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Marcel Alcoverro Vidal Supervisor : Sylvie Philipp-Foliguet Ecole Nationale Supérieure de l'Electronique et de ses Applications September 10, 2007 Contents 1I n t r o d u c t i o n 2M e s h c h a r a c t e r i z a t i o n a n d s u r f a c e a n a l y s i s The recent development of 3D object acquisition methods involve a need to handle this kind of information. Nowadays 3D object databases appear in various areas for leisure as well as for scientific applications (medical, industrial part catalogues, cultural heritage, etc.). Large database can be quickly populated using 3D mesh acquisition and reconstruction tools which have become easy to use. As database size is growing, tools to retrieve information as indexing methods, search algorithms and data classification techniques become more and more important. As i g n i fi c a n ta m o u n to fw o r kh a sb e e nd o n ei nt h ep a s tt w od e c a d es on text-based document retrieval. The Google search engine has become a standard as text-based search engine. Indexing by keywords and search achieved through text retrieval techniques has the advantage that it is "high level" (semantic level), but keywords are external information which is often manually assigned. More recently content-based retrieval systems have been developed for images, audio, and video to automatically index and retrieve information from digital libraries. Content-based retrieval systems retrieve objects based on the integral similarity of objects.

In search-by-similarity, the goal is to find objects which are"close"totheexample. Itis done with respect to a given similarity measurement and thanks to object indexes computed on object features.T h e s ef e a t u r e sm a yb eo fv a r i o u sk i n d s( p o i n t s ,s e g m e n t s ,r egions, etc.) and may have different properties such as scale invariance, rotation invariance, etc.

Different techniques can be used to extract features of the 3D object, that can be obtained from a shape representation (Global feature-basedt e c h n i q u e s ,g r a p h -b a s e dt e c hniques, recognition-based techniques). Surface segmentation can be applied also for feature detection.

This work is part of the Eros3d project. The Eros3d project deals with artwork database management. C2RMF (Centre de Recherche et de Restauration des Musees de France) has organized digitalization lobbying in french museums for some years. 650 3D objects are available in the database. Its aim is to design a software architecture that is supposed to store and handle (view, research, compare) data at different user levels.

2M e s h c h a r a c t e r i z a t i o n a n d s u r f a c e a n a l y s i s Segmentation of a polygonal mesh is a method of splitting the mesh into regions in a "meaningful" manner. A mesh consists of a set of n points (x i ∈ E 3 ;0 ≤ i<n )a n das e t of planar convex polygons made up of these points. A first question to consider in order to partition the mesh is to define which components of the mesh will form the regions and how their boundaries will be defined. Two different approachesthatha v ebeenusedbefore are summarized in [START_REF] Razdan | A hybrid approach to feature segmentation of triangle meshes[END_REF], called vertex based method and edge based method.

The vertex based methods consider a value associated at each vertex (i.e curvature) and define the segmentation as regions that consist of connected vertices that have the same property. A major drawback in this approach is that no boundaries are created for the regions and each vertex has its own region information. Therefore triangles have multi-region information, so the three vertices of a triangle can be part of three different regions, whereas the triangle itself would not belong to any region.

The edge based methods define an edge as boundary if it is sharedb yt w oplaneswhose normal vectors make an angle greater than a certain threshold. This results in disconnected boundary edges and thereby open regions.

Our approach defines regions as sets of connected faces with edges as their boundaries, that leads to obtain a surface divided in closed independent regions consisting of connected triangles after the segmentation process. We illustrate oura p p r o a c hi nfi g . 3 .

We represent the mesh by a graph, and the curvature will we defined as a weight function on edges, so we will introduce some notations for edge-weighted graphs. Also we will introduce some notions on simplicial complexes, since it is a structure that allows to describe the topological properties of a mesh.

Edge-weighted graphs

We define a graph as a pair X =( V (X),E(X)) where V (X)i safi n i t es e ta n dE(X)i s composed of unordered pairs of V (X),i.e, E(X)i sas u b s e to f{{x, y}⊆V 2 (X) | x = y}. Each element of V (X)i sc a l l e davertex and each element of E(X)i sc a l l e da nedge.

Let X be a graph. Let x and y be vertices of X.W e s a y t h a t x and y are adjacent if {x, y} is an edge of X.As e q u e n c eπ = x 0 ,...,x l of vertices of X is a path in X (from x 0 to x 1 ) if x i and x i+1 are adjacent for each i =0,...,l-1. We say that X is connected if, for any pair of vertices (x, y)i nX,t h e r ei sap a t hi nX from x to y.

Let X and Y be two graphs. If V (Y ) ⊆ V (X)a n dE(Y ) ⊆ E(X), we say that Y is as u b g r a p ho f X and we write Y ⊆ X.

Let X and Y be two graphs and Y ⊆ X, Y as u b g r a p ho fX.W e s a y t h a t Y is a connected component of X,o rs i m p l yacomponent of X,i fY is a connected subgraph of X which is maximal for this property, i.e,foran yc on n e c te dgrap hZ,

Y ⊆ Z ⊆ X implies Z = Y .
Throughout this paper G denotes a connected graph.

We denote by F the set of all maps from E to R.L e t F ∈F .I fu is an edge of G, F (u)i st h ealtitude of u.I n o u r a p p l i c a t i o n t h e c u r v a t u r e w i l l d e fi n e t h e a l t i t u d e o f the edges of the graph. We also will denote by F the map from V to R such that for any

x ∈ V , F (x)istheminimalaltitudeofanedgeatx,i.e.,F (x)=min{F (u) | u ∈ E, x ∈ u} Let X ⊆ G and k ∈ R.As u b g r a p hX of G is a minimum of F (at altitude k) if: -X is connected; -k is the altitude of any edge of X;
-t h ea l t i t u d eo fa n ye d g ea d j a c e n tt oX is strictly greater than k. We denote by M(F )t h eg r a p hw h o s ee d g es e ti st h eu n i o no ft h ee d g es e t so fa l lm i nima of F .

Simplicial complexes

We extract from [START_REF] Bertrand | On critical kernels[END_REF] and [START_REF] Bertrand | Two-dimensional parallel thinning algorithms based on critical kernels[END_REF] some notions and notations of complexes.

A (finite simplicial) complex X is a finite family composed of finite nonempty sets such that, if f is an element of X,t h e ne v e r yn o n e m p t ys u b s e to ff is an element of X.E a c h element of a complex is called face.T h edimension of a face f is the number of its elements minus one. We call an m-face af a c eo fd i m e n s i o nm.W ed e n o t eb yK the collection of all complexes.

In fig. 1(a) we ilustrate a graphical representation of a 0-face, a 1-face and a 2-face. Let f be a finite nonempty set. We set f = {g|g ⊆ f, g = ∅} and f * = f \{f }.A n y g ∈ f is a face of f ,a n da n yg ∈ f * is a proper face of f.I fX is a finite set of faces in F n 2 ,w ew r i t eX -= ∪{ f |f ∈ X}, X -is the closure os X.T h u s ,afi n i t ef a m i l yX of finite nonempty sets is a complex if and only if X = X -. Any subset Y of a complex X which is also a complex is a subcomplex of X,a n dw e write Y X.I fX is a complex in K we also denote X K.

Let X K.Af a c ef ∈ X is a facet of X if there is no g ∈ Y such that f ∈ ĝ * .
W ed e n o t e by X + the set composed of all facets.

In fig. 1 we ilustrate these notions. The set of faces X of fig. 1(b) are not a complex. As it can be observed, X does not equal its closure X -depicted in fig. 1(d).

Curvature

The computation of the curvature has been done with the software Trimesh provided by Princeton University [START_REF] Rusinkiewicz | Estimating curvatures and their derivatives on triangle meshes, 2004. 3D Data Processing[END_REF]. This software provides a method based on computing first the curvature per-face and then estimates the value at each vertex as a weighted average over the immediately adjacent faces.

The normal curvature κ n of a surface in some direction is the reciprocal of the radius of the circle that best approximates a normal slice of surfaceinthatdirection. Thenormal curvature can be expressed as κ n = κ 1 s 2 +κ 2 t 2 where κ 1 and κ 2 are the principal curvatures and (s, t)aretheprincipal directions,w h i c hareth ed i re c ti on sw h e reth en orm alc u rv atu re reaches its minimum and maximum. These directions are ortogonal.

The Gaussian curvature K is equal to the product of the principal curvatures: After the computation of Trimesh algorithm on a 3D mesh we obtain the values κ 1 and κ 2 on each vertex of the mesh. These values increase with the convexity of the surface. They decrease into negative values on concave zones , gettingl o wa b s o l u t ev a l u e so nfl a t zones. Considering the combination of the principal curvatures κ 1 and κ 2 on a surface we have convex zones when both values are great positive, concave zones when both are great negative and saddle zones when one value is great positive and the other great negative, meaning convexity in one direction and concavity in the other. The flat zones have both values low.

K = κ 1 κ 2 ,a n dt h emean curvature H is their average: H =(κ 1 + κ 2 )/2. (a) (b) H (c) K (d) D (e) H inv (f) M
As the curvature map will be used to partition the surface by using the watershed operator, a single scalar function is desired. Several approaches can be done to obtain this height function by combining values κ 1 and κ 2 .M a i n l y ,t h ec h o i c ew i l ld e p e n do nt h e desired further applications. Also the class of objects or their shape characteristics may determine which are the "meaningful" regions. For example, if we are dealing with objects made of flat smooth poligonal parts (cars, manufactured pieces, furniture, etc.), we should be interested in obtaining regions of this flat parts, thus thed i v i d el i n eb e t w e e nr e g i o n s would be placed on high curvature edges. In the case of art objects, the pieces could be characterized by their carved features, thus it would be interesting to place the lines on the concave zones dividing convex parts.

