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versité Paris 5 René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France

Abstract
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1 discrete times with regular sampling interval ∆. Assuming that (Xt) is strictly
stationary, we propose nonparametric estimators of the drift and diffusion coefficients
obtained by a penalized least square approach. Our estimators belong to a finite
dimensional function space whose dimension is selected by a data-driven method. We
provide non asymptotic risk bounds for the estimators. When the sampling interval
tends to zero while the number of observations and the length of the observation time
interval tend to infinity, we show that our estimators reach the minimax optimal rates
of convergence. Numerical results based on exact simulations of diffusion processes
are given for several examples of models and enlight the qualities of our estimation
algorithms.

First version: November 2005. Revised version: June 2006

Keywords. Adaptive estimation. Diffusion processes. Discrete time observations. Drift and

diffusion coefficients. Mean square estimator. Model selection. Penalized contrast. Retrospective

simulation

Running title: Penalized estimation of drift and diffusion.

∗ Corresponding author

fabienne.comte@univ-paris5.fr

Valentine.Genon-Catalot@math-info.univ-paris5.fr

yves.rozenholc@math-info.univ-paris5.fr

1



1 Introduction

In this paper, we consider the following problem. Let (Xt)t≥0 be a one-dimensional diffu-

sion process with dynamics described by the following stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, X0 = η (1)

where (Wt) is a standard Brownian motion and η is a random variable independent of

(Wt). Assuming that the process is strictly stationary (and ergodic), and that a discrete

observation (Xk∆)1≤k≤n+1 of the sample path is available, we want to build nonparametric

estimators of the drift function b and the (square of the) diffusion coefficient σ2.

Our aim is twofold: construct estimators that have optimal asymptotic properties and

that can be implemented through feasible algorithms. Our asymptotic framework is such

that the sampling interval ∆ = ∆n tends to zero while n∆n tends to infinity as n tends

to infinity. Nevertheless, the risk bounds obtained below are non asymptotic in the sense

that they are explicitly given as functions of ∆ or 1/(n∆) and fixed constants.

Nonparametric estimation of the coefficients of diffusion processes has been widely

investigated in the last decades. The first estimators that have been proposed and studied

are based on a continuous time observation of the sample path. Asymptotic results are

given for ergodic models as the length of the observation time interval tends to infinity:

see for instance the reference paper by Banon (1978), followed by more recent works of

Prakasa Rao (1999), Spokoiny (2000), Kutoyants (2004) or Dalalyan (2005).

Then discrete sampling of observations has been considered, with different asymptotic

frameworks, implying different statistical strategies. It is now classical to distinguish be-

tween low-frequency and high-frequency data. In the former case, observations are taken

at regularly spaced instants with fixed sampling interval ∆ and the asymptotic frame-

work is that the number of observations tends to infinity. Then, only ergodic models are

usually considered. Parametric estimation in this context has been studied by Bibby and

Sørensen (1995), Kessler and Sørensen (1999), see also Bibby et al. (2002). A nonpara-

metric approach using spectral methods is investigated in Gobet et al. (2004), where non

standard nonparametric rates are exhibited.

In high-frequency data, the sampling interval ∆ = ∆n between two successive observa-

tions is assumed to tend to zero as the number of observations n tends to infinity. Taking
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∆n = 1/n, so that the length of the observation time interval n∆n = 1 is fixed, can only

lead to estimating the diffusion coefficient consistently. This is done by Hoffmann (1999)

who generalizes results by Jacod (2000), Florens-Zmirou (1993) and Genon-Catalot et

al. (1992).

Now, estimating both drift and diffusion coefficients requires that the sampling in-

terval ∆n tends to zero while n∆n tends to infinity. For ergodic diffusion models, Hoff-

mann (1999) proposes nonparametric estimators using projections on wavelet bases to-

gether with adaptive procedures. He exhibits minimax rates and shows that his estimators

automatically reach these optimal rates up to logarithmic factors. Hoffmann’s estimators

are based on computations of some random times which make them difficult to implement.

In this paper, we propose simple nonparametric estimators based on a penalized mean

square approach. The method is investigated in full details in Comte and Rozenholc (2002,

2004) for regression models. We adapt it here to the case of discretized diffusion models.

The estimators are chosen to belong to finite dimensional spaces that include trigonomet-

ric, wavelet generated and piecewise polynomials spaces. The space dimension is chosen

by a data driven method using a penalization device. Due to the construction of our

estimators, we measure the risk of an estimator f̂ of f (with f = b, σ2) by E(‖f̂ − f‖2
n)

where ‖f̂ − f‖2
n = n−1

∑n
k=1(f̂(Xk∆) − f(Xk∆))2. We give bounds for this risk (see The-

orem 3.1 and Theorem 4.1). Looking at these bounds as ∆ = ∆n → 0 and n∆n → +∞

shows that our estimators achieve the optimal nonparametric asymptotic rates obtained in

Hoffmann (1999) without logarithmic loss (when the unknown functions belong to Besov

balls). Then we proceed to numerical implementation on simulated data for several ex-

amples of models. We emphasize that our simulation method for diffusion processes is

not based on approximations (like Euler schemes). Instead, we use the exact retrospective

simulation method described in Beskos et al. (2004) and Beskos and Roberts (2005). Then

we apply the algorithms developed in Comte and Rozenholc (2002,2004) for nonparamet-

ric estimation using piecewise polynomials. The results are convincing even when some of

the theoretical assumptions are not fulfilled.

The paper is organized as follows. In Section 2, we describe our framework (model,

assumptions and spaces of approximation). Section 3 is devoted to drift estimation, Section

4 to diffusion coefficient estimation. In Section 5, we study examples and present numerical
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simulation results that illustrate the performances of estimators. Section 6 contains proofs.

In the Appendix (Section 7), a technical lemma is proved.

2 Framework and assumptions

2.1 Model assumptions

Let (Xt)t≥0 be a solution of (1) and assume that n+ 1 observations Xk∆, k = 1, . . . , n+ 1

with sampling interval ∆ are available. Throughout the paper, we assume that ∆ = ∆n

tends to 0 and n∆n tends to infinity as n tends to infinity. To simplify notations, we

only write ∆ without the subscript n. Nevertheless, when speaking of constants, we mean

quantities that depend neither on n nor on ∆. We want to estimate the drift function b

and the diffusion coefficient σ2 when X is stationary and geometrically β-mixing. To this

end, we consider the following assumptions:

[A1 ] (i) b ∈ C1(R) and there exists γ ≥ 0, such that, for all x ∈ R, |b′(x)| ≤ γ(1 + |x|γ).

(ii) There exists b0, such that, for all x, |b(x)| ≤ b0(1 + |x|).

(iii) There exist d ≥ 0, r > 0, and R > 0, such that, for all |x| ≥ R, sgn(x)b(x) ≤

−r|x|d.

[A2 ] (i) There exist σ2
0, σ

2
1, such that, for all x, 0 < σ2

0 ≤ σ2(x) ≤ σ2
1 and there exists L

such that for all (x, y) ∈ R
2, |σ(x) − σ(y)| ≤ L|x− y|1/2.

(ii) σ ∈ C2(R) and there exists γ ≥ 0, such that for all x ∈ R, |σ′(x)| + |σ”(x)| ≤

γ(1 + |x|γ).

Under [A1]-[A2], Equation (1) has a unique strong solution. Note that [A2](ii) is only

used for the estimation of σ2 and not for b. Elementary computations show that the scale

density

s(x) = exp

{
−2

∫ x

0

b(u)

σ2(u)
du

}

satisfies
∫
−∞ s(x)dx = +∞ =

∫ +∞
s(x)dx and the speed density m(x) = 1/(σ2(x)s(x))

satisfies
∫ +∞
−∞ m(x)dx = M < +∞. Hence, Model (1) admits a unique invariant probability

π(x)dx with π(x) = M−1m(x). Now we assume that
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[A3 ] X0 = η has distribution π.

Under the additional Assumption [A3], (Xt) is strictly stationary and ergodic. Moreover, it

follows from Proposition 1 in Pardoux and Veretennikov (2001) that there exist constants

K > 0, ν > 0 and θ > 0 such that:

E(exp(ν|X0|)) < +∞ and βX(t) ≤ Ke−θt, (2)

where βX(t) denotes the β-mixing coefficient of (Xt) and is given by

βX(t) =

∫ +∞

−∞
π(x)dx‖Pt(x, dx

′) − π(x′)dx′‖TV .

