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Assume we observe a random vector y of Rn and write y = f +ε, where f is the expectation of
y and ε is an unobservable centered random vector. The aim of this paper is to build a new test for
the null hypothesis that f = 0 under as few assumptions as possible on f and ε. The proposed test
is nonparametric (no prior assumption on f is needed) and nonasymptotic. It has the prescribed
level α under the only assumption that the components of ε are mutually independent, almost
surely different from zero and with symmetric distribution. Its power is described in a general
setting and also in the regression setting, where fi = F (xi) for an unknown regression function
F and fixed design points xi ∈ [0, 1]. The test is shown to be adaptive with respect to Hölderian
smoothness in the regression setting under mild assumptions on ε. In particular, we prove adaptive
properties when the εi’s are not assumed Gaussian nor identically distributed.
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1. Introduction

Assume we observe a random vector y ∈ Rn and write y = f + ε, where f is
the unknown expectation of y and ε = (ε1, . . . , εn)T is an unobservable random
vector with mean zero. Assume the εi’s are mutually independent with symmetric
distribution (we mean that for every i, εi has the same distribution as −εi). Our
aim is to build a nonasymptotic test for the null hypothesis H0 : f = 0 against the
nonparametric composite alternative H1 : f 6= 0, when no prior assumption is made
on f and as few as possible assumptions are made on ε. In particular, we do not
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assume a priori that f belongs to a given smoothness class, and the εi’s are not
assumed identically distributed nor Gaussian. The proposed test is defined as a
multi-test and is based on a symmetrization principle that exploits the symmetry
assumption.

The problem of hypothesis testing in the general model y = f + ε has rarely
been addressed in the literature. Baraud et al. (2003) consider the problem of
testing the null hypothesis that f belongs to a given linear subspace of Rn. No
prior information on f is required, but they assume that the components of ε are
independent with the same Gaussian distribution. Under the same assumptions,
Baraud et al. (2005) propose a test for the null hypothesis that f belongs to a given
convex subset of Rn.

An interesting particular case of the general model above is the regression model,
which is obtained in the case where fi = F (xi) for all i = 1, . . . , n. Here, the xi’s
are nonrandom design points and F is an unknown function. In this context, many
tests have been proposed for the null hypothesis that F belongs to a given set F
against a nonparametric alternative. Typically, F is a parametric set of functions
or F is restricted to a single function, which amounts to F = {0}. These tests are
often based on a distance between a nonparametric estimator for F and an estimator
for F that is computed under the null hypothesis, see, e.g., Müller (1992). This
requires the choice of a smoothing parameter such as a bandwidth. Other tests
consider the smoothing parameter itself as a test statistic, see, e.g., Eubank and
Hart (1992). Another approach consists in building a test statistic as a function of
estimators for the Fourier coefficients of F , see, e.g., Chen (1994). We refer to the
book of Hart (1997) for a review of these methods.

Recently, the problem of adaptive minimax testing has been addressed. Suppose
that the null hypothesis is F ≡ 0 and consider the alternative that F is bounded
away from zero in the L2-norm, ‖F‖2 ≥ ρ(n), and possesses smoothness properties.
The minimal rate of testing (that is the minimal distance ρ(n) for which testing
with prescribed error probabilities is still possible) has been first derived in a white
noise model with signal F . The result depends heavily on the kind of smooth-
ness imposed, see Ingster (1982, 1993) and Ermakov (1991) for Sobolev smoothness
and Lepski and Spokoiny (1999) for Besov smoothness. The optimal rate and the
structure of optimal tests depend on the smoothness parameters, whereas these pa-
rameters are usually unknown in practical applications. In the white noise model,
Spokoiny (1996) proves that the minimal rate of testing for H0 : F ≡ 0 is altered
by a log log n factor when F belongs to a Besov functional class with unknown
parameters. He builds a rate optimal adaptive test based on wavelets. Gayraud
and Pouet (2005) obtain similar results in a regression model for a composite null
hypothesis under Hölderian smoothness. They prove that, in the Gaussian model,
the optimal rate of testing is altered by a log log n factor if the smoothness param-
eter is unknown. They build an adaptive test which achieves the optimal rate over
a class of Hölderian functions with smoothness parameter s > 1/4 in a possibly
non-Gaussian model. Other examples of adaptive tests are given by Baraud et al.

(2003), Härdle and Kneip (1999) and by Horowitz and Spokoiny (2001). All these
adaptive tests are defined as multi-tests. Roughly speaking, the authors first build
a test Ts that is minimax for a fixed smoothness parameter s and reject the null
hypothesis if there exists s in a given grid such that Ts rejects.
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Most of non-adaptive tests for zero mean involve a smoothing parameter which
is chosen in a somewhat arbitrary way (Staniswalis and Severini, 1991). Adaptive
tests do not show this drawback but either they require the errors to be i.i.d.
Gaussian (Härdle and Kneip, 1999, Baraud et al., 2003) or they are asymptotic
(Horowitz and Spokoiny, 2001, Gayraud and Pouet, 2005). Moreover, existing tests
involve estimation of the unknown variance. This requires either homoscedasticity
(Gayraud and Pouet, 2005) or regularity assumptions on the variance (Horowitz
and Spokoiny, 2001). On the contrary, our test requires very mild assumptions on
the errors, is nonasymptotic and needs neither variance estimation nor arbitrary
choice of a parameter. It has the prescribed level under the only assumption that
the εi’s are mutually independent with symmetric distributions (the εi’s may have
different distributions). Moreover, it achieves the optimal rate of testing over the
class of Hölderian functions with smoothness parameter s > 1/4 in the case where
the εi’s satisfy a Bernstein-type condition, and in particular, in the homoscedastic
Gaussian case. The test still achieves the optimal rate of testing for s ≥ 1/4 + 1/p
in the case where the εi’s possess bounded moments of order 2p for some p ≥ 2.

The paper is organized as follows. The testing procedure is described in Sec-
tion 2. It is also stated in this section that the proposed test has the prescribed
nonasymptotic level. In Section 3, we discuss implementation of the test. The
power is studied in Section 4 under various assumptions on the εi’s. In Section 5,
we compute the rate of testing of the test in a regression model under a Hölderian
assumption. A simulation study is reported in Section 6 and the proofs are given
in Section 7.

2. The Testing Procedure

Assume we observe a random vector y of Rn and write

y = f + ε,

where f is an unknown vector of Rn and ε is an unobservable random vector
with mean zero. Assume that the components of ε are independent and possess a
symmetric distribution around zero, which means that for all i, εi and −εi have the
same distribution. Assume furthermore that for all i, εi is almost surely different
from zero. Our aim is to build a test with nonasymptotic level α for the hypothesis
H0 : f = 0 against H1 : f 6= 0. Here, α is a fixed number in (0, 1). The test
is based on a symmetrization principle that exploits the symmetry assumption.
Before describing the test more precisely, let us introduce some notation.

Notation:

• For every set A, let |A| denote the cardinality of A and let 1A be the indicator
function of A, which means that 1A(x) equals 1 if x ∈ A and 0 otherwise.

• Let w be a random vector of Rn, independent of y, with independent compo-
nents wi distributed as random signs: P (wi = 1) = P (wi = −1) = 1/2.

• For all u, v ∈ Rn, let u× v be the vector of Rn with ith component (u× v)i =
uivi.

• Let ‖ · ‖n be the Euclidean norm in Rn.
• For every partition m of {1, . . . , n} into Dm nonempty subsets em,1, . . . , em,Dm

,
let tm,j (j = 1, . . . , Dm) be the vector of Rn with ith component 1em,j

(i) and let
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Πm be the orthogonal projector onto the linear span of {tm,1, . . . , tm,Dm
}. Thus

for all u ∈ Rn and i = 1, . . . , n

(Πmu)i =

Dm∑

j=1

(
1

|em,j |
∑

k∈em,j

uk

)
1em,j

(i), ‖Πmu‖2
n =

Dm∑

j=1

1

|em,j |

( ∑

k∈em,j

uk

)2

.

The test is based on the following heuristics. Under H0, y has the same distribu-
tion as w×y. Hence for every partition m of {1, . . . , n}, ‖Πmy‖2

n and ‖Πm(w×y)‖2
n

have the same distribution. Under H1, as f 6= 0, consider an (unobservable) par-
tition m such that for every e ∈ m the numbers (fi)i∈e all have the same sign.
Then for every e ∈ m, |∑i∈e fi| ≥ |∑i∈e wifi| with a strict inequality if wi = −1

and fi 6= 0 for some i ∈ e, hence one has ‖Πmf‖2
n > ‖Πm(w × f)‖2

n provided
wi = −1 and fi 6= 0 for some i ∈ {1, . . . , n}. Thus under H1 there exists m such
that ‖Πmy‖2

n tends to be larger than ‖Πm(w × y)‖2
n, whereas under H0, ‖Πmy‖2

n

and ‖Πm(w × y)‖2
n are of the same order of magnitude for every m. Therefore, we

propose to reject H0 if there exists m such that ‖Πmy‖2
n exceeds a given quantile

of ‖Πm(w × y)‖2
n. Since the quantiles of ‖Πm(w × y)‖2

n cannot be computed (they
depend on the unknown distribution of y) we consider conditional quantiles given y.

The precise construction of the test is as follows. Consider a collection of par-
titions M and positive numbers αm with

∑
m∈M αm = α. We reject H0 if there

exists m ∈ M such that ‖Πmy‖2
n exceeds the y-conditional quantile of ‖Πm(w×y)‖2

n

defined by

qy
m(αm) = inf

{
x ∈ R, P

[
‖Πm(w × y)‖2

n > x | y
]
≤ αm

}
.

The critical region of our test is thus

(1) sup
m∈M

{
‖Πmy‖2

n − qy
m(αm)

}
> 0.

Note that qy
m(αm) can theoretically be computed since it only depends on the

known distribution of w, but its exact calculus requires about 2n computations
which cannot be performed in practice. Hence we estimate it through Monte-Carlo
simulations, see Section 3. It is stated in the following theorem that the test has a
nonasymptotic level α.

Theorem 1. Assume we observe y = f + ε, where f ∈ Rn and the εi’s are

independent random variables with symmetric distribution. Assume P (εi = 0) = 0
for all i = 1, . . . , n. Let M be a collection of partitions of {1, . . . , n}, let α and

(αm)m∈M be positive numbers such that α =
∑

m∈M αm. Then

PH0

(
sup

m∈M
{ ‖Πmy‖2

n − qy
m(αm)} > 0

)
≤ α.

