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X-ray amplification from a Raman Free Electron Laser

I.A. Andriyash,∗ E. d’Humières, V.T. Tikhonchuk, and Ph. Balcou
Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F33400 Talence, France

We demonstrate that a mm-scale free electron laser can operate in the X-ray range, in the in-
teraction between a moderately relativistic electron bunch, and a transverse high intensity optical
lattice. The corrugated light-induced ponderomotive potential acts simultaneously as a guide and as
a low-frequency wiggler, triggering stimulated Raman scattering. The gain law in the small signal
regime is derived in a fluid approach, and confirmed from Particle-In-Cell simulations. We describe
the nature of bunching, and discuss the saturation properties. The resulting all-optical Raman
X-ray laser opens perspectives for ultra-compact coherent light sources up to the hard X-ray range.

PACS numbers: 42.55.Vc,41.60.Cr,42.65.Dr,52.38.Ph

The advent of fully coherent light sources in the X-
ray range promises to be the next revolution in X-
ray science, leading to many scientific, industrial and
health applications. Large scale X-ray free electron laser
(XFEL) projects have been launched, and start supply-
ing high brightness beams for novel physics experiments
[1]. However, these large scale infrastructure cannot al-
low for widespread dissemination of the XFEL technolo-
gies, which would require to shorten very significantly the
length of the linear accelerators and magnetic undulators.
This size constraints also prevent to reach the hard X-ray
range, which would open entirely new perspectives.

Few alternative strategies have been proposed to sup-
ply compact X-ray free electron lasers, based on substitu-
tion of the LINAC by laser-wakefield acceleration [2, 3],
use of original compact undulators as an ion channel [4],
or a counter-propagating laser [5–7]. Laser undulators
offer indeed a key advantage : laser wavelengths at the
µm level allow one to reach X-ray photon energies with
moderately relativistic electrons, of kinetic energies of
few tens of MeV only. In all cases, the XFEL is expected
to operate in the conventional regime of stimulated in-
verse Compton scattering, imposing severe limitations on
electron emittance, transport, kinetic energy spread, and
laser uniformity for laser undulators [8], thus hindering
prospects of experimental demonstrations.

FIG. 1. X-ray Raman scattering geometry in a reference sys-
tem moving with the electron bunch.

A conceptually different new scheme considers a rel-

ativistic electron bunch injected into the overlap region
between two transversally incident, counter-propagating
intense lasers beams [9]. The setup is depicted in Fig. 1,
directly in the reference frame of the electron bunch. The
interference between the laser beams forms an optical
lattice, and induces a spatially corrugated ponderomo-
tive potential for the incident electrons that is trapping
them transversely. The electron dynamics then consists
of high frequency oscillations induced by the two lasers
along the laser polarization direction, and of low fre-
quency oscillations along the interference direction, simi-
lar to betatron oscillations, with a characteristic angular
frequency Ω. Light is hence scattered at the betatron fre-
quency, and on the Stokes and anti-Stokes lines around
the laser frequency. In the laboratory frame, this scat-
tering is Doppler up-shifted by 2γ2, where γ is the elec-
tron Lorentz factor. Scattering is spontaneous as long
as the electron motions are uncorrelated; however, elec-
trons may also exhibit a collective low-frequency oscilla-
tory behaviour, so that we can expect a stimulated Ra-
man instability and coherent emission of X-ray radiation
in the forward direction. This Raman-type scattering
should be distinguished from the known Raman instabili-
ties in conventional long wavelength Free Electron Lasers,
where the system oscillations are the Langmuir plasma
waves [10]. This new Raman instability dominates if the
bounce frequency Ω is greater than the electron beam
plasma frequency ωp.

The aim of the present Letter is to investigate the X-
ray amplification process in this trapped mode on the ba-
sis of particle-in-cell numerical simulations, and to derive
its main scaling laws on small-signal gain and saturation,
from an analytical hydrodynamic model.

Let us consider a relativistic electron bunch moving
along a z-axis, with an average Lorentz factor up to a
hundred typically, and number density n0e, incident onto
the optical lattice resulting from overlapping twin laser
beams, interfering along the x-axis. The light lattice in-
tensity is considered as sub-relativistic, typically in the
range 1016 to 1018 W/cm2 for near infrared lasers.

