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Abstract—Robots are poised to fill a growing number of roles
in todays society. In future, we could have robots expected to
behave as companion in our home, offices etc. Moving to social
robotics imply to address several issues related to human-robot
interactions for instance, how the robot can develop an atten-
tional mechanism and select an interacting agent among several
interactants. We took our inspiration from neurobiological and
psychological studies suggesting that synchrony is an essential
parameter for social interaction. We assumed that synchrony
detection could be used for intitiating human robot interaction.
We present a neural network architecture able to focus the
attention of the robot and to select an interacting partner on
the basis of synchrony detection.

I. INTRODUCTION

In future years, robots may become a part of our social

lives, consequently, they are supposed to live with human

being and are expected to behave as companions in offices,

factories, homes and other social gathering. Moving to social

robots introduce new challenges to manage the development

of Human-Robot interaction. For instance, how can a robot

choose a partner for interaction and how its attentional mech-

anism works to focus its attention on regions of interest? In

other words, how can a robot be able to discriminate the

relevant stimulus from multiple ones.

In order to design a robot that can interact with humans,

we need to understand how humans interact with each other.

Psychological studies of dyadic interactions as well as neuro-

biological data in motor coordination suggest that synchrony

is an important parameter for human-human-interaction.

An interesting aspect of synchronized behaviors in hu-

mans is its unconscious nature (unintentional synchronization

among interactants). According to psychologists, during verbal

interactions, several non-verbal behaviors for instance, head

movements, expressions on face and many other gestures are

also associated [1]. An important aspect of these non-verbal

communications is their timing and synchrony according to

the partner’s behavior.

Studies of Interpersonal motor coordinations also point

out these unconscious synchronizations or communications

among people. For example when an adult and a child walk

together, unconsciously, they try to maintain the same phase by

constantly adjusting the length or the frequency of their steps

[3]. Moreover, individuals have their own clapping frequencies

but people tends to applaud in a synchronized way [4]. In

addition to the above examples, Issartel et al. studied inter-

personal motor-coordination between two participants when

they are instructed to not coordinate their movements between

each other. Results showed that participants could not avoid

unintentional coordination [3]. This reflects that when visual

information is shared between two people they coordinate

(unintentionally) with each other.

In recent researches on schizophrenia, Varlet and al. ex-

amined intentional and unintentional social motor coordi-

nation in participants oscillating hand-held pendulums from

the wrist. Their results show that for a participant suffering

from schizophrenia, intentional motor coordination remained

impaired however, unintentional social motor coordination was

preserved. This study demonstrate that unconscious commu-

nication sustains even though patients suffering from social

interaction disorders [5].

Researches in neurobiology also acknowledge the synchro-

nization of brain activities during social interactions. Several

studies used fMRI and EEG to record the brain activities

during social interaction. In an study carried out by Stephens et

al. [6] they recorded the brain activities of a speaker (reciting a

monologue) and then scanned the brain of a listener who was

participating, it was found that there is a temporal and spatial

coupling between listener and speaker. Recently, Dumas et al.

[7] revealed, using hyperscanning, the emergence of inter-brain

synchronization across multiple frequency bands during social

interaction (with a millisecond synchrony).

Keeping in view the importance of synchrony in social

interaction, it has also been widely studied and used in

robotics. Andry et al. proposed synchrony as an internal reward

for learning [9]. Prepin and al. also used the level of synchrony

as a reinforcement signal for learing [10]. Blanchard and

Canamero proposed a velocity detection system to synchronize

the movements of two robots to improve the reactivity of

agents to changes in their environment [11]. Marin et al.

underlined that motor resonance between robots (humanoid)

and humans could optimize the social competence of human-

robot interactions [12].

Moreover, studies of developmental psychology also ac-

knowledged synchrony as a prime requirement for interaction

between a mother and her infant. An infant stops interacting



Fig. 1. Setup for our experiments. (a) Nao robot (b) Basic automaton (1
degree of freedom) (c) & (d) Overall setup for human-robot interaction.

with his mother when she stops synchronizing with it [2].

Inspired by these observations, we assumed that this notion

of unconscious synchrony can be used as a starting point in

Human-Robot interactions.