Mangan and Whitaker [START_REF] Mangan | Partitioning 3d surface meshes using watershed segmentation[END_REF] use as magnitude for curvature the deviation from flatness

D = √ 4H 2 -2K 2
where H is the mean curvature and K the gaussian curvature. This function gives high values on convex and concave zones, while it is low on flat and saddle zones.

Other approach we adopted is to use mean curvature H in the form

H inv =arctan(-H + π/2)
This function has the behavior of the inverse of the mean curvature, but taking always positive values. It gives high values to concave zones and lowv a l u e st oc o n v e xz o n e s . We consider also a max curvature as

M = max(κ 2 1 ,κ 2 2 ) 
and that gives high values on convex and concave zones, as H 2 .T h em a xc u r v a t u r eh a s also high values on zones that are flat in one direction, and convex or concave in the other. This zones are commonly the edges that divide planes of an object, as the division between the roof and the doors of a car. We have used this different treatments of the principal curvatures and, for the art objects we deal with, the H inv function is the one with which we obtained the best results, while the max curvature M gives better results for manufactured objects.

In fig. 2 are depicted the values of these scalar functions in grayscale for the sculpture in fig. 2(a). Low values are black, while great values are white. 

Vertex per-face graph

Consider a 3D surface mesh M (composed of points,triangles, sides of the triangles)s o that for any side e in M there is exactly one pair of triangles (g, h)s u c ht h a te ∈ g and e ∈ h.W eb u i l dag r a p hG =( V, E, F)w i t ho n ev e r t e xf o re a c hf a c eo fM and an edge connecting two vertices if the corresponding two faces shareas i d e . W ew i l lc a l lt h i sg r a p h av e r t e xp e r -f a c eg r a p h .A ne x a m p l eo fav e r t e xp e r -f a c eg r a p hi sd e p i c t e di nfi g .3 ( a ) .

Let be e any side of a triangle in M and (x, y)t h ep a i ro fpo i n t ss u c ht h a te = {x, y}. As described in section 2.3 we have computed the curvature values in each point of the mesh. We denote them as κ 1x , κ 2x and κ 1y , κ 2y for the points x and y respectively. Then we will compute for each e in M,

κ 1 = κ 1x + κ 1y 2 κ 2 = κ 2x + κ 2y 2 
Considering then the scalar curvature functions explained above (section 2.3) we obtain then a map from E into R that we denote by F ,t h a tw i l lr e p r e s e n tt h ec u r v a t u r ebe t w e e n each two adjacent faces of the mesh.

Mesh Repair

The triangle meshes obtained from acquisition of real-objects and also CAD generated models often have defects that may cause problems in further processing. In our case the condition that will allow us to proceed properly would be a triangular surface mesh that forms a manifold without boundaries. Thus, the set of points,e d g e sa n dt r i a n g l e st h a t form a mesh should be a complex K,i nw h i c h∀ 1-face u ∈ K there exists exactly two 2-faces f ∈ K, g ∈ K,s u c hth atf ∩ g = u.I ft h i si sa c o m p l i s h e dw ec a no b t a i nt h ev e r t e x per-face graph described previously.

The degeneracies that usually appear may be holes, tubes, duplicated faces, intersecting faces or borders, and not all of them can be solved in the same way. We have tried different approaches, which have been based on available software, as it was out of our scope to implement a new application for mesh repairing purposes.

The application ReMESH [START_REF] Attene | ReMESH: An Interactive Environment to Edit and Repair Triangle Meshes[END_REF] provides an interactive environment for repairing meshes. Av i s u a l i z a t i o nt oo li sp r o v i d e d ,a n dt h es o f t w a r ea l l o w st odetect several degeneracies, as duplicated faces, holes, intersecting triangles. It provides also tools to remove the defects, to fill holes after, and also has utilities to build again the mesh. We have not used this application for repairing our objects, as with it meshes should be repaired manually, and for our purposes the approach should be automatic. Even though, it has been useful to visualize the kind of degeneracies we deal with, to plan otherap p r oac h e san dt ot e s ti ft h e other approaches worked well.

In order to get the proper meshes, we use two different automatic approaches. Both of them rebuild the mesh as it assures that the definitive mesh acomplishes our conditions. Also for both of them the steps involved have been the same, voxelization, isosurface extraction, mesh smoothing and mesh size optimization similar as it is presented by Nooruddin and Turk [START_REF] Nooruddin | Simplification and Repair of Polygonal Models Using Volumetric Techniques[END_REF] . The differences are on the techniques adopted ont h ev o x e l i z a t i o ns t e p .

Voxelization Voxelization means converting a p olygonal mo del into a volume. The first approach used to reach the volume from the original mesh has been using the library Pink [START_REF] Couprie | Pink. ESIEE[END_REF] to proceed with the following steps:

-o b t a i nt h ep o i n t s( i.e vertices of each triangle) of the mesh, and build a 3D grid where we place the points.

-c a l c u l a t ead i s t a n c em a po ft h i sg r i d .E a c hc e l lo ft h eg r i dg et a value which is the minimum distance to a point, while point cells get 0 value.

-a p p l yaw a t e r s h e ds e g m e n t a t i o no nt h ei n v e r s eo ft h ed i s t a n ce map. We use markers for the watershed that are: a point in the interior of the object; a frame of the grid as marker for the exterior.

The watershed operator produces a divison of the grid into tworegions,thataretheinterior and the exterior of the object. We found problems in this approach due to the need for automatisation. One problem comes from obtaining a point of the interior of the object as marker for the watershed. A implementation of a method in a step before the extraction of the vertices of the mesh into the grid is needed. We used the barycenter of the object as marker, but it fails as it is not always in the interior. Other problem is that the resulting volume may have broken parts corresponding to thin parts of the original mesh.

The other approach we tested for the voxelization is the one presented at [START_REF] Nooruddin | Simplification and Repair of Polygonal Models Using Volumetric Techniques[END_REF], which has been implemented at Princeton [START_REF] Min | binvox[END_REF]. The method used is called parity count which consists in classify a voxel V by counting the number of times that a ray with its origin at the center of V intersects polygons of the model. An odd number of intersections means that V is interior to the model and even number means that it is outside. To improve the technique for models that have cracks or holes, that will cause a bad classification, av o t i n gs c h e m ei sa d o p t e d ,b yu s i n gm o r ed i r e c t i o n sf o rt h er ays, and classifying by a majority vote. This approach worked well, even though it creates some tunnels due to degeneracies not solved by the voting scheme. At [START_REF] Nooruddin | Simplification and Repair of Polygonal Models Using Volumetric Techniques[END_REF] is proposed to apply morphological operators to fill this tunnels, as erosion and dilation, but ith a sn o tb e e nt e s t e d .

Isosurface extraction After the voxelization step we extract an isosurface from the volumetric representation to create a manifold polygonal model. We used the library Pink for this computing, which implements a topologically correct Marching Cubes algorithm [START_REF] Lachaud | Topologically defined iso-surfaces[END_REF].

Mesh smoothing

The isosurfaces extracted after the marching cubes algorithm result in a staircase surface. We use Taubin's smoothing technique implemented in Trimesh [START_REF] Rusinkiewicz | Estimating curvatures and their derivatives on triangle meshes, 2004. 3D Data Processing[END_REF] wich creates a new surface smoother than the original by usingal o w -p a s sfi l t e ro v e rt h e position of the vertices.

Mesh size optimization

The surface mesh produced by the marching cubes algorithm is usually over-tessellated. We used the software Yams [START_REF] Frey | YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure[END_REF] too p t i m i z et h et r i a n g l ec o u n t of the mesh. The remeshing algorithm produce a mesh where elements size is related to local curvature.

After these steps we obtain a new mesh free of degeneracies that acomplishes our conditions of a maniflod without boundaries. Even though, themethodshouldbeimproved to perform better in some cases, as when it generates tunnels in the resulting object, or broken thin parts. Also the automatisation of resolution related parameters should be improved.

3W a t e r s h e d

The watershed transform has been widely used as a fundamentals t e pi nm a n ys e g m e n t ation procedures. This algorithm operates on a height function which is defined over the corresponding domain. It was introduced for image segmentation and also has been used on 3D surfaces [START_REF] Mangan | Partitioning 3d surface meshes using watershed segmentation[END_REF]. We use the algorithm introduced by Cousty [START_REF] Cousty | Watersheds, minimum spanning forests, and the drop of water principle[END_REF]w h i c hi sd e fi n e do n the framework of edge-weighted graphs.

The watershed method derives the name from the manner how it segments its height function domain in catchment basins.I m a g i n ead r o po fw a t e rf a l l i n go nar e l i e fd e s c r i b e d by the height function. It will follow the steepest descent path until it reaches a local minimum. The set of points whose steepest descent paths terminate at the same minimum of the function forms a catchment basin. The watershed line will be the line that separates the different catchment basins.

In our case the height function F is the curvature defined on the edges of a graph G =(V, E, F)andtheregionsofthew atershedarecomputedasaextensionof the minima of that graph.

