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Assume we observe a random vector y of R™ and write y = f+¢, where f is the expectation of
y and € is an unobservable centered random vector. The aim of this paper is to build a new test for
the null hypothesis that f = 0 under as few assumptions as possible on f and . The proposed test
is nonparametric (no prior assumption on f is needed) and nonasymptotic. It has the prescribed
level o under the only assumption that the components of € are mutually independent, almost
surely different from zero and with symmetric distribution. Its power is described in a general
setting and also in the regression setting, where f; = F(x;) for an unknown regression function
F and fixed design points z; € [0,1]. The test is shown to be adaptive with respect to Hélderian
smoothness in the regression setting under mild assumptions on €. In particular, we prove adaptive
properties when the €;’s are not assumed Gaussian nor identically distributed.

Key words: adaptive test, minimax hypothesis testing, nonparametric alternatives, sym-
metrization, heteroscedasticity.

2000 Mathematics Subject Classification: 62G10, 62G08.

1. Introduction

Assume we observe a random vector y € R™ and write y = f + €, where f is
the unknown expectation of y and ¢ = (eq,...,£,)7 is an unobservable random
vector with mean zero. Assume the ¢;’s are mutually independent with symmetric
distribution (we mean that for every i, €; has the same distribution as —¢;). Our
aim is to build a nonasymptotic test for the null hypothesis Hy: f = 0 against the
nonparametric composite alternative Hy: f # 0, when no prior assumption is made
on f and as few as possible assumptions are made on €. In particular, we do not
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assume a priori that f belongs to a given smoothness class, and the ¢;’s are not
assumed identically distributed nor Gaussian. The proposed test is defined as a
multi-test and is based on a symmetrization principle that exploits the symmetry
assumption.

The problem of hypothesis testing in the general model y = f + ¢ has rarely
been addressed in the literature. Baraud et al. (2003) consider the problem of
testing the null hypothesis that f belongs to a given linear subspace of R™. No
prior information on f is required, but they assume that the components of ¢ are
independent with the same Gaussian distribution. Under the same assumptions,
Baraud et al. (2005) propose a test for the null hypothesis that f belongs to a given
convex subset of R”™.

An interesting particular case of the general model above is the regression model,
which is obtained in the case where f; = F(x;) for all ¢ = 1,...,n. Here, the x;’s
are nonrandom design points and F' is an unknown function. In this context, many
tests have been proposed for the null hypothesis that F' belongs to a given set F
against a nonparametric alternative. Typically, F is a parametric set of functions
or F is restricted to a single function, which amounts to F = {0}. These tests are
often based on a distance between a nonparametric estimator for F' and an estimator
for F' that is computed under the null hypothesis, see, e.g., Miiller (1992). This
requires the choice of a smoothing parameter such as a bandwidth. Other tests
consider the smoothing parameter itself as a test statistic, see, e.g., Eubank and
Hart (1992). Another approach consists in building a test statistic as a function of
estimators for the Fourier coefficients of F', see, e.g., Chen (1994). We refer to the
book of Hart (1997) for a review of these methods.

Recently, the problem of adaptive minimax testing has been addressed. Suppose
that the null hypothesis is F' = 0 and consider the alternative that F' is bounded
away from zero in the Lo-norm, | F||2 > p(n), and possesses smoothness properties.
The minimal rate of testing (that is the minimal distance p(n) for which testing
with prescribed error probabilities is still possible) has been first derived in a white
noise model with signal F'. The result depends heavily on the kind of smooth-
ness imposed, see Ingster (1982, 1993) and Ermakov (1991) for Sobolev smoothness
and Lepski and Spokoiny (1999) for Besov smoothness. The optimal rate and the
structure of optimal tests depend on the smoothness parameters, whereas these pa-
rameters are usually unknown in practical applications. In the white noise model,
Spokoiny (1996) proves that the minimal rate of testing for Hy: F = 0 is altered
by a loglogn factor when F' belongs to a Besov functional class with unknown
parameters. He builds a rate optimal adaptive test based on wavelets. Gayraud
and Pouet (2005) obtain similar results in a regression model for a composite null
hypothesis under Hélderian smoothness. They prove that, in the Gaussian model,
the optimal rate of testing is altered by a loglogn factor if the smoothness param-
eter is unknown. They build an adaptive test which achieves the optimal rate over
a class of Holderian functions with smoothness parameter s > 1/4 in a possibly
non-Gaussian model. Other examples of adaptive tests are given by Baraud et al.
(2003), Hérdle and Kneip (1999) and by Horowitz and Spokoiny (2001). All these
adaptive tests are defined as multi-tests. Roughly speaking, the authors first build
a test T that is minimax for a fixed smoothness parameter s and reject the null
hypothesis if there exists s in a given grid such that T rejects.
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Most of non-adaptive tests for zero mean involve a smoothing parameter which
is chosen in a somewhat arbitrary way (Staniswalis and Severini, 1991). Adaptive
tests do not show this drawback but either they require the errors to be i.i.d.
Gaussian (Hérdle and Kneip, 1999, Baraud et al., 2003) or they are asymptotic
(Horowitz and Spokoiny, 2001, Gayraud and Pouet, 2005). Moreover, existing tests
involve estimation of the unknown variance. This requires either homoscedasticity
(Gayraud and Pouet, 2005) or regularity assumptions on the variance (Horowitz
and Spokoiny, 2001). On the contrary, our test requires very mild assumptions on
the errors, is nonasymptotic and needs neither variance estimation nor arbitrary
choice of a parameter. It has the prescribed level under the only assumption that
the €;’s are mutually independent with symmetric distributions (the e;’s may have
different distributions). Moreover, it achieves the optimal rate of testing over the
class of Holderian functions with smoothness parameter s > 1/4 in the case where
the €;’s satisfy a Bernstein-type condition, and in particular, in the homoscedastic
Gaussian case. The test still achieves the optimal rate of testing for s > 1/4+1/p
in the case where the ¢;’s possess bounded moments of order 2p for some p > 2.

The paper is organized as follows. The testing procedure is described in Sec-
tion 2. It is also stated in this section that the proposed test has the prescribed
nonasymptotic level. In Section 3, we discuss implementation of the test. The
power is studied in Section 4 under various assumptions on the ¢;’s. In Section 5,
we compute the rate of testing of the test in a regression model under a Holderian
assumption. A simulation study is reported in Section 6 and the proofs are given
in Section 7.

2. The Testing Procedure
Assume we observe a random vector y of R™ and write

y=1[f+e,

where f is an unknown vector of R™ and e is an unobservable random vector
with mean zero. Assume that the components of ¢ are independent and possess a
symmetric distribution around zero, which means that for all i, ¢; and —e; have the
same distribution. Assume furthermore that for all 4, ¢; is almost surely different
from zero. Our aim is to build a test with nonasymptotic level « for the hypothesis
Hy: f = 0 against Hy: f # 0. Here, « is a fixed number in (0,1). The test
is based on a symmetrization principle that exploits the symmetry assumption.
Before describing the test more precisely, let us introduce some notation.

Notation:

e For every set A, let | A| denote the cardinality of A and let 14 be the indicator
function of A, which means that 14(x) equals 1 if z € A and 0 otherwise.

e Let w be a random vector of R™, independent of y, with independent compo-
nents w; distributed as random signs: P(w; = 1) = P(w; = —1) = 1/2.

e For all u,v € R™, let u X v be the vector of R™ with ith component (u x v); =
U; V5.

e Let || - ||, be the Euclidean norm in R™.

o For every partition m of {1, ...,n} into D,, nonempty subsets e, 1,...,€m, D,,,
let tpm; (j = 1,..., Dy) be the vector of R™ with ith component 1., (i) and let
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I1,, be the orthogonal projector onto the linear span of {t,, 1,...,tm,p,, }. Thus
foralue R"andi=1,...,n

<Hmu>i=§f(|1 5 )t ) |nmu||i=§_§1,( ) u)

: €m.i e
j=1 m,j| k€em,; | g k€em,;

The test is based on the following heuristics. Under Hy, y has the same distribu-
tion as w x y. Hence for every partition m of {1,...,n}, |[IL,y|/2 and ||IL,,(w x y)||2
have the same distribution. Under Hy, as f # 0, consider an (unobservable) par-
tition m such that for every e € m the numbers (f;);c. all have the same sign.
Then for every e € m, | Y., fil > [ ;c. wifs] with a strict inequality if w; = —1
and f; # 0 for some i € e, hence one has ||IL, f[|2 > [[ILn(w x f)||2 provided
w; = —1 and f; # 0 for some ¢ € {1,... ,n}. Thus under H; there exists m such
that ||IL,,y||2 tends to be larger than ||II,,(w x y)||2, whereas under Hy, |IL,y|/?
and [|IT,,,(w x y)||? are of the same order of magnitude for every m. Therefore, we
propose to reject Hy if there exists m such that ||II,,y||? exceeds a given quantile
of [T, (w x y)||?. Since the quantiles of ||TL,,(w x y)||? cannot be computed (they
depend on the unknown distribution of y) we consider conditional quantiles given y.