The norm ‖.‖TV is the total variation norm and Pt denotes the transition probability. In

particular, X0 has moments of any (positive) order. Now, [A1] (i) ensures that for all

t ≥ 0, h > 0, and k ≥ 1, there exists c = c(k, γ) such that

E( sup
s∈[t,t+h]

|b(Xs) − b(Xt)|
k|Ft) ≤ chk/2(1 + |Xt|

c),

where Ft = σ(Xs, s ≤ t) (see e.g. Gloter (2000), Proposition A). Thus, taking expecta-

tions, there exists c′ such that

E( sup
s∈[t,t+h]

|b(Xs) − b(Xt)|
k) ≤ c′hk/2. (3)

Functions b and σ2 are estimated only on a compact set A. For simplicity and without

loss of generality, we assume from now on that

A = [0, 1]. (4)

It follows from [A1], [A2](i) and [A3] that the stationary density π is bounded from below

and above on any compact subset of R and we denote by π0, π1 two positive real numbers

such that

0 < π0 ≤ π(x) ≤ π1, ∀x ∈ A = [0, 1]. (5)

2.2 Spaces of approximation: piecewise polynomials

We aim at estimating functions b and σ2 of Model (1) on [0, 1] using a data driven pro-

cedure. For that purpose, we consider families of finite dimensional linear subspaces of
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L
2([0, 1]) and compute for each space an associated least-squares estimator. Afterwards,

an adaptive procedure chooses among the resulting collection of estimators the ”best” one,

in a sense that will be later specified, through a penalization device.

Several possible collections of spaces are available and discussed in Section 2.3. Now,

to be consistent with the algorithm implemented in Section 5, we focus on a specific

collection, namely the collection of dyadic regular piecewise polynomial spaces, denoted

hereafter by [DP].

We fix an integer r ≥ 0. Let p ≥ 0 be an integer. On each subinterval Ij = [(j −

1)/2p, j/2p], j = 1, . . . , 2p, consider r + 1 polynomials of degree ℓ, ϕj,ℓ(x), ℓ = 0, 1, . . . r

and set ϕj,ℓ(x) = 0 outside Ij . The space Sm, m = (p, r), is defined as generated by the

Dm = 2p(r + 1) functions (ϕj,ℓ). A function t in Sm may be written as

t(x) =
2p∑

j=1

r∑

ℓ=0

tj,ℓϕj,ℓ(x).

The collection of spaces (Sm,m ∈ Mn) is such that

Mn = {m = (p, r), p ∈ N, r ∈ {0, 1, . . . , rmax}, 2
p(rmax + 1) ≤ Nn}. (6)

In other words, Dm ≤ Nn where Nn ≤ n. The maximal dimension Nn is subject to

additional constraints given below. The role of Nn is to bound all dimensions Dm, even

when m is random. In practice, it corresponds to the maximal number of coefficients to

estimate. Thus it must not be too large.

More concretely, consider the orthogonal collection in L
2([−1, 1]) of Legendre poly-

nomials (Qℓ, ℓ ≥ 0), where the degree of Qℓ is equal to ℓ, generating L
2([−1, 1]) (see

Abramowitz and Stegun (1972), p.774). They satisfy |Qℓ(x)| ≤ 1,∀x ∈ [−1, 1], Qℓ(1) = 1

and
∫ 1
−1Q

2
ℓ (u)du = 2/(2ℓ + 1). Then we set Pℓ(x) = (2ℓ + 1)1/2Qℓ(2x − 1), to get an

orthonormal basis of L
2([0, 1]). Finally,

ϕj,ℓ(x) = 2p/2Pℓ(2
px− j + 1)1IIj

(x), j = 1, . . . , 2p, ℓ = 0, 1, . . . , r.

The space Sm has dimension Dm = 2p(r + 1) and its orthonormal basis described above

satisfies ∥∥∥∥∥∥

2p∑

j=1

r∑

ℓ=0

ϕ2
j,ℓ

∥∥∥∥∥∥
∞

≤ Dm(r + 1) ≤ Dm(rmax + 1).
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Hence, for all t ∈ Sm, ‖t‖∞ ≤ (rmax + 1)1/2D
1/2
m ‖t‖, where ‖t‖2 =

∫ 1
0 t

2(x)dx, for t in

L
2([0, 1]), a property which is essential for the proofs.

2.3 Other spaces of approximation

From both theoretical and practical points of view, other spaces can be considered as, for

example:

[T] Trigonometric spaces: Sm is generated by { 1, 21/2 cos(2πjx), 21/2 sin(2πjx) for j =

1, . . . ,m }, has dimension Dm = 2m+ 1 and m ∈ Mn = {1, . . . , [n/2] − 1}.

[W] Dyadic wavelet generated spaces with regularity r and compact support, as described

e.g. in Daubechies (1992), Donoho et al. (1996) or Hoffmann (1999).

The key properties that must be fulfilled to fit in our framework are the following:

(H1) Norm connection: (Sm)m∈Mn is a collection of finite dimensional linear sub-spaces

of L
2([0, 1]), with dimension dim(Sm) = Dm such that Dm ≤ Nn ≤ n, ∀m ∈ Mn

and satisfying:

There exists Φ0 > 0, such that, for all m ∈ Mn, for all t ∈ Sm, ‖t‖∞ ≤ Φ0D
1/2
m ‖t‖.

(7)

An orthonormal basis of Sm is denoted by (ϕλ)λ∈Λm
where |Λm| = Dm. It follows from

Birgé and Massart (1997) that Property (7) in the context of (H1) is equivalent to:

There exists Φ0 > 0, ‖
∑

λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm. (8)

Thus, for collection [DP], (8) holds with Φ2
0 = rmax + 1. Moreover, for results concerning

adaptive estimators, we need an additional assumption:

(H2) Nesting condition: (Sm)m∈Mn is a collection of models such that there exists a space

denoted by Sn, belonging to the collection, with ∀m ∈ Mn, Sm ⊂ Sn. We denote by

Nn the dimension of Sn: dim(Sn) = Nn (∀m ∈ Mn, Dm ≤ Nn).

As much as possible below, we keep general notations to allow extensions to other

spaces of approximation than the collection [DP].
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3 Drift estimation

3.1 Drift estimators: non adaptive case

Let

Yk∆ =
X(k+1)∆ −Xk∆

∆
and Zk∆ =

1

∆

∫ (k+1)∆

k∆
σ(Xs)dWs. (9)

The following standard regression-type decomposition holds:

Yk∆ = b(Xk∆) + Zk∆ +
1

∆

∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

where b(Xk∆) is the main term, Zk∆ the noise term and the last term is a negligible

residual.

Now, for Sm a space of the collection Mn and for t ∈ Sm, we consider the following

regression contrast:

γn(t) =
1

n

n∑

k=1

[Yk∆ − t(Xk∆)]2. (10)

The estimator belonging to Sm is defined as

b̂m = arg min
t∈Sm

γn(t). (11)

A minimizer of γn in Sm, b̂m, always exists but may not be unique. Indeed in some

common situations the minimization of γn over Sm leads to an affine space of solutions.

Consequently, it becomes impossible to consider a classical L
2-risk for “the least-squares

estimator” of b in Sm. In contrast, the random R
n-vector (b̂m(X∆), . . . , b̂m(Xn∆))′ is

always uniquely defined. Indeed, let us denote by Πm the orthogonal projection (with

respect to the inner product of R
n) onto the subspace {(t(X∆), . . . , t(Xn∆))′, t ∈ Sm} of

R
n. Then (b̂m(X∆), . . . , b̂m(Xn∆))′ = ΠmY where Y = (Y∆, . . . , Yn∆)′. This is the reason

why we define the risk of b̂m by

E

[
1

n

n∑

k=1

{b̂m(Xk∆) − b(Xk∆)}2

]
= E(‖b̂m − b‖2

n)

where

‖t‖2
n =

1

n

n∑

k=1

t2(Xk∆). (12)

Thus, our risk is the expectation of an empirical norm. Note that, for a deterministic

function t, E(‖t‖2
n) = ‖t‖2

π =
∫
t2(x)dπ(x) where π denotes the stationary law. In view of

(5), the L
2-norm, ‖.‖, and the L

2(π)-norm, ‖.‖π, are equivalent for A-supported functions.
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3.2 Risk of the non adaptive drift estimator

Using (9)-(10)-(12), we have:

γn(t) − γn(b) = ‖t− b‖2
n +

2

n

n∑

k=1

(b− t)(Xk∆)Zk∆

+
2

n∆

n∑

k=1

(b− t)(Xk∆)

∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

In view of this decomposition, we define the centered empirical process:

νn(t) =
1

n

n∑

k=1

t(Xk∆)Zk∆. (13)

Now denote by bm the orthogonal projection of b on Sm. By definition of b̂m, γn(b̂m) ≤

γn(bm). So, γn(b̂m) − γn(b) ≤ γn(bm) − γn(b). This implies

‖b̂m − b‖2
n ≤ ‖bm − b‖2

n + 2νn(b̂m − bm)

+
2

n∆

n∑

k=1

(b̂m − bm)(Xk∆)

∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

The functions b̂m and bm being A-supported, we can cancel the terms ‖b1IAc‖2
n that appears

in both sides of the inequality. This yields

‖b̂m − b1IA‖
2
n ≤ ‖bm − b1IA‖

2
n + 2νn(b̂m − bm)

+
2

n∆

n∑

k=1

(b̂m − bm)(Xk∆)

∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds (14)

On the basis of this inequality, we obtain the following result.

