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CHAPTER 5

Non-parametric estimation
of the coefficients of

ergodic diffusion processes
based on high-frequency data

Fabienne Comte, Valentine Genon-Catalot and Yves Rozenholc

UFR de Mathématiques et Informatique, Université Paris Descartes – Paris 5

45 rue des Saints-Pères, 75270 Paris cedex 06, France

5.1 Introduction

The content of this chapter is directly inspired by Comte, Genon-Catalot, and

Rozenholc (2006; 2007). We consider non-parametric estimation of the drift

and diffusion coefficients of a one-dimensional diffusion process. The main

assumption on the diffusion model is that it is ergodic and geometrically β-

mixing. The sample path is assumed to be discretely observed with a small

regular sampling interval ∆. The estimation method that we develop is based

on a penalized mean square approach. This point of view is fully investigated

for regression models in Comte and Rozenholc (2002, 2004). We adapt it to

discretized diffusion models.

5.2 Model and assumptions

Let (Xt)t≥0 be a one-dimensional diffusion process with dynamics described

by the stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, X0 = ⌘, (5.1)

where (Wt) is a standard Brownian motion and ⌘ is a random variable inde-

pendent of (Wt). Consider the following assumptions:
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342 NON-PARAMETRIC ESTIMATION

[A1] −1  l < r  +1, b and σ belong to C1((l, r)), σ(x) > 0 for all

x 2 (l, r).

[A2] For x0, x 2 (l, r), let s(x) = exp (−2
R x

x0
b(u)/σ2(u)du) denote the scale

density and m(x) = 1/[σ2(x)s(x)] the speed density. We assume
Z

l

s(x)dx = +1 =

Z r

s(x)dx,

Z r

l

m(x)dx = M < 1.

[A3] The initial random variable ⌘ has distribution

⇡(x)dx = m(x)/M1(l,r)(x)dx.

Under [A1] – [A2], equation (5.1) admits a unique strong solution with state

space the open interval (l, r) of the real line. Moreover, it is positive recur-

rent on this interval and admits as unique stationary distribution the normal-

ized speed density ⇡. With the additional assumption [A3], the process (Xt) is

strictly stationary, with marginal distribution ⇡(x)dx, ergodic and β-mixing,

i.e. limt!+1 βX(t) = 0 where βX(t) denotes the β-mixing coefficient of

(Xt). For stationary Markov processes such as (Xt), the β-mixing coefficient

has the following explicit expression

βX(t) =

Z r

l

⇡(x)dxkPt(x, dx
0)− ⇡(x0)dx0kTV . (5.2)

The norm k.kTV is the total variation norm and Pt denotes the transition prob-

ability (see e.g. Genon-Catalot, Jeantheau, and Larédo (2000) for a review).

The statistical study relies on a stronger mixing condition which is satisfied in

most standard models.

[A4] There exist constants K > 0 and ✓ > 0 such that:

βX(t)  Ke−✓t. (5.3)

In some cases, assumption [A4] can be checked directly using formula (5.2)

(see Proposition 5.14 below). Otherwise, simple sufficient conditions are avail-

able (see e.g. Proposition 1 in Pardoux and Veretennikov (2001)). Lastly, we

strengthen assumptions on b and σ to deal altogether with finite or infinite

boundaries and keep a general, simple and clear framework. We also need a

moment assumption for ⇡ and that σ be bounded.

[A5] Let I = [l, r] \ R.

(i) Assume that b 2 C1(I), b0 bounded on I , σ2 2 C2(I), (σ2)00 bounded

on I .

(ii) For all x 2 I , σ2(x)  σ2
1 .

[A6] E(⌘8) < 1.

The following property will be useful.
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Lemma 5.1 Under Assumptions [A1] – [A3] and [A5] – [A6], for all t, s such

that |t− s|  1, for 1  i  4,E((Xt −Xs)
2i)  c|t− s|i.

Proof. Using the strict stationarity, we only need to study E((Xt −X0)
2i) for

t  1. By the Minkowski inequality,

(Xt −X0)
2i  22i−1[(

Z t

0

b(Xs)ds)
2i + (

Z t

0

σ(Xs)dWs)
2i].

For the drift term, we use the Hölder inequality, [A5] and the strict stationarity

to get:

E


(

Z t

0

b(Xs)ds)
2i

]
 t2i−1

Z t

0

E(b2i(Xs))ds  t2iC(1 + E(⌘2i)),

with C a constant. For the diffusion term, we use the Burkholder–Davis–Gundy

inequality and obtain:

E


(

Z t

0

σ(Xs)dWs)
2i

]
 C E(

Z t

0

σ2(Xs)ds)
i  C tiσ2i

1

with C a constant. This gives the result.

5.3 Observations and asymptotic framework

We assume that the sample path Xt is observed at n+ 1 discrete instants with

sampling interval ∆. The asymptotic framework that we consider is the context

of high-frequency data: the sampling interval ∆ = ∆n tends to 0 as n tends

to infinity. Moreover, we assume that the total length n∆n of the time interval

where observations are taken tends to infinity. This is a classical framework

for ergodic diffusion models: it allows us to estimate simultaneously the drift

b and the diffusion coefficient σ and to enlighten us about the different rates of

estimation of these two coefficients. For the penalized non-parametric method

developed here, the asymptotic framework has to fulfill the following strength-

ened condition.

