
HAL Id: hal-00749097
https://hal.science/hal-00749097v1

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Discrete Hidden Markov Models Recognition Module
for Temporal Series: Application to Real-Time 3D Hand

Gestures.
Yannick Dennemont, Guillaume Bouyer, Samir Otmane, Malik Mallem

To cite this version:
Yannick Dennemont, Guillaume Bouyer, Samir Otmane, Malik Mallem. A Discrete Hidden Markov
Models Recognition Module for Temporal Series: Application to Real-Time 3D Hand Gestures.. 3rd
International Conference on Image Processing Theory, Tools and Applications (IPTA 2012), Oct 2012,
Istanbul, Turkey. pp.299–304, �10.1109/IPTA.2012.6469509�. �hal-00749097�

https://hal.science/hal-00749097v1
https://hal.archives-ouvertes.fr

A Discrete Hidden Markov Models Recognition

Module for Temporal Series: Application to

Real-Time 3D Hand Gestures.

Yannick Dennemont∗, Guillaume Bouyer∗, Samir Otmane∗ and Malik Mallem ∗

∗ IBISC laboratory, Evry University

e-mail: FirstName.LastName@ibisc.fr

Abstract—This work studies, implements and evaluates a
gestures recognition module based on discrete Hidden Markov
Models. The module is implemented on Matlab and used from
Virtools. It can be used with different inputs therefore serves
different recognition purposes. We focus on the 3D positions, our
devices common information, as inputs for gesture recognition.
Experiments are realized with an infra-red tracked flystick.
Finally, the recognition rate is more than 90% with a personalized
learning base. Otherwise, the results are beyond 70%, for an
evaluation of 8 users on a real time mini-game. The rates are
basically 80% for simple gestures and 60% for complex ones.

Index Terms—gesture recognition; virtual reality; temporal
series classification; 3D position; context-awareness.

I. INTRODUCTION

Gestures are a human communication basis and also used

in almost all oral conversations. They have different purposes,

patterns, and realizations. Gesture recognition is to acknowl-

edge intended patterns from different realizations which vary

both for an individual and between individuals. In the case

of 3D interaction, gestures are felt easier and quicker rather

than oral commands [Bolt, 1980] so they can enhance the

immersion. Moreover this modality offers new interaction

possibilities. Besides, by using known gesture metaphors from

our daily life, the interaction cognitive load and learning

difficulties can be lessen. Finally, real-time is a recognition

constraint. Numerous methods have been applied to gestures

recognition. Among them, Hidden Markov Models (HMMs)

have been chosen as the module basis processes. They allow

good recognition rates in real-time (compared to particular fil-

ters) and are naturally robust to time variation and incomplete

measurements (compared to neural network). Module general

uses are introduced in the section 2, before refocusing on

gestures. Then the sections 3 and 4 present the recognition

principle and its implementation. Afterwards, the sections

5 and 6 detail offline and online performances evaluation.

Conclusion and perspectives are presented in the section 7.

II. IMPLEMENTATION IDEAS

Interaction with an application needs sensors to retrieve

information from the users. The devices uses can be straight-

forward (e.g. mouse displacements) or can need processing to

extract patterns from the data (e.g. gestures). This work focus

on providing a module to recognize those patterns. Besides,

different sensors can be used for each applications. Therewith

the module implementation tends to be generic in order to

be used by various applications and sensors (flystick, glove,

haptic device, etc.). Practically, the module only needs a (time)

series of (sampled) data. The sensors data are pre-processed

(with at least a quantification) before the recognition itself.

This leads to several opportunities:

• several sensors can be used, fused together or each

specialized on specific recognitions;

• any available sensing devices can easily be used;

• Different entries lead to different recognition purposes.

The user’s hand 3D positions are our only inputs in this

paper. Indeed, they are usually available data and common to

all our interaction devices. Thus, the module provides gestures

recognition as patterns are searched in hand trajectory samples.

However, assume other vectors with data like distance to the

closest object etc. The same module now classifies situations

(e.g. the current task: selection, manipulation or navigation)

and more broadly can acquire contextual information on an

activity recognition layer (Fig. 1). Reciprocally context can im-

prove the recognition (e.g. different recognition models can be

applied depending on the task). This is more generally part of

the context-awareness problematic [Dennemont et al., 2012].