Remarks.

• Like the adaptive tests mentioned in the introduction, our test is a multi-test:
the null hypothesis is rejected if one of the tests with critical regions {‖Πmy‖2

n >
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qy
m(αm)} rejects. A given partition m allows us to detect alternatives with a given

smoothness s, and adaptive properties arise from the use of many partitions.
• Our method allows us to test the more general null hypothesis H0 : f ∈ V ,

where V is a linear subspace of Rn, but for this problem, we need the εi’s to be
i.i.d. Gaussian. Let V be a linear subspace of Rn with dimension k < n, let Π
be the orthogonal projector onto V ⊥ and let ∆ be the diagonal matrix of which
(n − k) first diagonal components equal 1 and the others are zero. There exists an
orthogonal matrix O with Π = OT ∆O. Now, let yV be the random vector that
consists of the (n − k) first components of ∆Oy = OΠy, let fV be the expectation
of yV and let εV = yV −fV . If the εi’s are i.i.d. Gaussian, so are the components of
εV . Since testing f ∈ V amounts to testing fV = 0 within the model yV = fV +εV ,
this may be done by applying our method. Then the theoretical results we obtain
in the i.i.d. Gaussian model for H0 : f = 0 (see Sections 4 and 5) can be generalized
to H0 : f ∈ V . We do not detail these results.

3. Practical Implementation

By definition, qy
m(αm) is the 1 − αm quantile of the discrete distribution with

support
{
‖Πm(u × y)‖2, u ∈ {−1, 1}n

}
, which puts mass k2−n at a given point x

of the above set if there exist k vectors u ∈ {−1, 1}n with ‖Πm(u × y)‖2 = x. The
exact calculation of qy

m(αm) thus requires about 2n computations, which cannot
be performed in practice. We thus suggest estimation of this quantile instead of
computing its exact value. The practical implementation of the test then is as
follows. Draw independent random vectors w1, . . . , wB which all are distributed
like w and are independent of y. For every m ∈ M, compute the empirical quantile
defined by

q̂B
m(αm) = inf

{
x ∈ R,

1

B

B∑

b=1

1‖Πm(wb×y)‖2
n>x ≤ αm

}

and reject H0 if

(2) sup
m∈M

{
‖Πmy‖2

n − q̂B
m(αm)

}
> 0.

It is stated in the following theorem that the test with critical region (2) has
asymptotically level α if B → ∞. Therefore, it suffices to choose B large enough so
that the level of this test is close to α. But our aim is to consider quite moderate B
so we also provide in Theorem 2 a control of the level in terms of α and B, under
the additional assumption that the distributions of the εi’s are continuous. This
result provides a control of what we lose in terms of first kind error probability
when we consider the critical region (2) instead of (1).

Theorem 2. Under the assumptions of Theorem 1,

lim
B→∞

PH0

(
sup

m∈M
{‖Πmy‖2

n − q̂B
m(αm)} > 0

)
≤ α.

If moreover the distributions of the εi’s are continuous, then

PH0

(
sup

m∈M
{‖Πmy‖2

n − q̂B
m(αm)} > 0

)
≤ α +

∑

m∈M

2Dm−n + |M|
√

π

2
√

2B
.
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By Theorem 2, it suffices to choose B = c|M|2 with a large enough c > 0
so that the level is close to α. The estimation of qy

m(αm) then requires about
n |M|2 computations. In practical applications, one can consider, for instance, the
collection of dyadic partitions Md defined in Section 5. The cardinality of Md is
about log2 n hence, using B with order of magnitude (log2 n)2, we get a level close
to the nominal level α in about n(log2 n)2 computations.

The following theorem describes what we lose in terms of second kind error
probability when we consider the critical region (2) instead of (1).

Theorem 3. For every m ∈ M, let δm < αm. Under the assumptions of

Theorem 1, we have for every f ∈ Rn

lim
B→∞

Pf

(
sup

m∈M
{‖Πmy‖2

n − q̂B
m(αm)} > 0

)
≥ Pf

(
sup

m∈M
{‖Πmy‖2

n − qy
m(δm)} > 0

)
.

4. Power

In this section, we study the power of the test with critical region (1). By
Theorem 3, similar results hold for the test with critical region (2) provided B is
large enough. Let M be a collection of partitions of {1, . . . , n}. Let α and β be fixed
numbers in (0, 1). Let (αm)m∈M be positive numbers such that α =

∑
m∈M αm.

The aim of this section is to describe a subset Fn(β) of Rn \ {0} over which the
power of the test is greater than 1 − β, i.e., which satisfies

(3) Pf

(
sup

m∈M
{‖Πmy‖2

n − qy
m(αm)} > 0

)
≥ 1 − β, for all f ∈ Fn(β).

For every partition m, the subsets e ∈ m which contain only one point do not
contribute to the power of the test since their contributions to the norms of Πmy
and Πm(w × y) are identical. Hence we restrict ourselves to collections M which
do not contain what we call the trivial partition, that is the partition made up of
n singletons. For every m ∈ M, we set

Jm,1 = {j ∈ {1, . . . , Dm}, |em,j | = 1}, Jm,2 = {j ∈ {1, . . . , Dm}, |em,j | ≥ 2}

(hence Jm,2 6= ∅) and
Im = min

j∈Jm,2

|em,j |.

We study the power of the test under two different assumptions on the εi’s
integrability. First, we assume that the εi’s satisfy the following Bernstein-type
condition: there exist positive real numbers γ and µ such that for all integers
p ≥ 1,

(4) max
1≤i≤n

E(ε2p
i ) ≤ γp!µp−2.

Thus the εi’s possess bounded moments of any order and ε2
i possesses an exponential

moment, hence the errors are much integrable. Note however that this assumption
is less restrictive than the Gaussian assumption: if the εi’s are Gaussian with
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bounded variance σ2
i ≤ σ2, then E(ε2p

i ) ≤ p!(2σ2)p, so (4) holds with µ = 2σ2 and
γ = µ2. It is also less restrictive than the boundedness assumption: if |εi| ≤ c for
all i, then (4) holds with µ = c2 and γ = µ2. Secondly, we assume there exist p ≥ 2
and µ > 0 such that

(5) max
1≤i≤n

E(ε2p
i ) ≤ µp.

Note that under both assumptions, the εi’s possess bounded variances and fourth
moments: E(ε2

i ) ≤ σ2 and E(ε4
i ) ≤ µ4 for all i and some positive σ and µ4. It is

also assumed in the sequel that |fi| ≤ L for all i = 1, . . . , n and a possibly unknown
L > 0.

4.1. Power under the Bernstein-type condition.
Theorem 4. Assume we observe y = f + ε, where the εi’s are independent

variables with symmetric distribution. Assume P (εi = 0) = 0 and |fi| ≤ L for

a positive number L and all i. Assume moreover (4) holds for all integers p ≥ 1
and some positive γ and µ. Let M be a collection of partitions which does not

contain the trivial one. Let α, β in (0, 1) and (αm)m∈M be positive numbers with∑
m∈M αm = α. For every A = (A1, . . . , A5) ∈ (0,∞)5, m ∈ M and f ∈ Rn let

∆1(m, f,A) = A1‖f − Πmf‖2
n + A2

√
γDm

β
(6)

+ A3(
√

γ + µ + L2)

[
1 +

1

Im
log

(
2Dm

β

)]
log

(
2

βαm

)

+ A4(
√

γ + µ + L2)

√
Dm

[
1 +

1

Im
log

(
2Dm

β

)]
log

(
2

βαm

)
+ A5L

2|Jm,1|.

Then there exists an absolute A such that (3) holds with

Fn(β) =
{

f ∈ Rn, ‖f‖2
n ≥ inf

m∈M
∆1(m, f,A)

}
.

Hence our test is powerful over Fn(β) provided the constants A1, . . . , A5 are
large enough. This set is large if there exists m ∈ M such that Πmf is close to f ,
Dm and |Jm,1| are small, while Im is large enough.

This result applies to the i.i.d. Gaussian model. Assume that the εi’s are i.i.d.
N (0, σ2) and in order to make appear the signal to noise ratio, assume that there
exists L > 0 such that |fi| ≤ σL for all i. Then (4) holds with µ = 2σ2 and
γ = µ2. Theorem 4 consequently applies with

√
γ and

√
γ + µ + L2 replaced by σ2

and σ2(1 + L2) respectively. However (see Section 7.7), one can obtain a slightly
sharper result by using Cochran’s theorem: the power of the test is greater than
1 − β as soon as

(7) ‖f‖2
n ≥ inf

m∈M

{
A1‖f − Πmf‖2

n

+ A3σ
2(1 + L2)

[
1 +

1

Im
log

(
2Dm

β

)]
log

(
2

βαm

)

+ A4σ
2(1 + L2)

√
Dm

[
1 +

1

Im
log

(
2Dm

β

)]
log

(
2

βαm

)
+ A5σ

2L2|Jm,1|
}
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for large enough Ak’s. This condition reduces to

(8) ‖f‖2
n ≥ inf

m∈M

{
C1‖f − Πmf‖2

n + C2σ
2

[
log

(
2

βαm

)
+

√
Dm log

(
2

αmβ

)]}
,

where C1 is an absolute constant and C2 only depends on L, provided this infimum
is achieved at a partition m∗ ∈ M with

(9)
1

Im∗

log

(
2Dm∗

β

)
≤ 1 and, e.g., |Jm∗,1| ≤

√
Dm∗ .

Instead of (9), Baraud et al. (2003) assume that (Dm +log(1/α))/(n−Dm) remains
bounded to prove that the power of their test is greater than 1 − β under condi-
tion (8). Hence, both tests are powerful on similar sets. However, unlike the test of
Baraud et al. our test requires neither Gaussian nor homoscedasticity assumptions.

4.2. Power under the bounded moments assumption.
Theorem 5. Assume we observe y = f + ε, where the εi’s are independent

variables with symmetric distribution. Assume P (εi = 0) = 0 and |fi| ≤ L for a

positive number L and all i. Assume moreover (5) holds for some p ≥ 2 and µ > 0.
Let M be a collection of partitions which does not contain the trivial one. Let α,

β in (0, 1) and (αm)m∈M be positive numbers with
∑

m∈M αm = α. For every

A = (A1, . . . , A6) ∈ (0,∞)6, m ∈ M, and f ∈ Rn let

∆2(m, f,A) = A1‖f − Πmf‖2
n + A2(µ + L2)

√
Dm

β
(10)

+ A3p(µ + L2)

[
1 +

1√
Im

(
Dm

β

)1/p]
log

(
2

αm

)

+ A4(µ + L2)

√

pDm

[
1 +

1√
Im

(
Dm

β

)1/p]
log

(
2

αm

)
+ A5L

2|Jm,1| + A6
µ

β
.

