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Abstract

In this paper, we study the problem of non parametric estimation of the mean and
variance functions b and σ2 in a model: Xi+1 = b(Xi) + σ(Xi)εi+1. For this purpose,
we consider a collection of finite dimensional linear spaces . We estimate b using a mean
squares estimator built on a data driven selected linear space among the collection. Then
an analogous procedure estimates σ2, using a possibly different collection of models. Both
data driven choices are performed via the minimization of penalized mean squares con-
trasts. The penalty functions are random in order not to depend on unknown variance-
type quantities. In all cases, we state non asymptotic risk bounds in IL2 empirical norm
for our estimators and we show that they are both adaptive in the minimax sense over a
large class of Besov balls. Lastly, we give the results of intensive simulation experiments
which show the good performances of our estimator.
Keywords. Nonparametric regression, Least-squares estimator, Adaptive estimation,
Autoregression, Variance estimation, Mixing processes.
1991 Mathematical Subject Classification. Primary 62G07 Secondary 62J02.

1 Introduction

1.1 Presentation of the problem

In this paper, we study the following model:

Xi+1 = b(Xi) + σ(Xi)εi+1, (1.1)

with εi i.i.d. centered random variables with unit variance. It can be considered as a
particular case of the standard regression model:

Yi = b(Xi) + σ(Xi)ui, (1.2)

with i.i.d. centered ui’s, Var(u1) = 1, where the (Xi, Yi)’s are not assumed to be indepen-
dent but can be β-mixing. Our results hold for this model.
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If f̂ is an estimator of f , where f is b or σ2, then we measure the risk of f̂ via the
IL2-empirical norm:

IE[‖f̂ − f‖2
n] = IE

[
1

n

n∑

i=1

(f̂(Xi) − f(Xi))
2

]
.

For a discussion about the choice of this measure of risk, see Baraud et al. (1999). Roughly
speaking, the reason for this choice is as follows: let f̂S be a minimizer of

γn(t) =
1

n

n∑

i=1

[Xi+1 − t(Xi)]
2 ,

for t in a linear space S ⊂ IL2(IR, dx); then the vector (f̂S(X1), . . . , f̂S(Xn)) is uniquely
defined, but of course not the global function f̂S at any point. We shall nevertheless talk
about “the” mean squares estimator since only the associated vector (f̂S(X1), . . . , f̂S(Xn))
of IRn is involved in the computations.
In addition, under suitable assumptions, this risk can be decomposed into bias + variance
terms via:

IE[‖f − f̂S‖2
n] ≤ κ

(
‖f − fS‖2

µ +
dim(S)

n

)
, (1.3)

where fS is the IL2(dx)-orthogonal projection of f on S, ‖t‖2
µ = IE(t2(X1)) and κ depends

on constants of the problem.
To see how (1.3) is obtained, consider a strictly stationary sequence (Xi) drawn from
model (1.1) with σ ≡ 1 and stationary [0, 1]-supported density, and let S be generated by
ϕ1, . . . , ϕD, the histogram orthonormal basis of IL2([0, 1]): ϕj(x) =

√
D1I[(j−1)/D,j/D[(x).

Simple algebra leads to

γn(t) − γn(s) = ‖b − t‖2
n − ‖b − s‖2

n + 2〈s − t, ε〉n (1.4)

where 〈t, ε〉n = (1/n)
∑n

i=1 t(Xi)εi+1. Then we find from (1.4)

‖b̂S − b‖2
n ≤ ‖bS − b‖2

n + 2〈bS − b̂S , ε〉n
≤ ‖bS − b‖2

n + 2‖bS − b̂S‖ sup
t∈S,‖t‖=1

|〈t, ε〉n|

≤ ‖bS − b‖2
n +

1

4a
‖bS − b̂S‖2 + 4a sup

t∈S,‖t‖=1
〈t, ε〉2n.

Assume that, for some a > 1,

∀t ∈ S, ‖t‖2 ≤ a‖t‖2
n, (1.5)

then

IE(‖b̂S − b‖2
n) ≤ 3‖bS − b‖2

µ + 8aIE

(
sup

t∈S,‖t‖=1
〈t, ε〉2n

)
. (1.6)

Besides, using Cauchy Schwarz inequality yields

IE

(
sup

t∈S,‖t‖=1
〈t, ε〉2n

)
= IE


 sup

P

j a2
j≤1




D∑

j=1

aj〈ϕj , ε〉n




2
 ≤

D∑

j=1

IE〈ϕj , ε〉2n

2



=
1

n2

D∑

j=1

IE

(
n∑

i=1

ϕj(Xi)εi+1

)2

=
1

n2

D∑

j=1

n∑

i=1

IE(ϕ2
j (Xi))IE(ε2

i+1)

=
1

n
IE




D∑

j=1

ϕ2
j (X1)


 =

D

n
. (1.7)

Therefore (1.6) and (1.7) lead to (1.3), provided that (1.5) holds, which is generally true
with large probability.
In view of these considerations, here is now our estimation procedure. We start with two

finite collections of models denoted by {S(i)
m , m ∈ M(i)

n } for b if i = 1 and σ2 if i = 2;

each S
(i)
m is a finite dimensional subspace of IL2(IR, dx). The functions b and σ2 are not

required to belong to any of the models. Let b̂m denote the least squares estimator of b

on S
(1)
m associated to

γ(1)
n (t) =

1

n

n∑

i=1

(Xi+1 − t(Xi))
2

based on the observations X1, . . . , Xn+1 arising from model (1.1). We use a procedure that

chooses m̂1 in M(1)
n as the minimizer γ

(1)
n (b̂m) + pen(1)(m) among all m in M(1)

n , where
pen(1) is a known penalty function specified later. The key point is that this procedure is
entirely based on the data and not on any prior information on b, and that it realizes a
good trade-off between the bias and variance terms, namely:

IE
[
‖b − b̂m̂‖2

n

]
≤ C min

m∈Mn

{
‖b − bm‖2

µ +
dim(S

(1)
m )

n

}
, (1.8)

where bm is the IL2(dx)-orthogonal projection of b on S
(1)
m and C is a multiplicative

constant depending on some quantities of the problem. This means that, up to the
constant C, the estimator chooses an optimal model among the collection.
In the second step, σ̂2 is based in an analogous way on the contrast:

γ(2)
n (t) =

1

n

n∑

i=1

[
X2

i+1 − b̂2
m̂1

(Xi) − t(Xi)
]2

,

for t ∈ S
(2)
m , with an aim similar to (1.8) and b replaced by σ2, using a penalty function

pen(2)(m).

Both penalty functions pen(i)(m), i = 1, 2 are found of order dim(S
(i)
m )/n. This model

selection criterion is closely related to the classical Cp criterion of Mallows (1973).
It is important to notice that estimators satisfying inequalities as (1.8) have interesting
properties on the collections of models that we have in mind (piecewise polynomials,
wavelets, trigonometric polynomials). In particular, such estimators are adaptive in the
minimax sense with respect to many well known classes of smoothness (see Barron et al.
(1999) and Birgé and Massart (1997)).
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1.2 Some bibliographic remarks

The autoregressive model has been extensively studied in the literature in view of appli-
cations to Finance and Econometrics in particular. People first modeled the conditional
mean of the variable of interest Xt given its past as a linear function of past Xt’s, the
conditional variance being constant, see Lütkepohl (1992) and the ARMA (Autoregres-
sive Moving Average) models of the time series literature. Then many financial variables
were experimented to have non constant conditional variance, and specifications of it as a
linear function of the squared values of the past innovations were developed with ARCH
(Autoregressive Conditionally Heteroskedastic) models introduced by Engle (1982) and
generalized by Bollerslev (1986). Lastly, nonlinear extensions of both types of functions
(conditional mean and conditional variance) were studied: step functions in Gouriéroux
and Monfort (1992), general non linear functions in Mc Keague and Zhang (1994) or
Härdle and Tsybakov (1997). This is the reason why statistical methods for nonparamet-
ric estimation of variance functions were recently developed.
On the other hand, adaptive estimation methods have been studied in some frameworks
that can be related to the present one. In particular, several studies related to penaliza-
tion criteria as Akaike’s or BIC criterion for regressive models, by Akaike (1973), Shibata
(1976), Li (1987), Polyak and Tsybakov (1992), have lead to asymptotic results. More
recently, a general approach to model selection has been developed by Birgé and Massart
(1997) and Barron et al. (1999) with many applications to adaptive estimation. Their
viewpoint is non asymptotic, and so is ours. The procedure we use has been studied for
fixed design regressive models by Baraud (2000) and for β-mixing random design and
autoregressive models by Baraud et al. (1999); the variance function is constant in all
of these works and thus only the mean function is estimated. Our results here are an
extension of the latter to the estimation of the mean when the variance function is not
constant, and to the estimation of the variance function as well.
Variance estimation has been first studied in fixed design regression models, see for in-
stance Müller and Stadtmüller (1987) who apply to this problem a difference-based es-
timator. Hall and Carroll (1989) build a residual-based estimator and show that they
pointwise reach the optimal rate of convergence even with an unknown mean function b,
provided that b has a smoothness order larger than 1/2. Dependent models (autoregres-
sive models or regressive models with mixing random design) have been handled by Härdle
and Tsybakov (1997), Härdle et al. (1998) and Fan and Yao (1998). Härdle and Tsybakov
(1997) study the estimation of b and σ2 using local polynomial estimators; they prove
pointwise asymptotic normality with standard rates but their procedure is not adaptive.
Fan and Yao (1998) describe a data driven procedure with automatic bandwidth selection
but their theoretical results provide only a pointwise Central Limit Theorem for a non
adaptive estimator.
Lastly, adaptive procedures for variance estimation have been studied by Neumann (1994)
and Hoffmann (1999). Neumann (1994) builds an adaptive kernel (with random band-
width) residual-based estimator, but in a fixed design model with a noise admitting mo-
ments of any order. He proves optimal rates for the mean integrated squared error of
his estimator, provided that the mean function has a smoothness order α1. The frame-
work the most related to the present work is Hoffmann (1999)’s who proposes an adaptive
wavelet thresholding procedure in an autoregressive framework. He requires that the noise
admits moments of any order and obtains for the general ILp-integrated risk the optimal
rates up to some logarithmic factors. The rates for b and σ2 do not depend on each
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other, but he assumes that both orders of smoothness are larger than 3/2. To enhance
the comparison, let us say that our procedure is adaptive, deals with random and depen-
dent regression variables including the autoregressive framework, requires for the noise
the finiteness of moments of a given order, 16 in many cases (and not any order p) and
reaches the optimal rate (without any loss) provided that the mean function is smoother
than the variance function (namely, α ≥ 2β +1/2 if α and β are the smoothness orders of
b and σ2 respectively). On the one hand, this condition is less attractive than Neumann’s
(α > 1) in his independent framework or Hoffmann’s and is only a technical loss with
no other structural reason than the use of a unique first step estimator of b to estimate
σ2. Note that, contrary to Hoffmann’s result, it allows to reach low orders of smoothness
for for b (α > 1/2) and for σ2 (namely 1/2 < β < 3/2). On the other hand, to separate
the variance of the noise from the mean function, it is empirically natural to ask that the
latter is much smoother than the former, otherwise it is hard to distinguish between them.

The plan of the paper is as follows. Section 2 presents the whole estimation procedure,
namely the building of both estimators of b and σ2 and the assumptions on the functions,
the variables and the collections of models. The results in terms of inequality of type
(1.8) and of minimax rates on Besov balls are given in Section 3. Section 4 explains our
simulation methods and describes the results of intensive simulation experiments. We
used in particular models recently studied by Härdle and Tsybakov (1997) and Fan and
Yao (1998) but also many others. Lastly, almost all proofs are gathered in Section 5 while
section 6 contains some complementary informations about the simulations.