The precise construction of the test is as follows. Consider a collection of par-
titions M and positive numbers oy, with >\ o, = a. We reject Hy if there
exists m € M such that ||IL,,y||? exceeds the y-conditional quantile of ||IL,, (wx y)||2
defined by

q¥ () = inf {x e R, P[ ITL,,, (w % y)HfL >z | y] < oy, }
The critical region of our test is thus

(1) sup { [ Tnyll7 — af (em) } > 0.
meM

Note that ¢¥, (a,,) can theoretically be computed since it only depends on the
known distribution of w, but its exact calculus requires about 2" computations
which cannot be performed in practice. Hence we estimate it through Monte-Carlo
simulations, see Section 3. It is stated in the following theorem that the test has a
nonasymptotic level a.

Theorem 1. Assume we observe y = f + ¢, where f € R™ and the €;’s are
independent random variables with symmetric distribution. Assume P(e; =0) =0
foralli =1,...,n. Let M be a collection of partitions of {1,...,n}, let o and
(Cm)mem be positive numbers such that o =3y . Then

Py (sup { | Tnyl% — gh(am)} > 0) < o
meM

Remarks.
e Like the adaptive tests mentioned in the introduction, our test is a multi-test:
the null hypothesis is rejected if one of the tests with critical regions {||IL,y||? >
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q¥,(am)} rejects. A given partition m allows us to detect alternatives with a given
smoothness s, and adaptive properties arise from the use of many partitions.

e Our method allows us to test the more general null hypothesis Hy: f € V,
where V is a linear subspace of R", but for this problem, we need the ¢;’s to be
i.i.d. Gaussian. Let V be a linear subspace of R™ with dimension k& < n, let II
be the orthogonal projector onto V- and let A be the diagonal matrix of which
(n — k) first diagonal components equal 1 and the others are zero. There exists an
orthogonal matrix O with II = OTAO. Now, let 3, be the random vector that
consists of the (n — k) first components of AOy = Olly, let fi be the expectation
of yy and let ey = yy — fy. If the g;’s are i.i.d. Gaussian, so are the components of
ey. Since testing f € V amounts to testing fyy = 0 within the model yy = fy +ev,
this may be done by applying our method. Then the theoretical results we obtain
in the i.i.d. Gaussian model for Hy: f = 0 (see Sections 4 and 5) can be generalized
to Hy: f € V. We do not detail these results.

3. Practical Implementation

By definition, ¢¥%, () is the 1 — a,,, quantile of the discrete distribution with
support {||n,(u x y)||?, u € {—1,1}"}, which puts mass k27" at a given point =
of the above set if there exist k vectors u € {—1,1}" with ||IL,(u x y)||> = 2. The
exact calculation of ¢¥ (o) thus requires about 2™ computations, which cannot
be performed in practice. We thus suggest estimation of this quantile instead of
computing its exact value. The practical implementation of the test then is as
follows. Draw independent random vectors w',...,w? which all are distributed
like w and are independent of y. For every m € M, compute the empirical quantile
defined by

Mm

~B .
qm(am) = inf {I ||H wbxy)||2 >z < am}

1,:

and reject Hy if

(2) Sup {”HmyH Qm Qi } > 0.
meM

It is stated in the following theorem that the test with critical region (2) has
asymptotically level « if B — oo. Therefore, it suffices to choose B large enough so
that the level of this test is close to a. But our aim is to consider quite moderate B
so we also provide in Theorem 2 a control of the level in terms of a and B, under
the additional assumption that the distributions of the €;’s are continuous. This
result provides a control of what we lose in terms of first kind error probability
when we consider the critical region (2) instead of (1).

Theorem 2. Under the assumptions of Theorem 1,

Jim Py, (sup {|[Tnyl7 = G lam)} > 0) <o
00 meM

If moreover the distributions of the €;’s are continuous, then

~ _ s
Py ( sup {||H,y|? qﬁ am)t>0) <a+ oPm=1 4| M
o (Tl = )} > 0) S 3 M



6 C. Durot and Y. Rozenholc

By Theorem 2, it suffices to choose B = ¢|M|? with a large enough ¢ > 0
so that the level is close to . The estimation of ¢¥ (c,) then requires about
n |M|? computations. In practical applications, one can consider, for instance, the
collection of dyadic partitions My defined in Section 5. The cardinality of M, is
about log, n hence, using B with order of magnitude (log, n)?, we get a level close
to the nominal level « in about n(log, n)? computations.

The following theorem describes what we lose in terms of second kind error
probability when we consider the critical region (2) instead of (1).

Theorem 3. For every m € M, let 6, < au,. Under the assumptions of
Theorem 1, we have for every f € R™

Jim Py (sup {|[Tny? — @alem)} > 0) = Py ( sup {|[ Iyl — g7 (0m)} > 0).
—© meM meM

4. Power

In this section, we study the power of the test with critical region (1). By
Theorem 3, similar results hold for the test with critical region (2) provided B is
large enough. Let M be a collection of partitions of {1,...,n}. Let o and 3 be fixed
numbers in (0,1). Let (an)mem be positive numbers such that a = > (.
The aim of this section is to describe a subset F,,(3) of R™ \ {0} over which the
power of the test is greater than 1 — [, i.e., which satisfies

3)  Py( sggA{||HmyHi—qz@(am>}>0) >1-4, forall feF,(B).

For every partition m, the subsets e € m which contain only one point do not
contribute to the power of the test since their contributions to the norms of II,,y
and IL,(w X y) are identical. Hence we restrict ourselves to collections M which
do not contain what we call the trivial partition, that is the partition made up of
n singletons. For every m € M, we set

Jm,l - {j S {17 . 'aDm}7 |€’m,j| = 1}7 Jm,2 - {.] S {1a .. '7D’m}a |em,j| 2 2}

(hence Jy, 2 # 0) and
I, = min |ey,, ;|
" jEJm,2| m,g|
We study the power of the test under two different assumptions on the ¢;’s
integrability. First, we assume that the ¢;’s satisfy the following Bernstein-type
condition: there exist positive real numbers v and g such that for all integers
p=1,

(4) max B(e]’) < yplp? 2.

Thus the g;’s possess bounded moments of any order and £? possesses an exponential
moment, hence the errors are much integrable. Note however that this assumption
is less restrictive than the Gaussian assumption: if the g;’s are Gaussian with
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bounded variance 02 < o2, then E(77) < p!(202)?, so (4) holds with ;= 262 and
v = p?. It is also less restrictive than the boundedness assumption: if |e;| < ¢ for
all 4, then (4) holds with 4 = ¢ and v = p?. Secondly, we assume there exist p > 2
and p > 0 such that

2p
(5) Jmax E(e) < .
Note that under both assumptions, the &;’s possess bounded variances and fourth
moments: E(e?) < 02 and E(e}) < pg4 for all i and some positive o and py. It is
also assumed in the sequel that |f;| < L for all¢ = 1,...,n and a possibly unknown
L>0.

4.1. POWER UNDER THE BERNSTEIN-TYPE CONDITION.

Theorem 4. Assume we observe y = f + &, where the €;’s are independent
variables with symmetric distribution. Assume P(e; = 0) = 0 and |f;| < L for
a positive number L and all i. Assume moreover (4) holds for all integers p > 1
and some positive v and . Let M be a collection of partitions which does not
contain the trivial one. Let o, 8 in (0,1) and (um)mem be positive numbers with
> e Om = . For every A= (Ay,...,As) € (0,00)°, m € M and f € R™ let

(6) As(m, £, A) = Ayl =TT f|2 + As %

+ A3(\A + p+ L?) {1 + Ii log <2Dﬁm>} log (Qj)

1 2D, 2
+ AWy i+ L2)\/Dm [1 + Tlog (5)] log () + A5 L2 T 1.

B
Then there exists an absolute A such that (3) holds with

FaB) = {7 € B 1% > inf Ai(m.f.4)}.

Hence our test is powerful over F,(8) provided the constants Aj,..., A5 are
large enough. This set is large if there exists m € M such that I, f is close to f,
D,, and |J,, 1| are small, while I,,, is large enough.

This result applies to the i.i.d. Gaussian model. Assume that the g;’s are i.i.d.
N(0,0?%) and in order to make appear the signal to noise ratio, assume that there
exists L > 0 such that |f;] < oL for all i. Then (4) holds with pu = 202 and
v = p?. Theorem 4 consequently applies with /7 and /¥ + p + L? replaced by o2
and o2(1 + L?) respectively. However (see Section 7.7), one can obtain a slightly
sharper result by using Cochran’s theorem: the power of the test is greater than
1 — /3 as soon as

@ W1z ot {Auls -0
+ Azo®(1+ L?) {1 + i log (2];’“"” log <ﬁin>

1 2D,, 2
+ Ayo?(1+ Lz)\/Dm [1 + 7 log (5)] log (m) + A502L2Jm71|}
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for large enough Aj’s. This condition reduces to

where C' is an absolute constant and C5 only depends on L, provided this infimum
is achieved at a partition m* € M with

(9) ! log (QDW*) <1 and, e.g., |Jm1|< VD
Im* ﬁ ’

Instead of (9), Baraud et al. (2003) assume that (D, +log(1/a))/(n— D,,) remains

bounded to prove that the power of their test is greater than 1 — § under condi-

tion (8). Hence, both tests are powerful on similar sets. However, unlike the test of

Baraud et al. our test requires neither Gaussian nor homoscedasticity assumptions.