Proposition 3.1 Let ∆ = ∆n be such that ∆n → 0, n∆n/ ln2(n) → +∞ when n→ +∞.

Assume that [A1], [A2](i), [A3] hold and consider a space Sm in the collection [DP] with

Nn = o(n∆/ ln2(n)) (Nn is defined in (H2)). Then the estimator b̂m of b is such that

E(‖b̂m − bA‖
2
n) ≤ 7π1‖bm − bA‖

2 +K
E(σ2(X0))Dm

n∆
+K ′∆ +

K”

n∆
, (15)

where bA = b1IA and K,K ′ and K” are some positive constants.

As a consequence, it is natural to select the dimension Dm that leads to the best

compromise between the squared bias term ‖bm − bA‖
2 and the variance term of order
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Dm/(n∆).

To compare the result of Proposition 3.1 with the optimal nonparametric rates ex-

hibited by Hoffmann (1999), let us assume that bA belongs to a ball of some Besov

space, bA ∈ Bα,2,∞([0, 1]), and that r + 1 ≥ α. Then, for ‖bA‖α,2,∞ ≤ L, we have

‖bA − bm‖2 ≤ C(α,L)D−2α
m . Thus, choosing Dm = (n∆)1/(2α+1), we obtain

E(‖b̂m − bA‖
2
n) ≤ C(α,L)(n∆)−2α/(2α+1) +K ′∆ +

K”

n∆
. (16)

The first term (n∆)−2α/(2α+1) is exactly the optimal nonparametric rate (see Hoffmann (1999)).

Moreover, under the standard condition ∆ = o(1/(n∆)), the last two terms in (15) are

O(1/(n∆)) which is negligible with respect to (n∆)−2α/(2α+1).

Proposition 3.1 holds for the wavelet basis [W] under the same assumptions. For the

trigonometric basis [T], the additional constraint Nn ≤ O((n∆)1/2/ ln(n)) is necessary.

Hence, when working with those bases, if bA ∈ Bα,2,∞([0, 1]) as above, the optimal rate is

reached for the same choice for Dm, under the additional constraint that α > 1/2 for [T].

It is worth stressing that α > 1/2 automatically holds under [A1].

3.3 Adaptive drift estimator

As a second step, we must ensure an automatic selection of Dm, which does not use any

knowledge on b, and in particular which does not require to know α. This selection is

standardly done by

m̂ = arg min
m∈Mn

[
γn(b̂m) + pen(m)

]
, (17)

with pen(m) a penalty to be properly chosen. We denote by b̂m̂ the resulting estimator

and we need to determine pen(.) such that, ideally,

E(‖b̂m̂ − bA‖
2
n) ≤ C inf

m∈Mn

(
‖bA − bm‖2 +

E(σ2(X0))Dm

n∆

)
+K ′∆ +

K”

n∆
,

with C a constant which should not be too large. We almost reach this aim.

Theorem 3.1 Let ∆ = ∆n be such that ∆n → 0, n∆n/ ln2(n) → +∞ when n → +∞.

Assume that [A1]-[A2](i), [A3] hold and consider the nested collection of models [DP] with
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maximal dimension Nn = o(n∆/ ln2(n)). Let

pen(m) ≥ κσ2
1

Dm

n∆
, (18)

where κ is a universal constant. Then the estimator b̂m̂ of b with m̂ defined in (17) is such

that

E(‖b̂m̂ − bA‖
2
n) ≤ C inf

m∈Mn

(
‖bm − bA‖

2 + pen(m)
)

+K ′∆ +
K”

n∆
. (19)

Some comments need to be made. It is possible to choose pen(m) = κσ2
1Dm/(n∆),

nevertheless this is not what is done in practice. It is better to calibrate additional

terms. This is explained in Section 5.2. The constant κ in the penalty is numerical and

must be calibrated for the problem. Its value is usually adapted by intensive simulation

experiments. This point is also discussed in Section 5.2. From (15), one would expect

to obtain E(σ2(X0)) instead of σ2
1 in the penalty (18): we do not know if this is the

consequence of technical problems or if this is a structural result. Another important

point is that σ2
1 is unknown. In practice, we just replace it by a rough estimator (see

Section 5.2).

From (19), we deduce that the adaptive estimator automatically realizes the bias-

variance compromise: whenever bA belongs to some Besov ball (see (16)), if r + 1 ≥ α

and n∆2 = o(1), b̂m̂ achieves the optimal corresponding nonparametric rate, without

logarithmic loss contrary to Hoffmann’s adaptive estimator (see Hoffmann (1999, Theo-

rem 5 p.159)). As mentioned above, Theorem 3.1 holds for the basis [W] and, if Nn =

o((n∆)1/2/ ln(n)), for [T] .

4 Adaptive estimation of the diffusion coefficient

4.1 Diffusion coefficient estimator: non adaptive case

To estimate σ2 on A = [0, 1], we define

σ̂2
m = arg min

t∈Sm

γ̆n(t), with γ̆n(t) =
1

n

n∑

k=1

[Uk∆ − t(Xk∆)]2 , (20)

and

Uk∆ =
(X(k+1)∆ −Xk∆)2

∆
. (21)
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For diffusion coefficient estimation under our asymptotic framework, it is now well known

that rates of convergence are faster than for drift estimation. This is the reason why the

regression-type equation has to be more precise than for b. Let us set

ψ = 2σ′σb+ [(σ′)2 + σσ”]σ2. (22)

Some computations using Ito’s formula and Fubini’s theorem lead to

Uk∆ = σ2(Xk∆) + Vk∆ +Rk∆

where Vk∆ = V
(1)
k∆ + V

(2)
k∆ + V

(3)
k∆ with

V
(1)
k∆ =

1

∆



{∫ (k+1)∆

k∆
σ(Xs)dWs

}2

−

∫ (k+1)∆

k∆
σ2(Xs)ds




V
(2)
k∆ =

2

∆

∫ (k+1)∆

k∆
((k + 1)∆ − s)σ′(Xs)σ

2(Xs)dWs,

V
(3)
k∆ = 2b(Xk∆)

∫ (k+1)∆

k∆
σ(Xs)dWs,

and

Rk∆ =
1

∆

(∫ (k+1)∆

k∆
b(Xs)ds

)2

+
2

∆

∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

∫ (k+1)∆

k∆
σ(Xs)dWs

+
1

∆

∫ (k+1)∆

k∆
[(k + 1)∆ − s]ψ(Xs)ds,

Obviously, the main noise term in the above decomposition must be V
(1)
k∆ as will be proved

below.

4.2 Risk of the non adaptive estimator

As for the drift, we write:

γ̆n(t) − γ̆n(σ2) = ‖σ2 − t‖2
n +

2

n

n∑

k=1

(σ2 − t)(Xk∆)Vk∆ +
2

n

n∑

k=1

(σ2 − t)(Xk∆)Rk∆.

We denote by σ2
m the orthogonal projection of σ2 on Sm and define

ν̆n(t) =
1

n

n∑

k=1

t(Xk∆)Vk∆.
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Again we use that γ̆n(σ̂2
m) − γ̆n(σ2) ≤ γ̆n(σ2

m) − γ̆n(σ2) to obtain

‖σ̂2
m − σ2‖2

n ≤ ‖σ2
m − σ2‖2

n + 2ν̆n(σ̂2
m − σ2

m) +
2

n

n∑

k=1

(σ̂2
m − σ2

m)(Xk∆)Rk∆.

Analogously to what was done for the drift, we can cancel on both sides the common term

‖σ21IAc‖2
n. This yields

‖σ̂2
m − σ2

A‖
2
n ≤ ‖σ2

m − σ2
A‖

2
n + 2ν̆n(σ̂2

m − σ2
m) +

2

n

n∑

k=1

(σ̂2
m − σ2

m)(Xk∆)Rk∆. (23)

And, we obtain the result

Proposition 4.1 Let ∆ = ∆n be such that ∆n → 0, n∆n/ ln2(n) → +∞ when n→ +∞.

Assume that [A1]-[A3] hold and consider a model Sm in the collection [DP] with Nn =

o(n∆/ ln2(n)) where Nn is defined in (H2). Then the estimator σ̂2
m of σ2 defined by (20)

is such that

E(‖σ̂2
m − σ2

A‖
2
n) ≤ 7π1‖σ

2
m − σ2

A‖
2 +K

E(σ4(X0))Dm

n
+K ′∆2 +

K”

n
, (24)

where σ2
A = σ21IA, and K, K ′, K” are some positive constants.