Extensions and graph cuts

The notions of extension and graph cut are important to define the method used to compute the watershed. The following definitions are extracted from [START_REF] Cousty | Watersheds, minimum spanning forests, and the drop of water principle[END_REF] and formalize both notions for the framework of graphs. Definition 1. Let X and Y be two non empty subgraphs of G.W e s a y t h a t Y is an extension of X (in G)ifX ⊆ Y and if any component of Y contains exactly one component of X.

The subgraphs drawn in bold in Fig. 4(b) and Fig. 4(c) are extensions of the subgraph in Fig. 4(a).

Producing an extension until it covers all the vertices of thegraphwillformaseparation that is called a graph cut. Definition 2. Let X ⊆ G and S ⊆ E.W es a yt h a tS is a (graph) cut for X if S is an extension of X and if S is minimal for this property, i.e., T ⊆ S and T is an extension of X imply T = S.

The set S depicted in Fig. 4(d) is a cut for the subgraph X in Fig. 4(a). S in Fig. 4(c) is an extension of X,a n di tc a nbes e e nt h a ti ti sam a x i m a le x t e n s i o n . 

Watersheds and catchment basins

The notion of a watershed can be defined by its catchment basinso rb yt h ep r o p e r t i e so f the divide line. Usually the first approach is used on a vertex-weighted graph framework, and the catchment basin of a minimum M is defined as the points from which M is reached by a steepest descent path. Following this definition, several catchment basins may overlap each other, as some points could have a steepest descent path to different minimas. To avoid this situation, some autors define the catchment basinsasthepointsfromwhic honly au n i q u em i n i m u mi sr e a c h e db yap a t hw i t hs t e e pe s td e s c e n t ,b ut in this latter definition some sets of points appear not belonging to any catchment basin.

From the notions of extension and graph cut we will intro duce the watershed cut, as the "lines" that separate catchment basins, and their properties will be formalized by the drop of water principle. Later we will show that the watershedcanbedefinedb ythedivide lines or the catchment basins. The following definitions are extracted from [START_REF] Cousty | Watersheds, minimum spanning forests, and the drop of water principle[END_REF].

Let π = x 0 ,...,x l be a path in G.P a t hπ is descending (for F) if, for any

i ∈ [1,l-1], F ({x i-1 ,x i }) ≥ F ({x i ,x i+1 }).
Definition 3 (drop of water principle). Let S ⊆ E.W es a yt h a tS satisfies the drop of water principle (for F )i fS is an extension of M(F ) and if for any u = {x 0 ,y 0 }∈S, there exist π 1 = x 0 ,...,x n and π 2 = y 0 ,...,y m which are two descending paths in S such that: -x n and y m are vertices of two distinct minima of

F ;a n d -F (u) ≥ F ({x 0 ,x 1 }) (resp. F (u) ≥ F ({y 0 ,y 1 })), whenever π 1 (resp. π 2 )i sn o tt r i v i a l .
If S satisfies the drop of water principle, we say that S is a watershed cut, or simply a watershed of F .

We will illustrate the previous definition with the graph G and the map F depicted in Fig. 5. In Fig. 5(a) it can be observed the set that composes them i n i m aM(F )( i nb o l d ) . Consider the set of edges S at Fig. 5(b). It can be seen that S (Fig. 5(c)) is an extension of M(F ). Let s 0 = {e, f }∈S the edge at altitude 6 at the corner bottom left of the graph G.T h e r ee x i s t sad e s c e n d i n gp a t hπ 1 = f, k, o with o av e r t e xo ft h em i n i m aa ta l t i t u d e 1. Also there is the path π 2 = e, a with a avertexofadifferentminimaataltitude3. The first edge of π 1 (resp.π 2 )islo w erthans 0 , F (s 0 ) >F({f, k})(resp. F (s 0 ) >F({e, a})). As this properties can be verified for each edge in S, S satisfies the drop of water principle. Thus S is a watershed cut of F .

In the framework of edge-weighted graph, we define a catchment basin as a component of the complementary of a watershed. In the following we will show that the watershed can be defined equivalently by the catchment basins or by the divide lines. We will introduce the notion of a path with steepest descent in order to later establish the consistency of the watershed cuts.

From now on, we also denote by F the map from V to R such that for any x ∈ V , F (x) is the minimal altitude of an edge which contains x.

Let π = x 0 ,...,x l be a path in G.

T h e p a t h π is ap a t hw i t hs t e e p e s td e s c e n tf o rF if, for any

i ∈ [1,l], F ({x i-1 ,x i })=F (x i-1 ).

Definition 4 (steepest descent). Let S ⊆ E be a cut for M(S).W es a yt h a tS is a basin cut of F if, from each point of V to M(F ),t h e r ee x i s t s ,i nt h eg r a p hi n d u c e db yS, ap a t hw i t hs t e e p e s td e s c e n tf o rF .

Theorem 1 (consistency). Let S ⊆ E.T h es e tS is a basin cut of F if and only if S is aw a t e r s h e dc u to fF .

Consider the three components of the set depicted in bold in Fig. 5(c). It can be seen that there is a path with steepest descent from each vertex V to the minima, thus these components are the catchment basins (regions) and its complementary (Fig. 5(b)) the basin cut.

Minimum spanning forests and watershed optimality

We will intro duce the notion of minimum spanning forests. From this notion we will derive in next sections the algorithm for the watershed computation. Also, as we will see, as minimum spanning forests of the minima of a map induce the watershed of the map, we will be able to state an optimality of the watershed cuts.

Let X and Y be two non-empty subgraphs of G.W es a yt h a tY is a forest relative to

X if: i) Y is an extension of X;a n d ii) for any extension Z ⊆ Y of X,w eh a v eZ = Y whenever V (Z)=V (Y ).
We say that Y is a spanning forest relative to X (for G) if Y is a forest relative to X and V (Y )=V .

Usually the notion of forest is defined as a graph which does notc o n t a i na n yc y c l e .

Let X as u b g r a p ho fG,t h ew e i g h to fX (for F )i st h ev a l u eF (X)= u∈E(X) F (u).

Definition 5. Let X and Y be two subgraphs of G.W es a yt h a tY is a minimum spanning forest (MSF) relative to X (for F ,i nG) if Y is a spanning forest relative to X and if the weight of Y is less than or equal to the weight of any other spanning forestr e l a t i v et oX.

In this case, we also say that Y is a relative MSF.

The minimum spanning forest (MSF) relative to the minima (depicted in bold in fig. 5(a)) is depicted in bold in the graph G of fig. 5(d).

The following statement will help to intuitively establish later the optimality of watersheds.

Let X be a spanning forest relative to M(F ). The graph X is a MSF relative to M(F )i f and only if, for any x in V ,t h e r ee x i s t sap a t hi nX from x to M(F )w h i c hi sap a t hw i t h steepest descent for F .

Let X be a subgraph of G and let Y be a spanning forest relative to X.T h e r ee x i s t s au n i q u ec u tS for Y and this cut is also a cut for X.W es a yt h a tt h i su n i q u ec u ti st h e cut induced by Y .F u r t h e r m o r e ,i fY is a MSF relative to X,w es a yt h a tS is a MSF cut for X.

Theorem 2 (optimality). Let S ⊆ E.T h es e tS is a MSF cut for M(F ) if and only if

S is a watershed cut of F .

In fig. 5(d) dashed edges represent the cut induced by the MSF, which is also the watershed of G (fig. 5(b)).

Minimum spanning forests and minimum spanning trees

Atre ei su s u al l yd e fi n e d [START_REF] Zahn | Graph-theoretical methods for detecting and describing gestalt clusters[END_REF]asac on n e c te dgrap hw i thn oc i rc uits, and a spanning tree of ac o n n e c t e dg r a p hG is a tree in G which contains all nodes of G.I fw ed e fi n et h ew e i g h t of a tree as the sum of the weights of its constituent edges, them i n i m u ms p a n n i n gt r e eo f ag r a p hG is a spanning tree whose weight is minimum among all spanning trees of G.

We can derive a definition of the tree from the notion of forest. Let X ⊆ G.W es a yt h a tX is a tree (resp. spanning tree)i fX is a forest (resp. spanning forest) relative to the subgraph ({x}, ∅), x being any vertex of X. Let X ⊆ G.T h eg r a p hX is a minimum spanning tree (for F ,i nG if X is a MSF relative to the subgraph ({x}, ∅), x being any vertex of X.

We will present a construction that allows to give an equivalence of finding the minimum spanning tree and finding a MSF rooted on any subgraph X of G. Let us consider first a subgraph X ⊆ G composed of isolated vertices. Let us construct a new graph G ′ =( V ′ ,E ′ )w h i c hc o n t a i n sa na d d i t i o n a lv e r t e xz/ ∈ V linked by an edge to each vertex of X,t h u sV ′ = V ∪{z} and E ′ = E ∪ E z ,w h e r eE z = {{x, z}|x ∈ V (X)}. Let us consider the map F ′ from E ′ to R such that, for any u ∈ E, F ′ (u)=F (u), while for any u ∈ E z , F ′ (u)=k min -1, where k min is the minimum value of F . Let Y be any subgraph of G and let Y ′ be the graph such that V (Y ′ )=V (Y ) ∪{z} and E(Y ′ )=E(Y ) ∪ E z .I tm a yb es e e nt h a tY ′ is a minimum spanning tree for F ′ in G ′ if and only if Y is a MSF relative to X for F in G.