In this paper, we propose a developmental approach to study

unconscious or unintentional synchronization during human-

robot interaction. We developed a neural network model

permitting the robot to: first, be aware of his own dynamic by

learning (babbling step) to link his actions (proprioception)

and the induced visual stimuli (optical flow), and then, be

able to automatically select a partner among many interactants

using immediate imitation and locate its focus of attention on

the basis of synchrony detection.

II. EXPERIMENTAL SETUP

A minimal experimental setup is used to avoid complex-

ities (figure 1), it includes a basic automaton (1 DoF), Nao

humanoid robot, human partners and an external camera. In

human robot interaction experiments, frame rate or sampling

frequency of the system is an important parameter. Instead of

Nao’s camera (frame rate limited to 10 Hz through ethernet

connection) an external camera is used to allow our architec-

ture to work on the frame rate of 30 Hz.

Phase Locking Value (PLV) [13] is used to analyze syn-

chrony between two signals. The PLV is defined by PLVx,y =
1

N
|
∑N

t=1
exp(i(φx−φy))|, where N is the number of samples

and φx − φy is the phase difference between two signals.

The PLV value is close to 1 for synchronized signals and ap-

proaches 0 otherwise. Videos of our experiments can be found

on : http://www.etis.ensea.fr/neurocyber/Videos/synchro/

III. SIMPLE HUMAN-ROBOT INTERACTION USING

OPTICAL FLOW

As a first step towards human-robot interactions, we de-

veloped a dynamical interaction model where two agents

(human and robot) synchronize dynamically by influencing

each other. Specially, our designed architecture gives minimal

abilities to Nao to adopt the phase and frequency of interacting

agent . Velocity vectors of the perceived movements (Nao’s

visual field) are estimated by an optical flow algorithm. These

velocity vectors represent the visual stimuli and inputs for our

architecture.

The oscillator module in this dynamical interaction architec-

ture (figure 2(a)) is identical to [14]. It consist of two neurons

N1 and N2 inhibit each other proportionally to the variable

β. The oscillating frequency is the function of the variables

α1, α2 and β :

N1(t+ 1) = N1(t)− βN2(t) + α1 (1)

N2(t+ 1) = N1(t) + βN2(t) + α2 (2)

As it is shown figure 2(a), the Nao’s arm is linked with

the oscillator and it oscillates according to the its default

frequency. The visual activities in front of Nao are processed

by an optical flow algorithm to estimate the velocity vec-

tors which are then transformed into negative and positive

activities. If an upward motion is realized, it is considered

as a positive activity. On contrary, the downward motion is

considered as a negative activity. Figure 3(f) is a real picture

(visual activities in front of Nao) captured by the camera

and Figure 3(e) shows the corresponding pisitive and negative

activities. Two different agents (a human and an automaton)

move in different direction. Human’s movement direction

is upward and induces positive activity (filled black color).

The Automaton’s direction is downward and induces negative

activity (unfilled pixels). The equation 1 of the oscillator is

rewritten as:

N1(t+ 1) = N1(t)− βN2(t) + α1 + f ′ (3)

Where f ′ is the coupling energy or the energy induced by

the external visual activities (positive and negative activites

extracted from optical flow). By using this model, the external

stimuli induced by the interactant motion influence directly the

oscillator controlling the robot arm making NAO modifying

its own movements and adopting the interactant ones.

Figure 3(a) details the signals of both Nao’s arm and the

human (arm or hand) while trying to interact by imitating

each other. In the onset of experiment, movements of both

agents are not synchronized. Consequently, PLV (measure of

synchrony) shows lowest value (see figure 3(b)) in region of

asynchronous movements. As shown in Figure 3(a) and 3(b),

during the interaction between Nao and a human both are

synchronizing successively as the time passes. Increasing ten-

dency in PLV values reflects the emerging synchrony between

the two agents. Figures 3(a) and 3(b) also illustrate that,

after a some time, both interactants are fully synchronized

and the PLV values corresponds to synchronized interaction

are at maximum values. For this experiment, Nao’s standard

frequency was 0.428 Hz and human oscillations were between

0.4615 Hz (7.8% higher than Nao’s frequency) to 0.476 Hz

(11% higher).