The process is conveniently described in the frame
moving with the electron beam velocity vb = cβb . 1,
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for which the incident laser and scattered field frequen-
cies are similar, and electron motion can be treated
non-relativistically. The twin lasers appear in that
frame at oblique incidence, with an angle defined as
k0⊥/k0‖ = 1/γβb � 1, see fig. 1. Sub-relativistic lat-
tice intensity defines a moderate vector potential, which
is a Lorentz invariant and in dimensionless units reads
a0 = 0.85 × 10−9λl0

√
I l, where I (W/cm2) is the laser

intensity and λl0 (µm) the laser wavelength. With the
superscript “l” we denote the parameters in the labora-
tory reference frame.

In that frame, electrons first enter a ramp-up region,
followed by an optical lattice of a constant intensity; in
the bunch frame, this process is described as a relatively
slow switch-on of the external electromagnetic field. The
normalized vector potential of the incident laser irradia-
tion reads as

aL = a1 + a2 = 2a0(t) sin(k0⊥x) cos(ω0t+ k0‖z) , (1)

resulting into a ponderomotive potential Up:

Up(x, t) = mec
2a0(t)2 sin2(k0⊥x) .

Near the bottom of the potential, electrons oscillate with
the bounce frequency Ω(t) =

√
2a0(t)k0⊥c.

Field amplitude grows during a time tinj up to a0.
Electrons with transverse velocities, v⊥ ≤

√
2a0c, may

be trapped in the ponderomotive potential and oscillate
along the closed phase trajectories in (x, px)-plane. Par-
ticles with lower initial velocities are trapped before tinj ,
and further growth of potential adiabatically compresses
their phase trajectories, thus increasing the velocity am-
plitude and electron density at the beam axis [11]. The
maximum electron density after injection can be esti-
mated as:

ne = n0e(
√

2a0/δβ0⊥) . (2)

Trapped electrons are driven at high frequency by the
lasers, and oscillate transversely in the optical lattice po-
tential, akin to the betatron oscillations in plasma ion
channels [12, 13], with a harmonic law xe = xm cos(Ωt),
where Ω =

√
2a0k0⊥c. Radiation is emitted in two fre-

quency ranges : at the betatron frequency [14, 15]; and
symmetrically around the laser frequency, at the Stokes
ω0 − Ω and anti-Stokes ω0 + Ω frequencies [9].

We have developed a numerical tool, dubbed EWOK,
to investigate scattering process in the bunch frame.
The two-dimensional code is based on a general particle-
in-cell approach [16]; it factors out the high-frequency,
laser-induced oscillations of electrons, solving rela-
tivistic motion equations for macro-particles in elec-
trostatic and ponderomotive potentials. The scat-
tered wave is described in the envelope approximation
as = ā exp(−iω0t+ ik0z) as a slowly oscillating ampli-
tude ā. This allows us to reduce to first order the prop-
agation equation along z, and to solve it over x by a

FIG. 2. Evolution of vector potential at the center of right
boundary (z, x) = (lz, 0). The exponential fit Γ/ω0 = 1.8 ·
10−3 is shown by a red dotted line.

Fourier transform ∂2xā→ −k2xākx . The simulation do-
main is a rectangular box, whose dimensions lz,x de-
fine a discrete number of electromagnetic eigenmodes.
Boundary conditions are periodic for both electromag-
netic waves, while for the particles, boundaries are peri-
odic along z-axis and absorbing along x-direction. Thus,
the beat between the laser and the scattered wave must
be periodic, which imposes constraints on the wave-
vectors (ks− k0) of the scattered wave, and (ks + k0‖) of
the longitudinal ponderomotive force. For a plane scat-
tered wave at the Stokes frequency, the corresponding
periodicity conditions read:

ks = k0(1−N1λ0/lz) (3)

lz/λ0 = N2/(1 + βb) .

N1 and N2 being integers. These conditions lead to ex-
ceedingly long simulation domains for large γ values. We
perform therefore simulations with a relatively low γ, and
exploit the analytical laws to rescale the results to exper-
imentally relevant parameters.

We have used EWOK to simulate amplification on
the Stokes mode, satisfying the resonance condition
ω0 − ωs = Ω, with physical parameters summarized in
table I, and on the basis of 5.2 · 106 macro-particles.