Fig. 1. Recognition (e.g. gesture) as a layer toward context-awareness

III. RECOGNITION PRINCIPLES

A. Hidden Markov Models

HMMs are successful mathematical structures for temporal

or spatiotemporal series recognition. They have a Dynamic

Time Warping natural capacity and are usually robust to

measurements variations. Their good performances for speech

recognition [Mitra and Acharya, 2007][R.Rabiner, 1989] has

led to their application to signs language recognition

[Starner and Pentland, 1995]. HMMs variations are also im-

plemented, e.g. Input Ouput HMMs [Justa and Marcela, 2009]

where online measurements affect the model parameters,

Coupled HMM [Brand et al., 96] coupling two HMMs,

Semantic Network Model [Rajko et al., 2007],etc. They

can be used combined to other models, e.g. Markov

Model and Self Organizing Map [Caridakis et al., 2010].

The recognition rates vary in those works from 80% to

100% [le Martin, 2000][Mitra and Acharya, 2007]. A time-

depending process can be represented by a Markov Model if

the current state probability only depends on a finite number

of precedent states, the model order. This is illustrated by the

directed link between states. The links types define the model

architecture Fig. 2. Architecture defines the progression inside

the model and is crucial for good performances. A left-to-

right architecture embeds an idea of succession (e.g. different

steps in a gesture) and has usually better results with fewer

states [Nianjun et al., 2003]. HMMs add a layer (Fig. 3). The

current model state is no more directly observable. Instead,

each state has observable symbols emission probabilities.

Fig. 2. Architecture examples [R.Rabiner, 1989]: a) fully ergodique with 4
states b) a 2nd order left-to-right with 4 states

Fig. 3. HMM example [Justa and Marcela, 2009] with a 1st order left-to-
right architecture : states qi can be estimated through the observations xi

Practically, HMMs are constituted of:

• Initial state probabilities;

• States with transition probabilities;

• Symbols emission probabilities for each state.

HMMs utilization has different issues:

• Evaluation: symbols sequence generation probability with

a model (Baum-Welch algorithm).

• Learning: choose the model parameters to maximize se-

quences generation probability (Baum-Welch used here).

• Decryption: find the most probable states sequence that

explain a symbols sequence (Viterbi algorithm).

B. How to acknowledge a gesture?

Recognition processes different symbols sequences’ lengths

(corresponding to different gestures lengths) from the same

symbols flux (Fig 4). Each HMM should maximize (after

learning) the likelihood of a sequence containing its gesture.

The best likelihood corresponds to the best gesture candidate.

Finally this likelihood is compared to a threshold. Indeed,

a gesture presence in the flux is not known. Thus this can

be assumed when gesture likelihood is greater than the noise

likelihood. To obtain good results, the threshold is adaptive

and partly managed by a HMM, trained to recognize noise.

Fig. 4. Symbols flux after sensors pre-processing

C. Recognition algorithm

The module implements on Matlab the algorithm illustrated

Fig.5. It allows quick prototyping and parameterization. The

different process parts are detailed in the next section. After

a successful recognition, a wait is applied. It gives times to

users in order to return to a rest position, without detecting

this needed movement.

Fig. 5. Implemented algorithm

IV. RECOGNITION MODULE CONSTRUCTION

A. Emitted symbol definition

Symbols must be built from sensors measurements. The in-

formation coding choice, including quantification, reduces the

symbols alphabet and should increase the symbols efficiency.

It also defines the set of gestures that can be recognised.

For this set, the focus is the ”trajectory pattern” and may

allow some deformations or velocity differences, but no global

orientation change (e.g. to distinguish left and right). This

coding extracts movements directions information (Fig. 6).

Our sensors supply the 3D positions. The first coding step is

to get the velocity. Next the velocity orientation in two plans

is quantified (1). Finally those 2D orientations are aggregated

into one single symbol (2). This coding improves efficiency

since the focus is now the movements. Using directly the

position would have introduced rarely used symbols. Besides,

symbols are now also independent of the initial position and

scene scale. Finally, the recognition can also easily be limited

to the movement 2D projection, by using directly Symbol =
Symbolxy (1) [Caridakis et al., 2010], for intended planar

gestures.

Symbolxy =

⌊arctan(
V elocityy

V elocityx
)⌋

2 ∗Π

Nxy

(1)

Symbolexy and Symboleyz are combined to code the 3D

direction in one symbol (2):

Symbol = (Symbolyz − 1)×Nxy + Symbolxy (2)

Fig. 6. Considered plan [xy] direction orientations for Nxy = 8

A last ”rest” symbol is added for no movement or a

movement too small to be significant. Therefore an alphabet of

Nxy×Nyz+1 symbols is constituted. Afterwards, Nxy = Nyz

is referred as the directions number.