2 The estimation procedure

2.1 Assumptions on the linear spaces of estimation

We assume that we aim to estimate the functions on a given compact set A. We consider
families of linear subspaces Sm of IL2(A, dx) and we call those families collections of

models. It is standard to set the following assumptions on the collections (S
(i)
m )

m∈M(i)
n

,
i = 1, 2:

(HΦi
) 1. Each S

(i)
m is a finite dimensional linear subspace of IL2(A, dx) with dimension

dim(S
(i)
m ) = D

(i)
m and maximal dimension denoted by D

(i)
n .

2. There exists a constant Φi such that for any pair (m, m′) ∈ (M(i)
n )2, and any

t ∈ S
(i)
m + S

(i)
m′

‖t‖∞ ≤ Φi

√
dim(S

(i)
m + S

(i)
m′)‖t‖ (2.9)

where ‖t‖ =
∫

t2(x)dx =
∫
A t2(x)dx.

3. There exists a constant K such that D
(i)
n ≤ K

√
n/ ln(n) in the general case,

D
(i)
n ≤ Kn/ ln2(n) for wavelets (family (W) below) and for piecewise polyno-

mials (families (DP) and (RP) below).

(H(ai,bi)) There exist some nonnegative constants ai, bi,Σi, Ti such that

∑

m∈M(i)
n

(D(i)
m )−ai ≤ Σi < ∞
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and |M(i)
n | ≤ Tin

bi .

Comments. 1. Assumption (HΦi
) 2. is an assumption of connection between the two

norms ‖.‖∞ and ‖.‖. It implies in particular that for all t ∈ S
(i)
m , ‖t‖∞ ≤ Φi

√
D

(i)
m ‖t‖.

It follows from Barron et al. (1999), equations (3.2) and (3.3), that, for any orthonormal

basis (ϕλ)λ∈Λ of S
(i)
m + S

(i)
m′ :

∥∥∥∥∥
∑

λ∈Λ

ϕ2
λ

∥∥∥∥∥
∞

= sup
t∈S

(i)
m +S

(i)

m′
,t6=0

‖t‖∞
‖t‖ . (2.10)

2. Assumption (H(ai,bi)) is a limitation on the number of models which have the same
dimension and consequently on the global number of models. It garantees in particular
that we do not consider too many models. Note also that the choice bi = ai, Ti = Σi

suits. Indeed, since D
(i)
m ≤ n, for any m ∈ M(i)

n ,

Σi ≥
∑

m∈M(i)
n

(D(i)
m )−ai ≥

∑

m∈M(i)
n

n−ai = |M(i)
n |n−ai

which implies that: |M(i)
n | ≤ Σin

ai . In other words the number of models is at most
polynomial with respect to n.

We shall essentially consider in the sequel three kinds of specific families of models

(S
(i)
m )

m∈M(i)
n

satisfying (HΦi
) and (H(ai,bi)): trigonometric polynomials, wavelets and

piecewise polynomials that can be described as follows.

(T) Trigonometric polynomials : we consider spaces of dimension D
(i)
m generated by the

functions ϕ0(x) = 1, ϕ2j(x) =
√

2 cos(2πjx), ϕ2j+1(x) =
√

2 sin(2πjx) for j =

0, . . . , d
(i)
m , where D

(i)
m = 2d

(i)
m + 1 is the dimension of S

(i)
m . Any such S

(i)
m is entirely

defined by its dimension. The family of models M(i)
n is in that case the set of all

possible dimensions such that (HΦi
) 2. holds: M(i)

n = {1, . . . ,
√

n}. Here Φi =
√

2
in (HΦi

) 2., ai = 1 + ǫ,∀ǫ > 0, and bi = 1/2 in (Hai,bi
).

(RP) Regular piecewise polynomials: we consider the regular partitions Im defined by
Im = {[j/m, (j + 1)/m), j = 0, 1, . . . ,m − 1}. Given some positive integer r, we

define S
(i)
m to be the space of piecewise polynomials with degree bounded by r−1 on

the partition Im. Then D
(i)
m = rm. The maximal value of m, m(n) is the greatest

integer such that rm ≤ n/ ln2(n), i.e. m(n) = [n/(r ln2(n))] = |M(i)
n | where [z]

denotes the integer part of z. Here Φi =
√

(r + 2)(2r + 1) (see Barron et al. (1999)
p. 323), ai = 1 + ǫ, ∀ǫ > 0 and bi = 1 suit.

(DP) Dyadic piecewise polynomials: we consider now dyadic partitions Im = {[j/2m, (j +

1)/2m), j = 0, . . . 2m − 1}. Given some positive integer r, we define S
(i)
m to be

the space of piecewise polynomials with degree bounded by r − 1 on the partition

Im. Then D
(i)
m = r2m. The maximal value of m, m(n) is the greatest integer

such that r2m ≤ n/ ln2(n), i.e. m(n) = [ln(n/(r ln2(n)))/ ln(2)] = |M(i)
n |. Again

Φi =
√

(r + 2)(2r + 1) (see Barron et al. (1999) p. 323), but now any positive ai, bi

suit.
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(W) Compactly supported wavelets: Let Λ(j) = {(j, k), k = 1, . . . , 2j} and let

{φJ0,k, (J0, k) ∈ Λ(J0)} ∪ {ϕj,k, (j, k) ∈
+∞⋃

J=J0

Λ(J)}

be an IL2([0, 1], dx)-orthonormal system of compactly supported wavelets of regu-
larity r built by Cohen et al. (1993); for a precise description, see Donoho and
Jonstone (1998). These new functions derive from Daubechies (1992)’s wavelets at
the interior of [0, 1] and are boundary corrected at the “edges”. For any Jn > J0,
let Sn be the space spanned by the φJ0,k’s for (J0, k) ∈ Λ(J0) and by the ϕj,k’s
for (j, k) ∈ ∪Jn

J=J0
Λ(J). It follows that dim(Sn) = 2Jn ≤ n if Jn ≤ ln2(n). For

any m ∈ Mn = {J0, . . . , Jn − 1}, we take for S
(i)
m the linear span of the φJ0,k’s for

(J0, k) ∈ Λ(J0) and of the ϕj,k’s for (j, k) ∈ ∪m
J=J0

Λ(J). This implies that D
(i)
m ≤ 2m.

We know from Barron et al. (1999), p.322, that Φi = 2 +
√

2 suits and any positive
ai, bi suit.

2.2 The assumptions on the model

All along the paper, we consider model (1.1) with εi i.i.d., IE(ε1) = IE(ε3
1) = 0 and

Var(ε1) = 1. We assume that the process (Xi) is strictly stationary. Let us recall that
a stationary process (Xi) is said to be absolutely regular or β-mixing (Kolmogorov and
Rozanov, 1960) if

1

2
sup





I∑

i=1

J∑

j=1

|IP(Ai ∩ Bj) − IP(Ai)IP(Bj)|



 = βk → 0 when k → +∞.

where the supremum is taken over all finite partitions (Ai)1≤i≤I and (Bj)1≤j≤J of the
probability space Ω respectively F0

−∞ and F∞
k measurable where Fk

i is the σ-algebra
generated by {Xj , i ≤ j ≤ k}. The mixing is said to be geometrical if there exist positive
M and θ such that βk ≤ Me−θk. The mixing is said to be arithmetical if there exist
positive M and θ such that βk ≤ Mk−θ.
We work under the following assumptions:

A1 (Xt)t∈Z is geometrically β-mixing.

A2(p) X, b(X), σ(X) and ε admit moments until order p, p ≥ 4.

A3 b and σ are bounded on compact sets.

A4 X admits a density hX such that for any compact set A in the support of hX , there
exist h0, h1 (depending on A) such that

∀x ∈ A, 0 < h0 ≤ hX(x) ≤ h1. (2.11)

Under A2(p), we denote by m4 = IE[(ε2 − 1)2](< ∞) and by σq
q = IE(|ε1|q) for q ∈ (0, p].

Note that assumptions A1, A2(p), A3 are fulfilled under standard assumptions given by
Ango Nze (1992), Proposition 3, (see also Doukhan (1994) p. 107). More precisely, here
is a set of assumptions implying A1-A4:

B1 There exists constants C1 > 0 and C2 > 0 such that, for all y ∈ IR,

|b(y)| ≤ C1(1 + |y|), |σ(y)| ≤ C2(1 + |y|).
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B2 The function σ satisfies infy∈IR σ(y) > C3 for a C3 > 0.

B3(p) IE(|ε1|p) < +∞ for some p ≥ 4 and IE[C1 + C2|ε1|]p < 1.

B4 The density hε of ε exists and hε is continuous on its support.

Those assumptions are quite near of those required by Härdle and Tsybakov (1997). Under
B1-B4, the Markov chain (Xi) given by (1.1) is geometrically ergodic and the stationary
law is geometrically absolutely regular; this ensures A1.
Under B3(p), we know (see Duflo (1990), p.178) that for any initial condition X0 in ILp

independent of ε, the Xi’s admit moments of the same order as the εi’s (and thus, so do
σ(Xi) and b(Xi) with B1). Thus B3(p) ensures A2(p).
As a consequence of B1, it is clear that b and σ are bounded on compact sets, which
gives A3. Note that we estimate b and σ on the compact set A only, the same for both
functions.
Moreover, if µ denotes the stationary law of X1 (which exists under B1-B4), we know
with B2 and B4 that dµ(x) = hX(x)dx with:

hX(x) =

∫
hε

(
x − b(u)

σ(u)

)
1

σ(u)
dµ(u).

Indeed the positivity of σ ensures that the change of variable can be done and the continu-
ity of hε implies the continuity of hX . Thus hX is positive on its support and continuous
which ensures A4 for any compact set A in the support of hX .
In other words B1-B2-B3(p)-B4 imply A1-A2(p)-A3-A4.

Since the random variables Xi are geometrically β-mixing, this will allow to apply
some results established in Baraud et al. (1999).

Comments: 1. Ango Nze (1998) gives also conditions on autoregressive models to
generate arithmetically mixing variables still admitting a stationary ergodic law. Moreover
the results of Baraud et al. (1999) also allow to consider arithmetically mixing variables.
This implies some robustness of the results with respect to stronger types of dependence.
But such results lead to much stronger conditions on the errors and on the size of the
collections of models.
2. All the given results would hold for model (1.2) with ui i.i.d., IE(u1) = IE(u3

1) = 0 and
var(u1) = 1, (see for such extensions Baraud et al. (1999)) under the assumptions A3, A4
and

C1 (Yt, Xt)t∈Z is geometrically β-mixing.

C2(p) Y , b(X), σ(X) and ε admit moments until order p, p ≥ 4.

3. Lastly the real valued random variables Xi could be replaced by a r-dimensional

random vector ~Xi = (X
(1)
i , . . . , X

(r)
i ) under the same kind of assumptions and the autore-

gression of order one can in the same way be generalized into an autoregression of order
r. For the extension of assumptions B1-B4 ensuring A1-A4, see Ango Nze (1992) or the
application of these results in Härdle et al. (1998). The functions b and σ remain real
valued and the errors εi as well, which makes most extensions straightforward.
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2.3 First step of the estimation procedure

To estimate b on a given compact set A, we consider the contrast

γ(1)
n (t) =

1

n

n∑

i=1

[Xi+1 − t(Xi)]
2 (2.12)

based on the observations X1, X2, . . . , Xn+1. We consider a collection of linear subspaces

of IL2(A, dx), (S
(1)
m )

m∈M(1)
n

of dimension D
(1)
m , as described in section 2.1 and satisfying

Assumption (HΦ1). Baraud et al. (1999) proved non asymptotic risk bounds for the
estimate b̂m̂1 defined as follows, when the variance is a known constant denoted by σ2.
Let

b̂m be a minimizer of γ(1)
n (t), over t ∈ S(1)

m .