Then there exists an absolute A such that (3) holds with

Fn(β) =
{

f ∈ Rn, ‖f‖2
n ≥ inf

m∈M
∆2(m, f,A)

}
.

Let us compare this with Theorem 4. There are two main differences between
∆1 and ∆2. First, the absolute constants A3 and A4 in ∆1 are replaced in ∆2 by
A3p and A4

√
p respectively. Next, the term

1

Im
log

(
2Dm

β

)

in ∆1 is replaced in ∆2 by the greater term

1√
Im

(
Dm

β

)1/p

,
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which depends on the error integrability. Hence, as expected, the set where our test
is powerful is larger under the Bernstein-type condition than under the bounded
moments condition.

5. Rate of Testing

In this section we assume

fi = F (xi), i = 1, . . . , n,

for fixed numbers xi ∈ [0, 1] and an unknown F : [0, 1] → R. We aim at testing

H ′
0 : F ≡ 0 against H ′

1 : F 6≡ 0.

For this task, we consider the so-called collection of dyadic partitions Md = {mk,
k ∈ I}, where

I = {2l, l ∈ N, 2l ≤ n/2}
and mk consists of the nonempty sets among

{
i, xi ∈

(
j − 1

k
,
j

k

]}
, j = 1, . . . , k.

Let α and β in (0, 1) and αm = α/|Md|. As in Section 4, we restrict our attention
to the test with critical region (1), which still has level α in this setting. The aim of
this section is to study the power of this test when the εi’s satisfy either (4) or (5)
and F is assumed Hölderian. In particular, we aim at proving adaptive properties
of the test with respect to Hölderian smoothness. We distinguish between the cases
where the Hölderian smoothness of F is at most one or greater than one.

Assume the Hölderian smoothness of F to be at most one: there exist s ∈ (0, 1],
R > 0, and L > 0 such that

(11) ∀(u, v) ∈ [0, 1]2, |F (u) − F (v)| ≤ R|u − v|s, and sup
u∈[0,1]

|F (u)| ≤ L.

Assume moreover

(12) |Jmk,1| ≤ a0

√
Dmk

and Imk
≥ an

k
, all k ∈ I,

for absolute constants a0 ≥ 0 and a > 0. This means that the design points are
almost equidistant. In particular, the condition is satisfied with a0 = 0 and a = 1/2
if xi = i/n for all i. The following corollary of Theorems 4 and 5 provides conditions
on f under which the test is powerful, that is

(13) Pf

(
sup

m∈M
{‖Πmy‖2

n − qy
m(αm)} > 0

)
≥ 1 − β.

For the sake of simplicity, it is assumed that αm = α/|Md| for every m but it is
worth noticing that the results remain true if

∑
m∈M αm = α and αm ≥ (log2 n)−cα

for all m ∈ M and a positive cα, which only depends on α.
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Corollary 1. Assume we observe y = f + ε, where the εi’s are independent

variables with symmetric distribution and fi = F (xi) for fixed xi ∈ [0, 1] and an

unknown F . Assume P (εi = 0) = 0 for all i and F satisfies (11) for unknown s ∈
(0, 1], R > 0, and L > 0. Let M = Md be the collection of dyadic partitions. Let

α and β in (0, 1). For every m ∈ M, let αm = α/|M|. Assume furthermore (12).

1. If (4) holds for all integers p ≥ 1 and some positive numbers γ and µ, then (13)
holds whenever n is large enough and one of the three following conditions is fulfilled

for a large enough C (here, δ =
√

γ + µ + L2 and C only depends on a, a0, α, β):

(a) s > 1/4 and
1√
n
‖f‖n ≥ CR1/(1+4s)

(
δ
√

log log n

n

)2s/(1+4s)

;

(b) s = 1/4 and
1√
n
‖f‖n ≥ CR2/3n−1/4δ1/6(log n × log log n)1/12;

(c) s < 1/4 and
1√
n
‖f‖n ≥ CRn−s.

2. If (5) holds for some p ≥ 2 and µ > 0, then (13) holds whenever n is large

enough and one of the three following conditions is fulfilled for a large enough C
(here, δp =

√
p(µ + L2) and C only depends on a, a0, α, β):

(a) s ≥ 1/4 + 1/p and
1√
n
‖f‖n ≥ CR1/(1+4s)

(
δp

√
log log n

n

)2s/(1+4s)

;

(b) s ∈ [1/4 − 1/p, 1/4 + 1/p) and

1√
n
‖f‖n ≥ CR(2+3p)/(2+3p+8ps)

(
δp

√
log log n

n5/4

)4ps/(2+3p+8ps)

;

(c) s ≤ 1/4 − 1/p and
1√
n
‖f‖n ≥ CRn−s.

If xi = i/n for all i and F satisfies (11) then

1√
n
‖f‖n ≥ ‖F‖2 − Rn−s.

Hence in that case, Corollary 1 holds with ‖f‖n/
√

n replaced by ‖F‖2. In partic-
ular, if s > 1/4 and (4) holds with µ = 2σ2 and γ = µ2 (which is indeed the case if
the εi’s are i.i.d. N (0, σ2)), then the power of the test is greater than a prescribed
1 − β whenever n is large enough and

‖F‖2 ≥ CR1/(1+4s)

(
σ2

√
log log n

n

)2s/(1+4s)

for a positive C, which only depends on L/σ, α, and β. This rate is precisely the
minimal rate of testing obtained by Spokoiny (1996) in a white noise model. It is
also the minimal rate of testing obtained by Gayraud and Pouet (2005) in the i.i.d.
Gaussian regression model (but they do not describe the role of R and σ in this
setting). This proves that our test achieves the optimal rate of testing under the
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Bernstein-type condition (4) if s > 1/4, and also under the less restrictive moment
condition (5) if s ≥ 1/4 + 1/p. In the case where s ≤ 1/4, the optimal rate of
testing is not known, even in the i.i.d. Gaussian model. Note however that the rate
Rn−s (obtained when s < 1/4 and (4) holds, and also when s ≤ p − 1/4 and (5)
holds) was already obtained by Baraud et al. (2003) in the i.i.d. Gaussian setting
for s < 1/4.

Now, assume the Hölderian smoothness of F to be greater than one: there exist
d ∈ N \ {0}, κ ∈ (0, 1], R, and L such that

(14) ∀(u, v) ∈ [0, 1]2, |F (d)(u)−F (d)(v)| ≤ R|u− v|κ, and sup
u∈[0,1]

|F (u)| ≤ L.

Here, F (d) denotes the dth derivative of F (which is assumed to exist) and we
denote by s = d + κ the Hölderian smoothness of F . For technical reasons, we
restrict ourselves to the case where xi = i/n for all i.

Corollary 2. Assume we observe y = f + ε, where the εi’s are independent

variables with symmetric distribution and fi = F (i/n) for an unknown F . Assume

P (εi = 0) = 0 for all i and F satisfies (14) for unknown d ∈ N \ {0}, κ ∈ (0, 1],
R > 0, and L > 0. Let s = d + κ > 1 and let M = Md be the collection of dyadic

partitions. Let α and β in (0, 1). For every m ∈ M, let αm = α/|M|. Assume

furthermore that either (4) holds for all integers p ≥ 1 and some positive numbers

γ and µ, or (5) holds for some p ≥ 2 and µ > 0. Then there exists C > 0, which

only depends on α, β, and s, such that (13) holds whenever n is large enough and

(15) ‖F‖2 ≥ CR1/(1+4s)

(
δ
√

log log n

n

)2s/(1+4s)

.

Here, δ =
√

γ + µ + L under assumption (4) and δ =
√

p(µ + L2) under assump-

tion (5).

Thus our test achieves the optimal rate of testing when s > 1 under mild as-
sumptions on the εi’s.

6. Simulations

We carried out a simulation study to demonstrate the behavior of our test. We
also simulated the test TP2,Mdya

proposed by Baraud et al. (2003) in order to
compare the performance of the two tests.

6.1. The simulation experiment. We generated a random vector ε ∈ Rn

from a given distribution G and computed y = f + ε, where n ∈ {64, 128, 256} and
fi = F (xi) for a given function F and fixed xi’s. We considered the collection of
dyadic partitions M = Md as defined in Section 5, we set α = 5% and αm = α/|M|
for every m ∈ M. Then, we generated B = 2500 independent copies of w and
computed q̂B

m(αm) from these copies. Finally, we rejected the null hypothesis that
F ≡ 0 if (2) holds. For given G, F and n, we repeated this step 1500 times in order
to get 1500 independent tests, and we computed the percentage of rejections among
these tests. We thus obtained an estimate for the level (if F ≡ 0) or for the power
of our test. In order to assess the accuracy of the estimate, we repeated the above
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computations independently 100 times and computed the mean and the standard
deviation of the percentages of rejection obtained over these 100 simulations. For
every choice of G, F , and n, we obtained a small standard deviation (about 2.10−3

to 5.10−3), which means that the mean of the percentages of rejection is a good
estimate for the actual level of the test. For each simulation, we treated likewise
the TP2,Mdya

test of Baraud et al. (2003).
We considered five different distributions G. In all cases, the variables εi are

mutually independent, with mean zero. The first distribution (called Gaussian)
is the one under which our test and the test TP2,Mdya

both have prescribed level:
the εi’s are identically distributed and standard Gaussian. Then we considered
two distributions, called Mixture and Heteroscedastic, under which our test has
prescribed level, while TP2,Mdya

does not: under Mixture the εi’s are i.i.d. mixture
of Gaussian distributions as defined in Baraud et al. (2003) ((b), p. 236); under
Heteroscedastic, εi is a centered Gaussian variable with variance

v(i) = sin4

(
4π

(
i − 1

n − 1

)(
n − i

n − 1

))
.

Finally, we considered two distributions, called Type I and Asymmetric under which
none of the two tests have prescribed level: in both cases, the εi’s are i.i.d., Type I

is defined as in Baraud et al. (2003) ((c), p. 236) and under Asymmetric, the εi’s
are distributed as

3

2
√

5

(
U−2/5 − 5

3

)
,

where U is uniformly distributed on [0, 1]. The distribution of the εi’s is weakly
asymmetric under Type I and strongly asymmetric under Asymmetric.