[A7] As n tends to infinity, ∆ = ∆n ! 0 and n∆n/ ln
2 n ! +1.

To simplify notations, we will drop the subscript and simply write ∆ for the

sampling interval.

5.4 Estimation method

5.4.1 General description

We aim at estimating functions b and σ2 of model (5.1) on a compact subset

A of the state space (l, r). For simplicity, and without loss of generality, we
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assume from now on that

A = [0, 1],

and we set

bA = b1A, σA = σ1A. (5.4)

The estimation method is inspired by what is done for regression models (see

e.g. Comte and Rozenholc (2002, 2004)). Suppose we have observations

(xi, yi), i = 1, . . . , n such that

yi = f(xi) + noise, (5.5)

where f is unknown. We consider a regression contrast of the form

t ! γn(t) =
1

n

nX

i=1

(yi − t(xi))
2.

The aim is to build estimators for f by minimizing the least-square criterion

γn(t). For that purpose, we consider a collection of finite dimensional linear

subspaces of L2([0, 1]) and compute for each space an associated least-squares

estimator. Afterwards, a data-driven procedure chooses from the resulting col-

lection of estimators the “best” one, in a sense to be precised, through a pe-

nalization device. For adapting the method to discretized diffusion processes,

we have to find a regression equation analogous to (5.5), i.e. find for f = b, σ2

the appropriate couple (xi, yi) and the adequate regression equation. Of course,

starting with a diffusion model, we do not find an exact regression equation but

only a regression-type equation, one for the drift and another one for the diffu-

sion coefficient. Hence, estimators for b and for σ2 are built from two distinct

constructions and the method does not require one to estimate the stationary

density ⇡.

5.4.2 Spaces of approximation

Let us describe now some possible collections of spaces of approximation. We

focus on two specific collections, the collection of dyadic regular piecewise

polynomial spaces, denoted hereafter by [DP], and the collection of general

piecewise polynomials, denoted by [GP], which is more complex. As for nu-

merical implementation, algorithms for both collections are available and have

been implemented on several examples.

In what follows, several norms for [0, 1]-supported functions are needed and

the following notations will be used:

ktk = (
R 1

0 t2(x)dx)1/2, ktk⇡ = (
R 1

0 t2(x)⇡(x)dx)1/2,
ktk1 = supx2[0,1] |t(x)|.

(5.6)

By our assumptions, the stationary density ⇡ is bounded from below and above
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on every compact subset of (l, r). Hence, let ⇡0, ⇡1 denote two positive real

numbers such that,

8x 2 [0, 1], 0 < ⇡0  ⇡(x)  ⇡1. (5.7)

Thus, for [0, 1]-supported functions, the norms k.k and k.k⇡ are equivalent.

Dyadic regular piecewise polynomials

Let r ≥ 0, p ≥ 0 be integers. On each subinterval Ij = [(j − 1)/2p, j/2p),
j = 1, . . . , 2p, consider r + 1 polynomials of degree `, 'j,`(x), ` = 0, 1, . . . r
and set 'j,`(x) = 0 outside Ij . The space Sm, m = (p, r), is defined as

generated by the Dm = 2p(r+1) functions ('j,`). A function t in Sm may be

written as

t(x) =
2pX

j=1

rX

`=0

tj,`'j,`(x).

The collection of spaces (Sm,m 2 Mn) is such that, for rmax a fixed integer,

Mn = {m = (p, r), p 2 N, r 2 {0, 1, . . . , rmax}, 2p(rmax + 1)  Nn}.
(5.8)

In other words, Dm  Nn with Nn  n. The maximal dimension Nn will

be subject to additional constraints. The role of Nn is to bound all dimensions

Dm, even when m is random. In practice, it corresponds to the maximal num-

ber of coefficients to estimate. Thus it must not be too large.

More concretely, consider the orthogonal collection in L
2([−1, 1]) of Legen-

dre polynomials (Q`, ` ≥ 0), where the degree of Q` is equal to `, gener-

ating L
2([−1, 1]) (see Abramowitz and Stegun (1972), p.774). They satisfy

|Q`(x)|  1, 8x 2 [−1, 1], Q`(1) = 1 and
R 1

−1 Q
2
`(u)du = 2/(2` + 1).

Then we set P`(x) = (2` + 1)1/2Q`(2x − 1), to get an orthonormal basis of

L
2([0, 1]). Finally,

'j,`(x) = 2p/2P`(2
px− j + 1)1Ij (x), j = 1, . . . , 2p, ` = 0, 1, . . . , r.

The space Sm has dimension Dm = 2p(r + 1) and its orthonormal basis de-

scribed above satisfies
∥∥∥∥∥∥

2pX

j=1

rX

`=0

'2
j,`

∥∥∥∥∥∥
1

 Dm(r + 1).

Hence, using notations (5.6), for all t 2 Sm, ktk1  (r + 1)1/2D
1/2
m ktk.

Collection [DP] is simple in the sense that one dimension Dm is associated
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with a single space Sm. In particular, since Nn  n, the following holds:

Σ =
X

m2Mn

exp (−Dm) =

rmaxX

r=0

X

p:2p(r+1)Nn

exp (−2p(r + 1)) < 1. (5.9)

Finally, let us sum up the two key properties that are fulfilled by this collection.