Let us make some comments on the rates of convergence. If σ2
A belongs to a ball of

some Besov space, say σ2
A ∈ Bα,2,∞([0, 1]), and ‖σ2

A‖α,2,∞ ≤ L, with r + 1 ≥ α, then

‖σ2
A − σ2

m‖2 ≤ C(α,L)D−2α
m . Therefore, if we choose Dm = n1/(2α+1), we obtain

E(‖σ̂2
m − σ2

A‖
2
n) ≤ C(α,L)n−2α/(2α+1) +K ′∆2 +

K”

n
. (25)

The first term n−2α/(2α+1) is the optimal nonparametric rate proved by Hoffmann (1999).

Moreover, under the standard condition ∆2 = o(1/n), the last two terms are O(1/n), i.e.

negligible with respect to n−2α/(2α+1).

4.3 Adaptive diffusion coefficient estimator.

As previously, the second step is to ensure an automatic selection of Dm, which does not

use any knowledge on σ2. This selection is done by

m̂ = arg min
m∈Mn

[
γ̆n(σ̂2

m) + p̃en(m)
]
. (26)

We denote by σ̂2
m̂ the resulting estimator and we need to determine the penalty p̃en as

for b. For simplicity, we use the same notation m̂ in (26) as in (17) although they are

different. We can prove the following theorem.
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Theorem 4.1 Let ∆ = ∆n be such that ∆n → 0, n∆n/ ln2(n) → +∞ when n → +∞.

Assume that [A1]-[A3] hold. Consider the nested collection of models [DP] with maximal

dimension Nn ≤ n∆/ ln2(n). Let

p̃en(m) ≥ κ̃σ4
1

Dm

n
, (27)

where κ̃ is a universal constant. Then, the estimator σ̂2
m̂ of σ2 with m̂ defined by (26) is

such that

E(‖σ̂2
m̂ − σ2

A‖
2
n) ≤ C inf

m∈Mn

(
‖σ2

m − σ2
A‖

2 + p̃en(m)
)

+K ′∆2 +
K”

n
. (28)

As for the drift, it is possible to choose p̃en(m) = κ̃σ4
1Dm/n, but this is not what is

done in practice. Moreover, making such a choice, it follows from (28) that the adap-

tive estimator automatically realizes the bias-variance compromise. Whenever σ2
A belongs

to some Besov ball (see (25)), if n∆2 = o(1) and r + 1 ≥ α, σ̂2
m̂ achieves the optimal

corresponding nonparametric rate n−2α/(2α+1), without logarithmic loss contrary to Hoff-

mann’s adaptive estimator (see Hoffmann (1999, Theorem 6 p.160)). As mentioned for b,

Proposition 4.1 and Theorem 4.1 hold for the basis [W] under the same assumptions on

Nn. For [T], Nn = o((n∆)1/2/ ln(n)) is needed.

5 Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algorithms

on simulated data. To simulate sample paths of diffusion, we use the retrospective exact

simulation algorithms proposed by Beskos et al. (2004) and Beskos and Roberts (2005).

Contrary to the Euler scheme, these algorithms produce exact simulation of diffusions

under some assumptions on the drift and diffusion coefficient. Therefore, we choose our

examples in order to fit in these conditions in addition with our set of assumptions. For

sake of simplicity, we focus on models that can be simulated by the simplest algorithm of

Beskos et al. (2004), which is called EA1. More precisely, consider a diffusion model given

by the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt. (29)

13



We assume that there is a C2 one-to-one mapping F on R such that ξt = F (Xt) satisfies

dξt = α(ξt)dt+ dWt. (30)

To produce an exact realization of the random variable ξ∆, given that ξ0 = x, the exact

algorithm EA1 requires that α be C1, α2+α′ be bounded from below and above. Moreover,

setting A(ξ) =
∫ ξ
α(u)du, the function

h(ξ) = exp (A(ξ) − (ξ − x)2/2∆) (31)

must be integrable on R and an exact realization of a random variable with density propor-

tional to hmust be possible. Provided that the process (ξt) admits a stationary distribution

that is also possibly simulatable, using the Markov property, the algorithm can therefore

produce an exact realization of a discrete sample (ξk∆, k = 0, 1, . . . , n + 1) in stationary

regime. We deduce an exact realization of (Xk∆ = F−1(ξk∆), k = 0, . . . , n+ 1).

In all examples, we estimate the drift function α(ξ) and the constant 1 for models like

(30) or both the drift b(x) and the diffusion coefficient σ2(x) for models like (29). Let us

note that Assumptions [A1]-[A2]-[A3] are fulfilled for all the models (ξt) below. For the

models (Xt), the ergodicity and the exponential β-mixing property hold.

5.1 Examples of diffusions

5.1.1 Family 1

First, we consider (29) with

b(x) = −θx, σ(x) = c(1 + x2)1/2. (32)

Standard computations of the scale and speed densities show that the model is positive

recurrent for θ + c2/2 > 0. In this case, its stationary distribution has density

π(x) ∝
1

(1 + x2)1+θ/c2
.

If X0 = η has distribution π(x)dx, then, setting ν = 1 + 2θ/c2, ν1/2 η has Student distri-

bution t(ν) which can be easily simulated.

Now, we consider F1(x) =
∫ x
0 1/(c(1 + x2)1/2)dx = arg sinh(x)/c. By the Ito formula,

ξt = F1(Xt) satisfies (30) with

α(ξ) = −(θ/c+ c/2) tanh(cξ). (33)
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Assumptions [A1]-[A3] hold for (ξt) with ξ0 = F1(X0). Moreover,

α2(ξ) + α′(ξ) = {(θ/c+ c/2)2 + θ + c2/2} tanh2(cξ) − (θ + c2/2)

is bounded from below and above. And

A(ξ) =

∫ ξ

0
α(u)du = −(1/2 + θ/c2) log(cosh(cξ)) ≤ 0,

so that exp(A(ξ)) ≤ 1. Therefore, function (31) is integrable for all x and by a simple rejec-

tion method, we can produce a realization of a random variable with density proportional

to h(ξ) using a random variable with density N (x,∆).

Note that model (29) satisfies Assumptions [A1]-[A3] except that σ2(x) is not bounded

from above. Nevertheless, since Xt = F−1
1 (ξt) = sinh(c ξt), the process (Xt) is exponen-

tially β-mixing. The upper bound σ2
1 that appears explicitly in the penalty function must

be replaced by an estimated upper bound.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

20

X
t

Y
t

Drift

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

X
t

U
t

Volatility

 

 

data
true
estimate

Figure 1: dXt = −(θ/c+ c/2) tanh(cXt) + dWt, n = 5000, ∆ = 1/20, θ = 6, c = 2, dotted

line: true, full line: estimate. The algorithm selects (p, r) equal to (0, 1) for the drift, (0, 2)

for σ2.

5.1.2 Family 2

For the second family of models, we start with an equation of type (30) where the drift is

now (see Barndorff-Nielsen (1978))

α(ξ) = −θ
ξ

(1 + c2ξ2)1/2
. (34)
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Figure 2: dXt = −θXtdt + c(1 + X2
t )1/2dWt, n = 5000, ∆ = 1/20, θ = 6, c = 2, dotted

line: true, full line: estimate. The algorithm selects (p, r) equal to (0, 1) for the drift, (0, 2)

for σ2.

The model for (ξt) is positive recurrent on R for θ > 0. Its stationary distribution is given

by

π(ξ)dξ ∝ exp(−2
θ

c2
(1 + c2ξ2)1/2) = exp(−2θ|ξ|/c) × exp(ϕ(ξ)),

where expϕ(ξ) ≤ 1 so that a random variable with distribution π(ξ)dξ can be sim-

ulated by simple rejection method using a double exponential variable with distribu-

tion proportional to exp(−2θ|ξ|/c). The conditions required to perform an exact sim-

ulation of (ξt) hold. More precisely, α2 + α′ is bounded from below and above and

A(ξ) =
∫ ξ
0 α(u)du = −(θ/c2)(1 + c2ξ2)1/2. Hence exp(A(ξ)) ≤ 1, (31) is integrable and we

can produce a realization of a random variable with density proportional to (31). Lastly,

Assumptions [A1]-[A3] also hold for this model.

Now, we consider Xt = F2(ξt) = arg sinh(cξt) which satisfies a stochastic differential

equation with coefficients:

b(x) = −

(
θ +

c2

2 cosh(x)

)
sinh(x)

cosh2(x)
, σ(x) =

c

cosh(x)
. (35)

The process (Xt) is exponentially β-mixing as (ξt). The diffusion coefficient σ(x) is not

bounded from below but has an upper bound.