6.2. The level. We first considered the case where F ≡ 0 in order
to estimate the level of the tests. For simplicity, the mean of 100 percentages
of rejection (as described in Section 6.1) is called here the estimated level. The
estimated levels obtained for different G and n are given in Table 1. Under Gaussian,
Mixture and Heteroscedastic the estimated level of our test is, as expected, no
greater than the nominal level. Under Type I, the estimated level remains less than
the nominal level which means that the method is robust against a slight departure
from symmetry. Under Asymmetric, the estimated level is greater than α when
n is small and, despite asymmetry, it is smaller than α for n = 256. Even if we
cannot explain rigorously this phenomenon, it seems interesting to us to explain
it heuristically. Recall that the test consists in selecting a good partition m∗ and
then comparing the distributions of ‖Πm∗y‖2

n and ‖Πm∗(w × y)‖2
n. If n is large,

then either each subset in m∗ contains a large number of points or the number of
subsets in m∗ is large (or even, the two properties hold simultaneously). If each
subset in m∗ contains a large number of points, then by the central limit theorem
the projections of y and w × y on these subsets have distributions, which are close
to Gaussian; if the number of sets in m∗ is large, then the squared norm of the
projections of y and w × y on m∗ (which are sums of projections on the subsets
in m∗) have distributions close to Gaussian. It thus seems that the combination of
two central limit theorems forces ‖Πm∗y‖n and ‖Πm∗(w×y)‖ to have distributions,
which are close to each other when f = 0 and n is large, even if the distributions
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of the εi’s are not symmetric. This explains why the level of our test is less than α
under Asymmetric for large n.

We now compare the performance of our test with that of TP2,Mdya
. Under

Gaussian, Mixture, and Type I, the two tests have similar estimated levels and
are conservative. Under Heteroscedastic, our test is still conservative while the
estimated level of TP2,Mdya

is much larger than α, even for large n. Finally, under
Asymmetric, both tests have estimated level larger than α when n is small. But our
test performs better than TP2,Mdya

, all the more so that n increases. In particular,
our test has the prescribed level when n = 256, whereas TP2,Mdya

has not.

Table 1. Estimated level of our test (Roman)
and TP1,Mdya

(italic) for the five different
distributions G when α = 5% and n ∈ {64, 128, 256}

Distribution G n = 64 n = 128 n = 256
Gaussian 3.71 3.80 3.72

3.53 3.54 3.46

Mixture 3.70 3.79 3.76
2.96 3.20 3.31

Heteroscedastic 3.15 3.18 3.19
16.4 19.3 21.9

Type I 3.67 3.46 3.33
3.94 3.89 3.70

Asymmetric 9.10 6.52 4.75
10.1 8.62 7.60

6.3. The power. In this section, we consider cases where F 6≡ 0, so the
mean of 100 percentages of rejection (as described in Section 6.1) is called here
estimated power. To choose regression functions F , we were inspired by Baraud et

al. (2003), where simulations of a test for linearity were performed. To adapt their
alternatives to the case of testing for zero regression, we removed the linear part of
their functions, so we considered the following functions:

F1k(x) = c1k cos(10πx), k = 1, 2, 3, 4,

F2k(x) = 5 φ(x/c2k)/c2k, k = 1, 2,

F3k(x) = −c3k (x − 0.1)1x≤0.1, k = 1, 2, 3,

where φ is the standard Gaussian density and c11, c12, . . . , c33 are equal to 0.25, 0.5,
0.75, 1, 0.25, 1, 20, 30, 40 respectively (see Figure 1). Thus for j ∈ {1, 3}, the larger
k the farther Fjk is from the null function. In the case of alternatives F1k and F3k

we set xi = (i − 0.5)/n, while for F2k the xi’s are simulated once for all as i.i.d.
centered Gaussian variables with variance 25 in the range [Φ−1(0.05),Φ−1(0.95)],
where Φ is the standard Gaussian distribution function.

Under Gaussian (see Table 2), the two tests have similar power against alter-
natives F1k and F2k: the estimated powers are good against F2k and quite small
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Figure 1. Alternatives F11, F12 (left), F21, F22 (center) and F31, F32

(right). Alternatives Fj1 and Fj2 are drawn in dotted and plain lines
respectively

against F1k, especially for small values of k and n. The estimated power of TP2,Mdya

is greater than that of our test against F3k, all the more so n is small and k is large
(that is, the signal/noise ratio is large). This is certainly due to the small number
of indices i such that F3k(xi) 6= 0. Indeed, our test can detect an alternative if
‖Πm∗y‖2

n is significantly larger than ‖Πm∗(w× y)‖2
n for a well chosen partition m∗,

but ‖Πm∗y‖2
n remains close to ‖Πm∗(w× y)‖2

n if there are only a few indices i such
that yi is significantly different from zero.

Table 2. Estimated power of our test (Roman) and TP2,Mdya

(italic) under Gaussian distribution. The nominal level is α = 5%

Distribution G Gaussian

F F11 F12 F13 F14 F21 F22 F31 F32 F33

n = 64 4.41 8.00 19.4 41.7 99.9 100 12.2 20.2 27.5
4.29 7.78 18.5 39.5 99.8 100 16.2 40.4 72.4

n = 128 6.46 25.0 69.4 96.7 100 100 34.4 70.3 91.2
6.12 24.2 68.2 96.3 100 100 43.3 89.4 99.8

n = 256 12.3 70.1 99.5 100 100 100 84.8 99.9 100
11.7 68.9 99.5 100 100 100 87.8 100 100

Under Mixture or Type I (see Table 3), the estimated powers of the two tests are
smaller than under Gaussian, which is due to a greater variance of the errors: under
Mixture (resp. Type I), the common variance of the εi’s equals 4.678 (resp. 4). One
can notice however that the signal/noise ratio is the same under Gaussian with F11

(resp. F12, resp. F31) as under Type I with F12 (resp. F14, resp. F33), and is close
to that under Mixture with F12 (resp. F14, resp. F33). Comparing the estimated
powers in these cases shows that, the signal/noise ratio being fixed, both tests have
similar powers under these three distributions.

Finally, we studied the power of the two tests under Heteroscedastic and Asym-

metric. We give in Table 4 the estimated powers only in the cases where the
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Table 3. Estimated power of our test (Roman) and TP2,Mdya
(italic)

under Mixture and Type I distributions. The nominal level is α = 5%

Distribution G Mixture

F F11 F12 F13 F14 F21 F22 F31 F32 F33

n = 64 3.93 4.61 6.24 9.32 88.0 98.0 6.15 9.11 12.9
3.12 3.63 4.63 6.80 87.1 97.5 5.06 8.43 14.4

n = 128 4.31 6.63 13.0 25.6 99.8 100 9.74 19.5 34.2
3.60 5.32 10.1 20.5 99.8 100 8.46 18.7 37.3

n = 256 5.16 11.9 31.7 63.4 100 100 18.9 47.1 78.6
4.41 10.0 27.6 59.0 100 100 17.0 45.7 79.5

Distribution G Type I

F F11 F12 F13 F14 F21 F22 F31 F32 F33

n = 64 3.88 4.50 5.86 8.68 92.8 99.9 4.99 7.27 10.6
4.15 4.69 5.93 8.38 92.4 99.9 5.67 9.08 15.6

n = 128 3.99 6.21 12.4 26.4 100 100 8.04 17.5 33.8
4.41 6.52 12.3 25.2 100 100 9.25 21.0 43.0

n = 256 4.58 11.8 35.1 70.8 100 100 18.3 51.4 87.3
4.98 11.9 33.9 69.1 100 100 19.3 53.3 88.7

Table 4. Estimated power of our test (Roman)
and TP2,Mdya

(italic) under Heteroscedastic and
Asymmetric distributions. The nominal level is α = 5%

Distribution G Heteroscedastic

F F11 F12 F13 F14 F21 F22 F31 F32 F33

n = 64 3.94 7.30 15.8 30.8 99.6 100 11.4 17.8 23.1
n = 128 4.32 10.2 30.0 64.4 100 100 19.3 45.5 73.4
n = 256 5.33 20.5 70.0 98.4 100 100 41.6 95.1 100

Distribution G Asymmetric

F F11 F12 F13 F14 F21 F22 F31 F32 F33

n = 128 20.9 75.0 93.6 97.8 100 100 74.5 96.8 99.6
17.0 59.9 85.9 94.0 100 100 76.4 93.8 97.4

n = 256 39.2 93.6 98.9 99.6 100 100 99.2 100 100
30.9 85.2 96.1 98.3 100 100 93.3 98.2 99.2

estimated level of the test is not much larger than the nominal level. In particular,
under Heteroscedastic we only give the estimated power of our test. We can see
that the estimated power of our test is smaller under Heteroscedastic than under
Gaussian, but remains reasonable. Under Asymmetric, the estimated power of our
test is in most cases greater than that of TP2,Mdya

, although the estimated level of
TP2,Mdya

is greater than α.
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In conclusion, our test is powerful against various alternatives (provided the
number of indices i such that yi is significantly different from zero is large enough)
and robust against departures from Gaussian distribution and homoscedasticity. It
is also robust against slight departures from symmetry.

7. Proofs

Some of the proofs require lemmas. Lemmas are stated when needed and proved
in Section 7.8.

7.1. Proof of Theorem 1. Under H0, we have y = ε, so our aim here is
to prove that

(16) P
(

sup
m∈M

{‖Πmε‖2
n − qε

m(αm)} > 0
)
≤ α.

For every u ∈ Rn, let |u| and sign(u) be the vectors of Rn with ith component |ui|
and

(17) (sign(u))i = 1{ui≥0} − 1{ui<0},

respectively. The distribution of εi is symmetric about zero and P (εi = 0) = 0,
hence sign(ε) has the same distribution as w and is independent of |ε|. Moreover,
w × sign(ε) has the same distribution as w. Since

w × ε = w × sign(ε) × |ε|,

it follows that the distribution of w × ε conditionally on ε is identical to its distri-

bution conditionally on |ε|. In particular, qε
m(αm) = q

|ε|
m (αm), where

q|ε|m (αm) = inf
{
x ∈ R, P [ ‖Πm(w × ε)‖2

n > x | |ε| ] ≤ αm

}
.

But conditionally on |ε|, w × ε has the same distribution as sign(ε) × |ε| = ε.
Therefore for every m ∈ M,

P
(
‖Πmε‖2

n > qε
m(αm) | |ε|

)
= P

(
‖Πm(w × ε)‖2

n > q|ε|m (αm) | |ε|
)
≤ αm.

