and Q... will be used to manage the merging of nodes and branches of the tree. As
edges are scanned by level increasing order, the vertices first time visited will get the mini-
mum weight value of their adjacent edges. The elements needed to manage the collections
Onode and Qyc. are build during the process. The Q,,,4. collection will group vertices and
edges belonging to the same connected component and having the same altitude. Simul-
taneously the Q... collection will group the canonical nodes of each 9,,,4. node to form

28

partial trees. At the end of the execution a unique tree groups all the canonical nodes,
each of the nodes represents a component of the graph, and the whole tree represents the
component tree.

4.5.2 Detailed view

The algorithm for the component tree computation is presented below BuildComponentTree,
also with the complementary functions used, InitNode and MergeNodes. To represent a

node of C(F') we use a structure called node that contains its level and the list of nodes

which are sons of this node. In a preprocessing step edges are sorted by increasing order of

level (line 1). Then the process starts (line 3) proceeding by taking each edge of the graph

starting by the lowest one. We use a label nblabs an the array C'M (used for the resulting

component mapping) to proceed properly on the generation of new nodes of C(F") during

the processing step.

The function InitNode creates new elements of collections 9,04 and Q... using the
procedure MakeSet described in section 4.4. It also creates a new node structure.

The array highest Node will help us to know the node with highest level from a partial
tree during the processing, and it is necessary due to the particularities of the union-find
algorithm.

From the algorithm we also obtain the edge component mapping CMFE. We do not
describe this array on the text presented in BuildComponentTree but we give the precise
assignments below.

The BuildComponentTree procedure have three main possible cases, which depend on
the previously visited vertices. To know if a vertex has already been visited we use the
array C'M set at an initial value for all vertices, in a preprocessing step. Considering u € F
the edge chosen and (x,y) € u the vertices at this edge, the three possibilities are:

e both vertices are visited for the first time; in this case (lines 4-6), as we proceed on
edges by increasing order of their level, and vertices have the minimal value of their
adjacent edges, both vertices have the same level and it equals the edge level F'(u).
Thus, a new node of level F(u) is build (function InitNode) and the vertices x,y will
belong to this node, so the component mapping of x and y is set to the new label
nblabs. The edge component mapping C'M E is set to the same label nblabs for u.

e one vertex has been visited and the other is visited for the first time; in this case
(lines 7-13) we use the array C'M to know which node the vertex = belongs to (z is
the vertex already visited). Using then the function Find on the collections Q4.
and Q.. we get its canonical node x4, (line 8).

If the edge level is the same as x,.q. level, it means that the other vertex y should
have this level also, and it belongs to the same node (line 9). CM E(u) is set t0 Zpode-

In the other case if F'(u) is greater than the level of x,,4., @ new node it is created,
and T4 (the node that represents z) becomes its son (lines 11-12). The elements of
Quree are linked to form a partial tree. The array highestNode is modified to set the

29

new node as the highest on level of the partial tree recently build (line 13). CM E(u)
is set to the new node label.

e both vertices have been visited before; in this case we first find the canonical nodes
that represent = and y (lines 15-16). In case that they are not in the same partial
tree (line 17) we proceed differently depending on their levels.

If their level it is the same, nodes are merged (function MergeNodes)(line 22). CM E(u)
is set to the canonical node resulting from the merging.

If the edge level is equal than one of the nodes but greater than the other, the bigger
becomes parent (line 24). CM E(u) is set to the parent node.

If the edge level is greater than both nodes a new node is created, that becomes
parent of both (lines 27-29). CME(u) is set to the parent node.

The partial trees are linked for this three preceeding cases.

The root of the component tree is found as the highest node of the resulting tree of the
collection Qy . (line 33), while the component mapping is the resulting array C'M.