4.2. POWER UNDER THE BOUNDED MOMENTS ASSUMPTION.

Theorem 5. Assume we observe y = f + e, where the €;’s are independent
variables with symmetric distribution. Assume P(e; = 0) = 0 and |f;| < L for a
positive number L and all i. Assume moreover (5) holds for some p > 2 and p > 0.
Let M be a collection of partitions which does not contain the trivial one. Let «,
B in (0,1) and (m)merm be positive numbers with Y\ = «. For every
A= (Aq,...,A) € (0,00)%, m € M, and f € R" let

(1) Ao(m, f,A) = ALllf — TLufI2 + As(u + L2) | 2

B
1/p
w1 7 (52) e ()

4 Au(+ L2 Dy |1+ —— (P Mg (2 b ASL2| Ty | + At
4 Plm \/Iim 3 0og P 5 m,1 65-

Then there exists an absolute A such that (3) holds with

Fa(B) = {7 € R |72 2 inf Ao(m, f.4)}.

Let us compare this with Theorem 4. There are two main differences between
A; and A,. First, the absolute constants A3 and A4 in A are replaced in As by
Aszp and Ay./p respectively. Next, the term

1 (2Dn
I, 2\ 3

in A is replaced in As by the greater term

1 Dm 1/p
m(ﬁ> ’



An Adaptive Test for Zero Mean 9

which depends on the error integrability. Hence, as expected, the set where our test
is powerful is larger under the Bernstein-type condition than under the bounded
moments condition.

5. Rate of Testing
In this section we assume

fi = F(xy), i=1,...,n,
for fixed numbers z; € [0, 1] and an unknown F': [0,1] — R. We aim at testing
Hl: F=0 against Hj: F#0.

For this task, we consider the so-called collection of dyadic partitions Mg = {my,
k € I}, where
T={2, 1eN, 2" <n/2}

and my, consists of the nonempty sets among

. j—17 .
; _ = =1,...,k.
{Z’«rze< k 7k]}7 .7 ) 7k

Let @ and G in (0,1) and au, = /| Mg|. As in Section 4, we restrict our attention
to the test with critical region (1), which still has level v in this setting. The aim of
this section is to study the power of this test when the ¢;’s satisfy either (4) or (5)
and F' is assumed Holderian. In particular, we aim at proving adaptive properties
of the test with respect to Holderian smoothness. We distinguish between the cases
where the Holderian smoothness of F' is at most one or greater than one.

Assume the Holderian smoothness of F' to be at most one: there exist s € (0, 1],
R >0, and L > 0 such that

(11)  Y(u,v) € [0,1)%, |F(u) — F(v)| < Rlu—v|®, and sup |F(u)| < L.
u€(0,1]

Assume moreover
mg,1 Sao m an m 2%7 allkEIa
12 I, Dy, d I, ’

for absolute constants agp > 0 and a > 0. This means that the design points are
almost equidistant. In particular, the condition is satisfied with ag = 0 and a = 1/2
if z; = i/n for all i. The following corollary of Theorems 4 and 5 provides conditions
on f under which the test is powerful, that is

(13) Py( sup {|Tnyl7 — g¥(am)} > 0) > 1-3.
meM

For the sake of simplicity, it is assumed that «,, = «a/|My4| for every m but it is
worth noticing that the results remain true if » 7\, ., = a and oy, > (logy n) =%
for all m € M and a positive ¢,, which only depends on a.
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Corollary 1. Assume we observe y = f + &, where the €;’s are independent
variables with symmetric distribution and f; = F(x;) for fized x; € [0,1] and an
unknown F. Assume P(e; = 0) =0 for all i and F satisfies (11) for unknown s €
(0,1], R > 0, and L > 0. Let M = My be the collection of dyadic partitions. Let
a and B in (0,1). For every m € M, let oy, = /| M|. Assume furthermore (12).

1. If (4) holds for all integers p > 1 and some positive numbers vy and p, then (13)
holds whenever n is large enough and one of the three following conditions is fulfilled
for a large enough C' (here, § = \/5 + p + L? and C only depends on a, ag, o, 3):

2s/(1+4s
=S RY/(1+43) (5\/10%10%”) e

1/4 and > :
() 5> 1/4 and = flln = C .

v
=11l

1 —s
ﬁ”f”n > CRn™".
2. If (5) holds for some p > 2 and p > 0, then (13) holds whenever n is large
enough and one of the three following conditions is fulfilled for a large enough C
(here, 6, = \/p(p+ L?) and C only depends on a, ag, o, 3):

2s/(1+4s)
(a) s> 1/4+1/p and 1 f I > CRY(1H49) <5p\/10glogn)
n n

(b) s€[1/4—1/p,1/4+1/p) and

(b) s=1/4 and > CR*3n=146Y5(log n x loglogn)'/1?;

(¢) s<1/4 and

i

4ps/(2+3p+8ps)
\%Hf I > CRE+30)/(2+30+899) <5pv105g/iogn) ;
n o n
1

(c) s<1/4—1/p and Tn

[flln = CRR™".

If x; = i/n for all i and F satisfies (11) then

> ||F|l2 = Rn™%.

1

Hence in that case, Corollary 1 holds with || f|,/+/n replaced by ||F||2. In partic-
ular, if s > 1/4 and (4) holds with u = 20% and v = p? (which is indeed the case if
the g;’s are i.i.d. N'(0,02)), then the power of the test is greater than a prescribed
1 — 8 whenever n is large enough and

||y > CRY(1+49) (WW) 2/ (1+445)

n

for a positive C, which only depends on L/o, o, and B. This rate is precisely the
minimal rate of testing obtained by Spokoiny (1996) in a white noise model. It is
also the minimal rate of testing obtained by Gayraud and Pouet (2005) in the i.i.d.
Gaussian regression model (but they do not describe the role of R and o in this
setting). This proves that our test achieves the optimal rate of testing under the
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Bernstein-type condition (4) if s > 1/4, and also under the less restrictive moment
condition (5) if s > 1/4 + 1/p. In the case where s < 1/4, the optimal rate of
testing is not known, even in the i.i.d. Gaussian model. Note however that the rate
Rn~* (obtained when s < 1/4 and (4) holds, and also when s < p — 1/4 and (5)
holds) was already obtained by Baraud et al. (2003) in the i.i.d. Gaussian setting
for s < 1/4.

Now, assume the Holderian smoothness of F' to be greater than one: there exist
d € N\ {0}, k € (0,1], R, and L such that

(14) Y(u,v) €[0,1)%, |FD(u) - F9D@w)| < Rlu—v|®, and Sl[lp] |F(u)| < L.
u€l0,1

Here, F9) denotes the dth derivative of F' (which is assumed to exist) and we
denote by s = d + k the Holderian smoothness of F. For technical reasons, we
restrict ourselves to the case where x; = i/n for all 7.

Corollary 2. Assume we observe y = f + e, where the ;s are independent
variables with symmetric distribution and f; = F(i/n) for an unknown F. Assume
P(e; = 0) =0 for all i and F satisfies (14) for unknown d € N\ {0}, x € (0,1],
R>0,and L >0. Let s=d+ k > 1 and let M = My be the collection of dyadic
partitions. Let a and B in (0,1). For every m € M, let o, = /| M|. Assume
furthermore that either (4) holds for all integers p > 1 and some positive numbers
~v and p, or (5) holds for some p > 2 and p > 0. Then there exists C > 0, which
only depends on «, 3, and s, such that (13) holds whenever n is large enough and

2s/(1+4s
(15) I1E|2 > ch/(1+4s)<<$loglogn> /( )'
- n

Here, 6 = \/7 + p + L under assumption (4) and 6 = \/p(pu + L?) under assump-
tion (5).

Thus our test achieves the optimal rate of testing when s > 1 under mild as-
sumptions on the &;’s.

6. Simulations

We carried out a simulation study to demonstrate the behavior of our test. We
also simulated the test Tp, a1,,, proposed by Baraud et al. (2003) in order to
compare the performance of the two tests.