Integrating the latter inequality yields

P
(
‖Πmε‖2

n > qε
m(αm)

)
≤ αm.

By assumption
∑

m∈M αm = α, hence we get (16). ¤

7.2. Proof of Theorem 2. The first kind error probability of the test
with critical region (2) satisfies

P
(

sup
m∈M

{‖Πmε‖2
n − q̂B

m(αm)} > 0
)
≤ P

[
∃m, qε

m(αm) < ‖Πmε‖2
n

]
+ PB

n ,

where
PB

n = P
[
∃m, ‖Πmε‖2

n > q̂B
m(αm) and qε

m(αm) ≥ ‖Πmε‖2
n

]
.
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It thus follows from Theorem 1 that

(18) P
(

sup
m∈M

{‖Πmε‖2
n − q̂B

m(αm)} > 0
)
≤ α + PB

n .

We can have qε
m(αm) ≥ ‖Πmε‖2

n if and only if pε
m > αm, where

pε
m = P

(
‖Πm(ω × ε)‖2

n ≥ ‖Πmε‖2
n | ε

)
.

Likewise, we can have q̂B
m(αm) < ‖Πmε‖2

n if and only if

1

B

B∑

b=1

1‖Πm(wb×ε)‖2
n≥‖Πmε‖2

n
≤ αm.

Conditioning with respect to ε thus yields

PB
n ≤

∑

m∈M

E

[
P

(
1

B

B∑

b=1

1‖Πm(wb×ε)‖2
n≥‖Πmε‖2

n
≤ αm | ε

)
1pε

m>αm

]
.

For every m ∈ M, let Sε
m be a random variable, which is distributed conditionally

on ε as a binomial variable with parameter B and probability of success pε
m. The

Hoeffding inequality yields

PB
n ≤

∑

m∈M

E
[
P (Sε

m ≤ Bαm | ε)1pε
m>αm

]
(19)

≤
∑

m∈M

E
[
exp(−2B(pε

m − αm)2)1pε
m>αm

]
.

By dominated convergence,

lim
B→∞

E
[
exp(−2B(pε

m − αm)2)1pε
m>αm

]
= 0,

so the first part of the theorem follows from (18). In order to prove the second
part, we compute the distribution of pε

m in the case where the distributions of the
εi’s are continuous (see Section 7.8 for a proof).

Lemma 1. Under the assumptions of Theorem 1 with the additional assump-

tion that the distributions of the εi’s are continuous, pε
m has a discrete uniform

distribution on the set

E =
{
k2Dm−n, k = 1, . . . , 2n−Dm

}
.

Combining (19) and Lemma 1 we get

PB
n ≤

∑

m∈M

(
2Dm−n

∑

x∈E, x>αm

exp(−2B(x − αm)2)

)

≤
∑

m∈M

(
2Dm−n +

∫ 1

αm

exp(−2B(x − αm)2) dx

)
.

The result now follows from (18) and straightforward computations. ¤
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7.3. Proof of Theorem 3. The second kind error probability of the test
with critical region (2) satisfies

Pf

(
sup

m∈M
{‖Πmy‖2

n − q̂B
m(αm)} ≤ 0

)
≤ Pf

[
∀m, qy

m(δm) ≥ ‖Πmy‖2
n

]
+ QB

n ,

where
QB

n = Pf

[
∃m, ‖Πmy‖2

n ≤ q̂B
m(αm) and qy

m(δm) < ‖Πmy‖2
n

]
.

Using the same arguments as in the proof of Theorem 2 (and also the same notation)
we get

QB
n ≤

∑

m∈M

Ef

[
Pf (Sy

m > Bαm | y)1py
m≤δm

]
,

where Sy
m is a random variable distributed conditionally on y as a binomial variable

with parameter B and probability of success py
m. By assumption, δm < αm for

all m, so by dominated convergence, QB
n tends to zero as B → ∞, which proves the

result. ¤

7.4. Proof of Theorems 4 and 5. In this section, we first describe
the common line of the proof for the two theorems and then describe the specific
arguments for each of them. The lemmas stated in this section are proved in
Section 7.8. The following three inequalities are repeatedly used throughout the
proof: for all positive real numbers a and b

(20)
√

a + b ≤ √
a +

√
b;

for all positive real numbers a, b and θ,

(21) 2
√

ab ≤ θa + θ−1b;

for all positive numbers a, b and k we have

(22) (a + b)k ≤ 2k(ak ∨ bk).

Line of proof. Fix β ∈ (0, 1) and f ∈ Fn(β). The second kind error probability
of the test at f satisfies

Pf

(
sup

m∈M
{‖Πmy‖2

n − qy
m(αm)} ≤ 0

)
≤ inf

m∈M
Pf

(
‖Πmy‖2

n ≤ qy
m(αm)

)
.

Therefore, the power of the test is at least 1−β whenever there exists m ∈ M such
that

(23) Pf

(
‖Πmy‖2

n ≤ qy
m(αm)

)
≤ β.

Since f ∈ Fn(β), there exists a partition m ∈ M such that

(24) ‖f‖2
n ≥ ∆(m, f, A),
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where ∆ denotes either ∆1 or ∆2. In the sequel, m denotes such a partition. We
aim to prove that (23) holds for this partition, provided the Ak’s are large enough.
Now we show that the subsets em,j which contain only one point cannot contribute
to the power of the test. Let ỹ ∈ Rn with ith component ỹi = 0 if i ∈ em,j for an
index j ∈ Jm,1 and ỹi = yi otherwise. For every j ∈ Jm,1, let i(j) be the unique
element of em,j . By definition of Πm,

‖Πmy‖2
n =

∑

j∈Jm,2

1

|em,j |

( ∑

i∈em,j

yi

)2

+
∑

j∈Jm,1

y2
i(j) = ‖Πmỹ‖2

n +
∑

j∈Jm,1

y2
i(j).

Let

q̃y
m(αm) = inf

{
x ∈ R, Pf

(
‖Πm(w × ỹ)‖2

n > x | y
)
≤ αm

}
.

We have wi = ±1, so

‖Πm(w × y)‖2
n = ‖Πm(w × ỹ)‖2

n +
∑

j∈Jm,1

y2
i(j),

and we get

qy
m(αm) = q̃y

m(αm) +
∑

j∈Jm,1

y2
i(j).

Hence (23) amounts to

(25) Pf

(
‖Πmỹ‖2

n ≤ q̃y
m(αm)

)
≤ β,

which means that the sets with only one point can be removed from the condition.
Thus we aim to prove that (25) holds provided the Ak’s are large enough. We set

Zm = ‖Πm(w × ỹ)‖2
n =

∑

j∈Jm,2

1

|em,j |

( ∑

i∈em,j

wiyi

)2

and

Mm = max
j∈Jm,2

{
1

|em,j |
∑

i∈em,j

y2
i

}
.

We first give an upper bound for q̃y
m (αm) in order to control the probability in (25).

Lemma 2.

q̃y
m(αm) ≤ Ef (Zm | y) + 8Mm log(1/αm) + 4

√
2Ef (Zm | y)Mm log(1/αm).

The obtained upper bound depends on Ef (Zm | y) and Mm, which we have
to control. It is proved in the following two lemmas that with high probability,
these variables are not much greater than their expectation. The control we obtain
depends on the assumptions on ε.
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Lemma 3. Under the assumptions of Theorem 1,

Pf

(
Mm ≥ 18(

√
γ ∨ µ ∨ L2)

[
1 +

1

Im
log

(
3Dm

β

)])
≤ β

3

and

Pf

(
Ef (Zm | y) ≥ Ef (Zm) + 8(

√
γ ∨L2)

√
Dm log(3/β) + 2(µ∨L2) log(3/β)

)
≤ β

3
.

Lemma 4. Under the assumptions of Theorem 5, there exists an absolute con-

stant C ≥ 1 such that

Pf

(
Mm ≥ Cp(µ ∨ L2)

[
1 +

1√
Im

(
3Dm

β

)1/p])
≤ β

3
.

Moreover,

Pf

(
Ef (Zm | y) ≥ Ef (Zm) + 4(µ ∨ L2)

√
6Dm/β

)
≤ β

3
.

The main issue to prove Theorems 4 and 5 is to derive from the three lemmas
above that

(26) Pf

(
q̃y
m(αm) ≤ Ef (Zm) + Rm

)
≥ 1 − 2

3β,

where Rm is a positive real number to be chosen later. Then,

(27) Pf

(
‖Πmỹ‖2

n ≤ q̃y
m(αm)

)
≤ 2

3β + Pf

(
‖Πmỹ‖2

n ≤ Ef (Zm) + Rm

)
,

and it remains to prove that the right-hand side probability is less than or equal
to β/3. In order to do that, we state a concentration inequality which proves that
with high probability, ‖Πmỹ‖2

n is not much smaller than its expectation. Here

again, the obtained control depends on the assumptions on ε. In the sequel, f̃
denotes the expectation of ỹ.

Lemma 5. Under the assumptions of Theorem 5,

Pf

(
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n−6

√
γDm

β
− 1

3
‖Πmf̃‖2

n−14(
√

γ∨µ∨L2) log

(
6

β

))
≤ β

3
.

Lemma 6. Under the assumptions of Theorem 5,

Pf

(
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n − 3µ

√
Dm

β
− 1

3
‖Πmf̃‖2

n − 9µ

β

)
≤ β

3
.
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In both cases, there is R′
m ≥ 0 such that

(28) Pf

(
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n − R′

m − 1

3
‖Πmf̃‖2

n

)
≤ β

3
.

Thus the right-hand side probability in (27) is less than or equal to β/3 as soon as

(29) Ef (Zm) + Rm ≤ Ef‖Πmỹ‖2
n − R′

m − 1

3
‖Πmf̃‖2

n,

hence it suffices to prove (29). By assumption, the wi’s and the yi’s are mutu-
ally independent, and the distribution of wi is symmetric about zero. Therefore,
E(wi) = 0 and the random variables wiyi are mutually independent with zero mean
and variance Ef (y2

i ) = E(ε2
i ) + f2

i . Hence,

(30) Ef (Zm) =
∑

j∈Jm,2

1

|em,j |
∑

i∈em,j

(E(ε2
i ) + f2

i ).