By changing the coding function, other gestures sets can be

defined. For example, coding the angle difference or the cross

product between two successive sampled velocities respec-

tively help to define rectilinear or circular gestures (without

an exhaustive training base). The module allows each set of

gestures to define its own coding function which also permits

those different interpretations from the same physical captor.

B. States and architecture definition

States and architectures can be defined independently of the

sensors. They have a large impact on the performance. Our first

offline tests show that the 1st order left-to-right architecture for

the gesture and fully ergodic for the noise give the better result.

We obtain a performance rate of more than 90%. The same rate

magnitude is obtained with two left-to-right architectures. But

it becomes less stable depending on other parameter (states

numbers etc.). However, the rate is 30% lower with two fully

ergodic architecture. In fact, the first architecture combination

is natural as a sequential order for gestures is assumed but no

hypothesis is made for the noise. Our entire following tests

(in the sections 5 and 6) are based on this combination. The

states number is acquired by offline tests in the section 5. Best

results are obtained when using 5 to 10 states.

C. Emission and transition probabilities learning

The models probabilities are obtained with the Baum-

Welch algorithm and depend on the training sets. All train-

ing sets have been created by the same individual. Mixing

individuals can improve the overall performance. However

this hypothesis allows us to observe the models adaptations

between individuals. Three examples sets have been made.

The first two are constituted of 10 natural realizations of each

gesture. The first one includes separated gesture used as the

training set. The second is a single flux recording for offline

experiments (section 5). This separation intends to get the best

intrinsic model parameters and not an over learning. The last

set contains 20 realizations of each gesture, which have now

been carefully performed to fit ideal gestures idea. This results

on lesser (offline) performances for the training set creator but

better (online) performances with several users (section 6).

D. Threshold definition

The threshold (noted Thld) is the limit upon which gestures

recognition is acknowledged. It cannot be a simple constant

since sequence likelihoods diminish as their length (noted L)

increase. Indeed each added symbol has a probability inferior

or equal to 1. A first possibility is to use a uniform probability

repartition to calculate the threshold likelihood of a sequence

(noted UniT). Another possibility with better results is to

use a specially trained HMM [Lee and Kim, 1999] (noted

HMMT). This solution permits to include unwanted gestures

with the noise. Adding and tuning a constant gain usually

permit to double the recognition rate (3).

Thld(L) = HMMT (L) + gain (3)

Two improvements can be done (4). First the gain value

can be automatically defined to allow the best recognition for

the gesture set (noted AutoG). Assume MinMaxScore the

least of all maximum scores (i.e. gesture likelihood minus the

threshold likelihood, with no initial gain) for each gesture in

a training set. To be recognized, a gesture must get a positive

score:

• if MinMaxScore < 0, set the gain to: 1.1 ×
MinMaxScore. It allows the least probable gesture to

become recognizable.

• if MinMaxScore > 0 , set the gain to: 0.9 ×
MinMaxScore. It allows the least probable gesture to be

just recognizable.

The second improvement is to use the uniform threshold to

reduce the calculus cost. To avoid HMM threshold decryption

for each gesture, we constitute K gesture classes (e.g. short

and long gestures). Then we decrypt the HMM threshold only

for K sequences; which lengths are their class training set’s

lengths mean. The lengths difference is compensated with the

less costly uniformed gain. Adding the two improvements (4)

gives a second expression for the threshold.

Thld(L) =sgn(L−K)UniT (L) + HMMT (K) + AutoG (4)

E. Gesture dispute management

Although the gain is adaptive, some gestures may just be

incompatible. Indeed, it is the case when the module needs to

recognize two nested gestures: e.g. the ”Right” gesture (Fig.

7) is included in the ”Z” gesture (Fig. 9). In this situation, the

shorter gesture will always be the only one recognized. Those

disputes depend on the gestures alphabet and must be declared

(as a list of the names in dispute in a text file) so as to be

managed by the module . The module then introduced a delay

(the average lengths difference) before concluding recognition.