Function node InitNode (int label, double level)

1 Allocate a new node n with an empty list of children;
2 n— level := level;

3 MakeSet,,.. (label) ;MakeSet,, 4. (label);

4 return n;

Function int MergeNodes (int nodel, int node2)
tmpNode := Link,,q. (nodel,node2);
if (tmpNode == node2) then
| Add the list of childrens of nodes[nodel] to the list of children of nodes[node2];

else
| Add the list of childrens of nodes[node2] to the list of children of nodes[nodel];

6 return tmpNode;

s W N =

30

Algorithm 7: BuildComponentTree

Data: (V, E, F) - edge-weighted graph with N vertices

Result: nodes - array [0... N — 1]

Result: Root - Root of the component tree

Result: CM - map from V to [0... N — 1] (component mapping)
Local: highestNode - map from [0... N — 1] to [0... N — 1]

1 Sort the edges in increasing order of level for F
2 nblabs:=0;

N O o s w

©

10
11
12
13

14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32

33
34

foreach v € E in increasing order of level for F' do

// w=(z,y)|r,y are vertices

if (both wvertices are visited for the first time) then

nodes[nblabs|:=InitNode (nblabs,F'(u));CM(z):= nblabs; CM(y):=nblabs ;

highestNode[nblabs|:=nblabs; nblabs ++ ;

Ise if (one vertex has already been visited an the other not) then

// considering x the vertex already visited

Tiree = Findyree (CM(2)) ;Xnode = Findy,oqe (highestNode[Tiree]);

if (F(u) == nodes|poqe] — level) then CM(y):=Znode;

else if (F(u) > nodes|xnode] — level) then
nodes[nblabs|:=InitNode (nblabs,F'(u)); CM(y):=nblabs;
nodes[nblabs|—addChild (nodes[oqde));
highestNode|Linky ee (Z¢ree,Findyree (nblabs)) |:=nblabs; nblabs ++ ;

0

]

Ise if (both vertices already been wvisited) then
Tree = Findyree (CM(2)) ;X node = Findy,oqe (highestNode[Tiree]);
Ytree = Findtree(CM(y))§ynode = Findnode(highEStNOde/ytree/);
if (xnode 7& ynode) then
if (nodes|Tpoqe] — level < nodes|ynode] — level) then
temp = Ynode; Tnode ‘= Ynode; Tnode ‘= teMp ;
temp ‘= Yiree; Tiree ‘= Ytree; Tiree := tEMP
if (F(u) == nodes[xnode] — level == nodes[ynode] — level) then
‘ highestNode[Linkyree (Tiree,Yiree) |:=MergeNodes (Tnode; Ynode) ;
else if ((F(u) == nodes|xpoqe] — level)&&(F(u) > nodes[ynoge] — level))
then
nodes|[z,o4e|] —addChild (nodes|ynode));
higheStNOde[Linktree (Tiree,Ytree)] ‘=Tnode;
Ise if (F'(u) > nodes|[Tnode] — level) then
nodes[nblabs|:=InitNode (nblabs,F'(u));
nodes[nblabs| —addChild (nodes[ode));
nodes[nblabs|—addChild(nodes[ynode));
highestNode[zce]:=nblabs;highestNode[yyee |:=nblabs;
highestNode[Linkyyee (Linkypree (Tiree,Yiree) ,Findiree (nblabs))] := nblabs;
nblabs ++;

[¢]

foreach z € V do CM(z):=Find,;,q. (CM(0));
Root:= highestNode[Findyyee (Find,,oqe (CM(0)))];

31

o 0
: :
A e
o’ o
: :
& A
S L
l l
//é\\ -
o’ o

Figure 11: (a) Set of triangular faces and its vertex-per face graph G on dashed. (b) The
graph G with weights on edges (in bold) and labels to identify them. Edges will be examined
in the following order, (p,b,¢, l,q,n, a,d,m,h, f,o,r, e, g,i,k,7)

4.5.3 Example

We are going to illustrate on an example how the algorithm works. The example will
be settled on the framework of edge weighted graphs, and more precisely on the vertex
per-face graph of fig. 11(b) that represents the set of faces of fig. 11(a). The edges of the
graph are labeled by letters to refer to them easily later. We will focus on certain steps of
the building process of the component tree to describe the details of the algorithm.