6.1. THE SIMULATION EXPERIMENT. We generated a random vector ¢ € R"
from a given distribution G and computed y = f + ¢, where n € {64,128,256} and
fi = F(z;) for a given function F' and fixed x;’s. We considered the collection of
dyadic partitions M = Mg as defined in Section 5, we set a = 5% and a,,, = a/| M|
for every m € M. Then, we generated B = 2500 independent copies of w and
computed g2 (a,,) from these copies. Finally, we rejected the null hypothesis that
F = 0if (2) holds. For given G, F and n, we repeated this step 1500 times in order
to get 1500 independent tests, and we computed the percentage of rejections among
these tests. We thus obtained an estimate for the level (if F' = 0) or for the power
of our test. In order to assess the accuracy of the estimate, we repeated the above
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computations independently 100 times and computed the mean and the standard
deviation of the percentages of rejection obtained over these 100 simulations. For
every choice of G, F, and n, we obtained a small standard deviation (about 2.1073
to 5.107%), which means that the mean of the percentages of rejection is a good
estimate for the actual level of the test. For each simulation, we treated likewise
the T'p, a,,, test of Baraud et al. (2003).

We considered five different distributions G. In all cases, the variables ¢; are
mutually independent, with mean zero. The first distribution (called Gaussian)
is the one under which our test and the test T'p, a1,,, both have prescribed level:
the g;’s are identically distributed and standard Gaussian. Then we considered
two distributions, called Mizture and Heteroscedastic, under which our test has
prescribed level, while Tp, rq,,, does not: under Mizture the g;’s are i.i.d. mixture
of Gaussian distributions as defined in Baraud et al. (2003) ((b), p. 236); under
Heteroscedastic, €; is a centered Gaussian variable with variance

v(i) = sin* <47r(;:11) (Z:i))

Finally, we considered two distributions, called Type I and Asymmetric under which
none of the two tests have prescribed level: in both cases, the ¢;’s are i.i.d., Type I
is defined as in Baraud et al. (2003) ((c), p. 236) and under Asymmetric, the &;’s

are distributed as 5 .
v U—2/5 _ )’
2V5 ( 3

where U is uniformly distributed on [0,1]. The distribution of the ¢;’s is weakly
asymmetric under Type I and strongly asymmetric under Asymmetric.

6.2. THE LEVEL. We first considered the case where F' = 0 in order
to estimate the level of the tests. For simplicity, the mean of 100 percentages
of rejection (as described in Section 6.1) is called here the estimated level. The
estimated levels obtained for different G and n are given in Table 1. Under Gaussian,
Mixture and Heteroscedastic the estimated level of our test is, as expected, no
greater than the nominal level. Under Type I, the estimated level remains less than
the nominal level which means that the method is robust against a slight departure
from symmetry. Under Asymmetric, the estimated level is greater than « when
n is small and, despite asymmetry, it is smaller than « for n = 256. Even if we
cannot explain rigorously this phenomenon, it seems interesting to us to explain
it heuristically. Recall that the test consists in selecting a good partition m* and
then comparing the distributions of ||IL,-y|? and |[IL,-(w x y)||2. If n is large,
then either each subset in m* contains a large number of points or the number of
subsets in m* is large (or even, the two properties hold simultaneously). If each
subset in m* contains a large number of points, then by the central limit theorem
the projections of y and w X y on these subsets have distributions, which are close
to Gaussian; if the number of sets in m* is large, then the squared norm of the
projections of y and w X y on m* (which are sums of projections on the subsets
in m*) have distributions close to Gaussian. It thus seems that the combination of
two central limit theorems forces |11,y and ||, (w X y)|| to have distributions,
which are close to each other when f = 0 and n is large, even if the distributions
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of the g;’s are not symmetric. This explains why the level of our test is less than «
under Asymmetric for large n.

We now compare the performance of our test with that of T, p,,,. Under
Gaussian, Mixture, and Type I, the two tests have similar estimated levels and
are conservative. Under Heteroscedastic, our test is still conservative while the
estimated level of Tp, aq,,, is much larger than «, even for large n. Finally, under
Asymmetric, both tests have estimated level larger than « when n is small. But our
test performs better than T'p, a4,,,, all the more so that n increases. In particular,
our test has the prescribed level when n = 256, whereas Tp, r,,, has not.

TABLE 1. Estimated level of our test (Roman)
and Tp, my,,, (italic) for the five different
distributions G when o« = 5% and n € {64, 128,256}

Distribution G ||[n =64 |n = 128 |n = 256

Gaussian 3.71 3.80 3.72
3.58 3.5 3.46
Mizture 3.70 3.79 3.76

2.96 3.20 8.81
Heteroscedastic || 3.15 3.18 3.19
16.4 19.8 21.9
Type 1 3.67 3.46 3.33
3.9/ 3.89 3.70
Asymmetric 9.10 6.52 4.75
10.1 8.62 7.60

6.3. THE POWER. In this section, we consider cases where F' # 0, so the
mean of 100 percentages of rejection (as described in Section 6.1) is called here
estimated power. To choose regression functions F', we were inspired by Baraud et
al. (2003), where simulations of a test for linearity were performed. To adapt their
alternatives to the case of testing for zero regression, we removed the linear part of
their functions, so we considered the following functions:

Fip(z) = c1p cos(10mz), k=1,2,3.,4,
Fop(z) = 5 ¢(x/car)/cok, k=1,2,
F3k($) — —C3k (LL' — 0.1)11§0_1, k = ]., 2, 3,

where ¢ is the standard Gaussian density and c11, c12, - . ., ¢33 are equal to 0.25, 0.5,
0.75, 1, 0.25, 1, 20, 30, 40 respectively (see Figure 1). Thus for j € {1, 3}, the larger
k the farther Fjj is from the null function. In the case of alternatives Fij and F3yp
we set x; = (i — 0.5)/n, while for Fy the x;’s are simulated once for all as i.i.d.
centered Gaussian variables with variance 25 in the range [®71(0.05),®~1(0.95)],
where @ is the standard Gaussian distribution function.

Under Gaussian (see Table 2), the two tests have similar power against alter-
natives Fi; and Fyi: the estimated powers are good against Fyi, and quite small
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FIGURE 1. Alternatives Fi1, Fio (left), Foy, Foo (center) and Fsq, Fso
(right). Alternatives Fj; and Fjo are drawn in dotted and plain lines
respectively

against Iy, especially for small values of k and n. The estimated power of Tp, a,,,
is greater than that of our test against Fj3i, all the more so n is small and k is large
(that is, the signal/noise ratio is large). This is certainly due to the small number
of indices ¢ such that Fi;(z;) # 0. Indeed, our test can detect an alternative if
ITL,,.-y||? is significantly larger than ||IT,,,- (w x y)||? for a well chosen partition m*,
but [|TIL,,-y||? remains close to ||IL,,~ (w x y)||2 if there are only a few indices i such
that y; is significantly different from zero.

TABLE 2. Estimated power of our test (Roman) and Tp, m,,,
(italic) under Gaussian distribution. The nominal level is o = 5%

Distribution G Gaussian
F Iy | Fig | Fis | Fig || For | Fao || F31 | F3o | F33
n = 64 4.41 | 8.00 |19.4 | 41.7 |/ 99.9 | 100 | 12.2 | 20.2 | 27.5

4.29 | 778 | 18.5 | 39.5 || 99.8 | 100 || 16.2 | 40.4 | 72.4
n = 128 6.46 | 25.0 | 69.4 | 96.7 || 100 | 100 || 34.4 | 70.3 | 91.2
6.12 | 24.2 1 68.2 | 96.53 || 100 | 100 || 43.3 | 89.4 | 99.8
n = 256 12.3 |1 70.1 1 99.5 | 100 || 100 | 100 || 84.8 {99.9 | 100
11.7168.9 1 99.5 | 100 || 100 | 100 || 87.8 | 100 | 100

Under Mixzture or Type I (see Table 3), the estimated powers of the two tests are
smaller than under Gaussian, which is due to a greater variance of the errors: under
Mixture (resp. Type I), the common variance of the ¢;’s equals 4.678 (resp. 4). One
can notice however that the signal/noise ratio is the same under Gaussian with Fyq
(resp. Fio, resp. F31) as under Type I with Fio (resp. Fi4, resp. Fis3), and is close
to that under Mizture with Fyo (resp. Fig, resp. Fzz). Comparing the estimated
powers in these cases shows that, the signal/noise ratio being fixed, both tests have
similar powers under these three distributions.