Following this construction we can extend it to the case of X being any subgraph of G.I nt h i sc a s e ,fi r s tw ew i l lc o n t r a c te a c hc o m p o n e n to fX into a single vertex, and if two vertices of this resulting graph must be linked by more than one edge we will keep only the one with minimal value. After we will proceed with the construction explained above.

The minimum spanning tree computational construction has been widely studied. Considering this construction the relative MSF can be computed using any minimum spanning tree algorithm.

Watershed algorithm

In order to introduce the method used to compute the watershedw ewilldefinefirstanedge classification based on local properties. Then we will also define the lowering operation and the thinning that will let us understand the strategy usedt oc o m p u t et h ew a t e r s h e d .

As we said before if x is a vertex of G, F (x)i st h em i n i m a la l t i t u d eo fa ne d g ea tx.

Definition 6. Let u = {x, y}∈E.

We say that u is locally separating (for F )i f(F (u) >max(F (x),F(y)).

We say that u is border (for F )if(F (u)=max(F (x),F(y)) and (F (u) >min(F (x),F(y)).

We say that u is minimum-border (for F ), written M-border if u is border and if exactly one of the vertices in u is a vertex of M(F ).

We say that u is inner (for F )i fF (x)=F (y)=F (u). It can be proved [START_REF] Cousty | Watersheds, minimum spanning forests, and the drop of water principle[END_REF] that the border thinning transformation preserves some MSF relative to the minima of the original map. The border kernelsa l l o wt h ee x t r a c t i o no ft h e MSF relative to the minima, as the minima of a border kernel is itself a MSF relative to the minima of the original map. As we state above (theorem 2) a MSF relative to the minima induces a unique cut that is a watershed cut of the original map. Thus, obtaining Let X be a complex in K and let f ∈ X + .T h ef a c ef is a border face for X if there exists one face g ∈ f * such that f is the only face of X which contains g.S u c haf a c eg is said to be free for X and the pair (f, g)i ss a i dt ob eafree pair for X.W es a yt h a t f ∈ X + is an interior face for X if f is not a border face.

Let X be a complex, and let (f, g)b eaf r e ep a i rf o rX.T h e c o m p l e x X \{ f, g} is an elementary collapse of X.

We ilustrate in fig. 8(a) a complex X where g is a border face of X and j is a free face of X.F i g .8 ( b )d e p i c t st h es e tX \{g, j} an elementary collapse of X.

Let us consider weights on the 1-faces of a complex. Let X K,w ed e n o t eb yA the set of all 1-faces of X,a n dT the set of all 2-faces of X.L e tu sd e n o t eb yF the set of all maps from A to R.L e tF ∈F,w ewilldenotealsob yF the map from T to R such that for any g ∈ T , F (g)i st h em i n i m alw e i gh tofi t s1-f ac e s ,i.e F (g)=min{F (u)|u ∈ A, u ∈ ĝ * }. We will define also for weighted complexes the lowering op eration on 1-faces, as presented for edge weighted graphs in def. 7. Let u ∈ A.T h elowering of F at u is the map in F ,d e n o t e db y[ F \ u], such that:

-[F \ u](u)=min{F (g),F(h)|g ∩ h = u};a n d -[F \ u](v)=F (v)f o ra n y1 -f a c ev ∈ A \{u}.
We denote F k = {u ∈ A, g ∈ T |F (u) ≥ k, F (g) ≥ k} with k ∈ R,a n dw ec a l l e di ta section of F . Consider X be a complex in K and F ∈Fthe weights on the 1-faces of X.L e t F k be a section of F .W ed e fi n ea l s oa1 -f a c eu ∈ A a border 1-face for F if u is a free face for F k with k = F (u). It can be seen an elementary collapse of a section F k as a lowering operation on a border 1-face for F .T h u s ,w ec a no b s e r v ea ne q u i v a l e n c ew i t ht h e notions explained for border thinnings on edge-weighted graphs. Furthermore, this justify our choice of the vertex per-face graph as a representation for the mesh to proceed in a proper segmentation. We illustrate with an example these previous notions. Consider the complex K depicted in fig. 8(c) with a map F .T h efi g u r eo n l ys h o w sv a l u e so n1 -f a c e sw h i c ha r el o w e rt h a n4 . 2-faces have the values corresponding to the minimal weight of its 1-faces. We illustrate in fig. 8(d) the section F 2 of F ,w h e r eh is a border 1-face for F ,a si ti saf r e ef a c ef o r F 2 and F (h)=2 . F i g . 8 ( e )d e p i c t sa ne l e m e n t a r yc o l l a p s eo fF 2 ,a n dfi g . 8 ( f )d e p i c t s the lowering on the border 1-face h.I nc a nb eo b s e r v e dt h ee q u i v a l e n c ew i t ht h eb o r d e r thinning explained in def. 8 applied on the vertex per-face graph of K.

4C o m p o n e n t t r e e

The component tree is a tree structure used to organize the connected componentso fa level function. It has been used for several image processinga p p l i c a t i o n s ,a l t h o u g hi tw a s first introduced in statistics for classification and clustering. Different variations have been implemented as the Max-Tree introduced by Salembier et al. [START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF] used as a data structure for antiextensive connected operators, which is analysed and improved by Meijster and Wilkinson [START_REF] Meijster | A comparison of algorithmsf o rc o n n e c t e ds e to p e nings and closings[END_REF]. The algorithm we implemented is based on the one described by Najman and Couprie [START_REF] Najman | Quasi-linear algorithm for thec o m p o n e n tt r e e ,2 0 0 4[END_REF].

We will describ e briefly the building pro cess of the tree in order to give an idea of the properties of this structure, and later it will be introducedf o r m a l l y . T h et r e ec a nbeb u i l d as a Max-Tree (focusing on regional maxima) or a Min-Tree (focusing on regional minima), and for our purposes the Min-Tree approach has been used. Consider a discrete map as a topographical relief with the level of each point corresponding to its altitude. We will start flooding by water this surface starting at the lowest points. At beginning there will appear various lakes that will form the leafs of the tree. As water level increases the lakes will grow building the branches of the tree. By the time at some levels the lakes will merge into one connected piece becoming the forks of the tree. When the water reaches the highest level the process stops and the flooded area forms a unique component that is the root of the tree.

The tree can be used for filtering the original level function to obtain, for example as in our purposes, a new map with a reduced number of regional minima. Some attributes will be computed for each leaf and branches of the tree, and they will set an order of preference. As in the analogy explained before, the smaller valleys (considering their area for example) of the topographical relief will be removed. Hence, removingt h ec o r r e s p o n d i n gb r a n c h e s of the tree. We implemented a quasi-linear time algorithm for computing the component tree of functions defined on edge-weighted graphs that is based on theT a r j a n ' su n i o n -fi n dp r oc edure [START_REF] Tarjan | Efficiency of a Good But Not Linear Set Union Algorithm[END_REF]. We will define the component tree on the framework ofg r a p h s ,a n di tw i l lb e illustrated with the case of a vertex-per-face graph on a complex as described in section 2.4. We will explain the union-find method and after introducet h ea l g o r i t h mt ob u i l dt h e tree. Later we will describe the methods used for filtering themeshcurv aturesv aluesusing the component tree in order to obtain the desired watershed segmentation.

Connected components notions

We intro duce some notions and notations for connected comp onents in weighted graphs in order to define properly the component tree in the following section.

We denote by F the set of all maps from E to R.F o ram a pF ∈F let us consider (V, E, F)a ne d g e -w e i g h t e dg r a p h . W ea l s od e n o t eb yF the map from V to R such that for any x ∈ V , F (x)i st h em i n i m a la l t i t u d eo fa ne d g ew h i c hc o n t a i n sx.W e d e fi n e We illustrate this notions on the framework of triangular face sets with fig. 9 where the different cross-sections can be observed. In this case we havew e i g h t so nf a c e s ,a n dt h e i r connectivity is determined by the vertex per-face graph explained in section 2.4.

F k = {u ∈ E|F (u) ≤ k} with k ∈ R; F k is called a (cross

Component tree definition

The following definition for the component tree is extracted from [START_REF] Najman | Quasi-linear algorithm for thec o m p o n e n tt r e e ,2 0 0 4[END_REF].

Let F ∈F.F o ra n yc o m p o n e n tc of F we set h(c)=min{k|cisalevelkcomponentof F}.

Note that h(c)=max{F (x)|x ∈ c}.W ed e fi n eC(F )ast h es e tc om pos e dofal lp ai r s[ k, c],

where c is a component of F and k = h(c). We call altitude of [k,c] the number k.R e m a r k that any two distinct elements of C(F )c o r r e s po n dt od i s t i n c ts u b g r a p h s .

Let F ∈F,l e t[ k 1 ,c 1 ],[k 2 ,c 2 ]b ed i s t i n c te l e m e n t so fC(F ). We say that [k

1 ,c 1 ]i st h e parent of [k 2 ,c 2 ]i fc 2 ⊂ c 1 and if there is no other [k 3 ,c 3 ]i nC(F )s u c ht h a tc 2 ⊂ c 3 ⊂ c 1 .
In this case we also say that [k 2 ,c 2 ]i sachild of [k 1 ,c 1 ]. With this relation "parent", C(F ) forms a directed tree that we call the component tree of F,a n dt h a tw ea l s od e n o t eb y C(F ). Any element of C(F )i sc a l l e danode.A ne l e m e n to fC(F )w h i c hh a sn oc h i l di s called a leaf,t h en od ew h i c hh a sn op a r e n ti sc a l l e dt h eroot.