To obtain a different shape for the diffusion coefficient, showing two bumps, we consider

Xt = G(ξt) = arg sinh(ξt − 5) + arg sinh(ξt + 5) where (ξt) is as in (30)-(34). The function
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Figure 3: dXt = −
[
θ + c2/(2 cosh(Xt))

]
(sinh(Xt)/ cosh2(Xt))dt+ (c/ cosh(Xt))dWt, n =

5000, ∆ = 1/20, θ = 3, c = 2, dotted line: true, full line: estimate. The algorithm selects

(p, r) equal to (0, 2) for the drift, (0, 3) for σ2.

G(.) is invertible and its inverse has the following explicit expression,

G−1(x) =
1

21/2 sinh(x)

[
49 sinh2(x) + 100 + cosh(x)(sinh2(x) − 100)

]1/2
.

The diffusion coefficient of (Xt) is given by

σ(x) =
1

(1 + (G−1(x) − 5)2)1/2
+

1

(1 + (G−1(x) + 5)2)1/2
. (36)

The drift is given by b(x) = G′(G−1(x))α(G−1(x)) + 1
2G”(G−1(x)).

5.2 Estimation algorithms and numerical results

We do not give here a complete Monte-Carlo study but we illustrate how the algorithm

works and what kind of estimate it delivers visually.

We consider the regular collection [DP] (see Section 2.2) . The algorithm minimizes the

mean-square contrast and selects the space of approximation in the sense that it selects p

and r for integers p and r such that 2p(r+1) ≤ Nn ≤ n∆/ ln2(n) and r ∈ {0, 1, . . . , rmax}.

Note that the degree is global in the sense that it is the same on all the intervals of the

subdivision. We take rmax = 9 in practice. Moreover, additive (but negligible) correcting

terms are classically involved in the penalty (see Comte and Rozenholc (2004)). Such

terms avoid under-penalization and are in accordance with the fact that the theorems

provide lower bounds for the penalty. The correcting terms are asymptotically negligible
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Figure 4: Two paths for the two-bumps diffusion coefficient model Xt = G(ξt), dξt =

−θξt/(1+ c2ξ2t )1/2dt+ dWt, G(x) = arg sinh(x− 5)+arg sinh(x+5), n = 5000, ∆ = 1/20,

θ = 1, c = 10, dotted line: true, full line: estimate. The algorithm selects (p, r) equal to

(0, 3)(above) and (2, 0) (below) for the drift, (0, 6) (above) and (1, 3) (below) for σ2.

so they do not affect the rate of convergence. Thus, both penalties contain additional

logarithmic terms which have been calibrated in other contexts by intensive simulation

experiments (see Comte and Rozenholc (2002, 2004)).

The constant κ in both penalties pen(m) and p̃en(m) has been set equal to 4.

We kept the idea that the adequate term in the penalty was E(σ2(X0))/∆ for b and

E(σ4(X0)) for σ2, instead of those obtained (σ2
1/∆ and σ4

1 respectively). Indeed, in classical

regression models, the corresponding coefficient is the variance of the noise. This variance

is usually unknown and replaced by a rough estimate. Therefore, in penalties, σ2
1/∆ and

σ4
1 are replaced by empirical variances computed using initial estimators b̂, σ̂2 chosen in

the collection and corresponding to a space with medium dimension: σ2
1/∆ for pen(.) is

replaced ŝ21 = γn(b̂) (see (10)); and σ4
1 for the other penalty is replaced by ŝ22 = γ̆n(σ̂2)
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(see (20)).

Finally, for m = (p, r), the penalties pen(m) for i = 1 and p̃en(m) for i = 2 are given

by

4
ŝ2i
n

2p
(
r + 1 + ln2.5(r + 1)

)
.

Figures 1–4 illustrate our simulation results. We have plotted the data points (Xk∆, Yk∆)

(see (9)) and (Xk∆, Uk∆) (see (21)), the true functions b and σ2 and the estimated func-

tions based on 95% of data points. Parameters have been chosen in the admissible range

of ergodicity. The sample size n = 5000 and the step ∆ = 1/20 are in accordance with

the asymptotic context (great n’s and small ∆’s) and may be relevant for applications in

finance. It clearly appears that the estimated functions stick very well to the true ones.

The simulation of sample paths does not rely on Euler schemes as in the estimation

method. Therefore, the data simulation method is disconnected with the estimation pro-

cedures and cannot be suspected of being favorable to our estimation algorithm.

6 Proofs

6.1 Proof of Proposition 3.1

We recall that for A-supported functions, ‖t‖2
π =

∫
A t

2(x)π(x)dx. Starting from (13)-(14),

we obtain

‖b̂m − bA‖
2
n ≤ ‖bm − bA‖

2
n + 2‖b̂m − bm‖π sup

t∈Sm,‖t‖π=1
|νn(t)|

+2‖b̂m − bm‖n


 1

n∆2

n∑

k=1

{∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

}2



1/2

≤ ‖bm − bA‖
2
n +

1

8
‖b̂m − bm‖2

π + 8 sup
t∈Sm,‖t‖π=1

[νn(t)]2

+
1

8
‖b̂m − bm‖2

n +
8

n∆2

n∑

k=1

(∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

)2

Because the L
2-norm, ‖.‖π, and the empirical norm (12) are not equivalent, we must

introduce a set on which they are and afterwards, prove that this set has small probability.

Let us define (see (6))

Ωn =

{
ω/

∣∣∣∣
‖t‖2

n

‖t‖2
π

− 1

∣∣∣∣ ≤
1

2
, ∀t ∈ ∪m,m′∈Mn

(Sm + Sm′)/{0}

}
. (37)
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On Ωn, ‖b̂m−bm‖2
π ≤ 2‖b̂m−bm‖2

n, and ‖b̂m−bm‖2
n ≤ 2(‖b̂m−bA‖

2
n +‖bm−bA‖

2
n). Hence,

some elementary computations yield:

1

4
‖b̂m−bA‖

2
n1IΩn ≤

7

4
‖bm−bA‖

2
n+8 sup

t∈Sm,‖t‖π=1
[νn(t)]2+

8

n∆2

n∑

k=1

(∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

)2

Now, using (3), we get

E

(∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

)2

≤ ∆

∫ (k+1)∆

k∆
E[(b(Xs) − b(Xk∆))2]ds ≤ c′∆3.

Consequently,

E(‖b̂m − bA‖
2
n1IΩn) ≤ 7‖bm − bA‖

2
π + 32 E

(
sup

t∈Sm,‖t‖π=1
[νn(t)]2

)
+ 32c′∆. (38)

Next, using (5)-(7)-(8)-(9)-(13), it is easy to see that, since ‖t‖π = 1 ⇒ ‖t‖2 ≤ 1/π0,

E

(
sup

t∈Sm,‖t‖π=1
[νn(t)]2

)
≤

1

π0
E

(
sup

t∈Sm,‖t‖≤1
[νn(t)]2

)
≤

1

π0

∑

λ∈Λm

E[ν2
n(ϕλ)]

=
1

π0n2∆2

n∑

k=1

E




∑

λ∈Λm

ϕ2
λ(Xk∆)

∫ (k+1)∆

k∆
σ2(Xs)ds





≤
Φ2

0Dm

π0n2∆2

n∑

k=1

E

{∫ (k+1)∆

k∆
σ2(Xs)ds

}

=
Φ2

0Dm

π0n∆2
E

(∫ ∆

0
σ2(Xs)ds

)
=

Φ2
0E(σ2(X0))Dm

π0n∆
.

Gathering bounds, and using the upper bound π1 defined in (5), we get

E(‖b̂m − bA‖
2
n1IΩn) ≤ 7π1‖bm − bA‖

2 + 32
Φ2

0E(σ2(X0))Dm

π0n∆
+ 32c′∆.

Now, it remains to deal with Ωc
n. Since ‖b̂m − bA‖

2
n ≤ ‖b̂m − b‖2

n, it is enough to check

that E(‖b̂m − b‖2
n1IΩc

n
) ≤ c/n. Write the regression model as Yk∆ = b(Xk∆) + εk∆ with

εk∆ =
1

∆

∫ (k+1)∆

k∆
[b(Xs) − b(Xk∆)]ds+

1

∆

∫ (k+1)∆

k∆
σ(Xs)dWs.

Recall that Πm denotes the orthogonal projection (with respect to the inner product of R
n)

onto the subspace {(t(X∆), . . . , t(Xn∆))′, t ∈ Sm} of R
n. We have (b̂m(X∆), . . . , b̂m(Xn∆))′ =
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ΠmY where Y = (Y∆, . . . , Yn∆)′. Using the same notation for the function t and the vector

(t(X∆), . . . , t(Xn∆))′, we see that

‖b− b̂m‖2
n = ‖b− Πmb‖

2
n + ‖Πmε‖

2
n ≤ ‖b‖2

n + n−1
n∑

i=1

ε2i∆.