Edges are examined by increasing order of their level as follows, (p, b, ¢, [, q,n, a,d, m, h,
f,o,r, e, g,i,k,7), as result of the initial sorting. Suppose that we are already at the
beginning of step 6, so we will proceed with edge n. At this moment the partial tree built
is the one depicted at fig. 12(b). the node level and the node label are depicted for each
node in the form [k, ¢] where k is the level and ¢ is the label of the component. We represent
the arrays F'thee, F'thpode to take into account the situation of the collections Quee,Qnode
respectively. The arrays order is from left to right and from up to down. The array CM
is also represented. Each cell of the array C'M represents a vertex of the graph, ordered
as vertices disposition on the graph. Thus, the upper left grid cell of the array represents
the vertex at left of edge a, while following on the right, the grid cell represent the other
vertex of a, and then the vertex between b and ¢, etc..

When edge n is chosen their both vertices have already been visited. Thus, the Findy, ..
operations are applied on the nodes representing these vertices (by using the array C'M),
to find their canonical nodes. As their canonical nodes 3 and 2 are at same level 20, and
edge n makes them connected, these nodes should be merged (MergeNodes). As result of
this linking the canonical node of the node 3 for the collection Q,,,4. Will change to be 2,
and the son of node 3 (node 0) will be now son of 2. Even though, the canonical node of

32

212
0]0]3
highestNode Fth,oqe Fthiyee CM

(b)

Figure 12: End of step 5. (a) The arrays highestNode,Fthee,F'thpoqe and the component
mapping CM. (b) Partial trees already constructed.

nodes 2 and 3 in Q... will still be 3 as result of the heuristics of Tarjan algorithm (union by
rank, section 4.4). The highestNode array at position 3 is set to 2, as it is the new father.
The array highest Node is only used on canonical node positions, which are underlined at
the figures.

Oj(112] 5 0]1]2]2 314133 4111111
4 4 413 4
21215
0]01]3
highestNode Fth,oqe Fthiyee CM

Figure 13: End of step 9. (a) The arrays highestNode,Fthy ee,F'thyoqe and the component
mapping CM. (b) Partial trees already constructed.

33

After n, and edges a,d, m at level 30 are processed. This situation is depicted at fig.
13. Node 4 became father of node 1 as result of processing for edges a,d. The linking led
node 4 being the canonical node of its partial tree. The processing of edge m ilustrates
the work of the arrays. The component mapping of the already visited vertex at m is 2,
while the canonical node of 2 in Q.. is 3 (line 8 of the algorithm). Its highest node at
this moment is 2, thus will be the level of node 2 that will be checked. As the level at m
is greater, a new node 5 is created, which becomes father. The canonical node remains 3
and highest Node at this position is changed to 5.

0112 8 011122 314133 4111111
9 6 4151617 41344 7141616
819 314 21215
0]0]3]8

highestNode Fth,oqe Fthiyee CM

=
~—

Figure 14: End of step 14. (a) The arrays highestNode,Fthiyee,F'thy, o4 and the component
mapping CM. (b) Partial trees already constructed.

It follows the processing of edge h at level 30, that creates a new node 6 that form a
new partial tree. Edges f an o at level 40 create new nodes that become parents of the
partial trees represented by nodes 3 and 4 respectively. Edge r is not treated as it connects
nodes that belong to the same partial tree. Remark that this edge is not in the MST.
The processing of edge e ilustrates the case where both vertices belong to different partial
trees, 6 and 4 in this case, and the edge level is greater than the highest node level of both
trees. Thus, a new node 9 at level 50 is built, these trees are linked, and 9 becomes its
father. This current step is depicted in fig. 14. It can be observed that this new node 9 is
not representing any vertex , 7.e is not appearing in the vertex component mapping but it
would appear on an edge component mapping.

34

Figure 15: End of the algorithm. (a) The component tree. (b) The vertex component
mapping on faces of the set of fig. Colors on faces represent its level.11(a). (c¢) The edge
component mapping on edges of the set of fig.11(a), (dashed edges do not belong to the MST
of the vertex per-face graph). Colors on edges represent its level.