The collection (Sm)m2Mn
is composed of finite dimensional linear sub-spaces

of L2([0, 1]), indexed by a set Mn depending on n. The space Sm has dimen-

sion Dm  Nn  n, 8m 2 Mn, where Nn designates a maximal dimension,

and Sm is equipped with an orthonormal basis ('λ)λ2Λm
with |Λm| = Dm.

The following holds:

(H1) Norm connection: There exists Φ0 > 0, such that,

8m 2 Mn, 8t 2 Sm, ktk1  Φ0D
1/2
m ktk. (5.10)

(H2) Nesting condition: There exists a space denoted by Sn, belonging to the

collection, with 8m 2 Mn, Sm ⇢ Sn, with dimension denoted by Nn.

In Birgé and Massart (1998, p.337, Lemma 1), it is proved that property (5.10)

is equivalent to:

There exists Φ0 > 0, k
X

λ2Λm

'2
λk1  Φ2

0Dm. (5.11)

There are other collections of spaces satisfying the above two properties and for

which our proofs apply (for instance, the trigonometric spaces, or the dyadic

wavelet generated spaces).

General piecewise polynomials

A more general family can be described, the collection of general piecewise

polynomials spaces denoted by [GP]. We first build the largest space Sn of the

collection whose dimension is denoted as above by Nn (Nn  n). For this, we

fix an integer rmax and let dmax be an integer such that dmax(rmax+1) = Nn.

The space Sn is linearly spanned by piecewise polynomials of degree rmax

on the regular subdivision of [0, 1] with step 1/dmax. Any other space Sm of

the collection is described by a multi-index m = (d, j1, . . . , jd−1, r1, . . . , rd)
where d is the number of intervals of the partition, j0 := 0 < j1 < · · · <
jd−1 < jd := 1 are integers such that ji 2 {1, . . . , dmax−1} for i = 1, . . . d−
1. The latter integers define the knots ji/dmax of the subdivision. Lastly ri 
rmax is the degree of the polynomial on the interval [ji−1/dmax, ji/dmax), for

i = 1, . . . , d. A function t in Sm can thus be described as

t(x) =
dX

i=1

Pi(x)1[ji−1/dmax,ji/dmax)(x),



ESTIMATION METHOD 347

with Pi a polynomial of degree ri. The dimension of Sm is still denoted by

Dm and is equal to
Pd

i=1(ri + 1) for all the
(
dmax−1

d−1

)
choices of the knots

(j1, . . . , jd−1). Note that the Pi’s can still be decomposed by using the Legen-

dre basis rescaled on the intervals [ji−1/dmax, ji/dmax). The collection [GP]

of models (Sm)m2Mn
is described by the set of indexes

Mn = {m = (d, j1, . . . , jd−1, r1, . . . , rd), 1  d  dmax,

ji 2 {1, . . . , dmax − 1}, ri 2 {0, . . . , rmax}} .
It is important to note that now, for all m 2 Mn, for all t 2 Sm, since Sm ⇢
Sn,

ktk1 
p

(rmax + 1)Nnktk. (5.12)

Hence, the norm connection property still holds but only on the maximal space

and no more on each individual space of the collection as for collection [DP].

This comes from the fact that regular partitions are involved in all spaces of

[DP] and only in the maximal space of [GP]. Obviously, collection [GP] has

higher complexity than [DP]. The complexity of a collection is usually evalu-

ated through a set of weights (Lm) that must satisfy
P

m2Mn
e−LmDm < 1.

For [DP], Lm = 1 suits (see (5.9)). For [GP], we have to look at
X

m2Mn

e−LmDm =

dmaxX

d=1

X

1j1<···<jd−1<dmax

X

0r1,...,rdrmax

e−Lm

Pd
i=1(ri+1).

From the equality above, we deduce that the choice

LmDm = Dm + ln

✓
dmax − 1
d− 1

◆
+ d ln(rmax + 1) (5.13)

can suit. Actually, this relation guides the choice of the penalty function used

in the practical implementation. To see more clearly what orders of magnitude

are involved, let us choose Lm = Ln for all m 2 Mn. Then, we have a further

bound for the series:

X

m2Mn

e−LmDm 
dmaxX

d=1

✓
dmax − 1
d− 1

◆
(rmax + 1)de−dLn


dmax−1X

d=0

✓
dmax − 1

d

◆
[(rmax + 1)e−Ln ]d+1

 (rmax + 1)
⇥
1 + (rmax + 1)e−Ln

⇤dmax−1

 (rmax + 1) exp(dmax(rmax + 1)e−Ln)

 (rmax + 1) exp(Nne
−Ln).
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Thus Lm = Ln = ln(Nn) ensures that the series is bounded. (For more details

on these collections, see e.g. Comte and Rozenholc (2004) or Baraud, Comte,

and Viennet (2001b).

5.5 Drift estimation

5.5.1 Drift estimators: Statements of the results

The regression-type equation for the drift is as follows:

Yk∆ :=
X(k+1)∆ −Xk∆

∆
= b(Xk∆) + Zk∆ +Rk∆ (5.14)

where

Zk∆ =
1

∆

Z (k+1)∆

k∆

σ(Xs)dWs, Rk∆ =
1

∆

Z (k+1)∆

k∆

(b(Xs)−b(Xk∆))ds.