The b̂m’s define a collection of estimators of b. Then choose:

m̂1 = arg min
m∈M(1)

n

(
γ(1)

n (b̂m) + pen(m)
)

where pen(m) = κσ2
2

D
(1)
m

n
,

and κ is a universal constant. Baraud et al. (1999)’s results extend straightforwardly to
a known varying variance function by considering the estimate b̂m̂1 with:

m̂1 = arg min
m∈Mn

(
γ(1)

n (b̂m) + pen
(1)
th (m)

)
where pen

(1)
th (m) = κΦ2

1‖σ‖2
µ

D
(1)
m

n
,

where µ is the stationary law of the Xi’s and κ a universal constant. Then b̂m̂1 has the
same properties as in the case of a known constant variance.
As ‖σ‖2

µ is unknown, we complete the procedure by replacing this quantity by an estimate.
Let

r̂2
n =

1

n

n∑

i=1

(Xi+1 − b̂mn(Xi))
2 (2.13)

where S
(1)
mn is a space of the family for a given mn ∈ M(1)

n with dimension D
(1)
mn to be

chosen in Theorem 3.1 (see also the comments herewith).
Then we define the final estimate as

b̃ := b̂m̂1 where m̂1 = arg min
m∈M(1)

n

(
γ(1)

n (b̂m) + pen(1)(m)
)

(2.14)

with

pen(1)(m) = κΦ2
1r̂

2
n

D
(1)
m

n
and r̂2

n given by (2.13). (2.15)

Comment: It is now well-known that it is safer to take for κ too great than too small
values. An empirical calibration study, similar to the one extensively done for density
estimation by Birgé and Rozenholc (2000), can be lead in order to compute κ. When the
collection of models is chosen, Φ1 is known but it is probably a computational artefact
rather than a structural constant of the penalty. Indeed, in an independent fixed design
framework with constant volatility σ2

2, the optimal penalty is found by Baraud (2000) to

be 2σ2
2D

(1)
m /n.

9



2.4 Second step of the estimation procedure

We consider now the following procedure. Let S
(2)
m , m ∈ M(2)

n , be a collection of linear

subspaces of IL2(A, dx), of dimension D
(2)
m , as described in section 2.1 and satisfying

assumption (HΦ2). Let

γ(2)
n (t) =

1

n

n∑

i=1

[
X2

i+1 − b̃2(Xi) − t(Xi)
]2

(2.16)

and define σ̂2
m as a minimizer of γ

(2)
n (t) over t ∈ S

(2)
m . Then our estimate is

σ̃2 = σ̂2
m̂2 with m̂2 = arg min

m∈M(2)
n

(
γ(2)

n (σ̂2
m) + pen(2)(m)

)
(2.17)

where

pen(2)(m) = κΦ2
2ŝ

2
n

D
(2)
m

n
. (2.18)

and

ŝ2
n =

1

n

n∑

i=1

(X2
i+1 − ĝmn(Xi))

2 and ĝmn = arg min
t∈S

(2)
mn

1

n

n∑

i=1

[
X2

i+1 − t(Xi)
]2

(2.19)

on some well chosen S
(2)
m = S

(2)
mn . The theoretical value of the penalty that pen(2) estimates

is:

pen
(2)
th = κΦ2

2(m4IEµ(σ4) + 4IEµ(b2σ2))
D

(2)
m

n
.

Comment. The choice (1/n)
∑n

i=1[(Xi+1 − b̃(Xi))
2 − t(Xi)]

2 for the contrast is more
standard and is the one empirically used. Only technical reasons lead to our slightly
different choice.

3 The theoretical results

3.1 Estimation of the mean

Recall that the empirical euclidian norm is ‖u‖2
n = (1/n)

∑n
i=1 u2(Xi) and that A is the

given compact set on which we aim to estimate the functions. We denote by bm the
IL2(A, dx)-orthogonal projection of b on Sm. We have the following result:

Theorem 3.1 Let X1, . . . , Xn be a stationary sequence drawn from model (1.1) and con-
sider a collection of models satisfying (HΦ1) and (H(a1,b1)). Assume that A1, A2(p), A3,
A4 are fulfilled with

p ≥ 8, p ≥ 2(1 + a1) and p > 6 + 4b1, (3.20)

then b̃, defined by (2.14)-(2.15), with r̂2
n defined by (2.13) and such that

dim(S(1)
mn

) = D(1)
mn

≤ n1/2−2/p, (3.21)

satisfies

IE[‖b1IA − b̃‖2
n] ≤ C inf

m∈M(1)
n

(
‖b1IA − bm‖2

µ +
D

(1)
m

n
(‖b‖2

µ + ‖σ‖2
µ)

)
+

R

n

10



where C is a universal constant and R is a constant depending on σp, Φ1, ‖b1IA‖∞,
‖σ1IA‖∞, Σ1, C1.

Comments: 1. The estimate performs almost as well as the best estimator that could
be chosen among the collection. We insist on the fact that the procedure automatically
selects a model very close to the (unobservable) best model (called oracle) in the collection
i.e. the most adequate dimension for the space of approximation.
2. For the families (W) and (DP), any a1, b1 > 0 suit so that condition (3.20) reduces
to p ≥ 8. For the family (T), as a1 = 1 + ε for any ε > 0 and b1 = 1/2, condition (3.20)
becomes p > 8. For family (RP), if we want to consider the maximal number of possible
models, we find p ≥ 10.
3. In the general case, under condition (3.20), the constraint (3.21) is fulfilled as soon as

D
(1)
mn ≤ n1/4. For Gaussian errors, we can take p → +∞ and we find D

(1)
mn ≤ √

n.

This kind of result is known to lead to results of adaptation to unknown smoothness. For
further applications, see Barron et al. (1999). We first recall that a function f belongs to
the Besov space Bα,l,∞([0, 1]) if it satisfies

|f |α,l = sup
y>0

y−αwd(f, y)l < +∞, d = [α] + 1,

where wd(f, y)l denotes the modulus of smoothness. For a precise definition of those
notions, we refer to DeVore and Lorentz (1993) Chapter 2, Section 7, where it also proved
that Bα,l,∞([0, 1]) ⊂ Bα,2,∞([0, 1]) for l ≥ 2. This justifies that we now restrict our
attention to Bα,2,∞(A).

Proposition 3.1 Assume that the Assumptions of Theorem 3.1 hold and consider the
families (RP), (DP), (W) or (T). Let α be a real number greater than 1/2, α ≤ r for
(RP), (DP) and (W) and assume that b belongs to some Besov space Bα,2,∞(A). Then

(
sup

b∈IBα,2,∞(L)

IE‖b1IA − b̃‖2
n

) 1
2

≤ C(α,L)n− α
2α+1 (3.22)

where IBα,2,∞(L) = {t ∈ Bα,2,∞(A), |t|α,2 ≤ L}.

Proof. The result is straightforward with Lemma 12 in Barron et al. (1999) which imply

that ‖b1IA − bm‖ is of order (D
(1)
m )−α on the specified collections of models. Moreover the

norm µ on the compact A is bounded by h1 times the Lebesgue-norm as mentioned in
(2.11). �

Remark. Since the optimal choice is D
(1)
m∗ = n1/(2α+1), it satisfies in particular D

(1)
m∗ ≤√

n, ∀α > 1/2. This allows to reach the optimal rate even with the family (T), restricted
to dimensions less than

√
n.

3.2 Estimation of σ
2

The result for the variance function can be given in two steps. σ2
m denotes the IL2 projec-

tion of σ2 on S
(2)
m .

11



Theorem 3.2 Let X1, . . . , Xn be a stationary sequence drawn from model (1.1) and con-
sider a collection of models satisfying (HΦ2) and (H(a2,b2)). Assume that A1, A2(p), A3,
A4 are fulfilled with

p ≥ 16, p ≥ 4(1 + a2) and p > 8b2 + 12, (3.23)

then σ̃2, defined by (2.17)-(2.18), with ŝ2
n defined by (2.19) and such that

dim(S(2)
mn

) = D(2)
mn

≤ n1/2−4/p, (3.24)

satisfies

IE[‖σ21IA − σ̃2‖2
n] ≤ C inf

m∈M(2)
n

(
‖σ21IA − σ2

m‖2
µ + S2Φ2

2

D
(2)
m

n

)

+
R

n
+ C ′IE[‖b21IA − b̃2‖2

n] (3.25)

where C and C ′ are universal constants, S2 = ‖b2 + σ2‖2
µ + m4‖σ2‖2

µ + 4‖bσ‖2
µ and R is

a constant depending on σ16, Φ2, ‖b1IA‖∞, ‖σ1IA‖∞.

Condition (3.23) reduces to p ≥ 16 for families (DP) or (W), to p ≥ 20 for family (RP)
and to p > 16 for the family (T).

Remark. Note that considering the contrast

γ̃n(t) =
1

n

n∑

i=1

[
X2

i+1 − t(Xi)
]2

leads to an estimate f̃ of f = b2 + σ2. In particular, it is possible to provide in an analo-
gous way a bound for ‖f − f̃‖2

n. This gives the rate n−γ/(2γ+1) where γ = min(α, β) if b
belongs to a Besov space Bα,2,∞ and σ2 to a Besov space Bβ,2,∞. But it does not allow to
separate the smoothness α and β of b and σ, without avoiding the loss in the rate when
coming back to the evaluation of the rate of convergence of the estimator of σ2 given by
f̃ − (b̃)2.

The interest of (3.25) is to illustrate the dependency in the first step estimator, and to
show where some loss in the rates of convergence can happen. Indeed as

‖b21IA − b̃2‖2
n = ‖(b1IA − b̃)(b1IA + b̃)‖2

n = ‖(b1IA − b̃)(2b1IA − (b1IA − b̃))‖2
n

≤ 4‖b1IA‖∞‖b1IA − b̃‖2
n + 2‖(b1IA − b̃)2‖2

n

≤ 4‖b1IA‖∞‖b1IA − b̃‖2
n + 2n‖b1IA − b̃‖4

n,

so that we can find as another extension of Theorem 3.1 and as a tool for completing
(3.25) in Theorem 3.2, the following bound:

Proposition 3.2 Under the Assumptions of Theorem 3.1 and if

p ≥ 2(a1 + 2) and p > 4b1 + 10, (3.26)

12



we have:

IE(‖b1IA − b̃‖4
n) ≤ C inf

m∈M(1)
n

(
‖b1IA − bm‖4 +

‖b1IA − bm‖2
8

n
+

(D
(1)
m )2

n2

)

+
R′

n2
. (3.27)

where C depends now on C, h1, M , θ and ‖b‖2
µ + ‖σ‖2

µ and ‖f‖8
8 =

∫
|f(x)|8dx.

Therefore if b belongs to some Besov space Bα,2,∞ for α > 1/2, then ‖b1IA−bm‖8 is of order

(D
(1)
m )−(α−(1/2−1/8)), ‖b1IA − bm‖ is of order (D

(1)
m )−α. Therefore, choosing D

(1)
m of order

n1/(2α+1) ensures that the infimum in (3.27) is less than Cn−4α/(2α+1)[1+n−(2α−1/2)/(2α+1)]
and therefore less than 2Cn−4α/(2α+1), ∀α > 1/2. The rate corresponding to the term
depending on b via nIE(‖b1IA − b̃‖4

n) is

n × n−4α/(2α+1) = n−(2α−1)/(2α+1).

Next if σ2 is in some Bβ,2,∞, then the first term of the right-hand-side of (3.25) is of order

n
− 2β

2β+1 .