V. OFFLINE EXPERIMENTATION

A. Gestures alphabet

The entire tests and evaluation use a 6 gestures alphabet. It

includes 4 simple gestures (”Up”, ”Left”, ”Down” and ”Right”

Fig.7) and 2 complex gestures (”Left loop” Fig.8 and ”Z”

Fig.9) with a dispute possibility.

Fig. 7. ”Right”: a sim-
ple gesture with execu-
tion variations

Fig. 8. ”Left loop”: a
complex gesture

Fig. 9. ”Z” in dispute
with ”Right”

B. Offline experiments:parameters effects

Several tests are performed. A first series of offline tests

confirm that the intuitive architecture combination basically

supplied best performances (section 4.B). Then, a second

series of offline tests (Fig. 10, Fig. 11) use one whole recording

of 10 executions for each gesture. This symbols flux simulates

a real situation as movements between gestures have been kept.

The performance rate (5) includes false and missed recognition

errors. It is expressed in percent and can be negative.

Performance = 1 −
Total Errors Number

Performed Gestures Number
(5)

Tests are depicted on Fig.10 and Fig.11 as variations of the

best early reference configuration which uses:

• 8 directions in each plan for quantification,

• 5 states for each HMMs,

• Each observation sequence length equals their maximum

training set examples length.

• Threshold’s gain as a parameter (3).

Fig. 10. Parameters effects on performance:
× reference configuration
− · − No rest symbol
· 3D→ 2D
+ 8→ 16 directions
−− Maximal length → average length
· · · Complex gestures: 5 states →10 states

Though the alphabet gestures are intended to be in a plan,

Fig. 10 shows that reducing the recognition from 3D to 2D

data drops the performances. Besides, the added ”rest” symbol

is crucial to process efficaciously the continuous symbols

Fig. 11. Best offline configurations:
× reference configuration
· · · 8→ 32 directions
· 8→ 32 directions & Complex gestures: 5 states →10 states
−− 8→ 32 directions & 5 states →10 states
− ·− 8→ 32 directions & Complex gestures: 5 states →15 states & Simple
gestures: 5 states →10 states
+ 8→ 32 directions & complex gestures 5 states →10 states & maximal
length → average length

flux. Indeed, it modifies the gesture perception and mostly

permits to better acknowledge rests between gestures. Then,

performances rise above 90% when increasing the number

of directions until 32, Fig.10. Increasing the states number

boosts performances (up to 10 states) and tends to broaden

the curve around its maximum, thus to enhance performance

stability. The performance augmentation is still obtained when

the states number raise is restricted to longer gestures (natural

since complex gestures are basically twice longer that simple

gestures). Finally, the maximal length for observation achieves

better results, but it depends on the (homogeneity of the)

learning base (section 6). As a result, a median directions

number between 16 and 32 provides better results. With too

few directions, gestures are not well perceived. However, the

performance decreases with too many directions. Indeed, the

quantification step restrains the perceived variations and thus

can help the recognition. Besides, too many directions can lead

to have too specific examples in our small learning base. To

sum up, the evaluation basis configuration is a 1st order left-

to-right architecture for gestures’ HMMs and a fully ergodic

architecture for the threshold’s HMM. Symbols are coded with

32 directions (in each plan) and use the full 3D data and the

”rest” symbol. Simple gestures’ HMMs use 5 states whereas

complex gestures’ HMMS use 10 states.

VI. ONLINE EVALUATION

A. Application presentation

The real-time evaluation is made on a Virtools mini-game

scenario with a tracked flystick (Fig.12). A game evaluation

has two advantages. First, it permits a real time test of the

module with shared calculus capacities. Second, it also limits

the tests tediousness that could lead to users’ attention drop.

The scenario uses the previously introduced alphabet (section

5.A).The scenario goal is to perform the good gesture to

destroy orbs moving towards the user. Orbs can be on a

cardinal point or in the screen center. The user should perform

a translation gesture toward an orb situated on a cardinal

point to succeed. In case of a central orb, one of the complex

gestures needs to be performed depending on the orbs’ color

(”Z” for blue orbs and ”Left Loop” for red ones). Orbs

generation is random and their average time on screen is 4s.

Fig. 12. Real-time evaluation scenario

B. Recognition frequency modification

The recognition module slows down in this evaluation and

it induces performances decrease. To better reach real-time,

the recognition check frequency and /or the data sampling

frequency can be reduced. Initially, both are set to 50HZ.