(5.15)

The couple (Xk∆, Yk∆) stands for the data (xk, yk). The term Zk∆ is a mar-

tingale increment (with respect to the filtration Fk∆ = σ(Xs, s  k∆)) and

plays the role of the noise term. The term Rk∆ is a remainder due to the dis-

cretization. Now, we consider a collection which may be either [DP] or [GP].

For Sm a space of the collection and for t 2 Sm, we set

γn(t) =
1

n

nX

k=1

[Yk∆ − t(Xk∆)]
2. (5.16)

We define an estimator b̂m of bA belonging to Sm as any solution of:

b̂m = arg min
t2Sm

γn(t). (5.17)

Note that, with this definition, only the random R
n-vector (b̂m(X∆), . . . ,

b̂m(Xn∆))
0 is uniquely defined. Indeed, let Πm denote the orthogonal projec-

tion (with respect to the inner product of Rn) onto the subspace {(t(X∆), . . . ,

t(Xn∆))
0, t 2 Sm} of Rn. Then (b̂m(X∆), . . . , b̂m(Xn∆))

0 = ΠmY where

Y = (Y∆, . . . , Yn∆)
0. Any function t in Sm such that t(Xk∆) = b̂m(Xk∆),

k = 1, . . . , n, is a solution of (5.17).

This is the reason why we adopt a specific definition of the risk of an estimator.

Consider the following empirical norm for a function t:

ktk2n =
1

n

nX

k=1

t2(Xk∆). (5.18)

The risk of b̂m is defined as the expectation of the empirical norm:

E(kb̂m − bAk2n).
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Note that, for a deterministic function t, E(ktk2n) = ktk2⇡ =
R
t2(x)⇡(x)dx.

The following proposition provides an upper bound for the risk of an estimator

b̂m with fixed m. Let bm denote the orthogonal projection of b on Sm.

Proposition 5.2 Assume that [A1] – [A7] hold. Consider a space Sm in col-

lection [DP] or [GP] with maximal dimension satisfying Nn = o(n∆/ ln2(n)).

Then the estimator b̂m of b is such that (see (5.4))

E(kb̂m − bAk2n)  7⇡1kbm − bAk2 +K
σ2
1Dm

n∆
+K 0∆+

K 00

n∆
, (5.19)

where K,K 0 and K 00 are some positive constants.

As usual, there appears to be a squared bias term kbm − bAk2 and a vari-

ance term of order Dm/(n∆), plus additional terms due to the discretiza-

tion. It is standard for diffusion models in high-frequency data to assume that

∆ = o(1/(n∆)) so that the two last terms in (5.19) are negligible with respect

to the variance term. It remains to select the dimension Dm that leads to the

best compromise between the squared bias term and the variance term.

Consider the case [DP]. To compare the result of Proposition 5.2 with the opti-

mal non-parametric rates exhibited by Hoffmann (1999), let us assume that bA
belongs to a ball of some Besov space, bA 2 B↵,2,1([0, 1]), and that r+1 ≥ ↵.

Then, for kbAk↵,2,1  L, it is known that kbA − bmk2  C(↵,L)D−2↵
m (see

DeVore and Lorentz (1993, p.359) or Lemma 12 in Barron, Birgé, and Massart

(1999)). Thus, choosing Dm = (n∆)1/(2↵+1), we obtain

E(kb̂m − bAk2n)  C(↵,L)(n∆)−2↵/(2↵+1) +K 0∆+
K 00

n∆
.

The first term (n∆)−2↵/(2↵+1) is exactly the optimal non-parametric rate (see

Hoffmann (1999)). Under the condition ∆ = o(1/(n∆)), the last two terms in

(5.19) are negligible with respect to (n∆)−2↵/(2↵+1).

As a second step, we must ensure an automatic selection of Dm, which does

not use any knowledge on b, and in particular which does not require knowing

its regularity ↵. This selection is done by defining

m̂ = arg min
m2Mn

h
γn(b̂m) + pen(m)

i
, (5.20)

with pen(m) a penalty to be properly chosen. We denote by b̂m̂ the resulting

estimator and we need to determine pen(.) such that, ideally,

E(kb̂m̂ − bAk2n)  C inf
m2Mn

✓
kbA − bmk2 + σ2

1Dm

n∆

◆
+K 0∆+

K 00

n∆
,

with C a constant, which should not be too large. We almost reach this aim.
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Theorem 5.3 Assume that [A1] – [A7] hold and consider the nested collec-

tion of models [DP] with Lm = 1 or the collection [GP] with Lm given by

(5.13), both with maximal dimension Nn = o(n∆/ ln2(n)). Let

pen(m) ≥ σ2
1

(1 + Lm)Dm

n∆
, (5.21)

where  is a universal constant. Then the estimator b̂m̂ of b with m̂ defined in

(5.20) is such that

E(kb̂m̂ − bAk2n)  C inf
m2Mn

(
kbm − bAk2 + pen(m)

)
+K 0∆+

K 00

n∆
. (5.22)

Inequality (5.22) shows that the adaptive estimator automatically realizes the

bias-variance compromise. Nevertheless, some comments need to be made.

It is possible to choose the equality in (5.21) but this is not what is done in

practice. It is better to have additional terms to avoid underpenalization. The

constant  in the penalty is numerical and must be calibrated for the problem.

Another important point is that σ2
1 is unknown. In practice, it is replaced by a

rough estimator.

