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ABSTRACT

We address the problem of image dictionary learning from

noisy images with non Gaussian noise. This problem is dif-

ficult. As a first step, we consider the extreme sparse code

given by vector quantization, i.e. each pixel is finally as-

sociated to 1 single atom. For Gaussian noise, the natural

solution is K-means clustering using the sum of the squares

of differences between gray levels as the dissimilarity mea-

sure between patches. For non Gaussian noises (Poisson,

Gamma,...), a new measure of dissimilarity between noisy

patches is necessary. We study the use of the generalized like-

lihood ratios (GLR) recently introduced by Deledalle et al. in

[1] to compare non Gaussian noisy patches. We propose a K-

medoids algorithm generalizing the usual Linde-Buzo-Gray

K-means using the GLR based dissimilarity measure. We ob-

tain a vector quantization which provides a dictionary that can

be very large and redundant. We illustrate our approach by

dictionaries learnt from images featuring non Gaussian noise,

and present preliminary denoising results.

Index Terms— clustering, dictionary learning, denoising,

patch similarity.

1. INTRODUCTION

In presence of additive Gaussian noise, the most basic ap-

proach to dictionary learning is K-means clustering of patches

(e.g. of size w = 7 × 7) using the sum of the squares of dif-

ferences between gray levels as the dissimilarity measure. For

non Gaussian noises (Poisson, Gamma,...), dictionary learn-

ing remains a difficult problem. Even the generalization of K-

means clustering is not that simple. In particular, a new mea-

sure of dissimilarity between noisy patches is necessary. In

this work, we propose to use the generalized likelihood ratios

recently introduced in [1]. Based on this adapted dissimilarity

measure, we propose a recursive version of the Linde-Buzo-

Gray (LBG) K-medoids algorithm [2] to cluster patches and

obtain a vector quantization (VQ) which provides the most

fundamental dictionary. An optimized and accelerated ver-

sion of NL-means was proposed in [3] using similar ideas.

Even though simplistic, this dictionary may be useful if suf-

ficiently redundant as argued in [4] where very good results

are obtained from VQ dictionaries. The true question is not

to find the optimal dictionary or the optimal encoding on a

dictionary but to find the best compromise between sparsity,

adaptivity and redundancy [5, 6]. Thus, we think that even

though VQ may seem not sophisticated enough, it diserves

some study, at least as the natural first step toward dictionary

learning with non Gaussian noise.

We present and study an adapted clustering method to-

ward dictionary learning from noisy images. Then we il-

lustrate our study by numerical experiments on Poisson and

Gamma noisy images in particular. We present an application

to denoising without aiming at state of the art results. Our pur-

pose is to show that interesting results may be obtained even

from the most basic approach. Noticeably, we will observe

promising results as far as textured images are considered.

We use the powerful GLR based NL means (non Gaussian)

denoising technique as a reference [1] for comparisons.

Section 2 presents the notion of generalized likelihood ra-

tios. Section 3 describes the proposed algorithm. Section 4

briefly recalls the principle of NL-means for denoising and

presents the VQ dictionary based denoising technique used

here. Section 5presents experimental results obtained from

natural and textured images. Section 6 gathers concluding

comments and perspectives.

2. GENERALIZED LIKELIHOOD RATIOS

2.1. Definition and main properties

Generalized Likelihood Ratios (GLR) have recently been

introduced by Deledalle et al. in [1] to efficiently compare

noisy patches. The main purpose of this profound work

was to propose an NL-means algorithm in presence of non

Gaussian noise, Poisson and Gamma noises in particular. As

explained in the introduction, we precisely need a relevant

measure of similarity (or equivalently dissimilarity) between

noisy patches. GLR share many good properties compared to

other possible choices, see [1] for a detailed presentation. We

briefly recall their definition and main properties.