We have |em,j | ≥ Im for all j ∈ Jm,2, so

Ef‖Πmỹ‖2
n − Ef (Zm)

=
∑

j∈Jm,2

1

|em,j |

( ∑

i∈em,j

E(ε2
i ) +

( ∑

i∈em,j

fi

)2

−
∑

i∈em,j

(E(ε2
i ) + f2

i )

)

≥
∑

j∈Jm,2

1

|em,j |

( ∑

i∈em,j

fi

)2

− 1

Im

∑

j∈Jm,2

∑

i∈em,j

f2
i .

Hence

Ef‖Πmỹ‖2
n − Ef (Zm) ≥ ‖Πmf‖2

n − |Jm,1| max
1≤i≤n

f2
i − 1

Im
‖f‖2

n.

In order to prove (29), it suffices to prove

(31)
2

3
‖Πmf‖2

n ≥ 1

Im
‖f‖2

n + |Jm,1| max
1≤i≤n

f2
i + Rm + R′

m.

By definition, Im ≥ 2 and by the Pythagoras equality,

(32) ‖Πmf‖2
n = ‖f‖2

n − ‖f − Πmf‖2
n.

Thus it suffices to prove

1

6
‖f‖2

n ≥ 2

3
‖f − Πmf‖2

n + |Jm,1| max
1≤i≤n

f2
i + Rm + R′

m.

But f satisfies (24), so it suffices to check that for large enough Ak,

(33) ∆(m, f,A) ≥ 4‖f − Πmf‖2
n + 6

{
|Jm,1| max

1≤i≤n
f2

i + Rm + R′
m

}
.
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Now to prove Theorems 4 and 5, it remains to compute Rm and R′
m and to

check (33) with ∆ replaced by ∆1 and ∆2 respectively.

Proof of Theorem 4. By (30),

Ef (Zm) ≤ Dm(
√

2γ + L2).

Using (21) we thus get

Ef (Zm) + 8(
√

γ ∨ L2)
√

Dm log(3/β) + 2(µ ∨ L2) log(3/β)

≤ 7(
√

γ ∨ µ ∨ L2)
(
Dm + log(3/β)

)
.

Combining Lemmas 2 and 3 proves that with probability greater than 1 − 2β/3,

q̃y
m(αm) ≤ Ef (Zm) + 8(

√
γ ∨ L2)

√
Dm log(3/β) + 2(µ ∨ L2) log(3/β)

+ 144(
√

γ ∨ µ ∨ L2)

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
1

αm

)

+ 24(
√

γ ∨ µ ∨ L2)

√
7

(
Dm + log

(
3

β

))(
1 +

1

Im
log

(
3Dm

β

))
log

(
1

αm

)
.

Using (20) and (21), we get that with probability greater than 1 − 2β/3,

q̃y
m(αm) ≤ Ef (Zm) + 8(

√
γ ∨ L2)

√
Dm log(3/β) + 151(

√
γ ∨ µ ∨ L2) log(3/β)

+ 151(
√

γ ∨ µ ∨ L2)

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
1

αm

)

+ 24(
√

γ ∨ µ ∨ L2)

√
7Dm

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
1

αm

)
.

By assumption, log(1/αm) and log(3/β) are positive, so we obtain (26) with

Rm = 151(
√

γ ∨ µ ∨ L2)

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
3

βαm

)

+ 72(
√

γ ∨ µ ∨ L2)

√
Dm

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
3

βαm

)
.

By Lemma 5, we have (28) with

R′
m = 6

√
γDm/β + 14(

√
γ ∨ µ ∨ L2) log(6/β),

so (33) holds with ∆ replaced by ∆1 provided A1, . . . , A5 are large enough. ¤

Proof of Theorem 5. By (30),

Ef (Zm) ≤ Dm(µ + L2).
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Combining Lemmas 2 and 4 proves that with probability greater than 1 − 2β/3,

q̃y
m(αm) ≤ Ef (Zm) + 4(µ ∨ L2)

√
6Dm

β

+ 8Cp(µ ∨ L2)

[
1 +

1√
Im

(
3Dm

β

)1/p ]
log

(
1

αm

)

+ 18(µ ∨ L2)

√√√√Cp

(
Dm +

√
Dm

β

)[
1 +

1√
Im

(
3Dm

β

)1/p ]
log

(
1

αm

)
.

Using (20) and (21), we get (26) with

Rm = 19(µ ∨ L2)

√
Dm

β
+ 17Cp(µ ∨ L2)

[
1 +

1√
Im

(
3Dm

β

)1/p]
log

(
1

αm

)

+ 18(µ ∨ L2)

√

CpDm

[
1 +

1√
Im

(
3Dm

β

)1/p]
log

(
1

αm

)
.

By Lemma 6, we have (28) with

R′
m = 3µ

√
Dm/β + 9µ/β,

so (33) holds with ∆ replaced by ∆2 provided A1, . . . , A6 are large enough. ¤

7.5. Proof of Corollary 1. We define δ and δ′ in the following way.
If (4) holds for all p ≥ 1 and some γ and µ, we set δ = δ′ =

√
γ + µ + L2. If (5)

holds for some p ≥ 2 and some µ, we set δ =
√

p(µ + L2) and δ′ = p(µ + L2). By
Step 2 in the proof of Corollary 1 of Baraud et al. (2003),

‖f − Πmk
f‖2

n ≤ nR2k−2s

for all k ∈ I. Moreover, |M| ≤ log n/ log 2, so there exists cα > 0, which only
depends on α, such that

log(1/αm) ≤ cα log log n.

We have (12) and Dmk
≤ k for all k ∈ I, so it follows from Theorem 4 that the

power of the test is greater than 1 − β whenever (4) holds and

‖f‖2
n ≥ A inf

k∈I

{
nR2k−2s + δ

(
1 +

k

n
log n

)
log log n(34)

+ δ

√
k

(
1 +

k

n
log n

)
log log n

}
,

for a large enough A. Likewise, it follows from Theorem 5 that the power of the
test is greater than 1 − β whenever (5) holds and

‖f‖2
n ≥ A inf

k∈I

{
nR2k−2s + δ′

(
1 +

k1/p+1/2

√
n

)
log log n(35)

+ δ

√

k

(
1 +

k1/p+1/2

√
n

)
log log n

}
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for a large enough A. In (34) and (35), A > 0 only depends on a, a0, α, and β. In
the sequel, I ′ denotes the subset of I defined as follows. Under (4), I ′ is the set of
those k ∈ I, which satisfy k log n ≤ n and under (5), I ′ is the set of those k ∈ I,
which satisfy k1/p+1/2 ≤ √

n, that is k ≤ np/(p+2).

• Assume first that (4) and 1 (a), resp. (5) and 2 (a), hold for a large enough C.
By (34) and (35), the power of the test is greater than 1 − β whenever

‖f‖2
n ≥ 2A

[
inf

k∈I′

{
nR2k−2s + δ

√
k log log n

}
+ δ′ log log n

]
.

Let

(36) k∗ =

(
nR2

δ
√

log log n

)2/(1+4s)

.

We have
nR2k−2s ≤ δ

√
k log log n

if and only if k ≥ k∗ and for large enough n, there exists k′ ∈ I ′ such that k∗ ≤
k′ ≤ 2k∗. Therefore,

inf
k∈I′

{
nR2k−2s + δ

√
k log log n

}
≤ 2δ

√
k′ log log n

≤ 4δ
√

k∗ log log n ≤ 4nR2/(1+4s)

(
δ
√

log log n

n

)4s/(1+4s)

.

The power of the test is thus greater than 1 − β whenever n is large enough and

‖f‖2
n ≥ 2A

[
4nR2/(1+4s)

(
δ
√

log log n

n

)4s/(1+4s)

+ δ′ log log n

]
.

This indeed holds if n is large enough and either 1 (a) or 2 (a) is fulfilled for a large
enough C.

• Assume (4). By (34), the power is greater than 1 − β whenever n is large
enough and

(37) ‖f‖2
n ≥ 3A inf

k∈I\I′

{
nR2k−2s + δk

√
1

n
log n × log log n

}

for a large enough A. Let

k∗ =

(
n3/2R2

δ
√

log n × log log n

)1/(1+2s)

.

If s = 1/4 and n is large enough, there exists k′ ∈ I \ I ′ such that k∗ ≤ k′ ≤ 2k∗.
Therefore,

inf
k∈I\I′

{
nR2k−2s + δk

√
1

n
log n × log log n

}
≤ 4δk∗

√
1

n
log n × log log n.
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The power of the test is thus greater than 1 − β whenever n is large enough and
1 (b) holds for a large enough C. Let k0 be a point in I with k0 ≥ n/8. Then (37)
holds whenever

‖f‖2
n ≥ 3A

{
nR2k−2s

0 + δk0

√
1

n
log n × log log n

}
.

Since k0 ≤ n/2, this indeed holds if n is large enough and 1 (c) is fulfilled for a large
enough C.

• Assume (5) holds for some p ≥ 2. If n is large enough, we have for all k ≥ 1

δ′k1/p+1/2n−1/2 log log n ≤ δk1/2p+3/4n−1/4
√

log log n.

By (35), the power is thus greater than 1 − β whenever n is large enough and

(38) ‖f‖2
n ≥ 4A inf

k∈I\I′

{
nR2k−2s + δk1/2p+3/4n−1/4

√
log log n

}
.

Let

k∗ =

(
n5/4R2

δ
√

log log n

)4p/(2+3p+8ps)

.

If s ∈ [1/4−1/p, 1/4+1/p) and n is large enough, there exists k′ ∈ I \I ′ such that
k∗ ≤ k′ ≤ 2k∗. Therefore,

inf
k∈I\I′

{
nR2k−2s + δk1/2p+3/4n−1/4

√
log log n

}
≤ 4δk

1/2p+3/4
∗ n−1/4

√
log log n.

The power of the test is thus greater than 1 − β whenever n is large enough and
2 (b) holds for a large enough C. Let k0 be a point in I with k0 ≥ n/8. Then (38)
holds whenever

‖f‖2
n ≥ 4A

{
nR2k−2s

0 + δk
1/2p+3/4
0 n−1/4

√
log log n

}
.

This indeed holds if n is large enough and 2 (c) is fulfilled for a large enough C. ¤

7.6. Proof of Corollary 2. Let k∗ be given by (36) and let k′ ∈ I
be such that k∗ ≤ k′ ≤ 2k∗ (such a k′ exists provided n is large enough). By
Theorems 4 and 5, it suffices to prove that ‖f‖2

n exceeds ∆(mk′ , f, A) for large
enough n and a fixed A, where ∆ denotes either ∆1 or ∆2. By (31), one can choose

A1 =
2/3

2/3 − 1/Imk′

.