For the rest of edges at level 50, edge ¢ is not treated as is not part of the MST as
edge r. Edge ¢ will make the last not assigned vertex belong to node 9, while edge k
will link the remaining two partial trees. Edge j is the last edge and is not considered as
g. The component tree is then built. It is aplied the operation Find, 4. to retrieve the
definitive component mapping, actually to get the correct labels that may change due to
nodes merging. The component tree is depicted in 15(a) and the component mapping on
the faces of fig. 11(a) in fig. 15(b). The edge component mapping is depicted in fig. 15(c) .
Dashed edges on the edge component mapping are the corresponding edges of g, r ,j from
the vertex per-face graph, which not belong to the MST, thus they are not considered in
the mapping. Remark also to consider the edge corresponding to e, that belongs to the
component 9 of the tree, and that is not reflected in the face component mapping.

4.6 Node Attributes

We will use the component tree to reduce the number of minima of the initial curvature
map, in order to reduce the over-segmentation of the watershed operator. As the minima
of the function are represented by leafs of the tree, the idea will be to remove leaves in an
order of importance until we obtain a desired filtered function. To quantify this order of
importance we will compute some attributes on each node of the tree, to prune the tree
by different criteria.

Several attributes can be computed, and we have computed the dynamics, the area and

35

the volume (fig. 16).

(a) Dynamics (b) Area (¢) Volume

Figure 16: Ilustration of the dynamics, area and volume of the component at the level
depicted in a dashed line.

Let [k, c] € C(F) and [k, ¢,] € C(F') the parent of [k, c|. We define

00 |k,] = [kmaz, V] or dynamic(k,, c,) = oo
dynamic(lk,c]) =k, — k + dynamic(k,, c,) if min{F(z)|z € ¢} = min{F(y)|y € ¢,}
k, —k in other case

Intuitively, if we consider the height function as a topographical relief and we flood it
by water starting at the regional minima points, the dynamic of a point will be the height
between this point and the point where the water would overflow to another minima. Thus,
the water flooding from a minima will not overflow to regions of lower depth, as water from
these regions will overflow first.

We also define

area([k, c]) = card(c)
> (F(ky) = F(x))

xEC

volume(lk, c])

The area is computed while building the component tree. Each time a vertex is added
to a node (lines 5, 9, 11 of the algorithm) the area is increased by the number of vertex
added (i.e 2 in the case of line 5, and 1 in the other two cases). As in our case each vertex
represent a triangular face, the area of the face may be added.

The volume and the dynamics are computed in a post-processing step. To compute the
volume the area is needed. Then we apply the recursive function ComputeVolume on the
root of the tree.

To compute the dynamics we need to sort the nodes of the tree by increasing order
of their level. Then, by using the recursive function CompTreeOrder applied on the root
we obtain the son of minimum level for each node of the tree (array minSon). Then the
function ComputeDynamics also applied on the root of the tree, will compute the dynamics
of each node.

36

Function double ComputeVolume (int n)

vol := nodes[n| —area,
fth := nodes|n] —father;
foreach ¢ child of nodes|n] do
if (nodes[n| is the root) then
| vol := vol + ComputeVolume (c) + c—area(n—level — c—level);
else
| vol := vol + ComputeVolume (c) + n—areax(fth—level — n—level);

N 0 ok Wwo N

nodes|n] —volume := vol;
return vol;

©

Function int CompTreeOrder (int n)

// N Number of nodes of the component tree
Data: nodeOrder - array [0... N — 1] node order by increasing level
Result: minSon - array [0... N — 1] son of minimum level for each node
m = MAX ;
if (nodes[n| is a leaf) then

minSon[n| := n;

return nodeOrder|n];
Ise

foreach ¢ child of nodes|n] do

r := CompTreeOrder (c);
L if (r < m) then x := minSon[c|; m = r;

® N o A W N =
®

9 minSon|n] == x;
10 return m;

4.7 Filtering

Once the component tree is built and the node attributes computed, our purpose is to use
it to filter the initial function by reducing its number of minima. This can be done either
by removing nodes until an attribute level threshold is reached, or by removing nodes until
a desired number of minima is reached , i.e nodes are removed until a number of leafs
remains in the tree.