Therefore,

E

(
‖b− b̂m‖2

n1IΩc
n

)
≤ E

(
‖b‖2

n1IΩc
n

)
+

1

n

n∑

k=1

E
(
ε2k∆1IΩc

n

)

≤
(
E

1/2(b4(X0)) + E
1/2(ε4∆)

)
P

1/2(Ωc
n).

By [A1](ii), we have E(b4(X0)) ≤ c(1 + E(X4
0 )) = K. With the Burholder-Davis-Gundy

inequality, we find

E(ε4∆) ≤ 23

{
1

∆

∫ ∆

0
E[(b(Xs) − b(X∆))4]ds+

36

∆3
E

(∫ ∆

0
σ4(Xs)ds

)}
.

Under [A1]-[A2](i)-[A3] and (3), we obtain E(ε4∆) ≤ C(1 + σ4
1/∆

2) := C ′/∆2. The next

lemma enables us to complete the proof.

Lemma 6.1 Let Ωn be defined by (37) and assume that n∆n/ ln2(n) → +∞ when n →

+∞. Then, if Nn ≤ O(n∆n/ ln2(n)) for collections [DP] and [W], and if Nn ≤ O((n∆n)1/2/ ln(n))

for collection [T],

P(Ωc
n) ≤

c

n4
. (39)

The proof of Lemma 6.1 is given in the appendix.

Now, we gather all terms and use (39) to get (15). �

6.2 Proof of Theorem 3.1

The proof relies on the following Bernstein-type inequality:

Lemma 6.2 Under the assumptions of Theorem 3.1, for any positive numbers ǫ and v,

we have

P

(
n∑

k=1

t(Xk∆)Zk∆ ≥ nǫ, ‖t‖2
n ≤ v2

)
≤ exp

(
−
n∆ǫ2

2σ2
1v

2

)
.
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Proof of Lemma 6.2. We use that
∑n

k=1 t(Xk∆)Zk∆ can be written as a stochastic integral.

Consider the process:

Hn
u = Hu =

n∑

k=1

1I[k∆,(k+1)∆[(u)t(Xk∆)σ(Xu)

which satisfies H2
u ≤ σ2

1‖t‖
2
∞ for all u ≥ 0. Then, denoting by Ms =

∫ s
0 HudWu, we get

that

M(n+1)∆ =

n∑

k=1

t(Xk∆)

∫ (k+1)∆

k∆
σ(Xs)dWs, 〈M〉(n+1)∆ =

n∑

k=1

t2(Xk∆)

∫ (k+1)∆

k∆
σ2(Xs)ds.

Moreover, 〈M〉s =
∫ s
0 H

2
udu ≤ nσ2

1∆‖t‖2
n, ∀s ≥ 0, so that (Ms) and exp(λMs −λ

2〈M〉s/2)

are martingales with respect to the filtration Fs = σ(Xu, u ≤ s). Therefore, for all s ≥ 0,

c > 0, d > 0, λ > 0,

P(Ms ≥ c, 〈M〉s ≤ d) ≤ P

(
eλMs−

λ2

2
〈M〉s ≥ eλc−λ2

2
d

)
≤ e−(λc−λ2

2
d).

Therefore,

P(Ms ≥ c, 〈M〉s ≤ d) ≤ inf
λ>0

e−(λc−λ2

2
d) = e−

c2

2d .

Finally,

P

(
n∑

k=1

t(Xk∆)Zk∆ ≥ nǫ, ‖t‖2
n ≤ v2

)
= P(M(n+1)∆ ≥ n∆ǫ, 〈M〉(n+1)∆ ≤ nv2σ2

1∆)

≤ exp

(
−

(n∆ǫ)2

2nv2σ2
1∆

)
= exp

(
−
nǫ2∆

2v2σ2
1

)
. �

Now we turn to the proof of Theorem 3.1. As in the proof of Proposition 3.1, we have

to split ‖b̂m̂ − bA‖
2
n = ‖b̂m̂ − bA‖

2
n1IΩn + ‖b̂m̂ − bA‖

2
n1IΩc

n
. For the study on Ωc

n, the end of

the proof of Proposition 3.1 can be used.

Now, we focus on what happens on Ωn. From the definition of b̂m̂, we have, ∀m ∈ Mn,

γn(b̂m̂) + pen(m̂) ≤ γn(bm) + pen(m). We proceed as in the proof of Proposition 3.1 with

the additional penalty terms (see (38)) and obtain

E(‖b̂m̂ − bA‖
2
n1IΩn) ≤ 7π1‖bm − bA‖

2 + 4pen(m) + 32E

(
sup

t∈Sm+Sm̂,‖t‖π=1
[νn(t)]21IΩn

)

−4E(pen(m̂)) + 32c′∆.

The main problem here is to control the supremum of νn(t) on a random ball (which

depends on the random m̂). This is done by using the martingale property of νn(t).
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Let us introduce the notation

Gm(m′) = sup
t∈Sm+Sm′ ,‖t‖π=1

|νn(t)|.

Now, we plug in a function p(m,m′), which will in turn fix the penalty:

G2
m(m̂)1IΩn ≤ [(G2

m(m̂) − p(m, m̂))1IΩn ]+ + p(m, m̂)

≤
∑

m′∈Mn

[(G2
m(m′) − p(m,m′))1IΩn ]+ + p(m, m̂).

And pen is chosen such that 8p(m,m′) ≤ pen(m) + pen(m′). More precisely, the next

proposition determines the choice of p(m,m′).

Proposition 6.1 Under the assumptions of Theorem 3.1, there exists a numerical con-

stant κ1 such that, for p(m,m′) = κ1σ
2
1(Dm +Dm′)/(n∆), we have

E[(G2
m(m′) − p(m,m′))1IΩn ]+ ≤ cσ2

1

e−Dm′

n∆
.

Proof of Proposition 6.1. The result of Proposition 6.1 follows from the inequality of

Lemma 6.2 by the L
2-chaining technique used in Baraud et al. (2001b) (see Section 7

p.44-47, Lemma 7.1, with s2 = σ2
1/∆). �

It is easy to see that the result of Theorem 3.1 follows from Proposition 6.1 with

pen(m) ≥ κσ2
1Dm/(n∆) and κ = 8κ1. �

6.3 Proof of Proposition 4.1

First, we prove that

E(
1

n

n∑

k=1

R2
k∆) ≤ K∆2. (40)

Proof of (40). With obvious convention, let Rk∆ = R
(1)
k∆ + R

(2)
k∆ + R

(3)
k∆ so that (40) holds

if E[(R
(i)
k∆)2] ≤ Ki∆

2 for i = 1, 2, 3. Using [A1],

E[(R
(1)
k∆)2] ≤ E

(∫ (k+1)∆

k∆
b2(Xs)ds

)2

≤ ∆E

(∫ (k+1)∆

k∆
b4(Xs)ds

)

≤ ∆2
E(b4(X0)) ≤ c∆2.
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E[(R
(2)
k∆)2] ≤

1

∆2


E

(∫ (k+1)∆

k∆
(b(Xs) − b(Xk∆))ds

)4

E

(∫ (k+1)∆

k∆
σ(Xs)dWs

)4



1/2

Using (3), we get

E[(R
(2)
k∆)2] ≤ c′∆2.

Lastly, using [A1]-[A2] and (22),

E[(R
(3)
k∆)2] ≤

1

∆
E

(∫ (k+1)∆

k∆
((k + 1)∆ − s)2ψ2(Xs)ds

)
≤ E(ψ2(X0))

∆2

3
≤ c”∆2.

Therefore (40) is proved. �

Now, we turn back to (23) and recall that Ωn is defined by (37). The study is close to the

one done for the drift estimator. On Ωn, ‖σ̂2
m − σ2

m‖2
π ≤ 2‖σ̂2

m − σ2
m‖2

n,

‖σ̂2
m − σ2

A‖
2
n ≤ ‖σ2

m − σ2
A‖

2
n +

1

8
‖σ̂2

m − σ2
m‖2

π + 8 sup
t∈Sm,‖t‖π=1

ν̆2
n(t)

+
1

8
‖σ̂2

m − σ̂2
m‖2

n +
8

n

n∑

k=1

R2
k∆

≤ ‖σ2
m − σ2

A‖
2
n +

3

8
‖σ̂2

m − σ2
m‖2

n + 8 sup
t∈Sm,‖t‖π=1

ν̆2
n(t) +

8

n

n∑

k=1

R2
k∆.

Setting Bm(0, 1) = {t ∈ Sm, ‖t‖ ≤ 1} and Bπ
m(0, 1) = {t ∈ Sm, ‖t‖π ≤ 1}, the following

holds on Ωn:

1

4
‖σ̂2

m − σ2
A‖

2
n ≤

7

4
‖σ2

m − σ2
A‖

2
n + 8 sup

t∈Bπ
m(0,1)

ν̆2
n(t) +

8

n

n∑

k=1

R2
k∆.