Thus it is easy to see that the minimax rate is obtained for σ2 if

α ≥ 2β + 1/2,

i.e. it requires the regularity of b to be significantly greater than that of σ2. Moreover
for the part IE(‖b1IA − b̃‖2

n) which has rate n−2α/(2α+1), it is negligible with respect to
n−2β/(2β+1) as soon as αβ. Therefore, we proved the following result:

Proposition 3.3 Assume that the Assumptions of Theorems 3.1, 3.2 and (3.26) hold
and consider the collections of models (DP), (RP), (W) or (T). Let α and β be real
numbers greater than 1/2 and less than r for families (RP), (DP) or (W) and assume
that b belongs to some Besov space Bα,2,∞(A) and that σ2 belongs to some Besov space
Bβ,2,∞(A) with α ≥ 2β + 1/2. Then

sup
b∈IBα,2,∞(R1,R2),σ2∈IBβ,2,∞(L)

IE‖σ21IA − σ̃2‖2
n ≤ C(α,L, R1, R2)n

− 2β
2β+1 (3.28)

where IBα,2,∞(R1, R2) = {t ∈ Bα,2,∞(A), |t|α,2 ≤ R1, |t|∞ ≤ R2} and IBβ,2,∞(L) = {t ∈
Bβ,2,∞(A), |t|β,2 ≤ L}.
Comments: 1. If the condition α ≥ 2β + 1/2 is not fulfilled, the rate becomes
n−(2α−1/2)/(2α+1) and is clearly suboptimal.
2. It has already been mentioned in the introduction that Neumann (1994) reaches the
optimal rate for the estimation of σ2 under the simpler condition α > 1; but he works
with a fixed design regressive model under moment condition of any order for ε. It is also
worth comparing this result with Hoffmann (1999) who deals with a more general risk ILp′

and with functions belonging to more general Besov spaces Bs,p,q, with s = α or s = β.
Taking p′ = p = 2 and q = ∞ in his main result for comparison shows that his conditions
reduce simply to α > 3/2 (even when estimating b alone) and β > 3/2. Moreover, he
requires the finiteness of exponential moments of the noise and reaches the optimal rate
up to ln(n) factors. Therefore, the result given in Proposition 3.1 is always better, and
the result given by Proposition 3.3 is better if α ≥ 2β + 1/2.
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4 Simulation results

We generate samples using several regressive and autoregressive models. All models are
denoted by Yi = b(Xi) + σ(Xi)εi+1, with possibly Yi = Xi+1 in the autoregressive case.
For all paths, to make sure that the process has reached stationarity in the autoregressive
case, we forget the 200 first data. For each model, we consider S = 400 samples with

length n = 500 which provides paths denoted by (Y
(s)
i , X

(s)
i )1≤i≤n for s = 1, . . . , S. We

consider various couples of regression or autoregression functions (b, σ). The couples of
functions are gathered in Table 1. The values of the parameters in the regressive and
autoregressive cases are given in the appendix (section 6).

Model drift and volatility

M1 b(x) = 0.4x + 1, σ(x) ≡ σ

M2 b(x) = (0.5 + 0.25x) exp(0.5 − 0.25x), σ(x) ≡ σ

M3 b(x) = 0.5(x + 2 exp(−16x2), σ(x) ≡ σ

M4 b(x) = sin(2x) + 2 exp(−16x2), σ(x) ≡ σ

M5, M6 & M7 b(x) = sin(2ωπx + π/3), σ(x) ≡ σ

M8 b(x) = sin(2πx + π/3), σ(x) = σ
√
|x|

M9
b(x) = sin(2πx + π/3)

σ(x) = σ(0.31 + 0.7 exp(−5x2))

M10
b(x) = a(x + 2 exp(−16x2))

σ(x) = σ(0.2 + 0.4 exp(−2x2))

M111 b(x) = 1/(1 + exp(−x))
σ(x) = σ(ϕ(x + 1.2) + 1.5ϕ(x − 1.2))

M12 &M13
b(x) = ax

σ(x) = 0.05 + 1/(1 + βx2)

M14 &M15 b(x) = ax, σ(x) = 0.05 + π/2 + arctan(βx)

M16 b(x) =

{
a|x| if x < x0,
a(x − 2x0) else.

σ(x) = σ

Table 1. Couples of functions used to generate the models

Note that the regressive case corresponds to the independent framework and the au-
toregressive case corresponds to the dependent context. Moreover models M1 to M7
correspond to (auto-)regressive models with constant volatility. Model M8 studies the
problem of possible nullity of the variance function, together with some regularity prob-
lems in the volatility function. The models M10 and M11 are the one studied by Fan and
Yao (1998) and Härdle and Tsybakov (1997) respectively. Lastly, model M16 studies the
effect of a discontinuity in the mean function.

In the regressive case, the parameters are chosen to give some fixed level of the signal
to noise ratio, denoted in all the following by s2n. Since in the regressive case, the Xi’s are
taken uniform on [−2, 2], we have s2n(reg) =

∫ 2
−2 b2(x)dx/

∫ 2
−2 σ2(x)dx. In the autoregres-

sive case, the choice of the parameters is done both to ensure the stability of the models
and to provide some given signal to noise ratio. Since the law of the Xi’s is unknown in
this case, we compute for a given long sample s2n(autoreg) =

∑n
i=1 b2(Xi)/

∑n
i=1 σ2(Xi)

and choose the coefficients giving the desired value of s2n(autoreg) in this particular case.

1ϕ is the normal density

14



The results for models M12, M14, M16 are not reported in that context because the
adjustment of most s2n ratios generate unstable models.

The estimation procedure is done using for both b and σ2 the collection of models (RP)
with degree r ≤ 5. We have implemented several procedures: six procedures working with
piecewise polynomials of given (fixed) degree from r = 0 to r = 5, and a seventh procedure
that chooses among those six global degrees the best one in terms of a penalized contrast.
The interest of fixed degree estimation is that we can compute oracles which provide a
benschmark to evaluate the performances of our estimates. More precisely, for each model,
each degree r, each given dimension D = 1, . . . , Dmax = [n/((r + 1) ln(n))], we compute

L2(b, r,D) =
1

S

S∑

s=1

(
1

n

n∑

i=1

[b(X
(s)
i ) − b̂

(s)
D (X

(s)
i )]2

)
,

where b̂
(s)
D is a mean square estimator based on the sample (Y

(s)
i , X

(s)
i )1≤i≤n, as an esti-

mation of IE[‖b − b̂D‖2
n]. Then we know

L2
opt(b, r) = min

1≤D≤Dmax

L2(b, r,D) and Dopt = arg min
1≤D≤Dmax

L2(b, r,D).

The oracle is then given by

L2
oracle(b) = min

0≤r≤5
L2

opt(b, r).

We define and compute analogously the oracles for σ2, L2
opt(σ

2, r) by using ([Y
(s)
i −

b(X
(s)
i )]2, X

(s)
i ) as new data set and keep L2

oracle(σ
2) = min0≤r≤5 L2

opt(σ
2, r). Note that

the oracles for σ2 are computed with assuming that b is known. The oracles gives the best
reachable performance, and are in practice unknown since the choice is performed with
respect to the true function. The computation of the oracles represents the (very) long
part (in time) of the numerical procedure.

s2n=1 s2n=3 s2n=7 s2n=10
b σ b σ b σ b σ

M1 2.6 0.7 1.7 0.7 1.2 0.7 1.1 0.7
M2 1.5 0.7 2.1 0.7 1.4 0.7 1.5 0.7
M3 1.4 0.7 1.8 0.7 1.4 0.8 1.7 0.8
M4 1.6 0.7 1.4 0.8 1.7 0.8 1.4 0.8
M5 1.7 0.7 1.1 0.7 1.4 0.7 1.4 0.7
M6 1.3 0.7 1.3 0.7 1.5 0.8 1.5 0.3
M7 1.4 0.9 1.3 0.9 1.3 1.0 1.3 1.0
M8 1.3 1.4 1.2 1.3 1.6 1.4 1.2 1.5
M9 1.6 1.2 1.4 1.2 1.5 1.2 1.6 1.2
M10 1.8 1.4 2.1 1.4 1.5 1.5 1.6 1.4
M11 2.7 2.1 1.6 2.0 1.2 2.1 1.1 2.1
M12 1.7 1.0 1.2 1.0 1.1 1.0 1.1 1.0
M13 2.2 1.1 1.8 1.1 1.6 1.1 1.6 1.1
M14 1.9 1.7 1.3 1.7 1.1 1.7 1.1 1.7
M15 1.9 1.2 1.3 1.2 1.1 1.2 1.1 1.2
M16 1.2 0.9 0.8 1.8 0.3 4.2 0.3 12

Table 2. Ratio to the oracle of the L2 risk for the first step estimator in the regressive
case for gaussian errors
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Let Sr,D be the space of piecewise polynomials of degree r on the partition [(d−1)/D, d/D[,
d = 1, . . . , D. Let X, Y, sX be vectors of IRn with coordinates Xi, Yi, sXi, where sXi will
be defined later, and let be t a function in some Sr,D. We define here the contrast and
the penalty function as

gn(X, Y, sX; t) =
1

n

n∑

i=1

(
Yi − t(Xi)

sXi

)2

and pen(D) = D + ln2(D).

Then we consider the following general procedures: Er(X, Y, sX, fX) for r = 0, . . . , 5 and
E(X, Y , sX, fX), with input the IRn vectors X,Y, sX previously described and fX with
coordinates f(Xi) for some given function f . The procedure Er(X, Y, sX, fX) proceeds
as follows.

• For D = 1, . . . , Dmax = [n/((r + 1) ln(n))], compute f̂r,D (in fact f̂r,D(Xi), i =
1, . . . , n) the piecewise polynomial of Sr,D minimizing gn(X, Y, sX; t) over all t in
Sr,D.

• Compute D̂r = arg min
1≤D≤Dmax

[gn(X, Y, sX; f̂r,D) + 2σ̂2
rpen(D(r + 1))] where

σ̂2
r =

{
gn(X,Y, sX, f̂r,[min(

√
n,n/((r+1) ln(n))]) if sXi = 1, ∀i = 1, . . . , n

1 else
.

• Keep σ̂2
r , (f̂r,D̂r

(X1), . . . , f̂r,D̂r
(Xn)) and ‖f−f̂r,D̂r

‖2
n = (1/n)

∑n
i=1(f(Xi)−f̂r,D̂r

(Xi))
2.

The procedure E(X, Y, sX, fX) follows then and selects

r̂ = arg min
0≤r≤5

{
gn(X, Y, sX, f̂r,Dr) + 2σ̂2

rpen((r + 1)D̂r)
}

.

The output is therefore f̃ = f̂r̂,D̂r̂
and the associated error ‖f − f̃‖2

n.

s2n=1 s2n=3 s2n=7 s2n=10
b σ b σ b σ b σ

M1 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8
M2 2.2 1.2 2.1 0.8 2.1 0.8 2.1 0.8
M3 1.2 0.8 1.5 1.0 1.4 0.9 1.2 0.8
M4 1.1 1.3 1.2 1.2 1.7 126 0.6 0.7
M5 1.3 0.9 1.4 1.2 1.5 1.1 1.4 0.8
M6 1.3 1.3 1.2 1.0 1.2 1.1 1.1 1.2
M7 1.6 2.6 1.4 2.9 1.4 1.1 1.3 1.4
M8 1.1 4.1 1.2 2.3 1.3 2.3 1.1 1.6
M9 1.5 1.6 1.1 1.7 1.3 1.7 1.5 1.6
M10 1.5 1.6 1.6 1.3 1.5 1.3 1.2 2.2
M11 1.5 2.2 1.6 1.7 1.4 1.2 1.4 1.2

Table 3. Ratio to the oracle of the L2 risk for the first step estimator in the
autoregressive case for gaussian errors.

It follows that, as an output of the procedure Er(X
(s), Y (s), 1I, bX(s)), where (X(s), Y (s))

is the sth sample drawn from a given regressive model, we obtain b̃
(s)
r , and b̃(s) as an output

of E(X(s), Y (s), 1I, bX(s)). We compute ‖b− b̃(s)‖2
n for each sample. This allows to compute

the mean IL2-empirical error:

L2
emp(b, b̃) = IE(S)

[
‖b − b̃r‖2

n

]
=

1

S

S∑

s=1

(
1

n

n∑

i=1

[b(X
(s)
i ) − b̃(s)

r (X
(s)
i )]2

)
.
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Therefore, we are interested in the ratios L2
emp(b, b̃)/L2

oracle(b). They are generally greater
than one. The nearer of one, the better our method.