The attributes area and volume increase from child to parent. In the algorithm Keep_
N_Minima we perform the task of removing nodes by increasing order of area or volume
until a number N of minima is reached. For the case of the dynamics, the attribute value is
not increasing from child to parent, and in this case the algorithm Keep_N_Minima is lightly
modified to remove entire branches by increasing order of leaf dynamics values. Also
changing the conditions, the filtering process is achieved for a desired attribute threshold
instead of the parameter number of minima. Remark that the filtering can be achieved for

37

Function ComputeDynamics (int n)

Data: minSon - array [0... N — 1] son of minimum level for each node
1 fth := nodes|n] —father;
2 if nodes[n| is the root then nodes[n] —dynamics := MAX;
3 else
4 if (minSon[n] == minSon[fth]) then
5 if (nodes|fth| —dynamics == MAX) then nodesn] —dynamics := MAX;
6 else
7 nodes[n] —dynamics := nodes[fth] —level - nodesn] —level +
L nodes|fth] —dynamics;

else
| nodes[n] —dynamics := nodes|fth] —level - nodes[n] —level;

10 foreach ¢ child of nodes[n] do ComputeDynamics(c);

the vertex values or by edges values.

The filtering process can be applied successively with different attributes and thresholds
to obtain the desired results.

5 Region attributes

In order to obtain feature vectors which will form the object signature for a content-based
search system, we compute attributes for each region resulting after the segmentation step.
The attributes computed are three, all of them in the form of a histogram for each region.
The cord histogram, and the Extended Gaussian Images (EGI) are based on global feature
descriptors, in our case applied independently for each region, which had been used by
Gorisse [7] in a previous work in the Eros3D project. Also we compute a histogram of the
curvatures for each region.

5.1 Cords histogram

The cords histogram is based on the global method presented in [16], and represent a nor-
malized histogram of the distances between the barycenter of the object and the barycenter
of each triangle of the mesh. Also, the histograms of the angles with the first and second
principal axis of the principal components analysis (PCA) are computed . Thus, a first
step will be to calculate the principal axes.

The principal components analysis (PCA) is a statistic method consistent on finding
the directions in a space which best explain the dispersion of random variables. In our
case the random variables are the points of the 3D objects. The principle of the PCA is to
calculate the eigen vectors and eigen values of the covariance matrix of the coordinates of

38

Algorithm 11: Keep_N_Minima

Data: (V, E, F) - edge-weighted graph with N vertices and CT the component tree
with attribute value for each node, and the edge component mapping CM E

Data: N the number of desired minima

Result: F' the filtered map

Sort the nodes of C'T" by increasing order of the attribute value;

Q:= 0; L := number of leaves in CT;

forall n do nodes[n] —mark := 0;

while L > N do

Choose a (leaf) node ¢ in CT with the smallest attribute value;

fth := nodes|c] —father;

nodes|c] —NbChildren := nodes[fth] —NbChildren - 1;

if nodes|fth] —NbChildren > 0 then L := L - 1;

nodes|c] —mark := 1; Q:= Q U{c};

10 while dc €) do
11 L Q:= Q@ \ {c}; RemoveMinima(c);

12 foreach u € E do F(u) := nodes|C M E[u]] —level,

© 00 N O ok W =

Function int RemoveMinima(int n)
1 if (nodes[n] —mark == 1) then
2 | nodes[n] := nodes[RemoveMinima (nodes|n] — father)];

3 return n;

each triangle barycenter. The barycenter of the object is the center of the 3D space while
the three reference axis correspond to the directions of the eigen vectors of the covariance
matrix. The PCA is a method widely used to obtain a normalized pose of 3D objects.

Once the PCA is computed, the distances (¢;) between the barycenter of each triangle
i and the barycenter of the object are calculated. Also the angles (ag;, ag;) with the two
principal axis. Then we proceed to calculate the histograms. A determined number of
classes is established for the distances ¢; of each triangle, and its angles ay;, ag;, and then
independent histograms are computed for each region, and normalised. A histogram that
relates distances and angles is calculated, and we call it cords2D. The histogram cords2D
has one class for each pair distance-angle (for instance, only one of the angles is considered
t{c;, a1;}), so gives precise values of the position of the region by reference on the principal
axis.