5.5.2 Proof of Proposition 5.2

Let us set (see (5.15)), for any function t(.),

⌫n(t) =
1

n

nX

k=1

t(Xk∆)Zk∆, Rn(t) =
1

n

nX

k=1

t(Xk∆)Rk∆. (5.23)

Using (5.14) – (5.16) – (5.18), we have:

γn(t)− γn(b) = kt− bk2n + 2⌫n(b− t) + 2Rn(b− t).

Recall that bm denotes the orthogonal projection of b on Sm. By definition of

b̂m, γn(b̂m)  γn(bm). So, γn(b̂m)− γn(b)  γn(bm)− γn(b). This implies

kb̂m − bk2n  kbm − bk2n + 2⌫n(b̂m − bm) + 2Rn(b̂m − bm).

The functions b̂m and bm being A-supported, we can cancel the terms kb1Ack2n
that appear in both sides of the inequality. This yields

kb̂m − bAk2n  kbm − bAk2n + 2⌫n(b̂m − bm) + 2Rn(b̂m − bm).

Recall notations (5.6) and let

B⇡
m = {t 2 Sm, ktk⇡ = 1}.

We use the standard inequality 2xy  ✓2x2 + y2/✓2 which holds for all ✓ 6= 0
with ✓2 = 8:

2⌫n(b̂m−bm)  2kb̂m−bmk⇡ sup
t2Bπ

m

|⌫n(t)| 
1

8
kb̂m−bmk2⇡+8 sup

t2Bπ
m

[⌫n(t)]
2.
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Similarly,

2Rn(b̂m − bm)  2kb̂m − bmkn
 
1

n

nX

k=1

R2
k∆

!1/2

 1

8
kb̂m − bmk2n + 8

1

n

nX

k=1

R2
k∆.

Because the L
2
⇡-norm, k.k⇡ , and the empirical norm (5.18) are not equivalent,

we must introduce a set on which they are, and afterwards prove that this set

has small probability. Let us define (see (5.8))

Ωn =

8
<
:!/

∣∣∣∣
ktk2n
ktk2⇡

− 1

∣∣∣∣ 
1

2
, 8t 2

[

m,m02Mn

(Sm + Sm0)/{0}

9
=
; . (5.24)

On Ωn, kb̂m − bmk2⇡  2kb̂m − bmk2n, and kb̂m − bmk2n  2(kb̂m − bAk2n +
kbm − bAk2n). Hence, some elementary computations yield:

1

4
kb̂m − bAk2n1Ωn

 7

4
kbm − bAk2n + 8 sup

t2Bπ
m

[⌫n(t)]
2 +

8

n

nX

k=1

R2
k∆.

Now, using [A5] and Lemma 5.1, we get

E(R2
k∆) 

1

∆
E

Z (k+1)∆

k∆

(b(Xs)− b(Xk∆))
2ds  c0∆.

Consequently,

E(kb̂m−bAk2n1Ωn
)  7kbm−bAk2⇡+32 E

 
sup
t2Bπ

m

[⌫n(t)]
2

!
+32c0∆. (5.25)

Consider a basis of Sm, say { λ,λ 2 Jm}, which is orthonormal with respect

to L2
⇡ , and with |Jm| = Dm. For t 2 B⇡

m,

[⌫n(t)]
2 

X

λ2Jm

[⌫2n( λ)].

Using the martingale property of (5.23) and the bound of σ2(.), we get:

E[⌫2n( λ)] =
1

n2∆2

nX

k=1

E

(
 2
λ(Xk∆)

Z (k+1)∆

k∆

σ2(Xs)ds

)

 σ2
1

n∆

Z
 2
λ(x)⇡(x)dx =

σ2
1

n∆
.

Therefore,

E

 
sup
t2Bπ

m

[⌫n(t)]
2

!
 σ2

1

n∆
Dm.
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Gathering bounds, and using the upper bound ⇡1 defined in (5.7), we get

E(kb̂m − bAk2n1Ωn
)  7⇡1kbm − bAk2 + 32

σ2
1Dm

n∆
+ 32c0∆.

Now, it remains to deal with Ωc
n. Since kb̂m−bAk2n  kb̂m−bk2n, it is enough to

check that E(kb̂m− bk2n1Ωc
n
)  c/n. Write Yk∆ = b(Xk∆)+"k∆ with "k∆ =

Zk∆+Rk∆. Recall that Πm denotes the orthogonal projection (with respect to

the inner product of Rn) onto the subspace {(t(X∆), . . . , t(Xn∆))
0, t 2 Sm}

of R
n. We have (b̂m(X∆), . . . , b̂m(Xn∆))

0 = ΠmY where Y = (Y∆, . . . ,
Yn∆)

0. Using the same notation for the function t and the vector (t(X∆), . . . ,
t(Xn∆))

0, we see that

kb− b̂mk2n = kb−Πmbk2n + kΠm"k2n  kbk2n + n−1
nX

k=1

"2k∆.

Therefore,

E

⇣
kb− b̂mk2n1Ωc

n

⌘
 E

(
kbk2n1Ωc

n

)
+

1

n

nX

k=1

E
(
"2k∆1Ωc

n

)


⇣
E
1/2(b4(X0)) + E

1/2("4∆)
⌘
P
1/2(Ωc

n).