We also computed the output of E(X(s), Y (s), σX(s), bX(s)), where σX(s) has coordi-

nates σ(X
(s)
i ) for i = 1, . . . , n, which delivers an estimator denoted by b̃

(s)
σ of b if σ were

known. We compared the associated ratio L2
emp(b, b̃σ)/L2

oracle(b) to the previous one.

Analogously, Er(X
(s), [Y (s) − b̃(s)(X(s))]2, 1I, σ2X(s)) where [Y (s) − b̃(s)(X(s))]2 has co-

ordinates [Y
(s)
i − b̃(s)(X

(s)
i )]2 for i = 1, . . . , n, gives estimators σ̃2

(s)

r , and E(X(s), [Y (s) −
b̃(s)(X(s))]2, 1I, σ2X(s)) gives σ̃2

(s)
. When s is varying we compute the error:

L2
emp(σ

2, σ̃2
(s)

) =
1

S

S∑

s=1

{
1

n

n∑

i=1

[
σ2(X

(s)
i ) − σ̃2

(s)
(X

(s)
i )

]2
}

.

It can be compared with the estimate, denoted by σ̃2
(s)

b of σ2 if b were known by using
E(X(s), [Y (s) − b(X(s))]2, 1I, σ2X(s)).

Moreover, we studied a second stage of the procedure by computing
˜̃
b
(s)

as the output of

Er(X
(s), Y (s), σ̃2

(s)
, bX(s)) and

˜̃
σ2

(s)

as the output of E(X(s), [Y (s)−˜̃
b
(s)

(X(s))]2, 1I, σ2X(s)).
But this procedure happened to be very unstable in spite of several attempts to stabilize
it.

We need to make two remarks about our procedure. First, when we have to divide

by some estimate of the variance, when computing
˜̃
b
(s)

for instance, we divide in fact by
the supremum of the value of interest and the 2%-quantile of all the positive estimated
values. Secondly, there may be some restrictions on the values of the degrees when too
few observations lie in one bin. In the regressive case, when working with global degree
r, we take in fact locally on the subinterval [d − 1/D, d/D[, the degree

min

(
r,

∣∣∣∣
{

Xi ∈
[
d − 1

D
,

d

D

[}∣∣∣∣− 1

)
.

In the autoregressive case, we take min(r, R̂d−1) where R̂d = rank(V (d, D)) and V (d, D) =
(Xq−1

ip
/σ̃(Xip))1≤p≤k,1≤q≤r+1, for i1, . . . ik the indexes of the Xi’s in [(d−1)/D, d/D[. This

is required for the inversion of the local linear system associated to the local computation
of the estimator.

Our results are gathered in the Tables 2 and 3 in the case of gaussian errors. Table
4 and 5 give the results for uniform errors and since they are of the same type, they are
deferred to the appendix in section 6. All tables give the error ratios L2

emp/L2
oracle for b

and σ as in the models given in Table 1 and for different values of the signal-to-noise ratio
s2n. We can give several comments about these tables and other unreported results.

1. We can see that most ratios are near of 1, and almost all are less than 2, which
means that our estimates perform very well.

2. We give the results of the first step estimator for b and σ because the second step is
often unstable.

3. The results for b are most of the time better as those obtained by working with
known σ and the knowledge of b does not improve significantly the estimation of σ.

4. We must also emphasize that the last step of the procedure which chooses the de-
gree performs quite well and gives empirical errors of the same order as the error
associated to the degree implying the lowest error.
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Figure 1: True functions (thick curves) b and σ
2 in the autoregressive model M9 with value of

the parameters corresponding to s2n=3 and gaussian errors. Tenth and nineteenth percentiles
(dotted curves) for S = 100 samples with length n = 500 of the estimation of b (right curves)
and σ

2 (left curves) given by the algorithm.

5. When the s2n ratio become higher, the results do not improve significantly because
the oracle decreases considerably in the same time.

In order to give a visual illustration of the results, we give confidence intervals (tenth
and nineteenth percentiles) for curve estimation of b and σ2 in 3 cases: Model M9 in the
gaussian autoregressive case for s2n=3 (Figure 1), Model M10 for s2n=7 in the gaussian
regressive (Figure 2) and autoregressive (Figure 3) cases. We generated here S = 100
samples with length n = 500. It appears clearly that the estimation of the mean function
b is always very good, whereas the estimation of σ2 is generally better in the regressive
context than in the autoregressive one.

5 Proofs

5.1 Proof of Theorem 3.1

For the sake of simplicity, we omit the superscript (1) for the spaces and the dimensions

and write Sm for S
(1)
m , Dm for D

(1)
m , Mn for M(1)

n . There is no ambiguity all along this
proof.
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Figure 2: True functions (thick curves) b and σ
2 in the regressive model M10 with value of

the parameters corresponding to s2n=7 and gaussian errors. Tenth and nineteenth percentiles
(dotted curves) for S = 100 samples with length n = 500 of the estimation of b (right curves)
and σ

2 (left curves) given by the algorithm.

We follow the line of the proof of Theorem 1 in Baraud et al. (1999) and we use the same
notations. We only recall that Ω∗ is the event

Ω∗ = {(εi+1, Xi) = (ε∗i+1, X
∗
i ), i = 1, . . . , n}

where the variables (ε∗i+1, X
∗
i ) are associated to the (εi+1, Xi) as in Claim 2 of Baraud et

al. (1999) recalled below:
Claim 2: Let qn, qn,1 be integers such that 0 ≤ qn,1 ≤ qn/2, qn ≥ 1. Set ui = (εi, Xi),
i = 1, ..., n, then there exist random variables u∗

i = (ε∗i , X
∗
i ), i = 1, ..., n satisfying the

following properties:

• For ℓ = 1, ..., ℓn = [n/qn], the random vectors

~Uℓ,1 =
(
u(ℓ−1)qn+1, ..., u(ℓ−1)qn+qn,1

)′
and ~U∗

ℓ,1 =
(
u∗

(ℓ−1)qn+1, ..., u
∗
(ℓ−1)qn+qn,1

)′

have the same distribution, and so have the random vectors

~Uℓ,2 =
(
u(ℓ−1)qn+qn,1+1, ..., uℓqn

)′
and ~U∗

ℓ,2 =
(
u∗

(ℓ−1)qn+qn,1+1, ..., u
∗
ℓqn

)′
.
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Figure 3: True functions (thick curves) b and σ
2 in the autoregressive model M10 with value of

the parameters corresponding to s2n=7 and gaussian errors. Tenth and nineteenth percentiles
(dotted curves) for S = 100 samples with length n = 500 of the estimation of b (right curves)
and σ

2 (left curves) given by the algorithm.

• For ℓ = 1, ..., ℓn,

IP
[
~Uℓ,1 6= ~U∗

ℓ,1

]
≤ β(qn−qn,1) and IP

[
~Uℓ,2 6= ~U∗

ℓ,2

]
≤ βqn,1 . (5.29)

• For each δ ∈ {1, 2}, the random vectors ~U∗
1,δ, ...,

~U∗
ℓn,δ are independent.

The variables u∗
i are built using Berbee’s coupling Lemma as in Viennet (1997). For sake

of simplicity, we assume that n = qnℓn. For ρ ≥ 1 we also recall that Ωρ is the event:

Ωρ =



‖t‖2

µ ≤ ρ‖t‖2
n, ∀t ∈

⋃

m,m′∈Mn

Sm + Sm′



 ,

that is Ωρ is the event where the norms ‖.‖ and ‖.‖n can be compared. Lastly, we add,
for some τ ∈]0, 1[, the definition of the following event:

Ωτ =
{
(1 − τ)‖σ‖2

µ ≤ r̂2
n ≤ 2(1 + τ)(‖b‖2

µ + ‖σ‖2
µ)
}

, (5.30)

where r̂n is defined by (2.13). We denote by Ω∗
τ,ρ := Ωτ ∩ Ωρ ∩ Ω∗, by B(m′, µ) = {t ∈

Sm +Sm′ , ‖t‖µ ≤ 1}, and by D(m′) = dim(Sm +Sm′). Since m is fixed, we do not mention

20



the dependence on m of the previous terms. Then we write the decomposition

γn(t) − γn(s) = ‖bA − t‖2
n − ‖bA − s‖2

n + 2〈s − t, σε〉n

where 〈t, σε〉n = (1/n)
∑n

i=1 t(Xi)σ(Xi)εi+1. Moreover the definition of b̃ implies that
∀m ∈ Mn

γn(b̃) + pen(1)(m̂) ≤ γn(bm) + pen(1)(m)

with pen(1) defined by (2.15). Therefore, using that 2ab ≤ xa2 + x−1b2 and (a + b)2 ≤
(1+y)a2 +(1+y−1)b2 for all positive a, b, x and y, we find, analogously to (38) in Baraud
et al. (1999), Claim 3, that on Ω∗

τ,ρ

(
1 − ρ

1 + y

x

)
‖b1IA − b̃‖2

n

≤
(

1 + ρ
1 + y−1

x

)
‖b1IA − bm‖2

n + pen(1)(m)

+
x

n2

(
sup

t∈B(m̂,µ)

n∑

i=1

ε∗i+1σ(X∗
i )t(X∗

i )

)2

− pen(1)(m̂)

≤
(

1 + ρ
1 + y−1

x

)
‖b1IA − bm‖2

n + 2(1 + τ)κ(‖b‖2
µ + ‖σ‖2

µ)
Dm

n
Φ2

1

+
x

n2



(

sup
t∈B(m̂,µ)

n∑

i=1

ε∗i+1σ(X∗
i )t(X∗

i )

)2

− x2nD(m̂)Φ2
1‖σ‖2

µ




+

+
x3D(m̂)

n
Φ2

1‖σ‖2
µ −

κ(1 − τ)‖σ‖2
µDm̂Φ2

1

n

The real numbers x and y are positive constant numbers to be chosen. Then setting

W̃n(m′) =



(

sup
t∈B(m′,µ)

n∑

i=1

ε∗i+1σ(X∗
i )t(X∗

i )

)2

− x2nD(m′)Φ2
1‖σ‖2

µ




+

we find that if x, ρ are numbers satisfying x > ρ > 1, y = (x − ρ)/(x + ρ), τ > 0, and if
κ = x3/(1 − τ) in pen(1), then:

‖b1IA − b̃‖2
n1IΩ∗

τ,ρ
≤ K1(x, ρ)

[
‖b1IA − bm‖2

n + 4
(‖b‖2

µ + ‖σ‖2
µ)

1 − τ

Dm

n
Φ2

1

]

+
x

n2
W̃n(m̂). (5.31)

with K1(x, ρ) = (x + ρ)2/(x − ρ)2.
In Baraud et al. (1999), W̃n(m′) for σ ≡ σ2 where σ2 is a constant is denoted by Wn(m′)
and Proposition 6 in Baraud et al. (1999) states that, under assumptions analogous to
the assumptions of Theorem 3.1, for any p̄ < p/2,

∑

m′∈Mn

IE(Wn(m′)p̄) ≤ K2n
p̄


 ∑

m′∈Mn

D
−p/2+p̄
m′ +

qp
n|Mn|

np(p−2)/[4(p−1)]−p̄


 (5.32)
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where K2 = C(p, p̄, x)(Φ1h
−1/2
0 )pσ2p̄

p , σp
p = IE(|ε1|p) and C(p, p̄, x) is a constant depending

on p, p̄ and x.
This result has a straightforward extension to non constant variance function with only
a ‖σA‖∞ replacing σ2 and (‖σA‖∞σp)

2p̄ replacing σ2p̄
p . The only point to check is indeed

the bound for the analogous of IE
[
sup

∑ℓn

ℓ=1 Gℓ(t)
]

with now

G̃ℓ(t) =
∑

i∈I(1)
ℓ

ε∗i+1σA(X∗
i )t(X∗

i ).