5.2 Extended Gaussian Images

The principle of the Extended Gaussian Images (EGI) [8] is to project a function that
sinthetize the information concerning the mesh of the object into a Gauss sphere divided

39

in faces. Each triangle adds a contribution of its area to the face of the sphere which has
the same orientation. Thus, we have for each face P of the Gauss sphere with orientation
ﬁka

Ny
P, = E Aiq,
=1

where Ny is the number of triangles of the mesh oriented following the direction ng. The
orientation of a triangle of the mesh is defined by its normal vector.

The discretized Gauss sphere is build to obtain size homogenic faces. To do so, we use
the faces of a regular octahedron, that for instance are subdivided two times, so we obtain
8 x4 x4 = 128 faces. Then we project these faces on a sphere.

Once the sphere is built the algorithm proceed as follows:

e calculate the reference directions resulting from the sphere
e calculate the directions of each mesh triangle of the object
e for each mesh triangle direction, find the nearest reference direction.

Then we calculate the histograms for each region of the mesh. Each histogram has as
classes as faces of the sphere. Then for each triangle of a region we add its area to the
class that previously has been computed as its nearest reference direction.

This descriptor applied on regions combines the representation of the position of the
region in the object with the shape of this region.

5.3 Curvature histogram

This attribute is an histogram of the principal curvatures computed in each triangle of the
mesh. Also in this case we applied the histogram type described for the cords (cords2D sec.
5.1) which considers a class for each pair {1, K2}, where k1, ko are the principal curvatures
at each triangle of the mesh.

6 Experimental results

In this section we will present our experimental results on 3D models. The procedure we
applied is as follows:

Compute a curvature map on the mesh.

Build the component tree of the curvature map.

Filter the original curvature map by using the component tree.

Compute the watershed on the filtered curvature map.

40

- Compute the region attributes.

We illustrate some results from the filtering step in fig. 17. Once the component tree
is built, different approaches can be used to reduce the number of minima of the curvature
map. We applied the function described in sec. 4.7 Keep_N Minima in order to obtain
exactly 30 minima on the resulting curvature map.

In fig. 17(a) it can be observed the original curvature map. In fig.17(b) we depict
the resulting curvature map after reduce the minima by considering the attribute Area.
In fig.17(c) the attribute considered is Volume, while in fig. 17(d) the map is filtered
considering Dynamics. In fig.17(e) the filtering is achieved by applying successively the
function Keep_N_Minima considering several different attributes. More precisely we applied
first Area filtering (200 minima), then we applied Volume filtering on the resulting map
(80 minima), and finally the Dynamics filtering (30 minima). It can be noticed that either
by Area filtering as Volume filtering the minima corresponding to both feet disappear. The
differences between the dynamics filtering and the combined filter (fig. 17(d), fig. 17(e))
are more difficult to apreciate, but the dynamics filtering is not eliminating small minima,
as the small minima between both legs, while the combined filter it does.

It can be noticed small black dots in filtered images. It is due at the visualization
software. For a proper visualization colors should be given at faces of the mesh. The
software we used allowed to give colors on vertices of the mesh, so we proceed giving each
vertex a value proportional to the mean of its surrounding edges. Thus, there are some
vertices that are surrounded by edges that belong to the MST of the vertex per-face graph.
We give black color at this vertices as we do not have a filtered value for this vertex. .

After the filtering process the watershed is computed. The parameters for the filtering
step can vary depending on the desired definitive regions. In fig. 18 we show the evolution
of the number of regions by filtering the initial curvature map. Fig. 18(a) shows the
watershed segmentation of the original map. Figures 18(b) and 18(c) show watershed cuts
of two different filtered maps.

For certain objects we observed that the curvature scalar function M (max of principal
curvatures) performs better than the H;,, (sec. 2.3). Fig. 19 illustrates the watershed cut
applied on the H;,, map (fig.19(a)) and on the M map (fig.19(a)). It can be observed that
in the case of H;,, the minima on convex zones produce undesired watershed lines. By
using M the watershed lines are either placed on convex or concave edges.