Figure 2 presents the time evolution of the scattered
field amplitude on the right boundary. In the interval
100 < t < 500λ0/c, one can see an exponential growth
of the signal, followed by saturation at the amplitude
〈as〉/a0 ' 1.4 · 10−3. The exponential growth rate is
estimated as Γ/ω0 = 1.9 · 10−3, the fit being plotted as a
dotted line. For 1 µm laser wavelength, this corresponds
in the laboratory frame to a gain length in intensity of
only Llgain = 84µm.

The laser electric field changes its sign across the zero
lines of ponderomotive potential wells. The beat be-
tween the laser and the scattered wave is hence in phase
opposition on the two sides of a well, resulting in an
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FIG. 3. Snapshot of electron density distribution at satura-
tion time 600λ0/c.

TABLE I. Interaction parameters

laboratory moving beam

electron beam

current 8 kA density 2 · 10−5 nc

width 3µm width 3µm

duration 10 fs length 30µm

δγe/γ 10−4 δβ‖0 10−4

emittance 0.3 mm·mrad δβ⊥0 0.1

energy 4.7 MeV γ 9.4

optical lattice

λl
0 1 µm λ0 106 nm

intensity 1.6 · 1016 W/cm2 a0 0.11

ramp 200 µm τinj 200 λl
0/c

scattered light

λl
s 5.6 nm ωs 0.985 ω0

anti-symmetric bunching structure. This is illustrated
in fig. 3, showing the completely trapped electron distri-
bution at saturation. A quasi-sinusoidal bunching shape
can be noticed, in sharp contrast with the series of par-
allel micro-bunches of conventional free electron lasers.

These numerical findings can be completed by an an-
alytical analysis; while several theoretical approaches
are possible, we choose to put forward a hydrodynamic
model, that yields relevant estimates for the scaling laws
within a simple mathematical framework. We propose to
model amplification analytically by describing the collec-
tive electron behaviour n(x, z, t) as an eigenmode of the
light potential well. In a simplified approach we neglect
the electrostatic potential of electrons and the longitu-
dinal temperature, and consider the transverse tempera-
ture not to exceed the trapping limit. Electron motion
follows hydrodynamic equations, coupled to the propa-
gation equation for the light vector potential :

∂tne +∇ · (ne u) = 0 (4a)

∂tux +∇xPxx/mene +∇xUp = 0 (4b)

∂tuz +∇zUp = 0 (4c)

(
(∂t − iω0)2 − c2∇2

)
ā = −(4πe2/me)ne ā (4d)

where u is the electron fluid velocity. Considering the
slowly oscillating vector potential ā defined earlier, the
ponderomotive potential reads Up = me(c/2)2|ā|2. Note
that ā in eq. (4) is the total field, including the scattered
and laser fields.

The beam is trapped along x, so it follows the adia-
batic equation of state with the electron pressure reading
Pxx = mv2⊥n

3/3n20, where v⊥ = cδβ⊥0 is defined by the
transverse velocity spread. Considering equilibrium be-
tween lattice potential and electron pressure, we find the
transverse density distribution of the background state

ne = n0
√

1− ξ2 ,

where ξ = x/L is a coordinate normalized to the beam
width L = v⊥/Ω, and n0 = ne(0) is a maximum electron
density.

FIG. 4. Spatial-spectral distribution of electron density per-
turbations. The predicted coupling shape g(ξ) is shown in
white curve for L = λ0 and the red dashed line is a slice of
the spatial-spectral diagram along x-axis at ω = Ω.

In the linear approach, we consider the collective elec-
tron modes as a first-order perturbation of the beam po-
sition ∆x, defined as ξ = (x + ∆x)/L. Without a signal
wave there is no longitudinal force ∂zUp, and from eq. (4)
it follows:

∂2t ∆x = −Ω2∆x ,

which describes the collective beam oscillations with a
frequency Ω.

The small-amplitude signal wave as is taken as a per-
turbation to the laser vector potential, inducing to first

order a ponderomotive potential U
(1)
p = me(c/2)2āsā

∗
L +

c.c.. Assuming a plane scattered wave – thus, neglecting
diffraction –, we linearize eq. (4) and turn to the Fourier
domain, to obtain the dispersion equation:(

ω2 − Ω2
) (

(ω − ω0)2 − (kz − k0‖)2c2
)

= αω4
0 . (5)
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This equation describes electron and electro-
magnetic modes with a coupling coefficient
α = G(ωpa0kzc k0⊥L/ω

2
0)2, where G is an overlap

integral resulting from an inhomogeneous profile of the
laser field ∝ x and the beam density ∝

√
1− x2/L2.