A supplementary test shows that offline performance drops

of about 20% when the sampling frequency is divided by

two. However, results stay basically the same with recognition

check for each new sample, every 2 samples, or every 5

samples. But this can add a recognition delay up to 100ms.

C. Experimental setup

Users only know the game rules. They have not been

informed of a delay for dispute gestures, the wait after a

successful recognition etc. The results are obtained for 10

users which act to destroy 30 orbs at each try. Each try is

a variation of the off-line best configuration (section 5):

• 50Hz theoretical recognition frequency. It induces slow-

downs, reduced by using the average observation length.

• 10Hz recognition with the maximal observation length

(offline best choice).

• 10Hz recognition with the average observation length and

the ideal gestures learning base (section 4.C).

Each configuration is tested with 3 gain values, relative to

the offline best value:

• A gain 33% inferior

• The offline best gain

• A gain 33% superior

Finally a new measurement is introduced (6). It focuses on

users’ success, i.e. performing good gestures in time. A test

with a good success rate can get a poor performance rate.

Success =
Good Detected Gestures Number

Situations Number
(6)

D. Results

The user who made the learning bases reaches performance

and success rates of more than 90%.

The average successes fit a normal distribution (Lilliefors

test result: 0.052 < 0.121 for a 5% threshold). Each parameter

effect is confirmed with an ANOVA test:

Fig. 13. Real-time scenario average performances (5)

Fig. 14. Real-time scenario average successes (6)

• configuration (P = 1.26× 10−2F = 5.49);

• gain (P = 3.74× 10−5F = 1.77);

• gesture (P = 7.71× 10−4F = 6.76).

When the user factor is kept, success not longer fit a

normal distribution (Lilliefors test result: 0.181 > 0.0468 for

a 5% threshold). Assuming the robustness to this hypothesis

violation, effects are confirmed with an ANOVA test:

• configuration (P = 2.1× 10−3F = 9.7);

• gain (P = 3.6× 10−3F = 5.8);

• gesture (P = 7× 10−6F = 6.7);

• user (P = 1.9× 10−11F = 15).

Parameters couples without the gain are interdependent:

• configuration/gesture (P = 2.3× 10−3F = 2.8);

• configuration/user (P = 2.5× 10−5F = 2.1);

• gesture/user (P = 3.9× 10−10F = 3.8).

The parameters values offering the best result are sum up

Fig. 15. The first configuration, theoretically with a 50Hz

recognition frequency, has poor result around 50% due to

slowdowns (Fig 13 and Fig. 14). When reducing the calculus

frequency, the results rise of a little more than 10%. The new

learning base (with fewer variations in the intended gestures)

always reaches the best result but for the highest gain value. It

increases the success rate of 15%. Thus, somehow letting the

HMMs manage new encountered variations from other users is

more efficient that trying to learn too much variations, at least

from a single individual. The best configuration has now an

admissible success rate at 75% and a performance rate slightly

smaller. Average results are usually better with a smaller gain

value than the one found offline. Indeed, it seems adequate

to reduce the threshold when applying to other users a model

trained by an individual. Results sometimes increase with the

gain value. In fact, users tend to slowly adapt their natural

gestures when they encounter several rejections. This users

learning of which gestures are better recognized can explain

some of the differences between offline and online tests.

Parameters Best value Reasons

Dimension 3D Gestures are not fully planar

Rest

symbol

On Noise filter. Add to gestures

dynamic and separations

Directions 32 in each plan Details without over-fitting

Observation

length

Average

gesture length

Better for a heterogeneous

learning base

States

number

5 for short ges-

tures, 10 for

long gestures

Boost and stabilise the per-

formances (in fact using ≃ 5

states per second of gesture)

Gain 33% less than

the optimal

off-line gain

help with the inter-

individuals differences

Sampling

Rate

50Hz A good capture of the time-

line execution

Recognition

Rate

10 Hz Ease the calculus strain

Learning

base

Ideal gestures

tries

Help with the inter-

individuals differences
Fig. 15. Best parameters for the average performances

Fig. 16. Average successes by gestures for the low threshold gain and the
new learning set

Simple gestures have a success rate greater than 80%.

Complex gestures have lesser success around 60% (Fig. 16).

Besides, ”Z” gesture is better recognized than ”Left loop”.

This can be partially explained because ”Z” is a symbolic

gesture known by all users. It is less subjective than the ”Loop”

idea. ”Left Loop” is the only gesture to have a better success

(70%) for the middle gain value. Probably since users can

learn the gesture on their first try series and then improve on

the second before the excessive threshold value.