We still find that for t =
∑D(m′)

j=1 ajϕj where (ϕj)1≤j≤D(m′) is a µ-orthonormal basis of
Sm + Sm′ ,

IE

[
sup

t∈B(m′,µ)

ℓn∑

ℓ=1

G̃ℓ(t)

]
≤




D(m′)∑

j=1

IE

(
ℓn∑

ℓ=1

G̃ℓ(ϕj)

)2



1/2

=




D(m′)∑

j=1

ℓn∑

ℓ=1

IE
(
G̃2

ℓ(ϕj)
)



1/2

since the blocks are independent and centered. The difference is that here

IE(G̃2
ℓ (ϕj)) =

∑

i∈I(1)
ℓ

IE(ε2
i+1)IE(σ2

A(Xi)ϕ
2
j (Xi)) = qn,1‖σAϕj‖2

µ.

Then using consequence (2.10) of assumption (HΦ1) 2., we have ‖
∑

j ϕ2
j‖∞ ≤ Φ2

1D(m′),
and therefore

IE

[
sup

t∈B(m′,µ)

ℓn∑

ℓ=1

G̃ℓ(t)

]
≤ Φ1‖σ‖µ

√
ℓnqn,1D(m′).

This gives the announced extension of Proposition 6 of Baraud et al. (1999), namely, for
p̄ = 1:

∑

m′∈Mn

IE

[
W̃n(m′)

n2

]
≤ K3n

−1


 ∑

m′∈Mn

D
−p/2+1
m′ +

qp
n|Mn|

np(p−2)/[4(p−1)]−1


 , (5.33)

where K3 = C(x, p)‖σA‖2
∞σ2

p(Φ
2
1h

−1
0 )p/2. Thus, in view of (H(a1,b1)), the last bracketed

term in (5.33) is uniformly bounded if

−p/2 + 1 ≤ −a1 and b1 + 1 − {p(p − 2)/[4(p − 1)]} < 0. (5.34)

Since p(p − 2)/[4(p − 1)] = (p − 2)/4 + (p − 2)/[4(p − 1)] ≥ (p − 2)/4, (5.34) if fulfilled
under (3.20).

Since IE
[
W̃n(m̂)/n2

]
≤
∑

m′∈Mn
IE
[
W̃n(m′)/n2

]
, (5.31), (5.33) and (3.20) imply that

IE(‖b1IA − b̃‖2
n1IΩ∗

τ,ρ
) ≤ K1(x, ρ)

[
‖b1IA − bm‖2

n + 4
(‖b‖2

µ + ‖σ‖2
µ)

1 − τ

Dm

n
Φ2

1

]

+
K4

n
. (5.35)

where K4 = K4(x, ρ,Φ1, h0,Σ1, T1). It remains to bound the expectation on the comple-
mentary of Ω∗

τ,ρ. Let C denote a constant that may change from line to line. It follows
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from Claim 5 in Baraud et al. (1999) that IP((Ωρ∩Ω∗)c) ≤ C/n2 under geometrical mixing
condition and (HΦ1) 3. and that

IE
[
‖b1IA − b̃‖2

n1IΩ∗c
τ,ρ

]
≤ C(h0, h1,Φ1, ρ)n−1

as soon as

IP((Ω∗
τ,ρ)

c) ≤ C

n2
. (5.36)

Since IP((Ω∗
τ,ρ)

c) ≤ IP(Ωc
τ ) + IP((Ω∗

ρ)
c) with obvious notations, and since

IP(Ωc
τ ) = IP(Ωc

τ ∩ Ωρ ∩ Ω∗) + IP((Ωρ ∩ Ω∗)c),

we find that (5.36) holds if we have

IP(Ωc
τ ∩ Ωρ ∩ Ω∗) ≤ C/n2.

This is ensured by the following Lemma:

Lemma 5.1 Under the Assumptions of Theorem 3.1 and if

D(1)
mn

≤ n1/2−k/p for k = 2 or k = 4, (5.37)

and p ≥ 8 if k = 2 and p ≥ 16 if k = 4 (so that D
(1)
mn can always be taken of order n1/4),

then
IP (Ωc

τ ∩ Ωρ ∩ Ω∗) ≤ Cn−k

where C is a constant depending in particular on Φ1, p ρ, ‖σ‖µ, ‖σA‖∞, ‖bA‖∞.

Recall that p denotes the order of the moment of the εi’s in model (1.1) and that D
(1)
mn is

defined by (2.13) and the line following. This ends the proof of Theorem 3.1. �.
The limit choices τ → 0 and x → 0 give κ → 1 but imply that the multiplicative constant
tends to infinity. The choice τ = 1/2, x = 2 and ρ = 1 gives κ = 4 and reasonable
orders for the multiplicative constants. The value of κ must be investigated by simulation
experiments.

Proof of Lemma 5.1. Most elements of this proof (in the case of a simpler model) can be
found in a first draft of Baraud et al. (1999) but it disappeared of the final version.

For the sake of simplicity, we work on a space Sm with dimension Dm (instead of D
(1)
mn).

We shall denote by tX the transpose of a vector X. Let R = t(X2, . . . , Xn+1) and let
ε = t(ε2, . . . , εn+1). All along this section we abusively denote the same way a function
g mapping IR into IR and the vector of IRn t(g(X1), · · · , g(Xn)). IRn is provided with
the inner product 〈u, v〉 =

∑n
i=1 uivi, we denote the corresponding norm by ‖.‖ and by

‖.‖n the empirical norm: ‖u‖2
n = (1/n)

∑n
i=1 u2

i . From now on {ϕλ, λ ∈ Λm} denotes an
orthonormal basis of Sm relatively to µ and Φm(X) is the Dm × Dm normalized Gram
matrix defined by

Φm(X) =

(
1

n

n∑

i=1

ϕλ(Xi)ϕλ′(Xi)

)

λ,λ′∈Λm

.

It follows from the definition of b̂m that

b̂m = Vm[nΦm(X)]−1 tVmR =
1

n
VmΦ−1

m (X) tVmR
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where Vm denotes the n × Dm matrix satisfying (Vm)(i,λ) = ϕλ(Xi) for i = 1, · · · , n and
λ ∈ Λm. We denote by Πm(X) the projection matrix VmΦ−1

m (X)tVm. Note that

Πm(X) tΠm(X) = VmΦ−1
m (X)( tVmVm)Φ−1

m (X) tVm = nVmΦ−1
m (X) tVm = nΠm(X).

Since r̂2
n = ‖R − b̂m‖2

n for R = b + σε, we have

r̂2
n = ‖R − Πm(X)R‖2

n

= ‖b − Πm(X)b + σε − Πm(X)σε‖2
n

=
1

n

[
‖b − Πm(X)b‖2 + ‖σε‖2 − ‖Πm(X)σε‖2 + 2〈b − Πm(X)b, σε〉

]
.

We define the measure IP∗,ρ by IP∗,ρ(B) = IP(B ∩ Ω∗ ∩ Ωρ), and we take τ = 4η.

IP∗,ρ(r̂2
n ≤ (1 − 4η)‖σ‖2

µ) ≤ IP∗,ρ(‖σε‖2
n ≤ (1 − η)‖σ‖2

µ)

+IP(‖Πm(X)σAε‖2
n ≥ η‖σ‖2

µ)

+IP∗,ρ(2|〈b − Πm(X)b, σε〉| ≥ 2nη‖σ‖2
µ).

We denote by σA = σ1IA. Note that σ can be replaced by σA each time it is multiplicated
by A-supported functions. The same holds for b and bA = b1IA.
Let us bound first IP∗,ρ(‖Πm(X)σAε‖2

n ≥ 2η‖σ‖2
µ).

‖Πm(X)σAε‖2 =
1

n2
t(σAε)Πm(X)Πm(X)(σAε) =

1

n
t( tVmσAε)Φ−1

m (X)( tVmσAε)

=
1

n
〈 tVmσAε, Φ−1

m (X)( tVmσAε)〉

≤ ρ(Φ−1
m (X))

n
‖ tVmσAε‖2,

where ρ(M) denotes the spectral radius of the matrix M . We know from Baraud (2000),
Lemma 3.1 p. 475, that

ρ(Φ−1
m (X)) = sup

t∈Sm/{0}

‖t‖2
µ

‖t‖2
n

.

Therefore on Ωρ, we have ρ(Φ−1
m (X)) ≤ ρ. This implies that on Ω∗ ∩ Ωρ,

‖Πm(X)σAε‖2
n ≤ ρ

n2
‖ tVmσAε‖2 = ρ

∑

λ∈Λm

(
1

n

n∑

i=1

εi+1ϕλ(Xi)σA(Xi)

)2

.

Therefore

IP∗,ρ(‖Πm(X)σε‖2
n ≥ η‖σ‖2

µ)

≤ IP∗,ρ


 ∑

λ∈Λm

(
1

n

n∑

i=1

εi+1ϕλ(Xi)σA(Xi)

)2

≥ η

ρ
‖σ‖2

µ




≤
(

ρ

η‖σ‖2
µ

) p
2

IE


 ∑

λ∈Λm

(
1

n

n∑

i=1

ε∗i+1ϕλ(X∗
i )σA(X∗

i )

)2



p
2

≤
(

ρ

η

) p
2 D

p/2−1
m

np‖σ‖p
µ

∑

λ∈Λm

IE

∣∣∣∣∣

n∑

i=1

ε∗i+1ϕλ(X∗
i )σA(X∗

i )

∣∣∣∣∣

p

.
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This term is handled by using a Rosenthal moment inequality (see Petrov (1995) or a
recall in Baraud (2000), Theorem 8.1) applied to centered and block-independent variables

admitting moments of order p (I(1,2)
ℓ is set for successively I(1)

ℓ and I(2)
ℓ ): there exists a

constant c(p) such that

IE

∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣

p

≤ 2c(p)





ℓn∑

ℓ=1

IE

∣∣∣∣∣∣∣

∑

i∈I(1,2)
ℓ

Zi

∣∣∣∣∣∣∣

p

+




ℓn∑

ℓ=1

IE



∑

i∈I(1,2)
ℓ

Zi




2


p/2




(5.38)

where Zi = ε∗i+1ϕλ(X∗
i )σA(X∗

i ). Next we bound both terms separately.

IE

ℓn∑

ℓ=1

∣∣∣∣∣∣∣

∑

i∈I(1,2)
ℓ

Zi

∣∣∣∣∣∣∣

p

≤
ℓn∑

ℓ=1

IE



∑

i∈I(1,2)
ℓ

|εi+1ϕλ(Xi)σA(Xi)|




p

≤ (Φ
√

Dm)p‖σA‖p
∞qp−1

n

ℓn∑

ℓ=1

IE



∑

i∈I(1,2)
ℓ

|εi+1|p




≤ (2Φ‖σA‖∞σp)
pqp−1

n nDp/2
m

using that n = ℓnqn and




ℓn∑

ℓ=1

IE



∑

i∈I(1,2)
ℓ

Zi




2


p/2

≤ ‖σA‖p
∞σp

2

[
n∑

i=1

IEϕ2
λ(Xi)

]p/2

≤ (‖σA‖∞σ2)
pnp/2.

Therefore

IP∗,ρ


 1

n2

∑

λ∈Λm

(
n∑

i=1

εi+1ϕλ(Xi)σ(Xi)

)2

≥ η

ρ
‖σ‖2

µ


 ≤ C

(
Dp

mn1−pqp−1
n +

D
p/2
m

np/2

)

(5.39)
where C = C(p, ρ, τ,Φ1, σp, ‖σA‖∞). Therefore, under (5.37), and for p ≥ 8, we have

IP∗,ρ(‖Πm(X)ε‖2
n ≥ η‖σ‖2

µ) ≤ C(τ, p, Φ1, ρ)n−k.

A bound for IP(‖σε‖2
n ≤ (1−η)‖σ‖2

µ) is obtained by applying a Rosenthal type inequality
as well.