Finally, we studied the power of the two tests under Heteroscedastic and Asym-
metric. 'We give in Table 4 the estimated powers only in the cases where the
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TABLE 3. Estimated power of our test (Roman) and Tp, aq,,, (italic)
under Mizture and Type I distributions. The nominal level is o = 5%

Distribution G Mixture
F Fiu | Fio | Fis | Fua || For | Foo || F31 | F32 | F33
n = 64 3.93 [ 4.61 |6.24 [ 9.32 || 88.0 | 98.0 || 6.15 |9.11 | 12.9

3.12 1 8.63 | 4.653 | 6.80 || 87.1 | 97.5 || 5.06 | 8.43 | 14.4
n = 128 4.31 {6.63 | 13.0 {25.6 || 99.8 | 100 || 9.74 | 19.5 | 34.2
3.60 | 5.532|10.1 |20.5 | 99.8 | 100 || 8.46 | 18.7 | 37.3
n = 256 5.16 | 11.9 | 31.7 | 63.4 || 100 | 100 || 18.9 | 47.1 | 78.6
4.41110.0|27.6 |59.0 || 100 | 100 || 17.0 | 45.7 | 79.5

Distribution G Type I
F Fiy | Fig | Fig | Fia || For | Foo || F31 | F3o | F33
n = 64 3.88 | 4.50 | 5.86 | 8.68 || 92.8 199.9 || 4.99 | 7.27 | 10.6

4.1514.69 1 5.93 | 8.38 || 92.4 | 99.9 || 5.67 | 9.08 | 15.6
n =128 3.99 | 6.21 |12.4 |26.4 || 100 | 100 || 8.04 |17.5 | 33.8
4.4116.52112.8|25.2 | 100 | 100 | 9.25 | 21.0 | 43.0
n = 256 4.58 | 11.8 {35.1 | 70.8 || 100 | 100 || 18.3 |51.4 | 87.3
4.98111.9 1 33.9 | 69.1 || 100 | 100 || 19.3 | 53.8 | 88.7

TABLE 4. Estimated power of our test (Roman)
and Tp, amy,,, (italic) under Heteroscedastic and
Asymmetric distributions. The nominal level is « = 5%

Distribution G Heteroscedastic
F Fiy | Fio | Fiz | Fua || For | Fag || F31 | Fs2 | F33
n =64 3.94 | 7.30 | 15.8 | 30.8 {|99.6 |100 || 11.4 |17.8 | 23.1

n =128 4.32 110.2 | 30.0 | 64.4 || 100 | 100 || 19.3 |45.5 | 73.4
n = 256 5.33 120.5 | 70.0 | 98.4 || 100 | 100 ||41.6 |95.1 | 100

Distribution G Asymmetric
F Fii | Fig | Fiz | Fig || Fo1 | Fao || F31 | F3o | F33

n =128 20.9 | 75.0 1 93.6 | 97.8 || 100 | 100 || 74.5 | 96.8 | 99.6
17.0 1 59.9 | 85.9 | 94.0 || 100 | 100 || 76.4 | 93.8 | 97.4
n = 256 39.2 193.6 |98.9 |99.6 || 100 | 100 || 99.2 | 100 | 100
30.9185.2|96.1|98.81 100|100 | 95.3|98.2 | 99.2

estimated level of the test is not much larger than the nominal level. In particular,
under Heteroscedastic we only give the estimated power of our test. We can see
that the estimated power of our test is smaller under Heteroscedastic than under
Gaussian, but remains reasonable. Under Asymmetric, the estimated power of our
test is in most cases greater than that of T, rq,,,, although the estimated level of
Tp, M,,, is greater than a.
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In conclusion, our test is powerful against various alternatives (provided the
number of indices ¢ such that y; is significantly different from zero is large enough)
and robust against departures from Gaussian distribution and homoscedasticity. It
is also robust against slight departures from symmetry.

7. Proofs
Some of the proofs require lemmas. Lemmas are stated when needed and proved
in Section 7.8.

7.1. PROOF OF THEOREM 1. Under Hy, we have y = ¢, so our aim here is
to prove that

(16) P( sup ([Tl - g5, ()} > 0) < o
me

For every u € R™, let |u| and sign(u) be the vectors of R with ith component |u;|
and

(17) (sign(u))i = 1qu, >0y — L{u,<0}s

respectively. The distribution of ¢; is symmetric about zero and P(g; = 0) = 0,
hence sign(e) has the same distribution as w and is independent of |e|. Moreover,
w X sign(e) has the same distribution as w. Since

w X € =w % sign(e) x ||,

it follows that the distribution of w x & conditionally on ¢ is identical to its distri-
bution conditionally on |e|. In particular, ¢5,(am,) = qlfll(ozm), where

qﬁ (o) = inf {x € R, P[|TL,(w x E)HZ >l lel] < am}.

But conditionally on |e|, w x e has the same distribution as sign(e) x |e| = e.
Therefore for every m € M,

P([mells, > gz (@m) | [el) = P(IMn(w x )l > a5 (@) | le]) < am.
Integrating the latter inequality yields
P(|Mells > gm(am)) < am.

By assumption ) 1. = o, hence we get (16). O

7.2. PROOF OF THEOREM 2. The first kind error probability of the test
with critical region (2) satisfies

P( sup {[Tnel2 = G2 (@)} > 0) < P[3m, g5, (@) < [Tnell2] +PE,
meM

where
Py = P[3m, el > @ (o) and g5, (am) > [Thell3].

n
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It thus follows from Theorem 1 that

(18) P( sup {|Mnel? = G (cm)} > 0) < a+ Py
meM

We can have ¢5, () > |[I,e]|? if and only if p5, > oy, where
P = P (I (w x €[l > [Tmel, | €).

Likewise, we can have g2 (a,) < ||II,¢||2 if and only if

B

1

5 2 i (wrxe) 2 ez, < G-
b=1

Conditioning with respect to ¢ thus yields

B
1
Pr< ) E{P(Blenmwbxenpmmem < am | 5) 1p;>a,,”}
b=1

For every m € M, let S:, be a random variable, which is distributed conditionally
on € as a binomial variable with parameter B and probability of success p5,. The
Hoeffding inequality yields

(19) PE < Z E[P(S; < Bay, | E)lpf”>am:|
meM
< Z E[exp(—2B(pfn — am)2>1pfn>am]-
meM

By dominated convergence,
Blim E[exp(_2B(pin - am)z)lpfn>am] =0,

so the first part of the theorem follows from (18). In order to prove the second
part, we compute the distribution of p:, in the case where the distributions of the
g;’s are continuous (see Section 7.8 for a proof).

Lemma 1. Under the assumptions of Theorem 1 with the additional assump-
tion that the distributions of the €;’s are continuous, p5, has a discrete uniform
distribution on the set

E={k2P " k=1,... 2" P}

Combining (19) and Lemma 1 we get

PP X (20 N ewl(-28(-an?)

meM TEE, x>,
1
< Z <2D’”” +/ exp(—2B(x — a)?) dx>.
meM am

The result now follows from (18) and straightforward computations. O



18 C. Durot and Y. Rozenholc

7.3. PROOF OF THEOREM 3. The second kind error probability of the test
with critical region (2) satisfies

Py( SU%{HHmyIIi — ()} <0) < Pr[vm, gf,(6m) > [yl | + Q7
me

where
QF = Pr[3m, [Mnyl; < 35 (am) and ¢4,(6m) < [Mnyl].

Using the same arguments as in the proof of Theorem 2 (and also the same notation)
we get

QE < Z Ef [Pf<s7€z > Bay, | y>1pfn§6m]7
meM

where SY, is a random variable distributed conditionally on y as a binomial variable
with parameter B and probability of success p¥,. By assumption, d,, < a,, for
all m, so by dominated convergence, QF tends to zero as B — oo, which proves the
result. [

7.4. PROOF OF THEOREMS 4 AND 5. In this section, we first describe
the common line of the proof for the two theorems and then describe the specific
arguments for each of them. The lemmas stated in this section are proved in
Section 7.8. The following three inequalities are repeatedly used throughout the
proof: for all positive real numbers a and b

(20) Va+b<va+ Vb
for all positive real numbers a, b and 6,

(21) 2vVab < fa + 67 1b;
for all positive numbers a, b and k we have

(22) (a+ D)% < 28(a* v bb).

Line of proof. Fix 8 € (0,1) and f € F,(8). The second kind error probability
of the test at f satisfies

Py ( sup {|[Inyll7 — ah(am)} <0) < inf Pr([|nyll; < g (am)).
meM meM

Therefore, the power of the test is at least 1 — 8 whenever there exists m € M such
that

(23) Pr(IMLnyll < gt (am)) < B.
Since f € F, (), there exists a partition m € M such that

(24) I£115 = A(m, £, A4),
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where A denotes either A7 or As. In the sequel, m denotes such a partition. We
aim to prove that (23) holds for this partition, provided the A’s are large enough.
Now we show that the subsets e, ; which contain only one point cannot contribute
to the power of the test. Let y € R™ with 7th component y; = 0 if ¢ € e, ; for an
index j € Jy,,1 and y; = y; otherwise. For every j € Jp, 1, let i(j) be the unique
element of e, ;. By definition of II,,,

1 2 _
Mnyll2 = > |e|< > yi) + ) vy = Mgl + D vl
G€Im2 T Nicen, ; G€Im1 J€JIm1

Let
¢ (am) =inf {z € R, P(|[I(wx )2 >z |y) <cum}.

We have w; = +1, so

[T (w0 x )17 = [T (w x D%+ D i),

J€Jm,1
and we get
g (am) = g4, (am) + Z yz‘z(j)'
jEJm,l
Hence (23) amounts to
(25) Pr (I35 < @ (0im)) < 5,

which means that the sets with only one point can be removed from the condition.
Thus we aim to prove that (25) holds provided the Ay’s are large enough. We set

Zo = Mm(w x P2 = Y 1( 2 wiyi)2

J€JIm,2 |€m,j| i€em,

and

1
M,, = 24
Jgiaxz{ 2 yl}

|€myj| i€em,;
We first give an upper bound for g¥, (a,) in order to control the probability in (25).