Moreover, there exists A0 > 0, which only depends on α, β, and A such that

∆(mk′ , f, A) ≤ A1‖f − Πmf‖2
n + A0δ

√
k′ log log n.
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By (32), it thus suffices to show that for large enough n,

(39) ‖Πmk′
f‖2

n ≥ 3

2Imk′

‖f‖2
n + A0δ

√
k′ log log n.

We need further notation. Let Fn be the function defined by Fn(t) = F (xi) for all
t ∈ (xi−1, xi], i = 1, . . . , n, where we set xi = i/n for all i = 0, . . . , n. For every
j = 0, . . . , k′, let

tj =
1

n

∑

i≤j

|emk′ ,i| =
1

n

[
nj

k′

]

(here, [x] denotes the integer part of x). Let Q be the orthogonal projector from
L2[0, 1] onto the set of step functions, which are constant on each interval (tj−1, tj ],
and let Qr be the orthogonal projector from L2[0, 1] onto the set of step functions,
which are constant on each interval ((j−1)/k′, j/k′], j = 1, . . . , k′. Since tj−1−tj ≤
2/k′ and |tj − j/k′| ≤ 1/n, we have

‖QF‖2
2 =

k′∑

j=1

1

tj − tj−1

( ∫ tj

tj−1

F (x) dx

)2

≥ 1

4
‖QrF‖2

2 −
2k′2‖F‖2

∞

n2

(recall that (a + b)2 ≥ a2/2 − b2 for all real numbers a and b). Now,

‖Q(F − Fn)‖2 ≤ ‖F − Fn‖2 ≤ ‖F − Fn‖∞ ≤ ‖F ′‖∞/n

and we have
‖Πmk′

f‖n =
√

n‖QFn‖2.

Therefore,

‖Πmk′
f‖n ≥ √

n‖QF‖2 − ‖F ′‖∞/
√

n ≥
√

n

2
‖QrF‖2 −

√
2k′‖F‖∞√

n
− ‖F ′‖∞/

√
n.

The partition of [0, 1] associated with Qr is equispaced (all intervals have the same
length 1/k′), so one can prove that there exist positive numbers C1 and C2, which
only depend on s, such that

‖QrF‖2 ≥ C1‖F‖2 − C2Rk′−s
,

see Proposition 2.16 of Ingster and Suslina (2003). It then follows from the definition
of k′ and the assumption s > 1 that there exist positive numbers C ′

1 and C ′
2, which

only depend on s, such that for large enough n,

‖Πmk′
f‖n ≥ C ′

1

√
n‖F‖2 − C ′

2

√
nRk′−s

.

Note that
‖f‖n =

√
n‖Fn‖2 ≤ √

n‖F‖2 + ‖F‖∞/
√

n
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and that Imk′
tends to infinity as n goes to infinity. Thus in order to prove (39), it

suffices to prove that for large enough n and some A′
0 > 0,

‖F‖2
2 ≥ A′

0

{
R2k′−2s

+
δ

n

√
k′ log log n

}
.

But this is indeed the case if F satisfies (15) for a large enough C > 0. ¤

7.7. Power in a Gaussian homoscedastic model. In this section, we
assume that the εi’s are i.i.d. N (0, σ2) and |fi| ≤ σL for all i. We will prove that
the power of the test is greater than 1−β whenever f satisfies (7) for large enough
Ak’s. Under the above assumptions, Lemmas 2 and 3 are valid with µ = 2σ2,
γ = µ2, and L2 replaced by σ2L2. In particular, we have (26) with

Rm = 302σ2(1 + L2)

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
6

βαm

)

+ 144σ2(1 + L2)

√
Dm

[
1 +

1

Im
log

(
3Dm

β

)]
log

(
6

βαm

)
.

Moreover, one can improve the result given in Lemma 5 under the Gaussian as-
sumption, due to the Cochran theorem. Indeed, let D′

m denote the cardinality
of Jm,2. By the Cochran Theorem, ‖Πmỹ‖2

n/σ2 is a non-central χ2 variable with

D′
m degrees of freedom and non-centrality parameter ‖Πmf̃‖2

n/σ2. By Lemma 1 of
Birgé (2001), we thus have for all positive x

Pf

[
1

σ2
‖Πmỹ‖2

n ≤ 1

σ2
Ef‖Πmỹ‖2

n − 2

√(
D′

m +
2

σ2
‖Πmf̃‖2

n

)
x

]
≤ exp(−x).

Using (20) and (21) one obtains

Pf

[
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n − 2σ2

√
D′

mx − 1

3
‖Πmf̃‖2

n − 6σ2x
]
≤ exp(−x),

for all x > 0. Setting x = log(3/β) in this inequality yields

Pf

[
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n − 2σ2

√
Dm log

(
3

β

)
− 1

3
‖Πmf̃‖2

n − 6σ2 log

(
3

β

)]
≤ β

3
.

Therefore, we have (28) with

R′
m = 2σ2

√
Dm log(3/β) + 6σ2 log(3/β).

Let ∆(m, f,A) denote the bracketed term in (7). Then (32) holds provided the
Ak’s are large enough, which proves the announced result. ¤

7.8. Proof of the lemmas. We first recall two inequalities, which will
be used in this section.
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Bernstein’s Inequality. Let X1, . . . , Xn be independent real-valued random

variables. Assume that there exist positive numbers v and c such that for all integers

k ≥ 2
n∑

i=1

E[ |Xi|k ] ≤ k!
v

2
ck−2.

Let S =
∑n

i=1(Xi − E[Xi]). Then for every x > 0, P
[
S ≥

√
2vx + cx

]
≤ exp(−x).

Rosenthal’s Inequality. Let X1, . . . , Xn be independent centered real-valued

random variables with finite t-th moment, 2 ≤ t < ∞. Then there exists an absolute

constant L such that

E
∣∣∣

n∑

i=1

Xi

∣∣∣
t

≤ Lttt max

( n∑

i=1

E|Xi|t,
( n∑

i=1

E|Xi|2
)t/2

)
.

Proof of Lemma 1. For notational convenience, we omit subscript m. For every
j = 1, . . . , D and z ∈ Rn, define the set Aj(z) by Aj(z) = {0} if D = 1 and

Aj(z) =

{ ∑

k 6=j

1

|ek|
( ∑

i∈ek

uizi

)2

, u ∈ {±1}n

}

if D > 1. For every j = 1, . . . , D let

Ej = {e ⊂ ej s.t. e 6= ∅ and e 6= ej}.

Finally, let

Y =

D⋂

j=1

{
z ∈ Rn s.t. ∀u ∈ {±1}n, ∀a, a′ ∈ Aj(z), ∀e ∈ Ej ,

4
∑

i∈e

uizi

∑

i∈ej\e

uizi 6= (a′ − a)|ej |
}

.

The εi’s are independent and all have a continuous distribution, so the event
{ε ∈ Y} is the intersection of a finite number of events having probability one. We
thus assume in the sequel without loss of generality that ε ∈ Y. Let u and u′ be
elements of {±1}n such that

(40) ‖Π(u × ε)‖2
n = ‖Π(u′ × ε)‖2

n.

Fix j ∈ {1, . . . , D}. We have

0 = ‖Π(u × ε)‖2
n − ‖Π(u′ × ε)‖2

n =
1

|ej |

[( ∑

i∈ej

uiεi

)2

−
( ∑

i∈ej

u′
iεi

)2
]

+ a − a′

for some a, a′ ∈ Aj(ε). Setting e = {i ∈ ej s.t. ui = u′
i} we get

( ∑

i∈ej

uiεi

)2

−
( ∑

i∈ej

u′
iεi

)2

=
∑

i∈ej

(ui + u′
i)εi

∑

i∈ej

(ui − u′
i)εi = 4

∑

i∈e

uiεi

∑

i∈ej\e

uiεi,



An Adaptive Test for Zero Mean 29

since ui = −u′
i for every i ∈ ej \ e. As ε ∈ Y, either e = ∅ or e = ej . Thus for all

j = 1, . . . , D, either ui = u′
i for all i ∈ ej or ui = −u′

i for all i ∈ ej . This implies
that the cardinality of the set

{
‖Π(u × ε)‖2

n, u ∈ {±1}n
}

is 2n−D and that for every element a of this set, the cardinality of the set

{
u ∈ {±1}n s.t. a = ‖Π(u × ε)‖2

n

}

is equal to 2D. This proves that conditionally on ε, ‖Π(w × ε)‖2
n has a discrete

uniform distribution on a set with 2n−D distinct values. Clearly, ‖Πε‖2
n belongs

to this set, so pε = k2D−n for some k = 1, . . . , 2n−D. More precisely, we have
pε = k2D−n if and only if the cardinality of the following set is equal to k:

{
‖Π(u × ε)‖2

n s.t. ‖Π(u × ε)‖2
n ≥ ‖Πε‖2

n, u ∈ {±1}n
}
.

But this set has the same cardinality as the set

{
‖Π(u × |ε|)‖2

n s.t. ‖Π(u × |ε|)‖2
n ≥ ‖Π(sign(ε) × |ε|)‖2

n, u ∈ {±1}n
}
,

where we recall that sign(ε) is the vector in Rn defined by (17). Since sign(ε) has
the same distribution as w and is independent of |ε| (see the proof of Theorem 1)
we get

P (pε = k2D−n | |ε|) = P
( ∑

u∈{±1}n

1‖Π(u×|ε|)‖2
n≥‖Π(w×|ε|)‖2

n
= k | |ε|

)
.

Moreover conditionally on |ε|, ‖Π(w× |ε|)‖2
n has a uniform discrete distribution on

a set with 2n−D distinct values. Therefore,

P
(
pε = k2D−n | |ε|

)
= 2D−n.

Integrating this inequality yields the result. ¤

Proof of Lemma 2. First, note that Lemma 2 is trivial whenever ỹi = 0 for all
i since in that case q̃y

m(αm) = 0. We thus assume in the sequel that there exists i
such that ỹi 6= 0. In particular, Mm > 0. Now, note that Zm can be written as the
sum of squared random variables:

Zm =
∑

j∈Jm,2

X2
j ,

where for every j ∈ Jm,2,

Xj =
∑

i∈J

wiyi√
|em,j |

1em,j
(i).
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Here,

(41) J =
⋃

j∈Jm,2

em,j .