IP∗,ρ(‖σε‖2
n ≤ (1 − η)‖σ‖2

µ)

= IP∗,ρ
(

1

n

n∑

i=1

σ2(Xi)(ε
2
i+1 − 1) +

1

n

n∑

i=1

[σ2(Xi) − IE(σ2(Xi)] ≤ −η‖σ‖2
µ

)

≤ IP∗,ρ
(

1

n

∣∣∣∣∣

n∑

i=1

σ2(Xi)(ε
2
i+1 − 1)

∣∣∣∣∣ ≥
η

2
‖σ‖2

µ

)

+IP∗,ρ
(

1

n

∣∣∣∣∣

n∑

i=1

[σ2(Xi) − IE(σ2(Xi)]

∣∣∣∣∣ ≥
η

2
‖σ‖2

µ

)
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≤ IE
∣∣∑n

i=1 σ2(X∗
i )(ε∗2i+1 − 1)

∣∣p/2

np/2(η
2‖σ‖2

µ)p/2
+

IE
∣∣∑n

i=1[σ
2(X∗

i ) − IE(σ2(X∗
i )]
∣∣p/2

np/2(η
2‖σ‖2

µ)p/2

≤ 2c(p)IEµ(|σ|p)
np/2(η

2‖σ‖2
µ)p/2

(
np/2qp/2−1

n IE|ε2
1 − 1|p/2 + np/4m

p/4
4 + 2p/2nqp/2−1

n + 2p/2np/4
)

.

Since p > 4, n1−p/2 < n−p/4 and thus the order is n−p/4 which is less than n−2 if p ≥ 8
and less than n−4 if p ≥ 16.
To bound the last term IP∗,ρ(2|〈b−Πm(X)b, σε〉n| ≥ 2η‖σ‖2

µ), we consider the two terms

IP∗,ρ(|〈b, σε〉n| ≥ η‖σ‖2
µ/2) and IP∗,ρ(|〈Πm(X)b, σε〉n| ≥ η‖σ‖2

µ/2).

Again, we clearly have

IP(2|〈b, σε〉n| ≥ η‖σ‖2
µ/2) ≤ 2p/2 IE|

∑n
i=1 b(X∗

i )σ(X∗
i )ε∗i+1|p/2

np/2(η‖σ‖2
µ)p/2

.

The moment of order p/2 is bounded by applying again the moment inequality (5.38) to
the blocks of b(X∗

i )σ(X∗
i )ε∗i+1:

IE|
n∑

i=1

b(X∗
i )σ(X∗

i )ε∗i+1|p ≤ c(p)
[
(2IEµ(|bσ|p/2)σp

pnqp/2−1
n + np/4σp

2 [IEµ(σ2b2)]p/4
]
.

Thus as previously and since qn is of order ln(n), p > 4, the order is n−p/4 so that:

IP∗,ρ
(
|〈b, σε〉n| ≥

η‖σ‖2
µ

2

)
≤ C(p, τ, IEµ(|b|p), IEµ(|σ|p), σp)n

−k.

A2(p) ensures that IEµ(|b|p), IEµ(|σ|p) are finite.
In the same way as previously,

1

n
|〈Πm(X)b, σε〉| =

1

n2

∣∣ tbAVmΦm(X)−1 tVmσAε
∣∣ ≤ ρ

n2
‖ tVmbA‖‖ tVmσAε‖.

Since

‖ tVmb‖2 =
∑

λ∈Λm

(
n∑

i=1

ϕλ(Xi)bA(Xi)

)2

≤ n‖bA‖2
∞
∑

λ∈Λm

n∑

i=1

ϕ2
λ(Xi)

≤ n2‖bA‖2
∞

∥∥∥∥∥∥

∑

λ∈Λm

ϕ2
λ

∥∥∥∥∥∥

2

∞

≤ n2‖bA‖2
∞Φ2

1Dm.

This implies

IP∗,ρ
(

1

n
|〈Πm(X)b, σε〉| ≥ η‖σ‖2

µ/2

)

≤ IP∗,ρ
(

1

n2
‖ tVmσAε‖ ≥

η2‖σ‖2
µ

4‖bA‖2∞Φ2
1Dm

)

= IP∗,ρ


 ∑

λ∈Λm

(
1

n

n∑

i=1

ϕλ(Xi)σA(Xi)εi+1

)2

≥
η2‖σ‖2

µ

4‖bA‖2∞Φ2
1Dm
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This term is nearly the same as (5.39) except that there is a loss of D
p/2
m in the final order.

Ignoring the constants, we find for this probability an order D
3p/2
m n1−pqp−1

n + Dp
mn−p/2.

The final order is Dp
mn−p/2 and is less than n−k as soon as Dm ≤ n1/2−k/p.

Lastly, we have to bound IP(r̂2
n ≥ 2(1 + τ)(‖b‖2

µ + ‖σ‖2
µ)), but

r̂2
n ≤ 2‖b − Πm(X)b‖2

n + 2‖σε‖2
n ≤ 2‖b1IAc‖2

n + 2‖bA − Πm(X)bA‖2
n + 2‖σε‖2

n

≤ 2‖bAc‖2
n + 2‖bA‖c

n + 2‖σε‖2
n = 2‖b‖2

n + 2‖σε‖2
n

so that

IP
(
r̂2
n ≥ 2(1 + τ)(‖b‖2

µ + ‖σ‖2
µ)
)

≤ IP
(
‖σε‖2

n ≥ (1 + τ)‖σ‖2
µ

)

+IP
(
‖b‖2

n ≥ (1 + τ)‖b‖2
µ

)

and the first right-hand-side term has already been studied; the second one gives the same
order with a Rosenthal inequality again. This completes the proof of Lemma 5.1.�

5.2 Proof of Theorem 3.2

We have

γ(2)
n (t) − γ(2)

n (s) = ‖t − σ2‖2
n − ‖s − σ2‖2

n +
4

n

n∑

i=1

b(Xi)σ(Xi)(s − t)(Xi)εi+1

+
2

n

n∑

i=1

σ2(Xi)(s − t)(Xi)(ε
2
i+1 − 1)

+
2

n

n∑

i=1

(b2 − b̃2)(Xi)(s − t)(Xi)

Since all functions s, t are A-supported, we can replace b and σ by b1IA = bA and σ1IA = σA

everywhere. Moreover, for any θ > 0,

2

n

n∑

i=1

(b2
A − b̃2)(Xi)(s − t)(Xi) ≤ θ‖b2

A − b̃2‖2
n +

2

θ
(‖σ2

A − t‖2
n + ‖σ2

A − s‖2
n).

Next, as γn(σ̃2) − γn(σ2
m) ≤ pen(m) − pen(m̂), we have, taking θ = 16,

7

8
‖σ̃2 − σ2

A‖2
n ≤ 9

8
‖σ2

m − σ2
A‖2

n +
4

n

n∑

i=1

bA(Xi)σA(Xi)(σ̃2 − σ2
m)(Xi)εi+1

+
2

n

n∑

i=1

σ2
A(Xi)(σ̃2 − σ2

m)(Xi)(ε
2
i+1 − 1) + 16‖b2

A − b̃2‖2
n

+ pen(2)(m) − pen(2)(m̂).

The terms to control are

sup
t∈B2(m′,µ)

1

n

n∑

i=1

bA(Xi)σA(Xi)t(Xi)εi+1 and sup
t∈B2(m′,µ)

1

n

n∑

i=1

σ2
A(Xi)t(Xi)ui+1
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where ui = ε2
i−1 are i.i.d. centered variables, with ui independent of Xi−1 and B2(m

′, µ) =

{t ∈ S
(2)
m + S

(2)
m′ , ‖t‖µ ≤ 1}, D2(m

′) = dim(S
(2)
m + S

(2)
m′ ). They both are of the type of W̃

previously studied. We set:

W̃ (1)
n (m′) =



(

sup
t∈B2(m′,µ)

n∑

i=1

ε∗i+1bA(X∗
i )σA(X∗

i )t(X∗
i )

)2

− x2nD2(m
′)Φ2

2‖bσ‖2
µ




+

W̃ (2)
n (m′) =



(

sup
t∈B2(m′,µ)

n∑

i=1

u∗
i+1σ

2
A(X∗

i )t(X∗
i )

)2

− x2nD2(m
′)Φ2

2m4‖σ2‖2
µ




+

and we consider the new Ω̃∗
τ,ρ := Ω̃τ ∩ Ωρ ∩ Ω∗ where now

Ω̃τ = {(1 − τ)s2 ≤ ŝ2
n ≤ 2(1 + τ)

[
IEµ[(b2 + σ2)2] + s2

]
}, (5.40)

with
s2 = 4IEµ(b2σ2) + m4IEµ(σ4).

We recall that S2 = s2 + IEµ[(b2 + σ2)2]. Therefore, we find:

7

8
‖σ̃2 − σ2

A‖2
n1IΩ̃∗

τ,ρ
≤ 9

8
‖σ2

m − σ2
A‖2

n + pen(2)(m) + 8Φ2
2x

2s2 D
(2)
m

n

+32W̃ (1)
n (m̂2) + 8W̃ (2)

n (m̂2) +
ρ

4
‖σ̃2 − σ2

m‖2
n

+16‖b2
A − b̃2‖2

n + 8Φ2
2x

2s2 Dm̂2

n
− pen(2)(m̂2). (5.41)

For simplicity, we choose ρ = 3/2 and this yields

1

8
‖σ̃2 − σ2

A‖2
n1IΩ̃∗

τ,ρ
≤ 15

8
‖σ2

m − σ2
A‖2

n + 8
3 + τ

1 − τ
Φ2

2x
2S2 D

(2)
m

n

+32
∑

m′∈Mn

W̃ (1)
n (m′) + 8

∑

m′∈Mn

W̃ (2)
n (m′) + 16‖b2

A − b̃2‖2
n

provided that κ in pen(2) is chosen in such a way that the last term in (5.41) is nonpositive
i.e. κ = 8x2/(1 − τ).

The bound for
∑

m′∈M(2)
n

IE[W̃
(1)
n (m′)] is the same as the one given in (5.33) with only

‖σA‖∞ replaced by ‖bAσA‖∞ and the same conditions on p. To bound
∑

m′∈Mn
IE[W̃

(2)
n (m′)]

we must take into account that the ui’s admit moments of order p/2 only, thus (5.33) holds
with ‖σA‖∞ replaced by ‖σA‖2

∞ and p replaced by p/2. Then the conditions required now
to bound the last term (see (5.33) with p replaced by p/2) are −p/4 + 1 ≤ −a2 and
b2 + 1 − {(p/2)(p/2 − 2)/[4(p/2 − 1)]} < 0; those conditions are fulfilled under (3.23).
Therefore, the end being the same as in the proof of Theorem 3.1, the result follows from
the following Lemma:

Lemma 5.2 Under the assumptions of Theorem 3.2 and if

D(2)
mn

≤ n1/2−4/p (5.42)

and p ≥ 16 (so that D
(2)
m can be of order n1/4), then

IP
(
Ω̃c

τ ∩ Ωρ ∩ Ω∗
)
≤ Cn−2

where C is a constant depending in particular on Φ2, p ρ, ‖σ‖µ, ‖σA‖∞, ‖bA‖∞.
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This ends the proof of Theorem 3.2. �

Proof of Lemma 5.2. We follow the line and the notations of the proof of Lemma 5.1 and
write, if X2 has coordinates (X2

i+1), i = 1, . . . , n:

ŝ2
n = ‖X2 − Πm(X)X2‖2

n

= ‖(b2 + σ2) − Πm(b2 + σ2)‖2
n + ‖2bσε + σ2(ε2 − 1)‖2

n

−‖Πm(X)(2bσε + σ2(ε2 − 1))‖2
n

+
2

n
< (b2 + σ2) − Πm(b2 + σ2), 2bσε + σ2(ε2 − 1) > .