Lemma 2.

T () < Ep(Zon | y) + 8Myn log(1/ ) + 44/ 2B (Zn | )My log(1/ ).

The obtained upper bound depends on E¢(Z,, | y) and M,,, which we have
to control. It is proved in the following two lemmas that with high probability,
these variables are not much greater than their expectation. The control we obtain
depends on the assumptions on .



20 C. Durot and Y. Rozenholc

Lemma 3. Under the assumptions of Theorem 1,

Pf<Mm > 18(ﬁ\/,u\/L2){1+Illog (i’»l;mﬂ) Sg

and

wl®

Pr(E(Zn | y) 2 Ef(Zm) +8(y7V L)/ Dy 10g(3/8) + 2(uV L) log(3/8) ) <

Lemma 4. Under the assumptions of Theorem 5, there exists an absolute con-
stant C > 1 such that

ezl ()]

|

Moreover,

]

Pr(Ef(Z | 9) 2 Ep(Z) +A(uV I)/6D,]5) <

The main issue to prove Theorems 4 and 5 is to derive from the three lemmas
above that

(26) Pf (Zﬁn(am) < Ef(Zm) + Rm) >1- %/Ba
where R,, is a positive real number to be chosen later. Then,
(27) Py (|Lnglls < @n(am)) < 368+ Pr(ILndll; < Ef(Zn) + Rm),

and it remains to prove that the right-hand side probability is less than or equal
to 8/3. In order to do that, we state a concentration inequality which proves that
with high probability, ||IL,,,7]|2 is not much smaller than its expectation. Here
again, the obtained control depends on the assumptions on €. In the sequel, f
denotes the expectation of y.

Lemma 5. Under the assumptions of Theorem 5,

- - vD,, 1 ~ 6 Jé]
Py (I < Bl -6y 252 - I IR - a7 tog (5) ) < 5.

Lemma 6. Under the assumptions of Theorem 5,

- ~ D, 1 ~ I
Py (I < BT — 30y 22— 20 72 - %) <

s
B p)=3
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In both cases, there is R/, > 0 such that

~ ~ 1 ~ I}
(28) Py (Tl < Erlngll2 = Ry, — 5T fI2) < 5.

Thus the right-hand side probability in (27) is less than or equal to (/3 as soon as
~ 1 =
(29) Ef(Zm) + R, < EfHHmy”i - R;”n - §||Hmf||3n

hence it suffices to prove (29). By assumption, the w;’s and the y;’s are mutu-
ally independent, and the distribution of w; is symmetric about zero. Therefore,
E(w;) = 0 and the random variables w;y; are mutually independent with zero mean
and variance F¢(y?) = E(e?) + f2. Hence,

1

(30) Ef(Zm)= )

JE€EIm,2

Y (BED+ ).

|em’j | i€€m,j

We have e, j| > I, for all j € Jp, 2, so

E|0nll; — Ef(Zim)

- Y (S e (T 5) - T e )

e,
JE€EIm,2 m,g| i€€em,j i€€em,j i€€em,j

B P I S o

€m.j ) . .
JE€EIm,2 | m’j| 1€€m,j JE€EIm, 2 1€em j

Hence

1
~12 _ > 2 _ 2 _ 112,
Ef Tl = By(Zi) = I3 = | max 72 = =171

In order to prove (29), it suffices to prove

2 1

By definition, I, > 2 and by the Pythagoras equality,

(32) T fI12 = I£117 = IIf = Mo fII7-

IhUS 1[ SllfﬁCGS [0 pIO\/e
’ n } IIm ; n dm 1 11<111a< J m m

But f satisfies (24), so it suffices to check that for large enough Ay,

(33)  AGn £ A) 2 A~ T2+ 6{ | max f2+ R+ Ry}
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Now to prove Theorems 4 and 5, it remains to compute R, and R!, and to
check (33) with A replaced by A; and A, respectively.

Proof of Theorem 4. By (30),

Ef(Zm) < Dm(\/ﬂ"’ LQ)-

Using (21) we thus get

Et(Zy) +8(/7V L*)\/ Dy, log(3/8) + 2(n v L*) log(3/3)
<T7(VAV iV L) (Dyy +log(3/3)).

Combining Lemmas 2 and 3 proves that with probability greater than 1 — 23/3,

@ (am) < Ef(Zm) +8(yv7V L*)\/Diy 10g(3/8) + 2(u v L*) log(3/8)
+144(ﬁvu\/L2){ +Ilog< )} ( )

+24(ﬁvaL2)\/7<Dm+log (;)) <1+ El g (312, )) log (alm)

Using (20) and (21), we get that with probability greater than 1 —23/3,

3% () < Ef(Zm) +8(/7 V L*)\/ Dy log(3/8) + 151(y/4 V 1V L?) log(3/3)
+151(y/y V v L?) [1 + Ii log (3%”” log (al)

+24(ﬁvu\/L2)\/7D {1+Imlog<3l; )]1g<a1m>.

By assumption, log(1/ay,) and log(3/3) are positive, so we obtain (26) with
1 3Dy, 3
m = 151 L) |1+ —1 lo
R = 151(/7 v 291+ 7t (252 ) 1o ()

+72(V7 VeV Lz)\/Dm [1 + Ii log (3%”” log (52)

By Lemma 5, we have (28) with

Rl = 6y/yDn /B + 14(y/7 V 1V L?)10g(6/),

so (33) holds with A replaced by A; provided Ay,..., A5 are large enough. O
Proof of Theorem 5. By (30),

Ef(Zm) < Dm(ﬂl + L2)
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Combining Lemmas 2 and 4 proves that with probability greater than 1 — 23/3,

a?n(am) < Ef(Zm)+4(,u\/L2) 61;771
1 3D,, 1/p 1
s 1 g (05) s (5)

N o e e R T )

Using (20) and (21), we get (26) with

| Do 1 (3D, \'" 1

4+ 18(p Vv LQ)\/Cpo {1 + \/% (‘O’gm) 1/,,} log (O}m> .

By Lemma 6, we have (28) with

Ry, = 3u\/ D /B3 + 9/,
so (33) holds with A replaced by Ay provided Ay, ..., Ag are large enough. O

7.5. PROOF OF COROLLARY 1. We define 6 and 4’ in the following way.
If (4) holds for all p > 1 and some v and p, we set 6 = &' = /5 + p+ L2 If (5)
holds for some p > 2 and some p, we set § = \/p(u + L?) and §' = p(u+ L?). By
Step 2 in the proof of Corollary 1 of Baraud et al. (2003),

If = M, fI7 < nR2ET*

n —

for all k € Z. Moreover, |[M| < logn/log2, so there exists ¢, > 0, which only
depends on «, such that
log(1/am) < cq loglogn.

We have (12) and D,,, < k for all k € Z, so it follows from Theorem 4 that the
power of the test is greater than 1 — 5 whenever (4) holds and

k
(39 1912 2 A jut {51+ Logn) oglogn
€z n

+5\/k<1 + klogn) loglogn}7
n

for a large enough A. Likewise, it follows from Theorem 5 that the power of the
test is greater than 1 — 8 whenever (5) holds and

L1/p+1/2
(35) I£I12 > Aggg {nR2k25 +0 <1 + \/ﬁ> loglogn

soli(1+ EE2N o
oy (1 ) stosn
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for a large enough A. In (34) and (35), A > 0 only depends on a, ag, «, and 5. In
the sequel, Z’ denotes the subset of Z defined as follows. Under (4), Z’ is the set of
those k € Z, which satisfy klogn < n and under (5), Z’ is the set of those k € Z,
which satisfy k'/P+1/2 < \/n, that is k < n?/®+2),

o Assume first that (4) and 1 (a), resp. (5) and 2 (a), hold for a large enough C.
By (34) and (35), the power of the test is greater than 1 — 3 whenever

1412 = 2A[ jinf {nF*k2 + 6\/kloglogn } + &' loglogn].

Let
R2 2/(1+4s)
(36) P L — .
d+/loglogn
We have

nR%k~2° < 6+/kloglogn

if and only if & > k* and for large enough n, there exists ¥’ € Z’ such that k* <
k' < 2k*. Therefore,

kin% {nRzk*QS + 0/ kloglog n} < 26+/k'loglogn
e !
2/ (1445) 5 /710g logn 4s/(1+44s)
< 46/ k*loglogn < 4nR _— .
n

The power of the test is thus greater than 1 — 8 whenever n is large enough and

4s/(1+4s
||f2>2A[4nRZ/<1+4s>(5k>gbgn> f+4a)
n —
n

+ ¢’ loglog n} .
This indeed holds if n is large enough and either 1 (a) or 2 (a) is fulfilled for a large
enough C.

e Assume (4). By (34), the power is greater than 1 — 8 whenever n is large
enough and

1
37 2 >34 inf R2k28 5k\/1 log1
(37) 1712 2 34, int {2k 4y Ltog x loglog n

for a large enough A. Let

n3/2 R2 1/(142s)
k. = .
<§\/10gn x log logn)

If s = 1/4 and n is large enough, there exists k' € T\ Z’ such that k. < k' < 2k,.
Therefore,

1 1
inf {nRQkQS + 5k\/ logn x log logn} < 40k, \/ logn x log logn.
kET\T' n n
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The power of the test is thus greater than 1 — 8 whenever n is large enough and
1(b) holds for a large enough C. Let kg be a point in Z with kg > n/8. Then (37)
holds whenever

1
| £1I12 > SA{nR2kO2s + 6ko\/n logn x loglogn }

Since ko < n/2, this indeed holds if 7 is large enough and 1 (c) is fulfilled for a large
enough C.

e Assume (5) holds for some p > 2. If n is large enough, we have for all k > 1
8NP 2 =12 10glogn < 8k 2PH3/4 =14, /loglog n.