Let x1 and x2 denote two noisy patches seen as the re-

alizations of independent random variables X1 and X2 fol-

lowing the same parametric distribution of parameter θ1 and
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θ2, the θs denoting noise-free patches. GLR are built on an

extension of a hypothesis test:

H0 : θ1 = θ2 = θ12 (null hypothesis) (1)

H1 : θ1 6= θ2 (alternative hypothesis) (2)

Neyman-Pearson theorem leads to the optimal criterion which

is given by the likelihood ratio test:

L(x1,x2) =
p(x1,x2;θ12,H0)

p(x1,x2;θ1,θ2,H1)
(3)

Such a criterion requires the knowledge of the parameters θ1,

θ2 and θ12 which correspond to the unavailable noise-free

patches. The generalized likelihood ratio (GLR) approach

consist in replacing the noise-free patches by their maximum

likelihood estimates t1, t2 and t12 under each hypothesis:

GLR(x1,x2) =
p(x1,θ1 = t̂12)p(x2,θ2 = t̂12)

p(x1,θ1 = t̂1)p(x2,θ2 = t̂2)
(4)

GLR have all the most desirable properties of a similar-

ity measure (symmetry, maximal self-similarity, equal self-

similarities, identity of indiscernibles, invariance...). An im-

portant one is that there exists explicit expressions for usual

distributions like Poisson and Gamma. The dissimilarity mea-

sure is given by D = − logGLR. In the Gaussian case one

recovers the usual Gaussian kernel; dissimilarity is then sim-

ply the usual L2 distance.

GLRGauss(x1,x2) = exp[−(x2 − x1)
2] (5)

DGauss(x1,x2) = (x2 − x1)
2 (6)

2.2. GLR for Poisson and Gamma noises

Speckle noise is encountered in synthetic aperture radar

(SAR) imagery and is generally modelled by Gamma noise.

Poisson noise appears in photon-limited imagery (astronomy,

microscopy...). For two Poisson distributed random variables,

the GLR based similarity is defined by:

GLRP(x1, x2) =
(x1 + x2)

x1+x2

2x1+x2xx1

1 xx2

2

(7)

Assuming independent Poisson noise, this yields the dissim-

ilarity measure between two patches of size w denoted by

x = (x(i))1≤i≤w and y = (x(i))1≤i≤w:

DP(x,y) =
∑

i x(i) log x(i) + y(i) log y(i) (8)

+(x(i) + y(i)) log 2− (x(i) + y(i)) log(x(i) + y(i))

For two Gamma distributed random variables with param-

eter L, the GLR based similarity is defined by:

GLRG(x1, x2) = 22L
(

x1x2

(x1 + x2)2

)L

(9)

Assuming independent Poisson noise, this yields the dissimi-

larity measure between two patches x and y:

DG(x,y) = −
∑

i log x(i) + log y(i) (10)

+2 log(x(i) + y(i))

3. LBG K-MEDOIDS

Since the problem of dictionary learning from noisy images

in the presence of non Gaussian noise is a difficult one, our

purpose is to first consider the most simple way of learning

a dictionary, namely vector quantization. In the Gaussian

case, K-means clustering is the natural answer since the de-

noising problem is linked to the minimization of the usual

L2 norm (6). The corresponding similarity measure is de-

scribed by the Gaussian kernel (5). For non Gaussian noises,

another similarity measure is needed and GLR has all the de-

sired properties. The generalization of K-means to general

dissimilarity measures like (8) or (10) in place of the usual

L2 norm is called K-medoids [2]. We recall below the basic

structure of this algorithm as well as its recursive Linde-Buzo-

Gray (LBG) version. We also give its detailed implementation

when using GLR.

3.1. K-medoids

We recall the principle of the K-medoids algorithm:

Algorithm : K-medoids clustering

1. For a given cluster assignment C, find the centers mk

minimizing total distance to points in each cluster:

mk = argmin
m

∑

i:C(i)=k

D(m,xi) (11)

Then mk, k = 1, 2, ...,K are the current estimates of the

cluster centers.