Using [A5], we have E(b4(X0))  c(1 + E(X4
0 )) = K. With the Burholder-

Davis-Gundy inequality, we find

E("4∆)  23
⇢

1

∆

Z ∆

0

E[(b(Xs)− b(X∆))
4]ds+

36

∆3
E

✓Z ∆

0

σ4(Xs)ds

◆}
.

Under [A1] – [A3], [A5] – [A6] and using Lemma 5.1, we obtain E("4∆) 
C(1 + σ4

1/∆
2) := C 0/∆2. The next lemma enables us to complete the proof.

Lemma 5.4 Let Ωn be defined by (5.24). Then, if Nn  O(n∆n/ ln
2(n))

P(Ωc
n) 

c

n4
. (5.26)

The proof of this technical lemma is given in Comte et al. (2007) and relies

on inequalities proved in Baraud, Comte, and Viennet (2001a). We stress the

fact that it is for this lemma that we need the exponential β-mixing assumption

for (Xt). It is also for this lemma that we have constraints on the maximal

dimension Nn.

Now, we gather all terms and use (5.26) to get (5.19). 2
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5.5.3 Proof of Theorem 5.3

The proof relies on the following Bernstein-type inequality:

Lemma 5.5 Under the assumptions of Theorem 5.3, for any positive numbers

✏ and v, we have (see (5.23)):

P
(
⌫n(t) ≥ ✏, ktk2n  v2

)
 exp

✓
− n∆✏2

2σ2
1v

2

◆
.

Proof of Lemma 5.5. Consider the process:

Hn
u = Hu =

nX

k=1

1[k∆,(k+1)∆[(u)t(Xk∆)σ(Xu)

which satisfies H2
u  σ2

1ktk21 for all u ≥ 0. Then, denoting by Ms =R s

0 HudWu, we get that

M(n+1)∆ =
nX

k=1

t(Xk∆)

Z (k+1)∆

k∆

σ(Xs)dWs = n∆⌫n(t)

and that

hMi(n+1)∆ =
nX

k=1

t2(Xk∆)

Z (k+1)∆

k∆

σ2(Xs)ds.

Moreover, hMis =
R s

0 H2
udu  nσ2

1∆ktk2n, 8s ≥ 0, so that (Ms) and

exp(λMs − λ2hMis/2) are martingales with respect to the filtration Fs =
σ(Xu, u  s). Therefore, for all s ≥ 0, c > 0, d > 0, λ > 0,

P(Ms ≥ c, hMis  d)  P

⇣
eλMs−λ2

2 hMis ≥ eλc−
λ2

2 d
⌘
 e−(λc−λ2

2 d).

Therefore,

P(Ms ≥ c, hMis  d)  inf
λ>0

e−(λc−λ2

2 d) = e−
c2

2d .

Finally,

P
(
⌫n(t) ≥ ✏, ktk2n  v2

)
= P(M(n+1)∆ ≥ n∆✏, hMi(n+1)∆  nv2σ2

1∆)

 exp

✓
− (n∆✏)2

2nv2σ2
1∆

◆
= exp

✓
− n✏2∆

2v2σ2
1

◆
. 2

Now we turn to the proof of Theorem 5.3. As in the proof of Proposition 5.2,

we have to split kb̂m̂ − bAk2n = kb̂m̂ − bAk2n1Ωn
+ kb̂m̂ − bAk2n1Ωc

n
. For the

study on Ωc
n, the end of the proof of Proposition 5.2 can be used.

It remains to look at what happens on Ωn. Let us introduce the notation

Gm(m0) = sup
t2Sm+Sm0 ,ktkπ=1

|⌫n(t)|.
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From the definition of b̂m̂, we have, 8m 2 Mn, γn(b̂m̂)+pen(m̂)  γn(bm)+
pen(m). We proceed as in the proof of Proposition 5.2 with the additional

penalty terms (see (5.25)) and obtain

E(kb̂m̂ − bAk2n1Ωn
)  7⇡1kbm − bAk2 + 4pen(m)

+32E
(
[Gm(m̂)]21Ωn

)
− 4E(pen(m̂)) + 32c0∆.

The main problem here is to control the supremum of ⌫n(t) on a random

ball (which depends on the random m̂). This will be done using Lemma 5.5

and Proposition 5.6 below, proceeding first as follows. We plug in a function

p(m,m0), which will in turn fix the penalty:

[Gm(m̂)]21Ωn
 {([Gm(m̂)]2 − p(m, m̂))1Ωn

}+ + p(m, m̂)


X

m02Mn

{([Gm(m0)]2 − p(m,m0))1Ωn
}+ + p(m, m̂).

The penalty pen(.) is chosen such that 8p(m,m0)  pen(m)+pen(m0). More

precisely, the next proposition determines the choice of p(m,m0).

Proposition 5.6 Under the assumptions of Theorem 5.3, there exists a numer-

ical constant 1 such that, for p(m,m0) = 1σ
2
1(Dm+(1+Lm0)Dm0)/(n∆),

we have

E{([Gm(m0)]2 − p(m,m0))1Ωn
}+  cσ2

1

e−Lm0Dm0

n∆
.

Proof of Proposition 5.6. The result of Proposition 5.6 follows from Lemma 5.5

applying the L
2
⇡-chaining technique used in Baraud et al. (2001b) (see Propo-

sition 6.1, p.42, and Section 7, pp. 44–47, Lemma 7.1, with s2 = σ2
1/∆). 2

Recall that the weights Lm are such that Σ =
P

m02Mn
e−Lm0Dm0 < 1.