We define the (vertex) component mapping CM as the map from V to C(F )w h i c h associates to each vertex p ∈ V the node CM(p), such that the altitude of CM(p)i sF (p) and p ∈ CM(p). We also define the edge component mapping CME as the map from E to C(F )w h i c ha s s oc i a t e st oe a c he d g eu ∈ E the node CME(u), such that the altitude of CME(u)i sF (u)a n du ∈ CME(u). 

Component tree and minimum spanning tree

As our work is settled on edge-weighted graphs, some considerations will be introduced in order to understand the algorithm for the construction of thecomponenttreeimplemented, and its differences with the previous algorithms [14] [19].

partial trees. At the end of the execution a unique tree groupsa l lt h ec a n o n i c a ln o d e s , each of the nodes represents a component of the graph, and the whole tree represents the component tree.

Detailed view

The algorithm for the component tree computation is presented below BuildComponentTree, also with the complementary functions used, InitNode and MergeNodes.T or e p r e s e n ta node of C(F )w eu s eas t r u c t u r ec a l l e dnode that contains its level and the list of nodes which are sons of this node. In a preprocessing step edges are sorted by increasing order of level (line 1). Then the process starts (line 3) proceeding byt a k i n ge a c he d g eo ft h eg r a p h starting by the lowest one. We use a label nblabs an the array CM (used for the resulting component mapping) to proceed properly on the generation of new nodes of C(F )d u r i n g the processing step.

The function InitNode creates new elements of collections Q node and Q tree using the procedure MakeSet described in section 4.4. It also creates a new node structure.

The array highestN ode will help us to know the node with highest level from a partial tree during the processing, and it is necessary due to the particularities of the union-find algorithm.

From the algorithm we also obtain the edge comp onent mapping CME.W ed on o t describe this array on the text presented in BuildComponentTree but we give the precise assignments below.

The BuildComponentTree procedure have three main possible cases, which depend on the previously visited vertices. To know if a vertex has already been visited we use the array CM set at an initial value for all vertices, in a preprocessing step. Considering u ∈ E the edge chosen and (x, y) ∈ u the vertices at this edge, the three possibilities are:

• both vertices are visited for the first time; in this case (lines 4-6), as we proceed on edges by increasing order of their level, and vertices have the minimal value of their adjacent edges, both vertices have the same level and it equals the edge level F (u). Thus, a new node of level F (u)isbuild(functionInitNode)andthev erticesx, y will belong to this node, so the component mapping of x and y is set to the new label nblabs.T h ee d g ec o m p o n e n tm a p p i n gCME is set to the same label nblabs for u.

• one vertex has been visited and the other is visited for the first time; in this case (lines 7-13) we use the array CM to know which node the vertex x belongs to (x is the vertex already visited). Using then the function Find on the collections Q node and Q tree we get its canonical node x node (line 8).

If the edge level is the same as x node level, it means that the other vertex y should have this level also, and it belongs to the same node (line 9). CME(u)issettox node .

In the other case if F (u)i sg r e a t e rt h a nt h el e v e lo fx node ,an e wn o d ei ti sc r e a t e d , and x node (the node that represents x)becomesitsson(lines11-12). Theelemen tsof Q tree are linked to form a partial tree. The array highestNode is modified to set the The graph G with weights on edges (in bold) and labels to identify them. Edges will be examined in the following order, (

We are going to illustrate on an example how the algorithm works. The example will be settled on the framework of edge weighted graphs, and more precisely on the vertex per-face graph of fig. 11(b) that represents the set of faces offi g . 1 1 ( a ) . T h ee d g e so ft h e graph are labeled by letters to refer to them easily later. We will focus on certain steps of the building process of the component tree to describe the details of the algorithm. Edges are examined by increasing order of their level as follows, (p, b, c, l, q, n, a, d, m, h, f, o, r, e, g, i, k, j), as result of the initial sorting. Suppose that we are already at the beginning of step 6, so we will proceed with edge n.A tt h i sm o m e n tt h ep a r t i a lt r e eb u i l t is the one depicted at fig. 12(b). the node level and the node label are depicted for each node in the form [k, c]wherek is the level and c is the label of the component. We represent the arrays Fth tree , Fth node to take into account the situation of the collections Q tree ,Q node respectively. The arrays order is from left to right and from up to down. The array CM is also represented. Each cell of the array CM represents a vertex of the graph, ordered as vertices disposition on the graph. Thus, the upper left grid cell of the array represents the vertex at left of edge a,w h i l ef o l l o w i n go nt h er i g h t ,t h eg r i dc e l lr e p r e s e n tt h eo t her vertex of a,a n dt h e nt h ev e r t e xb e t w e e nb and c,e t c . . When edge n is chosen their both vertices have already been visited. Thus, the Find tree operations are applied on the nodes representing these vertices (by using the array CM), to find their canonical nodes. As their canonical nodes 3 and 2 are at same level 20, and edge n makes them connected, these nodes should be merged (MergeNodes). As result of this linking the canonical node of the node 3 for the collection Q node will change to be 2, and the son of node 3 (node 0) will be now son of 2. Even though, the canonical node of nodes 2 and 3 in Q tree will still be 3 as result of the heuristics of Tarjan algorithm(unionby rank, section 4.4). The highestN ode array at position 3 is set to 2, as it is the new father.

The array highestN ode is only used on canonical node positions, which are underlined at the figures. After n,a n de d g e sa, d, m at level 30 are processed. This situation is depicted at fig. 13. Node 4 became father of node 1 as result of processing for edges a, d.T h el i n k i n gl e d node 4 being the canonical node of its partial tree. The processing of edge m ilustrates the work of the arrays. The component mapping of the already visited vertex at m is 2, while the canonical node of 2 in Q tree is 3 (line 8 of the algorithm). Its highest node at this moment is 2, thus will be the level of node 2 that will be checked. As the level at m is greater, a new node 5 is created, which becomes father. The canonical node remains 3 and highestN ode at this position is changed to 5. It follows the processing of edge h at level 30, that creates a new node 6 that form a new partial tree. Edges f an o at level 40 create new nodes that become parents of the partial trees represented by nodes 3 and 4 respectively. Edge r is not treated as it connects nodes that belong to the same partial tree. Remark that this edge is not in the MST. The processing of edge e ilustrates the case where both vertices belong to different partial trees, 6 and 4 in this case, and the edge level is greater than the highest node level of both trees. Thus, a new node 9 at level 50 is built, these trees are linked, and 9 becomes its father. This current step is depicted in fig. 14. It can be observed that this new node 9 is not representing any vertex , i.e is not appearing in the vertex component mapping but it would appear on an edge component mapping. For the rest of edges at level 50, edge g is not treated as is not part of the MST as edge r.E d g e i will make the last not assigned vertex belong to node 9, while edge k will link the remaining two partial trees. Edge j is the last edge and is not considered as g.T h ec o m p o n e n tt r e ei st h e nb u i l t .I ti sa p l i e dt h eo p e r a t i o nFind node to retrieve the definitive component mapping, actually to get the correct labels that may change due to nodes merging. The component tree is depicted in 15(a) Dashed edges on the edge component mapping are the corresponding edges of g, r ,j from the vertex per-face graph, which not belong to the MST, thus they are not considered in the mapping. Remark also to consider the edge corresponding to e,t h a tb e l o n g st ot h e component 9 of the tree, and that is not reflected in the face component mapping.

Node Attributes

We will use the comp onent tree to reduce the numb er of minima oft h ei n i t i a lc u r v a t u r e map, in order to reduce the over-segmentation of the watershed operator. As the minima of the function are represented by leafs of the tree, the idea will be to remove leaves in an order of importance until we obtain a desired filtered function. To quantify this order of importance we will compute some attributes on each node of thet r e e ,t op r u n et h et r e e by different criteria.

Several attributes can be computed, and we have computed the dynamics, the area and the volume (fig. 16). Let

[k, c] ∈C(F )a n d[ k p ,c p ] ∈C(F )t h ep a r e n to f[ k, c]. We define dynamic([k, c]) =    ∞ [k, c]=[k max ,V]o rdynamic(k p ,c p )=∞ k p -k + dynamic(k p ,c p )i f min{F (x)|x ∈ c} = min{F (y)|y ∈ c p } k p -k in other case
Intuitively, if we consider the height function as a topographical relief and we flood it by water starting at the regional minima points, the dynamic of a point will be the height between this point and the point where the water would overflowtoanotherminima. Thus, the water flooding from a minima will not overflow to regions of lower depth, as water from these regions will overflow first.

We also define

area([k, c]) = card(c) volume([k, c]) = x∈c (F (k p ) -F (x))
The area is computed while building the component tree. Each time a vertex is added to a node (lines 5, 9, 11 of the algorithm) the area is increasedb yt h en u m b e ro fv e r t e x added (i.e 2i nt h ec a s eo fl i n e5 ,a n d1i nt h eo t h e rt w oc a s e s ) . A si no u rc a se each vertex represent a triangular face, the area of the face may be added.

The volume and the dynamics are computed in a post-processingstep. T ocomputethe volume the area is needed. Then we apply the recursive function ComputeVolume on the root of the tree.