By (35), the power is thus greater than 1 — 3 whenever n is large enough and

(38) 1£]|2 > 44 . enIl\fT {nRQk’QS + OKL/2PH3/4n =14 floglogn }
Let

6+/loglogn

Ifse[1/4—1/p,1/4+1/p) and n is large enough, there exists k¥ € Z\ Z’ such that
k. <k < 2k,. Therefore,

inf {nRQk_Qs + kY234 =14 floglogn } < 46ki/2p+3/4n_1/4\/10g log n.

kET\T'

n5/4R2 4p/(2+3p+8ps)
b= ( ) .

The power of the test is thus greater than 1 — 8 whenever n is large enough and
2 (b) holds for a large enough C. Let kg be a point in Z with kg > n/8. Then (38)
holds whenever

”f”i > 4A{nR2k625 +5ké/2p+3/4n_1/4M}.

This indeed holds if n is large enough and 2 (c) is fulfilled for a large enough C. O

7.6. PROOF OF COROLLARY 2. Let k* be given by (36) and let k' € T
be such that &* < k' < 2k* (such a k' exists provided n is large enough). By
Theorems 4 and 5, it suffices to prove that ||f||? exceeds A(my, f, A) for large
enough n and a fixed A, where A denotes either A; or Ay. By (31), one can choose

B 2/3
- 2/3-1/I,

Vgt

Ay

Moreover, there exists Ag > 0, which only depends on «, 8, and A such that

A(myr, f, A) < AL|lf = T f||? + Agd/E loglog n.
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By (32), it thus suffices to show that for large enough n,

3
(39) [T £12 2 57— £ + 403 /i Toglog .
mys
We need further notation. Let F,, be the function defined by F,(t) = F(z;) for all
t € (zi—1,24], i = 1,...,n, where we set x; = i/n for all i = 0,...,n. For every
i=0,..., K, let
1 1{njg
tj = g; ‘emk/,’i| = H |:k,:|

(here, [x] denotes the integer part of z). Let @ be the orthogonal projector from
L,[0, 1] onto the set of step functions, which are constant on each interval (¢;_1,1;],
and let @, be the orthogonal projector from L3[0, 1] onto the set of step functions,
which are constant on each interval ((j—1)/k’, j/k'],j =1,...,k". Since t;_1—t; <
2/k" and |t; — j/k'| < 1/n, we have

2 2
1 2K\ F |12
P)as) > f1Q.FIf - 21

k' t;
lorii = ——( [

j=1 J tj_l bj—1
(recall that (a + b)? > a?/2 — b? for all real numbers a and b). Now,
IQUF ~ Fla < IF ~ Fulla < IF = Fullc < 1o/
and we have
Moy flln = V| QF -
Therefore,

NG

Vn V2| F
2 n

vn

The partition of [0, 1] associated with @, is equispaced (all intervals have the same
length 1/k’), so one can prove that there exist positive numbers Cy and Cj, which
only depend on s, such that

M, flln = VRIQF |2 = [F oo /v = = 1Q0 Fll2 — = [[F'[[oo/V/n.

1QrFll2 > C1]|Fll2 — C2RE"™,
see Proposition 2.16 of Ingster and Suslina (2003). It then follows from the definition

of ¥’ and the assumption s > 1 that there exist positive numbers C{ and C%, which
only depend on s, such that for large enough n,

Moy, flln > Cv/nl|Fll2 = Cov/nRE .

Note that

1£lln = Vol Fall2 < vl Fll2 + [ Flle/vn
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and that I,,,,, tends to infinity as n goes to infinity. Thus in order to prove (39), it
suffices to prove that for large enough n and some Aj > 0,

_9s )
||F||32Ag{R2k' e moglogn}_

But this is indeed the case if F' satisfies (15) for a large enough C > 0. O

7.7. POWER IN A GAUSSIAN HOMOSCEDASTIC MODEL. In this section, we
assume that the ¢;’s are i.i.d. N'(0,02) and |f;| < oL for all i. We will prove that
the power of the test is greater than 1 — 5 whenever f satisfies (7) for large enough
Ai’s. Under the above assumptions, Lemmas 2 and 3 are valid with u = 202,
v = u?, and L? replaced by o?L?. In particular, we have (26) with

Dy,
e

D,
+ 14402 (1 + L2)\/Dm {1 + i log (%)] log (606%)

Moreover, one can improve the result given in Lemma 5 under the Gaussian as-
sumption, due to the Cochran theorem. Indeed, let D denote the cardinality
of Jy2. By the Cochran Theorem, ||IL,,7||2 /02 is a non-central x? variable with

D! degrees of freedom and non-centrality parameter HHme,QZ /o?. By Lemma 1 of
Birgé (2001), we thus have for all positive x

1 - 1 - 2 ~
Py [2||Hmy||i < L mge - 2\/ (D;,, n 2|Hmf||%)x] < exp(—a).
g g g
Using (20) and (21) one obtains

~ ~ 1 ~
Py {10312 < By Tl = 20* /Dl = 5l fII2 = 60%2] < exp(—a),
for all z > 0. Setting = = log(3/() in this inequality yields

N N 3\ 1, =~ 3 8
Py 110,712 < Bl - 20% [Dytos (5) = JI 712~ 0105 (5)] < 5.

Therefore, we have (28) with

R!, =20%\/D,,1og(3/3) + 602 1og(3/3).
Let A(m, f, A) denote the bracketed term in (7). Then (32) holds provided the
Ay’s are large enough, which proves the announced result. O

7.8. PROOF OF THE LEMMAS. We first recall two inequalities, which will
be used in this section.
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Bernstein’s Inequality. Let Xi,...,X, be independent real-valued random
variables. Assume that there exist positive numbers v and ¢ such that for all integers
k>2

n
STE[IX*] < k!ch.
i=1

Let S =31 | (X; — E[X;]). Then for every x >0, P[S > v2vz + cz]| < exp(—a).

Rosenthal’s Inequality. Let Xi,...,X, be independent centered real-valued
random variables with finite t-th moment, 2 <t < oo. Then there exists an absolute
constant L such that

E‘ ixi
=1

: n n t/2
SLtttmaX<ZE|Xi|t7(ZE|Xi|2) )
i=1 i=1

Proof of Lemma 1. For notational convenience, we omit subscript m. For every
j=1,...,D and z € R", define the set A;(z) by A;(z) = {0} if D =1 and

1 2
Aj(z) = {ZM(Z“’Z’> y UE {il}n}
ity 1kl e,
if D> 1. Forevery j=1,...,D let
& ={eCejst. e#0ande#e;}.

Finally, let

D
Y= m {z € R" s.t. Vu € {£1}", Va,d' € Aj(z), Ve € &},

j=1
42%’% Z u;z; # (a’ — a)\ej|}.
i€e i€ej\e

The ¢;’s are independent and all have a continuous distribution, so the event
{e € Y} is the intersection of a finite number of events having probability one. We
thus assume in the sequel without loss of generality that ¢ € Y. Let v and u' be
elements of {£1}" such that

(40) IT(u x e)II7, = IT(u’ x &)l

Fix j € {1,...,D}. We have

1 2 2
0= [|(u x e)|I}, — T x o)]]7 = H[(Zum) — (> uie) } +a—d
€ i€ej i€ej
for some a,a’ € A;(g). Setting e = {i € e; s.t. u; = u}} we get

(Z uisi)Q - (Z ugsi)Q = Z(ul +ul)e; Z(uz —ul)e; = 4Zui‘€i Z UiEs,

i€e; i€e; i€e; i€ej i€e icej\e
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since u; = —u; for every i € e; \ e. Ase € Y, either e =) or e = ;. Thus for all
j=1,...,D, either u; = uj for all i € e; or u; = —u] for all i € e;. This implies
that the cardinality of the set

(M x )2, ue {£1}7}
is 2"~ P and that for every element a of this set, the cardinality of the set
{ue {£1}" st. a=|I(uxe)|2}

is equal to 2P. This proves that conditionally on e, ||[II(w x ¢)|? has a discrete

uniform distribution on a set with 2"~ distinct values. Clearly, ||Tle||? belongs
to this set, so p° = k2P~" for some k = 1,...,2" P More precisely, we have
p° = k2P~ if and only if the cardinality of the following set is equal to k:

{IM(ux e)[|2 s.t. |T(uxe)||Z > [[He2, uwe {£1}"}.