Denote by Sm the unit sphere in R|Jm,2|. Then

Z1/2
m = sup

a∈Sm

∑

j∈Jm,2

ajXj = sup
a∈Sm

∑

i∈J

wi

yiaj(i)√
|em,j(i)|

,

where for every i, j(i) denotes the unique integer in Jm,2 that satisfies i ∈ em,j(i).
If S′

m denotes a finite subset of Sm, then it follows from a result of Massart (2006)
that for all x ≥ 0,

Pf

[
sup

a∈S′

m

∑

j∈Jm,2

ajXj ≥ Ef

(
sup

a∈S′

m

∑

j∈Jm,2

ajXj | y
)

+ x | y

]
≤ exp

(
− x2

8σ2(S′
m)

)
,

where

σ2(S′
m) = sup

a∈S′

m

∑

i∈J

y2
i a2

j(i)

|em,j(i)|
= sup

a∈S′

m

∑

j∈Jm,2

a2
j

|em,j |
∑

i∈em,j

y2
i .

But Sm is separable and for every subset S′
m of Sm, σ2(S′

m) ≤ Mm. Hence for all
x ≥ 0,

Pf

[
Z1/2

m ≥ Ef (Z1/2
m | y) + x | y

]
≤ exp(−x2/8Mm).

In particular,

Pf

[
Z1/2

m ≥ Ef (Z1/2
m | y) +

√
8Mm log(1/αm) | y

]
≤ αm.

Squaring the inequality yields

Pf

[
Zm ≥ E2

f (Z1/2
m | y) + 8Mm log(1/αm) + 2Ef (Z1/2

m | y)
√

8Mm log(1/αm) | y
]

≤ αm.

By definition of q̃y
m(αm) we thus have

q̃y
m(αm) ≤ E2

f (Z1/2
m | y) + 8Mm log(1/αm) + 2Ef (Z1/2

m | y)
√

8Mm log(1/αm),

and the result follows from the Jensen inequality, which implies

E2
f (Z1/2

m | y) ≤ Ef (Zm | y). ¤

Proof of Lemma 3. By definition of Mm, we have for all real numbers x and c

Pf

[
Mm ≥ c + x

]
≤

∑

j∈Jm,2

Pf

[
1

|em,j |
∑

i∈em,j

y2
i ≥ c + x

]
.
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In particular, if c is large enough so that Ef (y2
i ) ≤ c for all i, then for all x

(42) Pf

[
Mm ≥ c + x

]
≤

∑

j∈Jm,2

Pf

[
1

|em,j |
∑

i∈em,j

(
y2

i − Ef (y2
i )

)
≥ x

]
.

Let p ≥ 1. By (22), y2p
i ≤ 22p(ε2p

i ∨ L2p) and in particular, y2p
i ≤ 22p(ε2p

i + L2p).
Therefore,

(43) Ef (y2p
i ) ≤ 22p+1 max

{
γp!µp−2, L2p

}
≤ γ0p!µp−2

0 ,

where γ0 = 25(γ ∨L4) and µ0 = 4(µ∨L2). By Bernstein’s inequality, we thus have
for all x ≥ 0

Pf

[ ∑

i∈em,j

(
y2

i − Ef (y2
i )

)
≥ 2

√
γ0|em,j |x + µ0x

]
≤ exp(−x).

Moreover, Ef (y2
i ) ≤ L2 +

√
2γ, so by (42),

Pf

[
Mm ≥

√
2γ + L2 + 2

√
γ0x

Im
+

µ0x

Im

]
≤ Dm exp(−x).

We have

√
2γ + L2 + 2

√
γ0x

Im
+

µ0x

Im
≤

√
2γ + L2 + (2

√
γ0 + µ0)

(
1 +

x

Im

)

≤ 18(
√

γ ∨ µ ∨ L2)

(
1 +

x

Im

)
.

Hence for all x > 0,

Pf

[
Mm ≥ 18(

√
γ ∨ µ ∨ L2)

(
1 +

x

Im

)]
≤ Dm exp(−x).

Setting here x = log(3Dm/β) yields the first assertion in Lemma 3. The variables wi

are independent with mean zero and variance 1, and these variables are independent
from y. Hence conditionally on y, they are still independent with mean zero and
variance 1, and we derive from the definition of Zm that

(44) Ef (Zm | y) =
∑

j∈Jm,2

1

|em,j |
∑

i∈em,j

y2
i .

By (43),
∑

j∈Jm,2

∑

i∈em,j

Ef

[(
y2

i

|em,j |

)p]
≤ Dmγ0

2
p!

(
µ0

2

)p−2

,

so Bernstein’s inequality yields for all x ≥ 0

Pf

[
Ef (Zm | y) ≥ Ef (Zm) +

√
2Dmγ0x +

1

2
µ0x

]
≤ exp(−x).

Setting here x = log(3/β) completes the proof of the lemma. ¤
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Proof of Lemma 4. By Rosenthal’s inequality, there exists an absolute constant
C ′ > 0 such that for all j

Ef

∣∣∣
∑

i∈em,j

(y2
i − Ef (y2

i ))
∣∣∣
p

≤ (C ′p)p max
{ ∑

i∈em,j

Ef |y2
i − Ef (y2

i )|p,
( ∑

i∈em,j

var(y2
i )

)p/2}
.

Moreover, by Jensen’s inequality, Eε4
i ≤ µ2 for all i, so by (22),

varf (y2
i ) ≤ Ef (y4

i ) ≤ 24(µ2 + L4).

Hence, ( ∑

i∈em,j

varf (y2
i )

)p/2

≤ 25p/2|em,j |p/2(µp ∨ L2p).

On the other hand,

∑

i∈em,j

Ef |y2
i −Ef (y2

i )|p ≤ 2p
∑

i∈em,j

[
Ef (y2p

i )+ |Ef (y2
i )|p

]
≤ 2p+1+2p|em,j |(µp+L2p),

so we get

Ef

∣∣∣
∑

i∈em,j

(y2
i − Ef (y2

i ))
∣∣∣
p

≤ (Cp)p|em,j |p/2(µp ∨ L2p),

where for instance C = 24C ′. We have Ef (y2
i ) ≤ µ + L2, so (42) and Markov’s

inequality yield

Pf

[
Mm ≥ µ+L2+x

]
≤ (Cp)p(µp∨L2p)

∑

j∈Jm,2

1

xp|em,j |p/2
≤ (Cp)p(µp∨L2p)

Dm

xpI
p/2
m

for all x > 0. In particular,

Pf

[
Mm ≥ µ + L2 + Cp(µ ∨ L2)

1√
Im

(
3Dm

β

)1/p ]
≤ β

3
.

We can assume without loss of generality that C ≥ 1, so the first assertion of
Lemma 4 follows. We have (44), where the yi’s are independent. Therefore,

varf

[
Ef (Zm | y)

]
≤ max

1≤i≤n
Ef (y4

i )Dm ≤ 24(µ2 + L4)Dm.

Now the second assertion of the lemma follows from the Bienaymé–Chebyshev in-
equality. ¤

Proof of Lemma 5. Let J be defined by (41). We have

‖Πmỹ‖2
n = ‖Πmε̃‖2

n + ‖Πmf̃‖2
n + 2

∑

j∈Jm,2

1

|em,j |
( ∑

i∈em,j

εi

)( ∑

i∈em,j

fi

)
,
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where ε̃ = ỹ− f̃ . For every i ∈ J , let j(i) denote the integer in Jm,2 which satisfies
i ∈ em,j(i) and let

ai =
1

|em,j(i)|
∑

i∈em,j(i)

fi.

Then,
∑

j∈Jm,2

1

|em,j |
( ∑

i∈em,j

εi

)( ∑

i∈em,j

fi

)
=

∑

i∈J

aiεi.

Since |ai| ≤ L, we have for all integers p ≥ 1

∑

i∈J

E|aiεi|p ≤ Lp−2
∑

i∈J

a2
i

√
γ
√

p!µp/2−1 ≤ Lp−2‖Πmf̃‖2
n

√
γp!µp/2−1.

Using Bernstein’s inequality, we obtain that for all x ≥ 0

Pf

[ ∑

j∈Jm,2

1

|em,j |
( ∑

i∈em,j

εi

)( ∑

i∈em,j

fi

)
≤ −2

√
‖Πmf̃‖2

n

√
γx − L

√
µx

]
≤ exp(−x).

We have L
√

µ ≤ L2 ∨ µ and by (21),

2

√
‖Πmf̃‖2

n

√
γx ≤ 1

6
‖Πmf̃‖2

n + 6
√

γx.

Setting x = log(6/β) thus yields

Pf

[ ∑

j∈Jm,2

1

|em,j |
( ∑

i∈em,j

εi

)( ∑

i∈em,j

fi

)

≤ −1

6
‖Πmf̃‖2

n − 7(
√

γ ∨ µ ∨ L2) log

(
6

β

)]
≤ β

6
.

On the other hand, the εi’s are mutually independent and εi and ε3
i have mean

zero, so

(45) var
( ∑

i∈em,j

εi

)2

≤ E
( ∑

i∈em,j

εi

)4

≤ 3|em,j |2 max
1≤i≤n

E(ε4
i ).

Therefore,

var
(
‖Πmε̃‖2

n

)
≤ 6γDm

and it follows from the Bienaymé–Chebyshev inequality that

Pf

[
‖Πmε̃‖2

n ≤ Ef‖Πmε̃‖2
n − 6

√
γDm/β

]
≤ β/6.

The result follows. ¤
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Proof of Lemma 6. The distribution of εi is symmetric, so εi and ε3
i have mean

zero. Moreover, the εi’s are mutually independent, so

varf (‖Πmỹ‖2
n) =

∑

j∈Jm,2

1

|em,j |2
[
var

( ∑

i∈em,j

εi

)2

+ 4
( ∑

i∈em,j

fi

)2 ∑

i∈em,j

E(ε2
i )

]
.

It then follows from (45) that

varf

(
‖Πmỹ‖2

n

)
≤ 3Dmµ2 + 4‖Πmf̃‖2

nµ.

By the Bienaymé–Chebyshev inequality,

Pf

[
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n −

√
9Dmµ2 + 12‖Πmf̃‖2

nµ

β

]
≤ β

3
.

By (20) and (21) we have

√
9Dmµ2 + 12‖Πmf̃‖2

nµ

β
≤ 3µ

√
Dm

β
+

1

3
‖Πmf̃‖2

n +
9µ

β

and therefore,

Pf

[
‖Πmỹ‖2

n ≤ Ef‖Πmỹ‖2
n − 3µ

√
Dm

β
− 1

3
‖Πmf̃‖2

n − 9µ

β

]
≤ β

3
.

This completes the proof of the lemma. ¤
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