To compute the dynamics we need to sort the no des of the tree by increasing order of their level. Then, by using the recursive function CompTreeOrder applied on the root we obtain the son of minimum level for each node of the tree (array minSon). Then the function ComputeDynamics also applied on the root of the tree, will compute the dynamics of each node. The filtering process can be applied successively with different attributes and thresholds to obtain the desired results.

5R e g i o n a t t r i b u t e s

In order to obtain feature vectors which will form the object signature for a content-based search system, we compute attributes for each region resulting after the segmentation step. The attributes computed are three, all of them in the form of a histogram for each region. The cord histogram, and the Extended Gaussian Images (EGI) are based on global feature descriptors, in our case applied independently for each region, which had been used by Gorisse [START_REF] Gorisse | Indexation 3d dans une base d'oeuvres d'art[END_REF] in a previous work in the Eros3D project. Also we compute a histogram of the curvatures for each region.

Cords histogram

The cords histogram is based on the global method presented in[ 1 6 ] ,a n dr e p r e s e n tan o rmalized histogram of the distances between the barycenter oftheobjectandthebarycenter of each triangle of the mesh. Also, the histograms of the angles with the first and second principal axis of the principal components analysis (PCA) are computed . Thus, a first step will be to calculate the principal axes.

The principal components analysis (PCA) is a statistic method consistent on finding the directions in a space which best explain the dispersion ofr a n d o mv a r i a b l e s . I no u r case the random variables are the points of the 3D objects. Thep r i n c i p l eo ft h eP C Ai st o calculate the eigen vectors and eigen values of the covariance matrix of the coordinates of in faces. Each triangle adds a contribution of its area to the face of the sphere which has the same orientation. Thus, we have for each face P of the Gauss sphere with orientation nk ,

P nk = N k i=1 A i,n k
where N k is the number of triangles of the mesh oriented following the direction nk .T h e orientation of a triangle of the mesh is defined by its normal vector.

The discretized Gauss sphere is build to obtain size homogenic faces. To do so, we use the faces of a regular octahedron, that for instance are subdivided two times, so we obtain 8 * 4 * 4=128faces. Thenw eprojectthesefacesonasphere.

Once the sphere is built the algorithm proceed as follows:

• calculate the reference directions resulting from the sphere

• calculate the directions of each mesh triangle of the object

• for each mesh triangle direction, find the nearest reference direction.

Then we calculate the histograms for each region of the mesh. Each histogram has as classes as faces of the sphere. Then for each triangle of a region we add its area to the class that previously has been computed as its nearest reference direction.

This descriptor applied on regions combines the representation of the position of the region in the object with the shape of this region.

Curvature histogram

This attribute is an histogram of the principal curvatures computed in each triangle of the mesh. Also in this case we applied the histogram type described for the cords (cords2D sec. 5.1) which considers a class for each pair {κ 1 ,κ 2 },whereκ 1 ,κ 2 are the principal curvatures at each triangle of the mesh.

6E x p e r i m e n t a l r e s u l t s

In this section we will present our experimental results on 3Dm o d e l s . T h ep r o c e d u r ew e applied is as follows:

-C o m p u t eac u r v a t u r em a po nt h em e s h .

-B u i l dt h ec o m p o n e n tt r e eo ft h ec u r v a t u r em a p .

-F i l t e rt h eo r i g i n a lc u r v a t u r em a pb yu s i n gt h ec o m p o n e n tt r ee.

-C o m p u t et h ew a t e r s h e do nt h efi l t e r e dc u r v a t u r em a p . the parts of the watershed lines that are over a certain threshold of curvature value. It can be observed that in these two similar sculptures the lines extract the same features.

Once the watershed is computed we calculate the attributes for each region obtained (sec. 5.3). Figures 22, 23 and 24 show the results for three different objects. Regions are labeled with letters. For each region we show a type of histogram to show the different features that can be considered to identify a region.

For the histograms cords2D we set 50 classes for the cord length value, and 50 classes for the first angle. Thus the resulting histogram has 50 × 50 = 2500 classes, set in one dimension, so for each angle class we depict the 50 cord lengthc l a s s e s . T h eh i s t o g r a m s curvatures2D have the same number of classes, 50 classes for the principal curvature κ 1 and 50 classes for κ 2 .A l s ot h e ya r ed e p i c t e di no n ed i m e n s i o n ,s of o re a c hc l a s so fκ 2 the 50 classes of κ 1 .F o rt h eEGI histograms we set 128 classes, which correspond to 128 faces of a Gauss sphere.

7C o n c l u s i o n

We presented a metho d which allows to define similarities and differences between 3D objects that have the same global shape. This is for example the case of scanned sculptures. In sculptures usually we have characteristic differences between them that rely on the surface either than on its shape. In this case, methods which extract global shape descriptors are not able to describe properly the object while our method obtain regions that follow carved features on the surface.

We can obtain feature vectors by using the histograms computed for each region. These vectors are an essential part for a content-based retrieval system as they help the indexation of the database. As we obtain independent feature vectors fore a c hr e g i o n ,t h em e t h o d can be used for partial matching. In other words, we can searcho bj e c t sw h i c hh a v eo n eo r some parts similar even if they are different in global shape.

The component tree is a structure that gives robustness to thes e g m e n t a t i o nm e t h o d , as it allows noise filtering and different levels of precision for the feature extraction. The three tree node attributes presented (volume, dynamics and area) improve the filtering by applying them successively. The combination component treea n dw a t e r s h e dc a nb eu s e d in other frameworks, as image, video, signal. Also the same method can be applied on other maps on the surface mesh, as color, texture, or other geometrical functions instead of curvature.

We defined some notions on simplicial complexes, which is a structure that fit perfectly with the representation of 3D meshes. We gave the links to apply the watershed transform in the framework of complexes. This can lead to optimality properties for the method presented in a further work.

Further tests on retrieval systems may define b etter region attributes. Also by studying the results by different sets of parameters we can define an optimal automatic filtering. The remeshing step combined with the filtering step can lead tom u l t i -r e s o l u t i o nr e s u l t s . 
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Figure 1 :

 1 Figure1: (a) A set of faces (one 2-face, one 1-face, one 0-face). (b) A set of faces X which is not a complex. (c) The set X + ,a l lt h ef a c e t so fX.( d )T h es e tX -,t h ec l o s u r eo fX, which is a complex.

Figure 2 :

 2 Figure 2: Curvature scalar functions of the object in (a) in grayscale.

Figure 3 :

 3 Figure 3: (a) A triangle mesh and a vertex per-face graph. (b) Segmentation on edges of the graph (in bold). (c) Segmentation on the mesh.

Figure 4 :

 4 Figure 4: Ag r a p hG where in bold there is: (a) a subgraph X of G.( b )a ne x t e n s i o no f X.( c )a ne x t e n s i o nY of X which is maximal. (d) a cut S for X such that S = Y .

Figure 5 :

 5 Figure 5: Ag r a p hG and a map F where in bold there is. (a) The minima M (F ). (b) S a watershed cut of F .( c )A ne x t e n s i o no fM (F )w h i c hi sa l s oS.( d )AM S Fr e l a t i v et oM (F ) where dashed edges represent the induced cut.

Fig. 6 Figure 6 :

 66 Fig. 6 illustrates this classification. In fig. 5(a) edges {k, f} or {l, g} are examples of border edges, {e, f } or {m, i} are locally-separating, {k, o} or {q, n} are m-border, and {a, b} or {w, q} are examples of inner edges.

  Consider the illustrations at fig.7. The map H of fig.7(b) is a border thinning of the map F of fig.7(a). It is also a M-border thinning as the edge {d, e} lowered has the vertex d ∈ M(F ). The map I of fig.7(c) depicts a M-border kernel of F .E d g e si nd a s h e ds h o w the M-border cut for F induced by M(I).

Figure 7 :

 7 Figure 7: Graphs where the minima of the corresponding functions is depicted in bold. (b) AM-borderthinningof(a). (c)AnM-borderk ernelI of (a), where dashed edges correspond to the cut induced by M (I).

Figure 8 :

 8 Figure 8: (a) A complex X and a free pair (j, g)f o rX.( b )A ne l e m e n t a r yc o l l a p s ef o rX. (c) A weighted complex K with the map F on 1-faces (consider the 1-faces with no weight that have a weight greater than 4). (d) The section F 2 of F .( h, i)i saf r e ep a i ro fF 2 .( e ) An elementary collapse for F 2 .( f )Ab o r d e rt h i n n i n go fK.

F 1 Figure 9 :

 19 Figure9: Aw e i g h t e df a c es e tF and its cross-sections at levels 5, 4, 3, 2, 1 (in white).

  -)section of F .I tc a nb en o t i c e d that for any u ∈ F k and x, y the vertices at u,a l s oF (x) ≤ k,F (y) ≤ k.A c o n n e c t e d component of a section F k is called a (level k) component of F .Al e v e lk component of F that does not contain the level (k -1) is called a (regional) minimum of F .W ed e fi n e k min = min{F (u)|u ∈ E} and k max = max{F (u)|u ∈ E},w h i c hre p re s e n tre s pe c ti v e l yth e minimum and the maximum level in the map F .

Fig. 10 (

 10 a) shows the component tree of the vertex per-face graph of F the face weighted set of fig. 9 and fig. 10(b) shows the associated component mapping depicted on the faces of the set F .

Figure 10 :

 10 Figure 10: The component tree (a) of the vertex per-face graph of the facew e i g h t e ds e to f fig.9 and its associated component mapping (b).