[H

But this set has the same cardinality as the set
{ I x eDI7 st IT0(u < [eD)|l7 = [IT(sign(e) x D7, w e {£1}" },

where we recall that sign(e) is the vector in R™ defined by (17). Since sign(e) has
the same distribution as w and is independent of || (see the proof of Theorem 1)
we get

P = k2P e = P Y2 Lpmuxtenizzimsiniz =& |lel)-
ue{£1}n
Moreover conditionally on |e|, |[II(w x |¢|)||? has a uniform discrete distribution on
a set with 2"~ P distinct values. Therefore,

P(p* = k2P | [e]) = 2P~

Integrating this inequality yields the result. [

Proof of Lemma 2. First, note that Lemma 2 is trivial whenever y; = 0 for all
i since in that case ¢¥, (o) = 0. We thus assume in the sequel that there exists ¢
such that y; # 0. In particular, M, > 0. Now, note that Z,, can be written as the
sum of squared random variables:

>, X7

jeJWL,Q

where for every j € J,, 2,

X lyl .
;7 Vleml e
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Here,

(41) TJ= U ems

J€JIm,2

Denote by S,,, the unit sphere in RI/=2|. Then

i (i
Z,1n/2: sup Z a;X; = sup Zwl Yii@)

b
a€S,, JETm.2 a€Sm, ied vV |e7n,j(i)|

where for every 4, j(i) denotes the unique integer in .J,, » that satisfies i € e,, ().
If S/, denotes a finite subset of S,,,, then it follows from a result of Massart (2006)
that for all z > 0,

2

x
Pf[sup Z anjZEf(sup Z anj|y)+x|y}§exp<—8U2(S/)),

! !
aesm.jeJ’"L,2 aeS’"J‘EJm,z

where
2 2

62(S!.) = sup Z Yi%ie _ sup Z aj Z V2.

/ e L. , e .
aGSmiej | m,](z)| aESmjejrm2 ‘ m,]| i€em.;

But S, is separable and for every subset S/, of S,,, 02(S/,) < M,,. Hence for all
x>0,
PrZ? > Ef(Z3]% | y) + 2 | y] < exp(—a®/8M,,).

In particular,

Py ZY? > E(ZM? | y) + /8My log(1/am) | y] < am.

Squaring the inequality yields

Py[Z > BHZY? | y) + 8Myn los(1 o) + 25 (Z4? | 4)v/S0E Tog(1 /o) | o]

< .-
By definition of ¢¥,(a,,) we thus have

@ (am) < EF(ZL? | y) + 8Mynlog(1/am) + 2E¢(Z3? | y) /8 My log(1/am),

and the result follows from the Jensen inequality, which implies

EBHZ)? | y) < Bp(Zm | ). O
Proof of Lemma 3. By definition of M,,, we have for all real numbers z and ¢

Pf[Mmzc—i-x} < Z Pf|:1' Z nyC—&-x}

e
J€Tm,2 | Il icen, 4
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In particular, if ¢ is large enough so that E¢(y?) < c for all i, then for all z
1
@ P zerd < ¥ p|loo 30 B0R) 2
JE€JIm,2 msJ 1€€m,j

Let p > 1. By (22), y?p < 2217(5?” V L??) and in particular, yizp < 221’(6?17 + L?P).
Therefore,

(43) Ep(yi?) < 227 max {yplpP =2, L2} < yoplpb 2,

where 7o = 25(yV L) and po = 4(p Vv L?). By Bernstein’s inequality, we thus have
forall z >0

P 3 0 - B102) 2 2 ket +os] < expl-a).

1€€em,j

Moreover, E¢(y?) < L? 4+ /27, so by (42),

Py [Mm > /2y + L2 +2, [ 25 + ’}Oﬂ < Dy exp(—a).

We have
V27 + L 42 WI‘:;WL <2+ L2+ 2\/70+u0)<1+;;>
< 18(ﬁv;wL2)(1+ i)
Hence for all z > 0,
Py [Mm >18(y7V pV L) (1 + ;;ﬂ < Dy exp(—2).
Setting here x = log(3D,,,/[3) yields the first assertion in Lemma 3. The variables w;
are independent with mean zero and variance 1, and these variables are independent

from y. Hence conditionally on y, they are still independent with mean zero and
variance 1, and we derive from the definition of Z,, that

(44) Ef(Zm ly)= el | > vk
jEdmn \Cmedl iber
y (43), ,
I J(25) ] < 2o ()
GE€ETm,2 i€€m.; |emJ‘ 2 2

so Bernstein’s inequality yields forall x >0

1
P {Ef(zm | y) > Ef(Zim) + /2Dmyox + guox} < exp(—z).

Setting here z = log(3/3) completes the proof of the lemma. O
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Proof of Lemma 4. By Rosenthal’s inequality, there exists an absolute constant
C’" > 0 such that for all j

Ef’ Z P = Er(y})

< (' max{ Z Ef|yl Ey( ()P, ( Z var(yzz))p/Q}.

i€em,j 1€em,j

‘ p

Moreover, by Jensen’s inequality, Fe} < p? for all 4, so by (22),
varg(y7) < Ep(y}) < 24(u® + L*Y).

Hence,
o\ /2 5p/2 2 2
(3 vargw?)” <2 2ey, 20 v L)

1€€m,j

On the other hand,

SN OEE-ErhHP <20 Y [Er@ih)+ErD)P] < 20 e, | (1P + L),

i€em,;j 1€em,;j

so we get
Ef’ > W - Esly} )‘ < (Cp)Plem j[P/2(uP v LP),

i€em ,J
where for instance C' = 2*C’. We have Ef(y?) < p+ L?, so (42) and Markov’s
inequality yield

1
zp|e |p/2 -

Dy,

D 2p
< (CPP (VI

Py[My, > p+L?+ax] < (Cp)P(uPVI™)

jEJnL,2

for all x > 0. In particular,

1 /3D.\'"1 &
P; | M, > L? + Cp(pV L?)—— 4 <Z.
f > p+ L7+ Cp(p ) Tm( 3 ) ]_3

We can assume without loss of generality that C' > 1, so the first assertion of
Lemma 4 follows. We have (44), where the y;’s are independent. Therefore,

varg [Ef(Zm | y)] < Jwax Ep(y, Yi)Dim < 24 (p® + L) Dy

Now the second assertion of the lemma follows from the Bienaymé-Chebyshev in-
equality. 0O

Proof of Lemma 5. Let J be defined by (41). We have

1ML = L2 + L 2 + 2 Z ( Z &) (0 5),

J€Im | m”' i€em i€em.j
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where = §— f. For every i € 7, let j(i) denote the integer in Jm,2 which satisfies
i € € j(i) and let

a; = le ,]()|1€emzj<)fl
Then,
> il Y )( 32 )=y
GETm o T i€em,; i€J

Since |a;| < L, we have for all integers p > 1

> Blaseil? < L7237 a2 Aol < 1P Iy Apt

i€eJ ieJ
Using Bernstein’s inequality, we obtain that for all z > 0

5 (S (X ) <2y - ] < ot

G€Tma I Vice,, i€em.j

pf{
We have L/p < L? V i and by (21),

P 1 -
M I3z < T FI + 672,

Setting x = log(6/3) thus yields

P2 aa(Z (X )

JE€EJIm,2 ‘6m7]| 1€em,j

< g2 = 77 Vv 2yiog (§)| < 5.

On the other hand, the ¢;’s are mutually independent and &; and &} have mean
ZEro, S0

(15) var (Y ) <B( Y w) < 3lensl max B,

1€€em,j 1€€em,j

Therefore,
var (|T,E]2) < 69D,

and it follows from the Bienaymé—Chebyshev inequality that

Py [IMn8112 < By 2]z = 6v/7D/B | < B/6.

The result follows. O
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Proof of Lemma 6. The distribution of ¢; is symmetric, so ¢; and €} have mean
zero. Moreover, the €;’s are mutually independent, so

vary (I g)2) = 37 |elj|2[var( 3 gi)2+4( 3 fi)z > BE).

j€Ima i€em,j i€em,j i€€m,;j

It then follows from (45) that

vary (| Imgll7) < 3Dmp® + 4y £

By the Bienaymé—Chebyshev inequality,

_ _ 9D, 12 + 12|y, f1|2 2 B
Py ML, 31% < By I, - nflar | < 2.
By (20) and (21) we have
9Dy, pi* + 12||Hme%,u Dy 1 2,
: | 5+ ST 7R +
and therefore,
~ - D 1 ~ Iu 15
P ||, 9|12 < Ef||IL,,7]12 — 3 m L f? - R < 2.
7 112 < Bl - sy [ 22 - 2 - 2] < 2

This completes the proof of the lemma. [
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