Fig. 20 show the results of the segmentation step on different sculptures. We ap-
plied the same parameters for them three, to obtain a maximum of 100 regions. As the
filtering parameters that can be optimal for one object, cause a lost of regions with spe-
cial meaning in other objects, the filtering parameters are set up despite they lead to an
over-segmentation in some objects.

From the watershed cut we could obtain also features related to the divide lines. These
lines may not have "meaning”, in the sense that they may not follow features of the object.
We give the weight of the curvature values of the original map to measure the importance
of these lines. Fig. 21(a) shows the watershed lines in grayscale, which correspond to the
curvature values of the original map. In Fig. 21(b) and 21(c) the lines in black represent

41

the parts of the watershed lines that are over a certain threshold of curvature value. It can
be observed that in these two similar sculptures the lines extract the same features.

Once the watershed is computed we calculate the attributes for each region obtained
(sec. 5.3). Figures 22, 23 and 24 show the results for three different objects. Regions are
labeled with letters. For each region we show a type of histogram to show the different
features that can be considered to identify a region.

For the histograms cords2D we set 50 classes for the cord length value, and 50 classes
for the first angle. Thus the resulting histogram has 50 x 50 = 2500 classes, set in one
dimension, so for each angle class we depict the 50 cord length classes. The histograms
curvatures2D have the same number of classes, 50 classes for the principal curvature
and 50 classes for ky. Also they are depicted in one dimension, so for each class of ko the
50 classes of k. For the EG1 histograms we set 128 classes, which correspond to 128 faces
of a Gauss sphere.

7 Conclusion

We presented a method which allows to define similarities and differences between 3D ob-
jects that have the same global shape. This is for example the case of scanned sculptures.
In sculptures usually we have characteristic differences between them that rely on the sur-
face either than on its shape. In this case, methods which extract global shape descriptors
are not able to describe properly the object while our method obtain regions that follow
carved features on the surface.

We can obtain feature vectors by using the histograms computed for each region. These
vectors are an essential part for a content-based retrieval system as they help the indexation
of the database. As we obtain independent feature vectors for each region, the method
can be used for partial matching. In other words, we can search objects which have one or
some parts similar even if they are different in global shape.

The component tree is a structure that gives robustness to the segmentation method,
as it allows noise filtering and different levels of precision for the feature extraction. The
three tree node attributes presented (volume, dynamics and area) improve the filtering by
applying them successively. The combination component tree and watershed can be used
in other frameworks, as image, video, signal. Also the same method can be applied on
other maps on the surface mesh, as color, texture, or other geometrical functions instead
of curvature.

We defined some notions on simplicial complexes, which is a structure that fit perfectly
with the representation of 3D meshes. We gave the links to apply the watershed transform
in the framework of complexes. This can lead to optimality properties for the method
presented in a further work.

Further tests on retrieval systems may define better region attributes. Also by studying
the results by different sets of parameters we can define an optimal automatic filtering.
The remeshing step combined with the filtering step can lead to multi-resolution results.

42

References

1]

M. Attene and B. Falcidieno. ReMESH: An Interactive Environment to Edit and
Repair Triangle Meshes. Proceedings of the IEEE International Conference on Shape
Modeling and Applications 2006 (SMI°06)-Volume 00, 2006.

G. Bertrand. On critical kernels. Technical report, IGM 2005-05,Institut Gaspard
Monge, 2005.

G. Bertrand and M. Couprie. Two-dimensional parallel thinning algorithms based on
critical kernels. Technical report, IGM2006-2, Institut Gaspard-Monge, Universite de
Marne-la-Vallee, 2006.

M. Couprie. Pink. ESIEE. http://www.esiee.fr/~coupriem.

J. Cousty, G. Bertrand, L. Najman, and M. Couprie. Watersheds, minimum span-
ning forests, and the drop of water principle. Technical report, IGM 2007-01,Institut
Gaspard Monge, 2007.

P. Frey. YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure.
Writing, page 11, 2001.

D. Gorisse, M. Cord, and M. Jordan. Indexation 3d dans une base d’oeuvres d’art.
Technical report, ETIS, Ecole National Superieur d’Electronique et ses Aplications,
2006.