2. Given a current set of cluster centers {m1, ...,mK},

minimize the total error by assigning each observation to

the closest (current) cluster center:

C(i) = argmin
1≤k≤K

D(xi,mk), 1 ≤ k ≤ K (12)

3. Iterate steps 1 and 2 until the assignments do not

change.

K-medoids is equivalent to K-means when D(x1,x2) =
||x2 − x1||

2. In K-means, computing cluster centers requires

O(Nk) operations, for Nk data assigned to class k. For

other more complex dissimilarities, the computation to solve

the optimization problem (11) increases as O(N2
k ) so that

K-medoids is far more computationally intensive than K-

means. As a consequence, K-medoids is not a computational



panacea. It should be used only if really needed to get better

results than by using K-means, that is likely in presence of a

relatively high level of noise.

3.2. Recursive LBG K-medoids

Since we have no prior information on the distribution of

patches and taking into account that we are working in a space

of large dimension (typically 7 × 7) space, we will use a

Linde-Buzo-Gray (LBG) recursive version of K-medoids. By

using , we get a multiresolution Voronoi tessellation of the

distribution of patches.

At each recursion, each cluster is splitted in 2 new clusters

until the desired number K of clusters is reached. In practice,

we do not choose precisely the final number of clusters, but

only the number of levels of the recursion p so that we get at

most K = 2p clusters. To ensure that no patch remain alone,

we stop splitting when a cluster reaches some minimal size

Nmin (typically 8 or 16).

Algorithm LBG K-medoids (recursive)

1. Compute the centroid µ0 of the training set, as well as

the standard deviation σ0.

2. Perturb µ0 to get µ1 and µ2: we use µi = µ0 +
(−1)iεiσ0 where εi is a uniform random variable in

[0, 1].

3. Apply the 2-medoids algorithm starting from µ1 and

µ2 to get an optimum binary codebook and two clusters

C1 and C2.

Remark: if the size of one of the new clusters is below

Nmin, then stop splitting.

4. Apply steps 2 and 3 to subsets C1 and C2 until the depth

of the binary splitting reaches p.

In the end, the cluster barycenters (not the centroids) are used

to build the desired dictionary. It contains at most 2p atoms,

each of them being a denoised patch obtained by averaging at

least Nmin patches to ensure both its reperesentativity and

sufficient denoising. Let us emphasize that in the present

case, the recursive LBG version is expected to be faster and

more stable than a direct K-medoids clustering. Indeed, at

each level of the recursion, new clusters are obtained as sub-

clusters of the previous ones. As a consequence, the resulting

Voronoi tessellation is in some sense a multiresolution clus-

tering. At each level, the most different patches are separated

in 2 classes. It is expected that such an implementation be

therefore more robust to outliers.

We usually work with patches of typical size 7 × 7 so

that we work in dimension w = 49. One may first use a

principal component analysis (PCA) as dimension reduction

pre-processing of patches. PCA is also known to have good

denoising properties, which may help to that purpose. How-

ever, we must keep in mind that PCA has close link with the

asumption of additive Gaussian noise while we precisely want

to consider non Gaussian noises. We do not use PCA in the

present study.

3.3. Newton iterates for medoids

We now explain how to solve the optimization problem (11)

in K-medoids thanks to Newton iterates when some explicit

dissimilarity measure other than the quadratic distance is cho-

sen. We get an explicit Newton formulation with respect to

{m1, ...,mK}. The quantity to be minimized is:

E ((mk)1≤k≤K) =

K
∑

k=1

∑

i:C(i)=k

w
∑

j=1

D(xi(j),mk(j)) (13)

For Poisson noise, the GLR based dissimilarity D is given by

(8). As a consequence, to determine the zeros of ∂E
∂mk(j)

for

each component mk(j) is equivalent to find the zeros of

F (mk(j)) = logmk(j)−
1

Nk

∑

i:C(i)=k

log

(

mk(j) + xi(j)

2

)