Figure 11 :

 11 Figure 11: (a) Set of triangular faces and its vertex-per face graph G on dashed. (b)The graph G with weights on edges (in bold) and labels to identify them. Edges will be examined in the following order, (p, b, c, l, q, n, a, d, m, h, f, o, r, e, g, i, k, j)

Figure 12 :

 12 Figure 12: End of step 5. (a) The arrays highestN ode,Fth tree ,Fth node and the component mapping CM.( b )P a r t i a lt r e e sa l r e a d yc o n s t r u c t e d .

Figure 13 :

 13 Figure 13: End of step 9. (a) The arrays highestN ode,Fth tree ,Fth node and the component mapping CM.( b )P a r t i a lt r e e sa l r e a d yc o n s t r u c t e d .

Figure 14 :

 14 Figure 14: End of step 14. (a) The arrays highestN ode,Fth tree ,Fth node and the component mapping CM.( b )P a r t i a lt r e e sa l r e a d yc o n s t r u c t e d .

Figure 15 :

 15 Figure 15: End of the algorithm. (a) The component tree. (b) The vertex component mapping on faces of the set of fig. Colors on faces represent itsl e v e l . 1 1 ( a ) . ( c )T h ee d g e component mapping on edges of the set of fig.11(a), (dashed edges do not belong to the MST of the vertex per-face graph ). Colors on edges represent its level.

  and thec o m p o n e n tm a p p i n go n the faces of fig. 11(a) in fig. 15(b). The edge component mappingisdepictedinfig. 15(c).

Figure 16 :

 16 Figure 16: Ilustration of the dynamics, area and volume of the componenta tt h el e v e l depicted in a dashed line.

Figure 17 :Figure 18 :

 1718 Figure 17: Filtering. Curvature maps resulting after applying the filtering on the original curvature map from fig. (a). Minimum values are in black while maximum values are in white. The number of minima of all the resulting maps is 30.

Figure 19 :

 19 Figure 19: (a) Watershed cut on H inv curvature map.(a) Watershed cut on M curvature map.

Figure 20 :

 20 Figure 20: Segmentation on different sculptures.

Figure 21 :

 21 Figure 21: (a) Watershed cut in grayscale values of the original curvature map. (b) Thresholded cut of the watershed in (a) and (c) thresholded cut of a similar sculpture.
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  Function ComputeDynamics(int n)Data: minSon -a r r a y[ 0...N -1] son of minimum level for each node fth := nodes[n] →father;

	2	
	3	else
	4	if (minSon[n] == minSon[fth]) then
	5 6	if (nodes[fth] →dynamics == MAX) then nodes[n] →dynamics := MAX; else
	7	nodes[n] →dynamics := nodes[fth] →level -nodes[n] →level + nodes[fth] →dynamics;
	8	else
	9	nodes[n] →dynamics := nodes[fth] →level -nodes[n] →level;
		foreach cc h i l do fnodes[n] do ComputeDynamics(c);

1 if nodes[n] is the root then nodes[n] →dynamics := MAX; 10 the vertex values or by edges values.
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abo r d e rk e r n e l ,a si ti sas e q u e n c eo fl oc a lo pe r a t i o n s ,i sap romising approach to produce ag l o b a l l yo p t i m a ls t r u c t u r ea st h eM S Fr e l a t i v et ot h em i n i m a, hence the watershed cut.

Ap o s s i b l ea l g o r i t h mt oc o m p u t et h eb o r d e rk e r n e lw o u l db e : 1 )t a k ea ne d g eo ft h e graph, check if it is a border, and lower its value; 2) repeat step 1) until no border edge remains. Due to the cost of this approach, the particular caseo fb o r d e rk e r n e l ,M -b o r d e r kernel, is considered. As an edge which is in a minimum in a given step of the border thinning sequence, will never become border again in later steps, the strategy will be to lower first the edges adjacent to the minima.

As well as the minimum of a border kernel of a map F is a MSF relative to M(F ), the minimum of a M-border kernel is also a MSF relative to M(F ). Hence, it can be stated the following theorem.

Theorem 3. Let S ⊆ E.T h ef o l l o w i n gs t a t e m e n t sa r ee q u i v a l e n t : (i) S is a M-border cut for F ; (ii) S is a border cut for F ; (iii) S is a watershed cut for F ;

The following algorithm presented by Cousty [START_REF] Cousty | Watersheds, minimum spanning forests, and the drop of water principle[END_REF] computes theM -b o r d e rk e r n e l ,h e n c e the watershed cut, using these previous notions. x ← the vertex in u such that F (x) <F(u); 7 y ← the vertex in u such that F (y)=F (u); 8 F (u) ← F (x); F (y) ← F (u);

Border thinning on simplicial complexes

In this section we will introduce some notions on operators defined in [START_REF] Bertrand | Two-dimensional parallel thinning algorithms based on critical kernels[END_REF] on the framework of simplicial complexes, and then we will be able to extend then o t i o n si n t r o d u c e df o r border thinnings on edge weighted graphs into the case of simplicial complexes. Let us first introduce some notions for complexes, not considering weights in their faces for the moment.

We present the notion of line graph that will allow us to apply the notions for vertexweighted graph on edge-weighted graphs. Definition 9. The line graph of G =( V, E) is the graph (E, Γ),s u c ht h a t{u, v} belongs to Γ whenever u ∈ E, v ∈ E,a n du and v are adjacent, i.e, |u ∩ v| =1.

We can asso ciate to each graph G whose edges are weighted by a cost function F ,a line graph G ′ .T h ev e r t i c e so fG ′ are weighted by F and thus any transformation can be performed either in G or in G ′ .

We could apply the algorithm intro duced by Na jman [START_REF] Najman | Quasi-linear algorithm for thec o m p o n e n tt r e e ,2 0 0 4[END_REF], whichf o c u so nv e r t e xweighted graphs, on an edge-weighted graph G,b yu s i n gt h el i n eg r a p ho fG, G ′ .T h e n , once the component tree would be built, we would obtain the component mapping of the vertices E of G ′ .T h u sw ew o u l dh a v et h ec o m p o n e n tm a p p i n go nt h ee d g e sE of G.T h e n , by removing nodes of the tree, we would reduce the number of minima on the edge-weighted graph G.

The purpose of the filtering of a map F on edges of a graph G is to reduce the oversegmentation produced by the watershed operator. Considering this purpose our component tree will be computed only on the minimum spanning tree edges of the graph. On the following of this section we will explain this consideration.

As introduced in section 3.3 the watershed cut of F is induced by the minimum spanning forest relative of the minima of the map F .F u r t h e r m o r e ,i ns e c t i o n3 . 3 . 1w ed e r i v e dt h a t the minimum spanning tree of a graph X is a MSF relative to the subgraph ({x}, ∅), x being any vertex of X.

Following the construction presented in section 3.3.1 we cans t a t ea l s ot h ef o l l o w i n g . Let Y be the MSF relative to M(F )f o rF in G.F o ra n ye d g eu ∈ Y \ M(F )i tc a nb e observed that u belongs to a minimum spanning tree for F in G.

We will give some notations concerning minimum spanning trees (MST) in order to introduce later a theorem that will help us understand the approach adopted to construct the component tree.

Let us define a partition of the vertices of a graph G as a division into two disjoint nonempty subsets of vertices (P, Q). The distance ρ(P, Q)a c r o s sap a r t i t i o ni st h es m a l l e s t weight among all edges which have one vertex in P and other in Q.T h ecut-set C(P, Q)is the set of edges that span a partition (P, Q). A link is any edge in C(P, Q)w h o s ew e i g h t is equal to the distance ρ(P, Q), while the set of all links in C(P, Q)i sc a l l e dt h elink-set λ(P, Q).

Am a i nt h e o r e mc o n c e r n i n gaM S Ti st h ef o l l o w i n g . Let Y be a MSF relative to M(F )forF in G,andX be any component of Y .L e tP be the set V (X)a n dQ the set V (Y ) \ V (X). The cut-set C(P, Q)t h u s ,be l o n g st ot h eb a s i n cut of F .B yt h et h e o r e ms t a t e da b o v ei tm a yb es e e nt h a tt h eM S To fF will contain the edge with lowest weight of C(P, Q). Thus, by this latter considerations the MST will contain all edges of the MSF relative to M(F )e x c l u d i n gt h ee d g e so fM(F )t h a tm a k eac y c l e . A l s o ,c o n s i d e r i n gS the basin cut of F ,t h eM S Tw i l lc o n t a i na n ye d g eu ∈ S such that u is the lowest edge outgoing from a component of S.

Consider we obtain the component tree of G taking into account only the edges of the MST. Then we filter the map F by removing a branch of the tree. Hence we give at the nodes of the branch the level value of the parent of the highestn od eofb r an c h . L e tu sc al l X the subgraph corresponding to the removed component. After the filtering, the edges not considered in the component tree, i.e edges that not belong to a MST, will get a ∞ value. We call this filtered map F ′ . Consider now S the watershed cut of F ,a n dS ′ the watershed cut of F ′ .C o n s i d e rY a component of S (a catchment basin). As the component X forms a branch of the tree, X ⊆ Y .W eg i v et oe a c he d g eo fX the weight of the edge u ∈ S,s u c ht h a tF (u)i st h e lowest cost from the ones outgoing from Y ,a n da l s ot h ee d g e so fY \ X get ∞ value. For this two latter reasons, there is no descending path from u in Y for F ′ to M(F ′ ). Thus, Y is not a catchment basin for F ′ .