Moreover

E( sup
t∈Bπ

m(0,1)
ν̆2

n(t)) ≤
1

π0
E( sup

t∈Bm(0,1)
ν̆2

n(t)) ≤
1

π0

∑

λ∈Λm

E(ν̆2
n(ϕλ))

≤
1

π0n2

∑

λ∈Λm

E

(
n∑

k=1

ϕ2
λ(Xk∆)V 2

k∆

)
≤

Φ2
0Dm

π0n
{12E(σ4(X0)) + 4∆Cb,σ}

where Cb,σ = E((σ′σ2)2(X0)) + σ2
1E(b2(X0)). Now using the condition on Nn, we have

∆Dm/n ≤ ∆Nn/n ≤ ∆2/ ln2(n). This yields the first three terms of the right-hand-side

of (24).

The study on Ωc
n is the same as for b with the regression model Uk∆ = σ2(Xk∆) + ηk∆,

where ηk∆ = Vk∆+Rk∆. By standard inequalities, E(η4
∆) ≤ K{∆4

E(b8(X0))+E(σ8(X0))}.

Hence, E(η4
∆) is bounded. Moreover, using Lemma 6.1, P(Ωc

n) ≤ c/n2.�
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6.4 Proof of Theorem 4.1

This proof follows the same lines as the proof of Theorem 3.1. We start with a Bernstein-

type inequality.

Lemma 6.3 Under the assumptions of Theorem 4.1,

P

(
n∑

k=1

t(Xk∆)V
(1)
k∆ ≥ nǫ, ‖t‖2

n ≤ v2

)
≤ exp

(
−Cn

ǫ2/2

2σ4
1v

2 + ǫ‖t‖∞σ2
1v

)

and

P

(
1

n

n∑

k=1

t(Xk∆)V
(1)
k∆ ≥ vσ2

1(2x)
1/2 + σ2

1‖t‖∞x, ‖t‖
2
n ≤ v2

)
≤ exp(−Cnx). (41)

The non trivial link between the above two inequalities is enhanced by Birgé and Mas-

sart (1998) so that we just prove the first one.

Proof of Lemma 6.3. First we note that:

E

(
eut(Xn∆)V

(1)
n∆ |Fn∆

)
= 1 +

+∞∑

p=2

up

p!
E

{
(t(Xn∆)V

(1)
n∆ )p|Fn∆

}

≤ 1 +
+∞∑

p=2

up

p!
|t(Xn∆)|pE

(
|V

(1)
n∆ |p|Fn∆

)
.

Next we apply successively the Hölder inequality and the Burkholder-Davis-Gundy in-

equality with best constant (Proposition 4.2 of Barlow and Yor (1982)). For a contin-

uous martingale (Mt), with M0 = 0, for k ≥ 2, M∗
t = sups≤t |Ms| satisfies ‖M∗‖k ≤

ck1/2‖〈M〉1/2‖k, with c a universal constant. And we obtain:

E(|V
(1)
n∆ |p|Fn∆) ≤

2p−1

∆p



E



∣∣∣∣∣

∫ (n+1)∆

n∆
σ(Xs)dWs

∣∣∣∣∣

2p

|Fn∆


+ E

(∣∣∣∣∣

∫ (n+1)∆

n∆
σ2(Xs)ds

∣∣∣∣∣

p

|Fn∆

)


≤
2p−1

∆p
(c2p(2p)p∆pσ2p

1 + ∆pσ2p
1 ) ≤ (2σ1c)

2ppp.

Therefore,

E

(
eut(Xn∆)V

(1)
n∆ |Fn∆

)
≤ 1 +

∞∑

k=2

pp

p!
(4uσ2

1c
2)p|t(Xn∆)|p.
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Using pp/p! ≤ ep−1, we find

E

(
eut(Xn∆)V

(1)
n∆ |Fn∆

)
≤ 1 + e−1

∞∑

k=2

(4uσ2
1c

2e)p|t(Xn∆)|p

≤ 1 + e−1 (4uσ2
1c

2e)2t2(Xn∆)

1 − (4uσ2
1c

2e‖t‖∞)
.

Now, let us set

a = e(4σ2
1c

2)2 and b = 4σ2
1c

2e‖t‖∞.

Since for x ≥ 0, 1 + x ≤ ex, we get, for all u such that bu < 1,

E

(
eut(Xn∆)V

(1)
n∆ |Fn∆

)
≤ 1 +

au2t2(Xn∆)

1 − bu
≤ exp

(
au2t2(Xn∆)

1 − bu

)
.

This can also be written:

E

(
exp

(
ut(Xn∆)V

(1)
n∆ −

au2t2(Xn∆)

1 − bu

)
|Fn∆

)
≤ 1.

Therefore, iterating conditional expectations yields

E

[
exp

{
n∑

k=1

(
ut(Xk∆)V

(1)
k∆ −

au2t2(Xk∆)

1 − bu

)}]
≤ 1.

Then, we deduce that

P

(
n∑

k=1

t(Xk∆)V
(1)
k∆ ≥ nǫ, ‖t‖2

n ≤ v2

)
≤ e−nuǫ

E

{
1I‖t‖2

n≤v2 exp

(
u

n∑

k=1

t(Xk∆)V
(1)
k∆

)}

≤ e−nuǫ
E

[
1I‖t‖2

n≤v2 exp

{
n∑

k=1

(ut(Xk∆)V
(1)
k∆ −

au2t2(Xk∆)

1 − bu
)

}
e(au2)/(1−bu)

Pn
k=1 t2(Xk∆)

]

≤ e−nuǫe(nau2v2)/(1−bu)
E

[
exp

{
n∑

k=1

(ut(Xk∆)V
(1)
k∆ −

au2t2(Xk∆)

1 − bu
)

}]

≤ e−nuǫe(nau2v2)/(1−bu).

The inequality holds for any u such that bu < 1. In particular, u = ǫ/(2av2 + ǫb) gives

−uǫ+ av2u2/(1 − bu) = −(1/2)(ǫ2/(2av2 + ǫb) and therefore

P

(
n∑

k=1

t(Xk∆)V
(1)
k∆ ≥ nǫ, ‖t‖2

n ≤ v2

)
≤ exp

(
−n

ǫ2/2

2av2 + ǫb

)
. �
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As for b̂m̂, we introduce the additional penalty terms and obtain that the risk satisfies

E(‖σ̂2
m̂ − σ2

A‖
2
n1IΩn) ≤ 7π1‖σ

2
m − σ2

A‖
2 + 4p̃en(m) + 32E

(
sup

t∈Bπ
m,m̂

(0,1)
(ν̆n(t))21IΩn

)

−4E(p̃en(m̂)) +K ′∆2 (42)

where Bπ
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖π = 1}. Let us denote by

Ğm(m′) = sup
t∈Bπ

m,m′ (0,1)
|ν̆(1)

n (t)|

the main quantity to be studied, where

ν̆(1)
n (t) =

1

n

n∑

k=1

t(Xk∆)V
(1)
k∆ , ν̆(2)

n (t) =
1

n

n∑

k=1

t(Xk∆)(V
(2)
k∆ + V

(3)
k∆ ).

As for the drift, we write

E(Ğ2
m(m̂)) ≤ E[(Ğ2

m(m̂) − p̃(m, m̂))1IΩn ]+ + E(p̃(m, m̂))

≤
∑

m′∈Mn

E[(Ğ2
m(m′) − p̃(m,m′))1IΩn ]+ + E(p̃(m, m̂)).

Now we have the following statement.

Proposition 6.2 Under the assumptions of Theorem 4.1, for

p̃(m,m′) = κ∗σ4
1

{
Dm +Dm′

n
+

Φ2
0

π0

(
Dm +Dm′

n

)2
}
,

where κ∗ is a numerical constant, we have

E[(Ğ2
m(m′) − p̃(m,m′))1IΩn ]+ ≤ cσ4

1

e−Dm′

n
.

The result of Proposition 6.2 is obtained from inequality (41) of Lemma 6.3 by a L2(π)−L∞

chaining technique. For a description of this method, in a more general setting, we re-

fer to Proposition 2-4 pp.282-287 in Comte (2001), to Theorem 5 in Birgé and Mas-

sart (1998) and to Proposition 7, Theorem 8 and Theorem 9 in Barron et al. (1999).

Note that there is a difference between Propositions 6.1 and 6.2 which comes from the

additional term ‖t‖∞ appearing in Lemma 6.3. For this reason, we need to use that

‖
∑

λ∈Λm
βλψλ‖∞/ supλ∈Λm

|βλ| ≤ ‖
∑

|ψλ|‖∞ ≤ (rmax + 1)D
1/2
m /π

1/2
0 for (ψλ)λ∈Λm

an
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L
2(π)-orthonormal basis built by orthonormalisation of the (ϕλ)’s. This explains the ad-

ditional term appearing in p̃(m,m′).