IV. SELECTION OF PARTNER

After developing a basic architecture initiating automatically

a human-robot interaction by synchronizing agent’s move-

ments (in an imitating framework), we develop an architec-

ture (Figure 2(b)) capable of choosing an interacting partner

among various interacting agents. This architecture is based on



Fig. 2. (a) Dynamical Interaction model (b) Selection of Partner: select a interacting partner on the basis of synchrony detection among various interacting
agents. (c) Shows attentional mechanism architecture.

synchrony detection and it can be segregated into two parts.

The first one is dynamical interactions (stated in the previous

section) and the other one is the frequency-prediction module.

As stated in the previously section (Figure 2(a)), the oscillator

that governs the Nao’s motion was directly linked to external

visual stimuli (positive and negative activities from optical

flow). Now, the coupling activities are linked with frequency-

prediction module (f ′′) (Figure 2(b)). The advantage of this

indirect coupling from the frequency-prediction block is to

make sure that our algorithm will choose an interacting agent

that is approximately identical to its own dynamics (learned

by the frequency-prediction block). The equation 3 can be

rephrase as N1(t+1) = N1(t)−βN2(t)+α1+ f ′′. Here, f ′′

is the coupling energy feed by the frequency-prediction block.

The other variables remains unchanged.

The frequency-prediction module (y′) is connected to the

Nao’s oscillator (y) with a unconditional (non modifiable) link

and visual activities (X) is connected with a conditional link

(modifiable link). The frequency-prediction (y′) block learns

the Nao’s oscillating frequency as a weighted sum of visual

stimulus (X). The activity of frequency-prediction (y′) neuron

in equation (4) can be computed by X → y′ synapses only

and corresponds to the prediction of future states.

y′i(t) =
∑

kǫX

WXk−y′

i
Xk (4)

The learning (equation 5) takes place in the X → y′

synaptic weights and it is based on Normalized Least Mean

Square algorithm (NLMS) [15] (Synaptic learning modulation

η is added):

WXj−y′

i
(t+dt) = WXj−y′

i
(t)+αη.

yi(t)− y′i(t)∑
kǫX Xk(t)2 + σ1

.Xj(t)

(5)

Where y′ stands for frequency-prediction, X for the image

of visual activities and y for the Nao’s arm Oscillator, the

learning rate is represented by α and WXj−y′

i
is the synaptic

weight from visual activity (X) neuron j to frequency −
prediction neuron i, yi is the activity transmitted to neuron i

by the oscillator, it is a target signal for the Least Mean Square

(LMS) algorithm. To improve the LMS convergence in the

online learning case, we introduced the learning modulation

η. The particularity of the NLMS over the standard LMS is

the normalization term
∑

kǫX Xk(t)
2+σ1. σ1 is a small value

used to avoid the divergence of the synaptic weights for low

visual activities (X).

Now, we analyses the complete architecture. Our selection

of partner algorithm works in two steps: learning and testing

phase. In the learning stage, Nao moves according to his

own dynamics (its default frequency). Firstly, the frequency-

prediction block that was inactive due to absence of visual ac-

tivities begins now predicting robot’s oscillation as a weighted

sum of its own visual activities. The frequency-prediction

block learns the associations of Nao’s motion (optical flow

induced by Nao’s arm). Consequently, Nao’s oscillator is also

modified (as described in section 3). This process of modify-

ing, learning and adapting continues and converges after some

time. This adjustment is similar to the infant’s elementary

behaviour by which infants gain self reflective abilities [16].

After this phase, Nao learns to predict oscillatory movements

similar to his own movement. When a human or other agents

interact with a frequency similar to NAO’s own dynamics

(or the learned one), weights (learned on modifiable link) are



Fig. 3. Describes how the two agents are synchronized. (a) Shows two
signals (human and Nao’s modifiable oscillator). (b) PLV measurement.

associated with the visual stimulus produced by the interacting

partner and the robot adopts the phase and frequency of the

interacting agent. However, if the interacting oscillations are

not similar to its own dynamics (the learned frequency), the

weights (modifiable link) could not be associated with the

visual activities and Nao robot continue to oscillate at its

standard frequency. The same holds for multiple agents case.

If two agents interact with Nao and only the one of them

having a frequency close to Nao’s learned frequency will be

choosed by our architecture.