Our algorithm for the component tree is then based on a classical algorithm for the minimum spanning tree presented by Kruskal [START_REF] Kruskal | On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem[END_REF]. It consists in sorting first the edges of the graph by increasing order of their weight, and then selectingt h e m ,m a k i n gs u r et os e l e c t only edges that do not form a circuit with the previously selected. In our case, during this stage we will proceed on the building of the component tree.

The Union-Find method

The Union-Find algorithm proposed by Tarjan allows keeping track of disjoint sets, performing three useful operations to manage a collection Q of disjoint sets. Each set is represented by an arbitrary member called the canonical element.T h e a l g o r i t h m u s e s rooted trees to represent sets in which the root is chosen as the canonical element. Two objects x and y are members of the same set if and only if x and y are nodes of the same tree, which is equivalent to saying that they share the same root of the tree they are stored in. The collection is managed by the following operations:

• MakeSet(x):a d dt h es e t{x} to collection Q.T h i so p e r a t i o na s s u m e st h a tx is not am e m be ro fa n yo t h e rs e ti nQ.

• Find(x):r e t u r nt h ec a n o n i c a le l e m e n to ft h es e ti nQ which contains x.

• Link(x,y):l e tX and Y be two non empty set in Q represented by x and y (x and y must be different). Both sets are removed from Q,th e i ru n i onZ = X ∪ Y is added to Q and a canonical element for Z is selected and returned.

The implementation of the algorithm is the one presented at procedure MakeSet and functions Find and Link.T o e a c h e l e m e n tx is associated a parent Par(x)a n dar a n k Rnk(x). A technique used to reduce the run cost of the function Find called path compression consists, after finding the root r of a tree which contains x,i ns e t t i n gt h ep a r e n t of each element of the parent path from x to r to be r.A n o t h e rt e c h n i q u eu s e di st h eo n e called union by rank.T h er a n kR n k ( x)i si n c r e m e n t e db yo n ei fx becomes parent of y. The technique consists in always choosing the representing element with the greatest rank while performing the Link operation. If both elements have the same rank one of them is chosen arbitrarly.

Procedure MakeSet(element x ) Par(x):=x; Rnk(x) :=0; 

Component tree algorithm

In this section we explain the algorithm implemented to buildthecomponen ttreeC(F )on an edge-weighted graph in the context of a vertex per-face graph on a mesh surface. The algorithm is based on the one presented by Najman and Couprie with some modifications to better perform on edge-weighted graphs as explained in sec. 4.3. We first will describe the algorithm from a high point of view and later some details will be explained.

High-level view

The process will simulate a flooding as described before. Thisfl ood i n gi sr e a l i z e db ys c a nning the edges of the graph by increasing order of their level.T w od i s j o i n ts e tc o l l e c t i o n s Q node and Q tree will be used to manage the merging of nodes and branches of the tree. As edges are scanned by level increasing order, the vertices first time visited will get the minimum weight value of their adjacent edges. The elements neededt om a n a g et h ec o l l e c t i o n s Q node and Q tree are build during the process. The Q node collection will group vertices and edges belonging to the same connected component and having the same altitude. Simultaneously the Q tree collection will group the canonical nodes of each Q node node to form new node as the highest on level of the partial tree recently build (line 13). CME(u) is set to the new node label.

• both vertices have been visited before; in this case we first find the canonical nodes that represent x and y (lines [START_REF] Nooruddin | Simplification and Repair of Polygonal Models Using Volumetric Techniques[END_REF][START_REF] Paquet | Nefertiti: a Query by Content Software for Three-Dimensional Models Database Management[END_REF]. In case that they are not in the same partial tree (line 17) we proceed differently depending on their levels.

If their level it is the same, nodes are merged (function MergeNodes)(line 22). CME(u) is set to the canonical node resulting from the merging.

If the edge level is equal than one of the nodes but greater thantheother,thebigger becomes parent (line 24). CME(u)i ss e tt ot h ep a r e n tn od e .

If the edge level is greater than both nodes a new node is created, that becomes parent of both (lines 27-29). CME(u)i ss e tt ot h ep a r e n tn od e .

The partial trees are linked for this three preceeding cases.

The root of the component tree is found as the highest node of the resulting tree of the collection Q tree (line 33), while the component mapping is the resulting array CM. 

Filtering

Once the component tree is built and the node attributes computed, our purpose is to use it to filter the initial function by reducing its number of minima. This can be done either by removing nodes until an attribute level threshold is reached, or by removing nodes until ad e s i r e dn u m b e ro fm i n i m ai sr e a c h e d,i.e nodes are removed until a number of leafs remains in the tree.

The attributes area and volume increase from child to parent.I nt h ea l g o r i t h mKeep N Minima we perform the task of removing nodes by increasing order of area or volume until a number N of minima is reached. For the case of the dynamics, the attribute value is not increasing from child to parent, and in this case the algorithm Keep N Minima is lightly modified to remove entire branches by increasing order of leafd y n a m i c sv a l u e s . A l s o changing the conditions, the filtering process is achieved for a desired attribute threshold instead of the parameter number of minima. Remark that the filtering can be achieved for Algorithm 11:K e e pN Minima Data:( V, E, F)-e d g e -w e i g h t e dg r a p hw i t hN vertices and CT the component tree with attribute value for each node, and the edge component mapping CME Data: N the number of desired minima Result: F the filtered map Sort the nodes of CT by increasing order of the attribute value; 

3 each triangle barycenter. The barycenter of the object is thec e n t e ro ft h e3 Ds p a c ew h i l e the three reference axis correspond to the directions of the eigen vectors of the covariance matrix. The PCA is a method widely used to obtain a normalized pose of 3D objects.

Once the PCA is computed, the distances (c i )be t w e e nt h eb a r y c e n t e ro fe a c ht r i a n g l e i and the barycenter of the object are calculated. Also the angles (α 2i ,α 2i )w i t ht h et w o principal axis. Then we proceed to calculate the histograms.A d e t e r m i n e dn u m b e ro f classes is established for the distances c i of each triangle, and its angles α 1i ,α 2i ,a n dt h e n independent histograms are computed for each region, and normalised. A histogram that relates distances and angles is calculated, and we call it cords2D.T h eh i s t o g r a mc o r d s 2 D has one class for each pair distance-angle (for instance, only one of the angles is considered t{c i ,α 1i }), so gives precise values of the position of the region by reference on the principal axis.

Extended Gaussian Images

The principle of the Extended Gaussian Images (EGI) [START_REF] Horn | Extended Gaussian Image[END_REF] is to project a function that sinthetize the information concerning the mesh of the objecti n t oaG a u s ss p h e r ed i v i d e d -C o m p u t et h er e g i o na t t r i b u t e s .

We illustrate some results from the filtering step in fig. 17. Once the component tree is built, different approaches can be used to reduce the numbero fm i n i m ao ft h ec u r v a t u r e map. We applied the function described in sec. 4.7 Keep N Minima in order to obtain exactly 30 minima on the resulting curvature map.

In fig. 17(a) it can be observed the original curvature map. In fig.17(b) we depict the resulting curvature map after reduce the minima by considering the attribute Area. In fig. 17(c) the attribute considered is Volume, while in fig. 17(d) the map is filtered considering Dynamics. In fig.17(e) the filtering is achieved by applying successively the function Keep N Minima considering several different attributes. More precisely weapplied first Area filtering (200 minima), then we applied Volume filtering on the resulting map (80 minima), and finally the Dynamics filtering (30 minima). Itcanbenoticedthateither by Area filtering as Volume filtering the minima correspondingtobothfeetdisappear. The differences between the dynamics filtering and the combined filter (fig. 17(d), fig. 17(e)) are more difficult to apreciate, but the dynamics filtering is not eliminating small minima, as the small minima between both legs, while the combined filter it does.

It can be noticed small black dots in filtered images. It is due at the visualization software. For a proper visualization colors should be given at faces of the mesh. The software we used allowed to give colors on vertices of the mesh, so we proceed giving each vertex a value proportional to the mean of its surrounding edges. Thus, there are some vertices that are surrounded by edges that belong to the MST ofthev ertexper-facegraph. We give black color at this vertices as we do not have a filtered value for this vertex. .

After the filtering process the watershed is computed. The parameters for the filtering step can vary depending on the desired definitive regions. In fig. 18 we show the evolution of the number of regions by filtering the initial curvature map. Fig. 18(a) shows the watershed segmentation of the original map. Figures 18(b) and 18(c) show watershed cuts of two different filtered maps.

For certain ob jects we observed that the curvature scalar function M (max of principal curvatures) performs better than the H inv (sec. 2.3). Fig. 19 illustrates the watershed cut applied on the H inv map (fig. 19(a)) and on the M map (fig. 19(a)). It can be observed that in the case of H inv the minima on convex zones produce undesired watershed lines. By using M the watershed lines are either placed on convex or concave edges.

Fig. 20 show the results of the segmentation step on different sculptures. We applied the same parameters for them three, to obtain a maximum of 100 regions. As the filtering parameters that can be optimal for one object, causeal o s to fr e g i o n sw i t hs p ecial meaning in other objects, the filtering parameters are set up despite they lead to an over-segmentation in some objects.

From the watershed cut we could obtain also features related to the divide lines. These lines may not have "meaning", in the sense that they may not follow features of the object. We give the weight of the curvature values of the original map to measure the importance of these lines. Fig. 21