(14)

which can be quickly estimated by using Newton-Raphson

algorithm. For Gamma noise, the GLR based dissimilarity D

is given by (10). To determine the zeros of ∂E
∂mk(j)

for each

component mk(j) is then equivalent to find the zeros of

F (mk(j)) =
2

Nk

∑

i:C(i)=k

mk(j)

mk(j) + xi(j)
− 1. (15)

Again Newton algorithm is used. In both cases, Poisson and

Gamma, we use the usual quadratic distance barycenter to

initialize Newton iterates. In practice, only 3 Newton iter-

ations are then sufficient to accurately estimate the optimal

(mk)1≤k≤K . Note that this can be done in parallel for all

components (mk(j)), 1 ≤ k ≤ K and 1 ≤ j ≤ w.

4. NL-MEANS AND VQ DENOISING

NL-means method [7] and its generalizations [1, 8] yield state

of the art denoising results. They are exploiting the simi-

larities present in images to estimate denoised information.

While theoretically non-local, NL-means use spatialy local-

ized neighborhoods in practice. Dictionary learning is an al-

ternative to learn typical features that may be present any-

where in the image. Once the dictionary is estimated, the

encoding projection of each patch on this dictionary must be

estimated (in place of the similarity coefficients used by NL-

means). Many approaches propose an alternate optimization

of the dictionary and the encoding coefficients [6]. However,

it has recently been argued in [4] that the dictionary learning

and the encoding steps might be decoupled and yield inter-

esting results for a specific task. Here we explore the most



simple dictionary learning approach, namely vectorial quan-

tization by clustering. To test the relevance of the dictionary

only (and not of the encoding strategy), for sake of severity,

we will compare a very simple encoding strategy for denois-

ing to optimized NL-means.

4.1. NL-means denoising

Let x be the central noisy pixel of some noisy patch x. Let

θ(x) and θ(x) denote their noise-free values. Then, for some

(well chosen) scale parameter h, NL-means defines the esti-

mate θ̂(x) as an average over other patches weighted by sim-

ilarities:

θ̂(x) =

∑

y
GLR(x,y)1/h y

∑

y
GLR(x,y)1/h

(16)

In practice, for computational reasons, the patches y similar

to some patch x are looked for within some spatial neigh-

borhood of the pixel under consideration. As a consequence,

practical NL-means are not truly non-local over the whole im-

age, but only over a ’large’ neighborhood around each pixel.

Each denoised pixel is estimated from a weighted average of

several (sometimes many) similar pixels. In some sense, NL-

means consider similar neighboring patches as the dictionary,

and simillarities as the coefficients. NL-means yields close to

state of the art denoising results for additive Gaussian noise

when its parameters are optimized. Moreover, in the case of

non Gaussian noises, the GLR based NL-means introduced in

[1] yield state of the art results.

4.2. Vectorial quantization based denoising

Dictionary learning, even with a very simple approach as vec-

tor quantization, allows to work in a really non local manner

by learning representative atoms from a large set of patches

from the whole image. During the encoding step, each pixel

can thus be denoised by using information from everywhere

in the image (or family of images). This also proves useful

when dealing with a set of images since the same dictionary

can be used for all of them after only one learning stage. Part

of the success of a dictionary based denoising process is then

due to the encoding procedure, e.g. sparse coding.

As an example of an application, we will consider non

Gaussian denoising from our VQ dictionary learnt thanks to

the GLR based K-medoids or K-means clustering described

above. To study the efficiency of the learning procedure on its

own, we will use one of the most simple encoding procedure:

each pixel is simply replaced by the average of the values of

pixels from denoised overlapping patches. To make the com-

parisons severe, we will compare our denoising results using

simple VQ based denoising to the GLR based NL-means [1]

on some images.

(a) (b)

(c) (d)

Fig. 1. (a) Example of a 256×256 natural image ; (b) affected

by strong Poisson noise with PSNR = 9.49 dB ; (c) NL-means

denoised with optimal parameters as in [1], PSNR = 22.9 dB;

(d) VQ denoised using K-medoids dictionary learning, PSNR

= 22.4 dB.