Then all terms can be treated as previously. For instance

IP∗,ρ (‖2bσε + σ2(ε2 − 1)‖2
n ≤ (1 − η)(4‖bσ‖2

µ + m4‖σ2‖2
µ)
)

≤ IP

(
4

n

∣∣∣∣∣

n∑

i=1

b(X∗
i )σ3(X∗

i )(ε∗2i+1 − 1)ε∗i+1

∣∣∣∣∣ ≥ (η/5)(4‖bσ‖2
µ + m4‖σ2‖2

µ)

)

+IP

(
4

n

∣∣∣∣∣

n∑

i=1

b2(X∗
i )σ2(X∗

i )(ε∗2i+1 − 1)

∣∣∣∣∣ ≥ (η/5)(4‖bσ‖2
µ + m4‖σ2‖2

µ)

)

+IP

(
4

n

∣∣∣∣∣

n∑

i=1

(b2(X∗
i )σ2(X∗

i ) − IEµ(b2σ2)

∣∣∣∣∣ ≥ (η/5)(4‖bσ‖2
µ + m4‖σ2‖2

µ)

)

+IP

(
1

n

∣∣∣∣∣

n∑

i=1

σ4(X∗
i )[(ε∗2i+1 − 1)2 − m4]

∣∣∣∣∣ ≥ (η/5)(4‖bσ‖2
µ + m4‖σ2‖2

µ)

)

+IP

(
m4

n

∣∣∣∣∣

n∑

i=1

[σ4(X∗
i ) − IEµ(σ4)]

∣∣∣∣∣ ≥ (η/5)(4‖bσ‖2
µ + m4‖σ2‖2

µ)

)

and all terms can be treated thanks to a Rosenthal inequality of order p/4. This implies
an order n−p/8, less than n−2 for p ≥ 16 as assumed in (3.23).
Analogously the term ‖Πm(X)(2bσε + σ2(ε2 − 1))‖2

n is found of order

(D(2)
m )p/2n1−p/2qp/2−1

n + (D(2)
m )p/4n−p/4

and the scalar product term of order

(D(2)
m )3p/4n1−p/2qp/2−1

n + (D(2)
m )p/2n−p/4.

They are less than n−2 if (D
(2)
m )p/2 ≤ np/4−2 and p > 8 which explains condition (5.42).�

5.3 Proof of Proposition 3.2

We start from (5.31) which only requires to be squared:

‖bA − b̃‖4
n1IΩ∗

τ,ρ
≤ C ′

1(x, τ, ρ)

[
‖bA − bm‖4

n + (‖b‖4
µ + ‖σ‖4

µ)
(D

(1)
m )2

n2
Φ4

1

]

+
2x2

n4
W̃ 2

n(m̂). (5.43)
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Choosing p̄ = 2 in (5.32) and using the extended Proposition 6 of Baraud et al. (1999),
we can replace (5.33) by

∑

m′∈Mn

IE

[
(W̃n(m′))2

n4

]
≤ Kn−2


 ∑

m′∈M(1)
n

(D
(1)
m′ )

−p/2+2 +
qp
n|M(1)

n |
np(p−2)/[4(p−1)]−2


 .

where K = C(x, p)(Φ2
1h0)

p/2‖σA‖2
∞σ2

p. The last bracketed term is bounded if −p/2 + 2 ≤
−a1 and b1 + 2 − {p(p − 2)/[4(p − 1)]} < 0. This gives the conditions p ≥ 2(2 + a1)
and p > 4b1 + 10; these conditions are fulfilled under (3.26). Therefore under (3.26),∑

m′∈Mn
IE(W̃ 2

n(m′)/n4) is of order 1/n2.
Taking the expectation of (5.43) gives

IE
[
‖bA − b̃‖4

n1IΩ∗

τ,ρ

]
≤ C(x, τ, ρ)

[
IE(‖bA − bm‖4

n) + (‖b‖4
µ + ‖σ‖4

µ)Φ4
1

Dm

n2

]
+

K ′

n2

where K ′ depends on x, ρ, h0, ‖σA‖∞, Φ1,Σ1, T1. We write that

IE(‖bA − bm‖4
n) = ‖bA − bm‖4

µ +
1

n2
Var

[
n∑

i=1

(bA − bm)2(Xi)

]
.

From Theorem 2.1 in Viennet (1997), we know that there exists a function B satisfying
IE[Bk(X1)] ≤ k

∑
l≥0(l + 1)k−1βl and such that

Var

(
n∑

i=1

h(Xi)

)
≤ 2n

∫
B(x)h2(x)dµ(x)

for a sequence (Xi) stationary with stationary law µ and absolutely regular with β-mixing
coefficients βl. Therefore

Var

(
n∑

i=1

(bA − bm)2(Xi)

)
≤ 2n

[
IE(B2(X1))IE((bA − bm)8(X1))

]1/2

≤ 2nh
1/2
1 ‖bA − bm‖4

8

√√√√2

+∞∑

l=0

(l + 1)Me−θl

≤ C(M, θ, h1)n‖bA − bm‖4
8

This yields

IE(‖bA − bm‖4
n) ≤ ‖bA − bm‖4

µ +
C(M, θ, h1)

n
‖bA − bm‖4

8

which is the first part of the right hand side of (3.27).
The last thing to check is the order of the expectation of ‖bA−bm‖4

n on the complementary
of Ω∗

τ,ρ. Since

‖bA − b̃‖2
n = ‖bA − Πm̂(X)bA‖2

n + ‖Πm̂(X)σε‖2
n ≤ ‖bA‖2

n + ‖σε‖2
n

we have

IE
[
‖bA − b̃‖4

n1I(Ω∗

τ,ρ)c

]
≤ 2



‖bA‖4

∞IP[(Ω∗
τ,ρ)

c] + IE


 1

n2

(
n∑

i=1

σ2(Xi)ε
2
i+1

)2

1I(Ω∗

τ,ρ)c
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≤ 2

[
‖bA‖4

∞IP[(Ω∗
τ,ρ)

c] +
1

n

n∑

i=1

IE
(
σ4(Xi)ε

4
i+11I(Ω∗

τ,ρ)c

)]

≤ 2

(
‖bA‖∞ +

√
IE(ε8

1)IEµ(σ8)

)√
IP((Ω∗

τ,ρ)
c).

Thus, we need
√

IP((Ω∗
τ,ρ)

c) to be order n−2 i.e. that IP((Ω∗
τ,ρ)

c) ≤ C/n4 which is ensured

by Lemma 5.1 (take k = 4) under the Assumptions of Theorem 3.2.�

6 Appendix: Value of the parameters associated

to the models and further numerical results.

The functions are given in Table 1 and the parameters are given first for the regressive
case as a function of s2n, then in the autoregressive case, in the order corresponding to
s2n values 1, 3, 7, 10, first for gaussian errors and next for uniform errors.

M1 σ = 1.1015/s2n; σ = (1.85, 0.562, 0.239, 0.167), σ = (1.85, 0.562, 0.2385, 0.1669),

M2 σ = 0.7728/s2n; σ = (0.917, 0.318, 0.137, 0.096), σ = (0.917, 0.31, 0.137, 0.096),

M3 σ = 0.6416/s2n; σ = (0.555, 0.161, 0.0549, 0.0371), σ = (0.555, 0.169, 0.055, 0.0371),

M4 σ = 0.8669/s2n; σ = (0.928, 0.305, 0.132, 0.0935), σ = (0.93, 0.302, 0.1316, 0.0935),

M5 σ = 1/(
√

2s2n); σ = (0.7071, 0.2447, 0.1184, 0.0877), σ = (0.7071, 0.2405, 0.1175,
0.0881),

M6 σ = 1/(
√

2s2n); σ = (0.7071, 0.2357, 0.102, 0.0718), σ = (0.7071, 0.2341, 0.1019,
0.0719),

M7 σ = 1/(
√

2s2n); σ = (0.7071, 0.2357, 0.101, 0.071), σ = (0.7071, 0.2357, 0.1006,
0.0707),

M8 σ = 1/(
√

2s2n); σ = (0.777, 0.291, 0.1269, 0.0889), σ = (0.7813, 0.2898, 0.1268,
0.0891),

M9 σ =
√

2/s2n; σ = (1.266, 0.423, 0.188, 0.133), σ = (1.266, 0.423, 0.1877, 0.1329),

M10 a = 0.2762s2n, σ = 1; a = 0.5, σ = (1.255, 0.331, 0.108, 0.0728), a = 0.5, σ = (1.27,
0.352, 0.1077, 0.0727),

M11 σ = 1.1139/s2n; σ = (1.19, 0.376, 0.1603, 0.1122), σ = (1.19, 0.376, 0.1603, 0.1122),

M12 β = 2, a = s2n/1.5235; β = 1, a =(0.707, 0.9485, 0.9895, 0.9947), β = 1, a = (0.707,
0.9485, 0.9896, 0.9947),

M13 β = 5, a = s2n/2.5347; no autoregressive counterpart.
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s2n=1 s2n=3 s2n=7 s2n=10
b σ b σ b σ b σ

M1 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0
M2 1.9 1.0 2.3 1.1 2.3 1.1 2.3 1.1
M3 1.5 1.4 1.6 1.3 1.2 1.2 1.3 1.3
M4 1.3 1.7 1.2 2.1 1.2 1.2 1.2 1.0
M5 1.2 1.6 1.3 1.4 1.5 1.2 1.2 1.5
M6 1.3 2.2 1.3 1.7 1.1 2.1 1.3 2.4
M7 1.6 3.1 1.3 2.7 1.3 2.5 1.3 2.4
M8 1.3 8.5 1.1 2.5 1.3 1.9 1.1 2.3
M9 1.5 1.6 1.1 1.7 1.3 1.5 1.3 1.6
M10 1.5 1.9 1.9 1.9 1.1 1.1 1.2 1.3
M11 1.8 2.6 1.5 2.3 1.6 1.3 1.6 1.1

Table 4. Ratio to the oracle of the L2 risk for the first step estimator in the
autoregressive case for uniform errors.

M14 β = 4, a = s2n/0.6007; β = 0.25, a =(0.708, 0.951, 0.9919, 0.9961), β = 0.25, a =
(0.707, 0.95, 0.9918, 0.9961),

M15 β = 2, a = s2n/0.5675; no autoregressive counterpart

M16 x0 = 1/
√

2, σ = 0.8616, a = s2n; a = 1.04, x0 =
√

2, σ = (1.044, 0.314, 0.162, 0.125);
a = 1.04, x0 =

√
2, σ = (1.03, 0.314, 0.162, 0.1254).

s2n=1 s2n=3 s2n=7 s2n=10
b σ b σ b σ b σ

M1 2.4 1.1 1.6 1.1 1.4 1.1 1.4 1.1
M2 1.7 1.0 2.1 1.1 1.5 1.1 1.5 1.1
M3 1.5 1.3 1.6 1.3 1.3 1.3 1.6 1.3
M4 1.8 1.3 1.4 1.3 1.6 1.3 1.3 1.4
M5 1.9 1.2 1.3 1.2 1.6 1.2 1.5 1.2
M6 1.3 1.3 1.3 1.1 1.5 1.3 1.5 1.3
M7 1.3 1.4 1.3 1.5 1.2 1.6 1.3 1.8
M8 1.4 1.3 1.2 1.3 1.5 1.5 1.2 1.4
M9 1.6 1.2 1.4 1.2 1.5 1.2 1.6 1.2
M10 1.6 1.3 2.4 1.3 1.3 1.3 1.5 1.3
M11 2.4 1.3 1.6 1.3 1.3 1.3 1.3 1.3
M12 2.0 1.6 1.4 1.5 1.4 1.5 1.4 1.5
M13 2.7 1.5 2.2 1.5 2.2 1.5 2.2 1.5
M14 1.9 1.5 1.4 1.5 1.3 1.4 1.3 1.4
M15 2.0 1.1 1.5 1.1 1.4 1.1 1.4 1.1
M16 1.3 1.5 0.8 3.6 0.4 11 0.3 31

Table 5. Ratio to the oracle of the L2 risk for the first step estimator in the regressive
case for uniform errors.
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