VII. CONCLUSION

This work presents a recognition module applied to gesture.

The module is based on discrete HMMs. 3D positions are

the only sensors data used. A personalized training set allows

performances above 90%. By using this training for other

users, the real-time evaluation reaches admissible performance

(up to 90% for simple gestures and 70% for complex ones).

It validates both the real-time and a real situation issues for

virtual reality. Indeed the users’ displacements in front of the

screen do not add false detection. All errors are due to intended

gestures that are wrongly interpreted. The velocity direction

coding reduces the speed and scale effect on gestures patterns.

But for very slow or quick gestures, the results drop. The

difficult part is that users also tend to accelerate when they

have false rejections (more energetic gestures feel easier to be

recognized). To lessen this drawback, several modifications

can be done with their own disadvantages. The first is to

change the coding by considering the full velocity vector (it

adds training and observation lengths issues) or no symbols

repetition (it adds more gestures confusions possibilities). An-

other solution is to manage the speed as contextual information

(to apply different models or observation lengths for different

speed magnitude). Besides the recognition would benefit from

a specific threshold gain for each gesture. Finally, the recogni-

tion module only needs examples bases in order to be used. It

can automatically adjust the HMMs (with a reference configu-

ration where states number is proportional between bounds to

the examples’ lengths) and threshold models (the relative gap

between automatic and optimal offline gains is usually less

than 10%). For better results, the recognition module is easy

to parametrize (architectures, states, quantifications, gain etc.)

with an independent configuration text file. The coding can

be personalized beyond the quantification as it can depend

on the available sensors, their uses and the set of gestures

wanted. This module can be used for any temporal series

recognition and be a tool to supply contextual information

without a semantic model. Yet, our first interest in this paper

is its application to gesture recognition from 3D positions,

which achieve good performances: between 70% for a shared

training set and up to more than 90% for a personalized one.

REFERENCES

[Bolt, 1980] Bolt, R. A. (1980). ”put-that-there”: Voice and gesture at the
graphics interface.

[Brand et al., 96] Brand, M., Oliver, N., and Pentland, A. (96). Coupled
hidden markov models for complex action recognition. Technical report,
Massachusetts Institute of Technology Vision, and Modeling Group.

[Caridakis et al., 2010] Caridakis, G., Karpouzis, K., Drosopoulos, A., and
Kollias, S. (2010). SOMM: Self organizing markov map for gesture
recognition. Pattern Recognition Letters, 31.

[Dennemont et al., 2012] Dennemont, Y., Bouyer, G., Otmane, S., and
Mallem, M. (2012). 3d interaction assistance through context-awareness: A
Semantic Reasoning Engine for Classic Virtual Environment. In Simulation

and interaction in intelligent environments, VISIGRAPP 2012 special

session, pages 562–567.
[Justa and Marcela, 2009] Justa, A. and Marcela, S. (2009). A comparative

study of two state-of-the-art sequence processing techniques for hand
gesture recognition. Elsevier.

[le Martin, 2000] le Martin, J. (2000). Reconnaissance de gestes en vision

par ordinateur. PhD thesis, INPG.
[Lee and Kim, 1999] Lee, H.-K. and Kim, J. H. (1999). An hmm-based

threshold model approach for gesture recognition. IEEE Transactions on

pattern analysis and machine intelligence, 21(10).
[Mitra and Acharya, 2007] Mitra, S. and Acharya, T. (2007). Recognition:

A survey. IEEE Transactions on system, man and cybernetics, 37(3).
[Nianjun et al., 2003] Nianjun, L., C., L. B., and J., K. P. (2003). Evaluation

of hmm training algorithms for letter hand gesture recognition. In
IEEE International Symposium on Signal Processing and Information

Technology.
[Rajko et al., 2007] Rajko, S., Qian, G., Ingalls, T., and James, J. (2007).

Real-time gesture recognition with minimal training requirements and on-
line learning. In Computer Vision and Pattern Recognition (CVPR 2007).

[R.Rabiner, 1989] R.Rabiner, L. (1989). A tutorial on hidden markov model
and selected application in speech recognition. In IEEE Procedeeding.

[Starner and Pentland, 1995] Starner, T. and Pentland, A. (1995). Real-
time american sign language recognition from video using hidden markov
model. In ISCV.