5. EXPERIMENTAL RESULTS

5.1. Setting

As an illustration, we will show two types of results. First, we

show the appearance of learnt dictionaries, which is always

indicative of its ability to capture representative content. Sec-

ond, we show some results of denoising by the very simple

procedure described in previous section. Note that these de-

noising results are all but optimal due to the chosen encoding

procedure: each pixel is simply replaced by the average of

the values of pixels from denoised overlapping patches. As

discussed before, aiming at better denoising, some sparse en-

coding method or thresholding strategy should be used. This

is the subject of ongoing work. Our main purpose is to study

whether even a simple vector quantization, with a high level

of redundancy, can yield interesting dictionaries, and permit

to take into account the presence of non Gaussian noise.

We have processed a wide set of images but display the

representative results obtained from 2 images in particular.

The first image is the 256× 256 central part of Mandrill (the

famous one) to illustrate what happens on some natural im-

age, while the second one is a scale invariant texture aimed at

modeling an image of the Sun in the extreme UV [9].

To make the comparison of denoising results with NL-

means as severe as possible, the results of NL-means are ob-



(a) (b)

Fig. 2. A 256 × 256 piece of Mandrill image: (a) 256 most

frequently used atoms in the dictionary; (b) repartition of pix-

els cluster indices is clearly non local over the whole image

.

tained using GLR as described in [1] and using the optimal

scale parameter h in (16) (this is possible thanks to a Newton

descent knowing the original image). Note that in true life,

the original image is not known and such an optimization is

not possible: the choice of the scale parameter h is critical.

On the contrary, apart from the depth of the hierarchical clus-

tering procedure, there is no such parameter in the clustering

dictionary learning approach.

5.2. Example 1: Mandrill

The image considered in fig.1(a) is a piece of Mandrill. In this

experiment, a strong Poisson noise is applied with a PSNR

of 9.49 dB, fig.1(b). The learnt dictionary is presented in

fig.1(a) and looks satisfactory. Fig.1(b) represents the spatial

origin of pixels which contributed to each cluster. Note how

they are spatially distributed over the whole image, obeying to

its original symmetry. Turning to the denoising experiment,

the optimal result from the GLR based NL-means [1] yields

fig.3(c) with a PSNR of 22.9 dB. The K-medoids VQ based

denoising method yields fig.1(d) with a PSNR of 22.4 dB,

which is 0.5 dB below NL-means and seems worse. However,

we remark that NL-means has led to a very good PSNR by

smoothing some small scale details (while we also optimized

the sizes of patches and neighbohoods to limit this smooth-

ing) while VQ based has been able to preserve some details

noise (PSNR dB) K-means K-medoids NL-means

texture 10.0/15.2 27.5/28.3 25.2/29.7 28.0/30.4

20.3/20.3 33.1/32.8 33.0/32.9 33.1/32.0

30.0/30.0 37.8/36.8 37.7/36.2 36.8/36.5

mandrill 15.2/15.0 25.5/25.3 25.5/25.5 25.2/25.4

256×256 20.1/20.2 27.0 /27.1 27.0/ 27.1 27.1/27.1

Table 1. Denoising results in terms of PSNR of scale invari-

ant texture for various Poisson/Gamma noise levels.

(a) (b)

(c) (d)

Fig. 3. (a) A disordered and textured image ; (b) with Poisson

noise, PSNR = 20.34 dB ; (c) NL-means denoised (optimized

parameters as before), PSNR = 33.1 dB; (d) VQ denoised us-

ing K-medoids dictionary learning, PSNR = 33.0 dB.

and looks sharper. We also tried K-means VQ based denois-

ing and got a PSNR of 22.0 dB (not displayed), still preserv-

ing small scales. Averaging K-medoids VQ and NL-means

yields a PSNR of 23.3 dB which confirms their compleme-

narity. To conclude, the true non locality of a redundant dic-

tionary learning in itself brings a lot of advantages, even when

using a crude encoding and the most basic dictionary learning

approach, namely vector quantization.