Choosing p̃en(m) ≥ κ̃σ4
1Dm/n with κ̃ = 16κ∗, we deduce from (42), Proposition 6.2 and

Dm ≤ Nn ≤ n∆/ ln2(n) that,

E(‖σ̂2
m̂ − σ2

A‖
2
n) ≤ 7π1‖σ

2
m − σ2

A‖
2 + 8p̃en(m) + cσ4

1

∑

m′∈Mn

e−Dm′

n
+
κ̃σ4

1Φ
2
0

π0

∆2

ln4(n)

+64E

(
sup

t∈Bπ
m,m̂

(0,1)
(ν̆(2)

n (t))2

)
+K ′∆2 + E(‖σ̂2

m̂ − σ2
A‖

2
n1IΩc

n
).

The bound for E(‖σ̂2
m̂ − σ2‖2

n1IΩc
n
) is the same as the one given in the end of the proof of

Proposition 4.1. It is less than c/n provided that Nn ≤ n∆/ ln2(n) for [DP] and [W] and

N2
n ≤ n∆/ ln2(n) for [T].

And since the spaces all contained in a space denoted by Sn with dimension Nn bounded

as right above, we have

E

(
sup

t∈Bπ
m,m̂

(0,1)
(ν̆(2)

n (t))2

)
≤

1

π0
E

(
sup

t∈Sn,‖t‖=1
(ν̆(2)

n (t))2

)
≤ KCb,σΦ2

0

∆Nn

π0n
≤ K ′∆2.

The result of Theorem 4.1 follows. �

7 Appendix. Proof of Lemma 6.1

Using Baraud et al. (2001a), we prove that, for all n and ∆ > 0,

P(Ωc
n) ≤ 2nβX(qn∆) + 2n2 exp(−C0

n

qnLn(φ)
) (43)

where C0 is a constant depending on π0, π1, qn is an integer such that qn < n and Ln(φ)

is a quantity depending on the basis of the largest nesting space Sn of the collection and

is defined below. We recall that Nn = dim(Sn).

Proof of (43). We use Berbee’s coupling method as in Viennet (1997), Proposition 5.1

and its proof p.484. We assume that n = 2pnqn. Then there exist random variables X∗
i∆,

i = 1, ..., n satisfying the following properties:

• For ℓ = 1, ..., pn, the random vectors ~Uℓ,1 = (X[2(ℓ−1)qn+1]∆, ..., X(2ℓ−1)qn∆)′ and

~U∗
ℓ,1 = (X∗

[2(ℓ−1)qn+1]∆, ..., X
∗
(2ℓ−1)qn∆)′ have the same distribution, and so have the

vectors ~Uℓ,2 = (X[(2ℓ−1)qn+1]∆, ..., X2ℓqn∆)′and ~U∗
ℓ,2 = (X∗

[(2ℓ−1)qn+1]∆, ..., X
∗
2ℓqn∆)′.
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• For ℓ = 1, ..., pn, P(~Uℓ,1 6= ~U∗
ℓ,1) ≤ βX(qn∆) and P(~Uℓ,2 6= ~U∗

ℓ,2) ≤ βX(qn∆).

• For each δ ∈ {1, 2}, the random vectors ~U∗
1,δ, ...,

~U∗
pn,δ are independent.

Let us define Ω∗ = {Xi∆ = X∗
i∆, i = 1, . . . , n}. We have P(Ωc

n) ≤ P(Ωc
n ∩Ω∗) + P(Ω∗c) and

clearly

P(Ω∗c) ≤ 2pnβX(qn∆) ≤ nβX(qn∆). (44)

Thus, (43) holds if we prove

P(Ωc
n ∩ Ω∗) ≤ 2N2

n exp

(
−A0

π2
0

π1

n

qnLn(φ)

)
(45)

where Ln(φ) is defined as follows. Let (ϕλ)λ∈Λn
be a L

2(A, dx)-orthonormal basis of Sn and

as in Baraud et al. (2001), define the matrices: V =
[(∫

A ϕ
2
λ(x)ϕ2

λ′(x)dx
)1/2

]
λ,λ′∈Λn×Λn

, B =

(‖ϕλϕλ′‖∞)λ,λ′∈Λn×Λn
. Then we set Ln(φ) = max{ρ2(V ), ρ(B)}, where, for any symmetric

matrix M = (Mλ,λ′), ρ(M) = sup{aλ},
P

λ a2
λ
≤1

∑
λ,λ′ |aλ||aλ′ ||Mλ,λ′ |.

Now we prove (45). Let P
∗(·) := P(·∩Ω∗). We use Baraud (2002, Claim 2 in Proposition

4.2). Consider vn(t) = (1/n)
∑n

i=1[t(Xi∆)−E(t(Xi∆))], Bπ(0, 1) = {t ∈ Sn, ‖t‖π ≤ 1} and

B(0, 1) = {t ∈ Sn, ‖t‖ ≤ 1}. As, on A, π0 ≤ π(x) ≤ π1,

sup
t∈Bπ(0,1)

∣∣vn(t2)
∣∣ = sup

t∈Sn/{0}

∣∣∣∣
‖t‖2

n

‖t‖2
π

− 1

∣∣∣∣ ≤ π−1
0 sup

t∈B(0,1)

∣∣vn(t2)
∣∣ .

Thus

P
∗

(
sup

t∈Bπ(0,1)

∣∣vn(t2)
∣∣ ≥ ρ0

)
≤ P

∗

(
sup

t∈B(0,1)

∣∣vn(t2)
∣∣ ≥ π0ρ0

)

≤ P
∗


 sup

P

λ∈Λn
a2

λ
≤1

∑

λ,λ′∈Λn

|aλaλ′ ||vn(ϕλϕλ′)| ≥ π0ρ0




On the set
{
∀(λ, λ′) ∈ Λ2

n, |vn(ϕλϕλ′)| ≤ 2Vλλ′(2π1x)
1/2 + 3Bλλ′x

}
, we have

sup
P

λ∈Λn
a2

λ
≤1

∑

λ,λ′∈Λn

|aλaλ′ ||vn(ϕλϕλ′)| ≤ 2ρ(V )(2π1x)
1/2 + 3ρ(B)x.

By choosing x = (ρ0π0)
2/(16π1Ln(φ)) and ρ0 = 1/2, and reminding that π0 ≤ π1, we

obtain that

sup
P

λ∈Λn
a2

λ
≤1

∑

λλ′

|aλaλ′ ||vn(ϕλϕλ′)| ≤ ρ0π0 =
π0

2
.
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This leads to

P
∗(Ωc

n) = P
∗

(
sup

t∈Bπ(0,1)

∣∣vn(t2)
∣∣ ≥ 1

2

)

≤ P
∗(
{
∀(λ, λ′) ∈ Λ2

n, |vn(ϕλϕλ′)| ≥ 2Vλλ′(2π1x)
1/2 + 3Bλλ′x

}
).

The proof of Inequality (45) is then achieved by using the following claim, which is exactly

Claim 6 p.872 in the proof of Proposition 7 of Baraud et al. (2001a).

Claim 7.1 Let (ϕλ)λ∈Λn
be an L

2(A, dx) orthonormal basis of Sn. Then, for all x ≥ 0

and all integer q, 1 ≤ q ≤ n,

P
∗
(
∃(λ, λ′) ∈ Λ2

n/|vn(ϕλϕλ′)| > 2Vλ,λ′(2π1x)
1/2 + 2Bλ,λ′x

)
≤ 2N2

n exp

(
−
nx

q

)
.

Claim 7.1 implies that

P(Ωc
n ∩ Ω∗) ≤ 2N2

n exp

(
−

π2
0

64π1

n

qnLn(φ)

)
,

and thus Inequality (45) holds true. �

Again we refer to Baraud et al. (2001a) (see Lemma 2 in Section 10). It is there proved

that, for [T], Ln(φ) ≤ CφN
2
n. For [W] and [DP] (see Sections 2.2 and 2.3), Ln(φ) ≤ C ′

φNn.

Now we use (43) to complete the proof of Lemma 6.1. By assumption, the diffusion process

X is geometrically β-mixing. So, for some constant θ, βX(qn∆) ≤ e−θqn∆. Provided that

∆ = ∆n satisfies ln(n)/(n∆) → 0, it is possible to take qn = [5 ln(n)/(θ∆)] + 1. This

yields

P(Ωc
n) ≤

2

n4
+ 2n2 exp(−C ′

0

n∆

ln(n)Nn
).

The above constraint on ∆ must be strengthened. Indeed, to ensure (39), we need that

n∆

Nn
≥

6 ln2(n)

C ′
0

i.e. Nn ≤ C̃0
n∆

ln2(n)

for [W] and [DP] . This requires n∆/ ln2(n) → +∞. The result for [T] follows analogously.

�
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