Thus, the result of Theorem 5.3 follows from Proposition 5.6 with pen(m) ≥
σ2

1(1 + Lm)Dm/(n∆) and  = 81. 2

5.5.4 Bound for the L
2-risk

In Theorem 5.3, the risk of b̂m̂ is not measured as a standard L
2-risk. In this

paragragh, we prove that a simple truncation of b̂m̂ allows to study an inte-

grated loss over a compact set instead of our empirical loss.

Proposition 5.7 Let

b̃⇤ =

⇢
b̃ if kb̃k  kn
0 else,

where b̃ = b̂m̂ and kn = O(n). Then,

E(kb̃⇤ − bAk2)  C inf
m2Mn

(
kbm − bAk2 + pen(m)

)
+K 0∆+

K 00

n∆
.
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Proof. Recall that kb̃⇤ − bAk2  (1/⇡0)kb̃⇤ − bAk2⇡ . Then, we decompose the

L
2
⇡-norm into:

kb̃⇤ − bAk2⇡
= kb̃⇤ − bAk2⇡1kb̃kkn

1Ωn
+ kb̃⇤ − bAk2⇡1kb̃k>kn

1Ωn
+ kb̃⇤ − bAk2⇡1Ωc

n

= T1 + T2 + T3.

First, it is easy to see that

E(T3)  2(⇡1k
2
n + kbAk2⇡)P(Ωc

n),

and with kn = O(n), as we know that P(Ωc
n)  c/n4, we get a negligible term

of order 1/n2.

Next, T1 can be studied as above, except that some constants are increased:

T1  kb̃⇤ − bAk2⇡1Ωn
 2(kb̃− bmk2⇡ + kbm − bAk2⇡)1Ωn

 4kb̃− bmk2n1Ωn
+ 2kbm − bAk2⇡1Ωn

 8kb̃− bAk2n1Ωn
+ 8kbm − bAk2n1Ωn

+2kbm − bAk2⇡1Ωn

and we can use the bound obtained in Theorem 5.3 to get that, for all m 2 Mn,

E(T1)  C(kbm − bAk2 + pen(m)) +K∆+
K 0

n∆
.

Lastly, T2 = kbAk2⇡1kb̃k>kn
1Ωn

. On Ωn,

kb̃k2  1

⇡0
kb̃k2⇡  3

2⇡0
kb̃k2n  3

⇡0
(kbA − b̃k2n + kbAk2n)

and the study of this term leads to the bound

kbA − b̃k2n  kbAk2n +
1

n

nX

k=1

"2k∆

with E("2k∆)  c/∆. It follows that, with Markov’s inequality,

E(T2)  kbAk2⇡P({kb̃k ≥ kn} \ Ωn)

 kbAk2⇡

 
P(6kbk2n ≥ ⇡0k

2
n) + P(

3

n

nX

k=1

"2k∆ ≥ ⇡0k
2
n)

!

 kbAk2⇡
✓
4kbAk2⇡
⇡0k2n

+
c

∆

3

⇡0k2n

◆
= o(

1

n
),

since kn = O(n).

Gathering all terms gives that Theorem 5.3 extends to E(kb̃⇤ − bAk2).
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5.6 Diffusion coefficient estimation

5.6.1 Diffusion coefficient estimator: Statement of the results

For diffusion coefficient estimation under our asymptotic framework, it is now

well known that rates of convergence are faster than for drift estimation. This

is the reason why the regression-type equation has to be more precise than for

b. We set

Uk∆ =
(X(k+1)∆ −Xk∆)

2

∆
.

The couple of data is now (Uk∆, Xk∆). The regression-type equation is as

follows:

Uk∆ = σ2(Xk∆) + Vk∆ + ⌧k∆, (5.27)

where Vk∆ = V
(1)
k∆ + V

(2)
k∆ + V

(3)
k∆ with

V
(1)
k∆ =

1

∆

2
4
(Z (k+1)∆

k∆

σ(Xs)dWs

)2

−
Z (k+1)∆

k∆

σ2(Xs)ds

3
5 ,

V
(2)
k∆ =

1

∆

Z (k+1)∆

k∆

((k + 1)∆− s)(σ2)0(Xs)σ(Xs)dWs,

V
(3)
k∆ = 2b(Xk∆)

Z (k+1)∆

k∆

σ(Xs)dWs,

⌧k∆ = ⌧
(1)
k∆ + ⌧

(2)
k∆ + ⌧

(3)
k∆ with

⌧
(1)
k∆ =

1

∆

 Z (k+1)∆

k∆

b(Xs)ds

!2

,

⌧
(2)
k∆ =

2

∆

Z (k+1)∆

k∆

(b(Xs)− b(Xk∆))ds

Z (k+1)∆

k∆

σ(Xs)dWs,

⌧
(3)
k∆ =

1

∆

Z (k+1)∆

k∆

[(k + 1)∆− s] (Xs)ds,

and

 =
σ2

2
(σ2)00 + b(σ2)0 = Lσ2, (5.28)

where Lf = σ2

2 f 00 + bf 0 is the infinitesimal generator of (5.1). The above

relations are obtained by applying the Itô and the Fubini formulae. The term

Vk∆ is a sum of martingale increments whose variances have different orders.