5.3. Example 2: scale invariant texture

The image considered in fig.3 is a random scale invariant

(multifractal) texture, fig.3(a). Such images are common in

astronomy for instance [9]. In this experiment, a Poisson

noise is applied with a PSNR of 20.34 dB, fig.3(b). The

learnt dictionary is presented in fig.4(a) and satisfactorily

shows both smooth and very irregular atoms (the image is

monochrome; the colormap is artificial for better contrast).

Fig.4(b) represents the spatial origin of pixels which con-

tributed to each cluster. Note how they are spatially dis-

tributed over the whole image. This is certainly key to the

good denoising results. Indeed, turning to the denoising ex-

periment, the optimal result from the GLR based NL-means

[1] yields fig.3(c) with a PSNR of 33.1 dB. The K-medoids

VQ based denoising method yields fig.3(d) with a PSNR

of 33.0 dB, nearly the same as NL-means. Above all, we

emphasize that NL-means has led to a very good PSNR by



(a) (b)

Fig. 4. A very disordered and textured image: (a) 256 most

frequent atoms in the dictionary ; (b) Repartition of pixels

cluster indices is clearly non local over the whole image.

smoothing some small scale details (we optimized parame-

ters as before) while VQ has remarkably well preserved these

details and looks sharper. We also tried K-means VQ based

denoising and got a PSNR of 33.1 dB (not displayed), that is

the same PSNR as NL-means and moreover preserving small

scales. In both cases, the textured aspect of the VQ denoised

image looks visually more satisfying.

An interesting observation is that denoising results com-

peting with optimized NL-means are observed on non Gaus-

sian noisy randomly textured images. This has to be con-

firmed by more complete and detailed experiments, but gives

an encouraging indication. Moreover, while similar PSNR

may be achieved by both methods, which may appear some-

what surprising with such a basic vector quantization, the vi-

sual aspect compares in favor of VQ based denoising since

small scale details are not smoothed out. Note that, when

looking at scale invariant textures (with a decreasing power-

law Fourier spectrum), most of the energy is concentrated at

larges scales while the eye remains very sensitive to small

scales which content the visual essence of the texture. There-

fore we note that this ’small scale preserving’ property may be

useful, even though the PSNR may not be optimal. This can

even be seen on Mandrill for which the PSNR of NL-means is

clearly bettter, while the contours and details are better seen

in the VQ denoised version.

6. CONCLUSION AND PERSPECTIVES

In the present contribution, we have presented a first study

of a simple approach towards dictionary learning from noisy

images with non Gaussian noise. To this aim a recursive bi-

nary LBG K-medoids clustering yields a vector quantization

of patches (typically 7× 7). The generalized likelihood ratios

introduced in [1] were used as dissimilarity measures between

noisy patches, adapted to the type of noise. We have shown

that relevant dictionaries can be learnt even with a rather high

level of Poisson or Gamma noise. We have illustrated the in-

terest of such dictionaries for denoising on some examples,

usual images and more textured ones, see tab. 1. Despite

the use of the most simple encoding strategy, vector quanti-

zation, the results can reasonably be compared to GLR based

NL means results which are close to state of the art. Ongoing

work deals with the use of other encoding, e.g. sparse cod-

ing. A point which calls for further study concerns the interest

of K-medoids compared to K-means since an important lim-

itation of the LBG K-medoids approach is it numerical cost

mainly due to the optimization step to determine cluster cen-

troids. This may be a difficulty common to any attempt of dic-

tionary learning with non Gaussian noise. Interestingly, we

often observed denoising performances similar to optimized

NL-means, see tab. 1, with often an even better rendering

at small scales. This may be interesting when denoising tex-

tured images. The average of both results appears to be even

better. Note that there is nearly no adjustable parameter (ex-

cept the depth of the recursive clustering and the minimum

size of clusters) while NL-means (like other methods) needs

to choose the critical scale parameter h in (16).
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