For this selection of partner experiment, we use two agents

to interact with Nao robot, in addition to human partner, a

basic automaton is introduced (Figure 1(d)). The results of

selection of partner algorithm are shown in section VI. In this

experiment Nao’s standard frequency was 0.407 Hz, automa-

ton: 0.4318 Hz (6% higher than Nao’s default frequency) and

the frequency of human partner varies between 0.36 Hz (11%
low) to 0.38 Hz (6% low).

As it is described in the previous sections, Nao is able to

select and interact with a partner having movements rhythmi-

cally similar or close to his inner dynamic represented by just

one oscillator. One of the main goals of our work is to use

this unintentional synchrony as an automatic starting point for

human/robot interactions leading to a developmental learning

of more complex tasks by imitation games. To do so, the robot

must be able to select (synchronize) and interact with multiple

agents having different dynamics of motion (or one agent with

more complex movements). Nao must be capable of selecting

partners is a larger band of frequencies (different dynamics of

motion).

Using the same model described previously, we introduced

three different oscillators A, B and C with respectively the

following frequencies fA = 0.441Hz, fB = 0.83Hz and

fC = 1.153Hz. These oscillators determine the Nao’s current

oscillating frequency and switch according to the visual stim-

ulus. When there is no visual stimulus, one of the oscillators is

randomly selected (every 4 sec). This step simulates in a very

simple manner a babbling state (3 simple gestures randomly

performed). As the interacting agent arrives and interacts with

a given frequency, the oscillator prediction module which is

near to this frequency synchronizes with it. Our architecture

selects, as a current oscillator for Nao, the one having less error

with the visual stimulus. Figure 4 illustrates the results of our

experiment. Initially, there is no human signal (until 800 time

steps or 26.6 sec) that results in random selection of Nao’s

oscillating frequencies. After 800 time units human interacts

with frequency of 0.81 Hz, which is near to oscillator B,

consequently, oscillator B is selected as Nao’s current motion

frequency. After 1750 time units (58 sec), human changes

his frequency near to oscillator C, this results in selection of

oscillator C. The same is true for the selection of oscillator A.

V. ATTENTIONAL MECHANISM

Using the previous architecture (selection of partner), if

two agents interacts simultaneously with Nao (with differ-

ent frequencies), the robot selects an ”interacting” partner

moving accordingly with its frequency and synchronizes with

it. However, Nao can not locate the spatial position of the

selected partner, it is due to the fact that the selection of

partner algorithm operates on the perceived energy, it does

not take into account the agent location. In order to locate

the correct interacting partner, a new Focus Of Attention

(FOA) algorithm dynamically learns, using spatial predictions,

to focus on the right interacting agent defined by the selection

of partner algorithm. Here, synchrony prediction is use as way

to draw the robot’s attention. In our experiments, the robot’s

head direction is used to indicate the current FOA.

Figure 2(c) details the architecture of attentional mech-

anism. This module also works in two phases i.e learning

phase and testing phase. In the absence of visual stimuli, FOA

moves randomly according to the noise. As an agent (human)

comes with a similar frequency (by moving arm / hand), the

image-prediction module ( X ′′) learns the position of this

visual stimulus as a weighted sum of robot’s oscillations. This

makes it possible to predict the location of the synchronized

partner. After this learning, If some other agent comes and

interacts with a different (asynchronous) frequency (as shown

in figure 1(c)), X ′′ predicts strongly the spatial location of

the synchronized agent as compared to the asynchronous one

(because X ′′ predicts on the basis of the weighted sum of the

learned oscillations).

To locate the synchronized agent and to distinguish it

among multiple stimuli, our architecture multiply the image-

prediction X ′′ and the current visual stimuli. Then, a memory

block computes the weighted average of these resultant multi-

plication and the previous iterations. Obviously, in the merging

block, higher correlation values are obtained for synchronous



Fig. 4. Shows how the different oscillators (A, B and C) are selected according to the visual stimuli. Due to the initial lack of an interactant, a random
selection of oscillator is observed. After 800 (26.6 sec) time units oscillators are chosen according to the frequency of the agents. Nao’s oscillator selection
(doted line) according to human frequency (solid line)

movements. To determine the highest activated column (that

corresponds the position of synchronized agent) all pixels of

memory module are projected on x-axis and a Winner Takes

All (WTA) finds the column of highest activity (Figure 2(c)).