B. K. P. Horn. Extended Gaussian Image. Proceedings of the IEEE, 72(12):1671-1686,
1984.

J. Kruskal Jr. On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proceedings of the American Mathematical Society, 7(1):48-50,
1956.

J. O. Lachaud. Topologically defined iso-surfaces. DGCI’96, LNCS 1176, Springer
Verlag, pages 245256, 1996.

A. P. Mangan and R. T. Whitaker. Partitioning 3d surface meshes using watershed
segmentation. IEEE Transactions on Visualization and Computer Graphics, 5(4):308—
321, 1999.

A. Meijster and M. Wilkinson. A comparison of algorithms for connected set open-
ings and closings. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(4):484-494, 2002.

P. Min. binvox. http://www.cs.princeton.edu/~min/binvox, 2003.

L. Najman and M. Couprie. Quasi-linear algorithm for the component tree, 2004.
IS&T/SPIE Symposium on Electronic Imaging 2004, Vision Geometry XII.

43

[15]

[16]

[17]

[18]

[19]

[20]

[21]

F. S. Nooruddin and G. Turk. Simplification and Repair of Polygonal Models Using
Volumetric Techniques. IEEE Transactions on Visualization and Computer Graphics,
9(2):191-205, 2003.

E. Paquet and M. Rioux. Nefertiti: a Query by Content Software for Three-
Dimensional Models Database Management. Proceedings of the International Con-
ference on Recent Advances. 3-D Digital Imaging and Modeling, pages 345-352, 1997.

A. Razdan and M. Bae. A hybrid approach to feature segmentation of triangle meshes.
Computer-Aided Design, 35(9):783-789, 2003.

S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes, 2004.
3D Data Processing, Visualization, and Transmission, 2nd International Symposium
on (3DPVT’04), 486—493.

P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for
image and sequence processing. IFEEE Transactions on Image Processing, 7(4):555—
570, 1998.

R. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the
ACM (JACM), 22(2):215-225, 1975.

C. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers, 20(1):68-86, 1971.

44

(a) original

(d) Dynamics (e) Area + Volume
+ Dynamics

Figure 17: Filtering. Curvature maps resulting after applying the filtering on the original
curvature map from fig. (a). Minimum values are in black while maximum values are in
white. The number of minima of all the resulting maps is 30.

45

»

myimm

5

Figure 18: Watershed. (a) Watershed cut of the original curvature map (2622 regions) and
(b) watersheds of two filtered curvature maps (b), (c) (800 and 200 regions respectively).

(a) Hinv

Figure 19: (a) Watershed cut on H;,, curvature map.(a) Watershed cut on M curvature
map.

46

Figure 20: Segmentation on different sculptures.

(a)

Figure 21: (a) Watershed cut in grayscale values of the original curvature map. (b) Thresh-
olded cut of the watershed in (a) and (c) thresholded cut of a similar sculpture.

47

TR

Dol

E 8 8 8

0 w0 w0 0w a0 w0 @0 am

W Wm0 B0 wm w0 a0 00

E cords2D D cords2D B EGI
e o e
“mi ‘L - - mm\m I(& ‘ —— -
A curvatures2D A cords2D C EGI
(b)

Figure 22: Region attributes. Histograms for the region depicted by a letter in (a). cords2D
50 x 50 = 2500 classes. curvatures2D 50 x 50 = 2500 classes. EGI 128 classes.

48

W w50 o w0 w0 a0 60

B cords2D C EGI D EGI

g B 8 8 B

w0 250

] i
o
TR a0 w0 w0 a0 o E) @ 03 C) 00 20 o

A curvatures2D A cords2D B EGI

(b)

Figure 23: Region attributes. Histograms for the region depicted by a letter in (a). cords2D
50 x 50 = 2500 classes. curvatures2D 50 x 50 = 2500 classes. EGI 128 classes.

49

Al ‘ L,

. 8 8 8 8 = § g 3

1

A curvatures2D

B curvatures2D

C curvatures2D

C EGI

Figure 24: Region attributes. Histograms for the region depicted by a letter in (a). cords2D
50 x 50 = 2500 classes. curvatures2D 50 x 50 = 2500 classes. EGI 128 classes.

20