Thus, the model predicts that amplification is localized
mainly in the regions around the coupling maxima at
ξ = ±

√
2/3, with widths ξ ' 0.5. This analytical

prediction was checked numerically. Figure 4 shows
the spectra of electron density perturbations (abscissa)
as a function of the transverse position x, for an
arbitrary fixed position z. The spectra are centered at
the betatron frequency Ω = 0.016ω0. The transverse
distribution consists of two symmetric maxima, as
predicted by the hydrodynamic model. The dashed line
is obtained from the simulation, while the white curve
shows the transverse coupling function for a trapped
beam half-width L = λ0. The numerical shape is slightly
broader, but the general structure of the emitting zones
is well reproduced.

Solution to eq. (5) for the Stokes mode is a complex fre-
quency with a real part ω ' Ω and a positive imaginary
part Γ, defining the amplification growth rate. Assuming
a weak coupling condition α� (Ω/ω0)3 , the growth rate
is:

Γ/ω0 = 0.5(αω0/Ω)1/2 . (6)

Estimating G ' 0.2, and using parameters applied in
numerical modelling (table I), we obtain a growth rate
Γ/ω0 = 1.7 · 10−3.

The exponential growth of the signal saturates when
the electron beam gets trapped in the longitudinal po-
tential |āsā∗L|, resulting a full particle bunching ne ∼
n0 exp(−iΩt) + c.c.. From eq. (4d), the maximal signal
amplitude can be deduced as :

〈as〉/a0 ' (k0⊥L)ω2
p/(Ωω0) . (7)

For the chosen parameters, the signal saturation occurs
at 〈as〉/a0 = 1.7 · 10−3. These analytic estimates of
growth rate and maximum of the scattered field are in
good agreement with results of numerical modelling.

In the laboratory frame, the growth rate reads Γl/ωl0 =
Γ/2ω0 , and can be expressed as a function of initial
parameters:

Γl/ωl0 = 0.1 (K/γ) (λ0/σ⊥)
√
a0 J/JA (8)

where K = k0⊥L is a numerical factor defined by the
filling of potential channel by electrons and JA = 17 kA
is the Alfven current. In normal trapping conditions,
K ' 1.

These scaling laws provide estimates of the gain and
saturation level from a Raman XFEL laser derived from
laser-wakefield acceleration. Let us consider parameters
close to ones achievable in the experiments [17] : an elec-
tron bunch of 50 MeV, with a peak current of 14 kA,

and 1 mm-mrad emittance. Twin undulator lasers are
at a wavelength of 800 nm, with an intensity of 3 · 1017

W/cm2, corresponding to a normalized vector potential
of 0.4. The output X-ray photons have an energy of 30
keV; the gain in intensity extrapolated from our numer-
ical results is 15 cm−1. Assuming a transverse size of 3
µm, an X-ray duration of 10 fs, results in an X-ray energy
at µJ level, or 108 − 109 photons.

Note that photon emission results in an electron recoil.
In the electron rest frame, the recoil can be observed nu-
merically as a collective backwards motion along z-axis,
which starts near the saturation stage. Since emission is
a quantum process, in the case of high photon energies
the recoil has a discrete nature, and a quantum descrip-
tion may become appropriate. A significance of quantum
effects is defined by a quantum-recoil parameter [18], as
a ratio of the recoil induced detuning and the gain band-
width. It reads in our model q′λ = (γe~ω0)/(mec

2Γ/ω0).
Parameters in the present examples are restricted to
q′λ < 1, where a classical description is valid.

In summary, we have shown that a relativistic electron
bunch, injected into and guided by a high intensity opti-
cal lattice, triggers a forward Raman instability resulting
in a rapid amplification of a coherent X-ray beam. If cou-
pled to laser-wakefield acceleration, this process promises
to yield hard X-ray laser beams. Raman processes of-
ten exhibit an intrinsic robustness with respect to ran-
dom variations of the driving parameters [19], such as
the laser intensity, which may be a key to an experimen-
tal demonstration. The Raman X-ray free electron laser
should therefore be further studied as an opportunity to
supply ultra-compact coherent X-ray sources, up to the
hard X-ray range.
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