Finally, the architecture turns the robot’s head towards the

selected column.

The learning rule for movement-prediction (X ′′) is same as

the frequency-prediction (stated above) except that the weights

are normalized for smoothing the learning activity.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our

two algorithms: selection of partner and attentional mecha-

nism. Results show that when two agents interact simulta-

neously with Nao and one of the agent moves similarly (in

terms of frequency) as the Nao robot while other oscillates

with a different frequency. Nao synchronizes with the agent

having a similar frequency and selects it as a partner. Likewise,

FOA architecture turns the robot’s head towards the selected

agent. Similarly, if both agents exchange the role of interaction

(asynchronous agent becomes synchronous and synchronous

agent become asynchronous) then, selection of partner and

FOA architecture also switches the partner.

Figure 5 shows the experimental results. Figure 5(a1)

sketches the curves of automaton and Nao’s motion signal.

In the start of the experiment (figure 5(a)) automaton inter-

acts with Nao from the left side (about −20◦). Both agents

synchronizes after a short time by using our partner selection

architecture. Figure 5(a3) describes the quality of synchrony

between Nao and automaton in terms of PLV. In the beginning,

PLV was at its lowest value but it increases slowly to the

highest value as the interaction continues and the synchrony

establishes between the two agents. Initially, there is no other

agent in front of robot except Automaton therefore, FOA turns

towards Automaton (figure 5(a4)). After 700 time units (23.33
seconds), a human starts interacting from the right side of

robot with different oscillations but he fails to disturb Nao-

Automaton interaction (PLV continues to its higher values for

automaton) and FOA continues to point out to automaton.

Now, the roles are switched. Human is adviced to make

similar movements as Nao while the automaton is adjust to

a low frequency (figure 5(b1) and (b2)). Consequently, Nao

also flips its role by synchronizing with human and select

him as partner. PLV (measure of synchrony) also increases

for human and decreases for automaton (figure 5(c3)). As

the synchrony emerges between human and Nao, FOA also

turns from automaton to human (figure 5(c4)). To validate our

experiment we again switch the roles of two interacting agents

after 2650 time units (88.3 sec). Consequently, this induces a

switch of the focus of attention and the synchronized agent

(figure 5(b)).

VII. CONCLUSION

In this paper, we presented a new model allowing the robots

to select an interacting partner among multiple agent based

on synchrony detection. We also demonstrated that prediction

of synchrony (for spatial position) could be used as a tool

to locate the Focus Of Attention. Our experimental results

showed that when several agents interact with Nao and one of

them moves in synchrony with the robot, Nao will select it as

a partner.

From the psychological point of view, we were inspired

by the unconscious communications between humans. The

synchronous exchanges during social interactions are directly

associated to the sensorimotor information of the two agents.

These inter brain networks are “symmetric” in low frequency

band while “asymmetric” in high frequency bands [7]. This

could reflect the different processing levels of information. In

our case, synchronization between two agents can be assumed

as “symmetric” in low frequency band and Focus of attention

can be associated with high frequency carrier.

Actually, we are studying three human-robot applications

for synchrony detection. The first and most obvious one is



Fig. 5. Results: (a) shows start of experiment with single agent and then disturbed by the other agent. (b) Different frequency agents interact with Nao.

to extend the model to learn, in a developmental way, more

complex interactions (complex gestures). Indeed, synchrony

detection and selection of partner permit to maintain

interaction with a partner moving synchronously with the

robot in terms of low fundamental temporal frequency of

interaction. As a result, more complex gestures (higher

temporal frequencies) can be autonomously learnt by the

robot while interacting and imitating the human partner.

Similarly, we aim to use our architecture for navigation tasks.

A mobile robot can choose a synchronous agent to interact

with and consequently learn complex navigation tasks by

keeping synchrony while moving with the selected partner.

Finally and in a global point of view, we question the use

of synchrony detection, focus of attention and selection

of partner in turn-taking games during interaction. In fact,

synchrony can not only be considered as a starting point

for social interaction but also as a way to re-engage the

interaction with a selected partner.
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