The term V
(1)
k∆ plays the role of the main noise. The term ⌧k∆ is a remainder

due to the discretization and to the presence of the drift. The scheme is similar
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to what is done for the drift. To estimate σ2 on A = [0, 1], we define

σ̂2
m = arg min

t2Sm

γ̆n(t), with γ̆n(t) =
1

n

nX

k=1

[Uk∆ − t(Xk∆)]
2. (5.29)

And, we obtain the following result.

Proposition 5.8 Assume that [A1]-[A7] hold and consider a model Sm in col-

lection [DP] or [GP] with maximal dimension Nn = o(n∆/ ln2(n)). Then the

estimator σ̂2
m of σ2 defined by (5.29) is such that

E(kσ̂2
m − σ2

Ak2n)  7⇡1kσ2
m − σ2

Ak2 +K
σ4
1Dm

n
+K 0∆2 +

K 00

n
, (5.30)

where K, K 0, K 00 are some positive constants.

Let us make some comments on the rates of convergence for estimators built

with [DP]. If σ2
A belongs to a ball of some Besov space, say σ2

A 2
B↵,2,1([0, 1]), and kσ2

Ak↵,2,1  L, with r + 1 ≥ ↵, then kσ2
A − σ2

mk2 
C(↵, L)D−2↵

m . Therefore, if we choose Dm = n1/(2↵+1), we obtain

E(kσ̂2
m − σ2

Ak2n)  C(↵, L)n−2↵/(2↵+1) +K 0∆2 +
K 00

n
.

The first term n−2↵/(2↵+1) is the optimal non-parametric rate proved by

Hoffmann (1999). Moreover, under the standard condition ∆2 = o(1/n), the

last two terms are O(1/n), i.e. negligible with respect to n−2↵/(2↵+1).

As previously, the second step is to ensure an automatic selection of Dm, which

does not use any knowledge on σ2. This selection is done by

m̂ = arg min
m2Mn

⇥
γ̆n(σ̂

2
m) +gpen(m)

⇤
. (5.31)

We denote by σ̂2
m̂ the resulting estimator and we need to determine the penalty

gpen as for b. For simplicity, we use the same notation m̂ in (5.31) as in (5.20)

although they are different. We can prove the following theorem.

Theorem 5.9 Assume that [A1]-[A7] hold. Consider collection [DP] with

Lm = 1 or [GP] with Lm given by (5.13) both with maximal dimension Nn 
n∆/ ln2(n). Let

gpen(m) ≥ ̃σ4
1

(1 + Lm)Dm

n
,

where ̃ is a universal constant. Then, the estimator σ̂2
m̂ of σ2 with m̂ defined

by (5.31) is such that

E(kσ̂2
m̂ − σ2

Ak2n)  C inf
m2Mn

(
kσ2

m − σ2
Ak2 +gpen(m)

)
+K 0∆2 +

K 00

n
.

Analogous comments as those given for the drift can be made.
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5.6.2 Proof of Proposition 5.8

Let us set

⌫̆n(t) = ⌫̆(1)n (t) + ⌫̆(2)n (t) + ⌫̆(3)n (t) (5.32)

with

⌫̆(i)n (t) =
1

n

nX

k=1

t(Xk∆)V
(i)
k∆, (5.33)

and

⌧̆n(t) =
1

n

nX

k=1

t(Xk∆)⌧k∆.

We begin with some lemmas. The first one concerns the remainder term.

Lemma 5.10 We have (see (5.27))

E(
1

n

nX

k=1

⌧2k∆)  K∆2. (5.34)

Proof of Lemma 5.10. We prove that E[(⌧
(i)
k∆)

2]  Ki∆
2 for i = 1, 2, 3. Using

[A5] and Lemma 5.1,

E[(⌧
(1)
k∆)2]  E

 Z (k+1)∆

k∆

b2(Xs)ds

!2

 ∆E

 Z (k+1)∆

k∆

b4(Xs)ds

!

 ∆2
E(b4(X0))  c∆2,

E[(⌧
(2)
k∆)2]  1

∆2

0
@E

 Z (k+1)∆

k∆

(b(Xs)− b(Xk∆))ds

!4

⇥ E

 Z (k+1)∆

k∆

σ(Xs)dWs

!4
1
A

1/2

Using [A5], Lemma 5.1 and the Burkholder–Davis–Gundy inequality, we get

E[(⌧
(2)
k∆)2]  c0∆2.

Lastly, [A5] implies that | (x)|  K(1 + x2) (see (5.28)), hence

E[(⌧
(3)
k∆)2]  1

∆
E

 Z (k+1)∆

k∆

((k + 1)∆− s)2 2(Xs)ds

!

 E( 2(X0))
∆2

3
 c00∆2.

Therefore (5.34) is proved. 2
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Now, we deal with the noise terms and show that i = 1 gives the main term. In

the statement below, K,K 0 denote constants which may vary from line to line.

Lemma 5.11 1. For Sm in collection [DP] or [GP],

E

 
sup

t2Sm,ktkπ=1

(⌫̆(1)n (t))2

!
 K

Dm

n
σ4
1 .

2. Recall that Sn denotes the maximal space for both collections. For i = 2, 3,

E

 
sup

t2Sn,ktkπ=1

(⌫̆(i)n (t))2

!
 K

∆Nn

n
 K 0∆2. (5.35)

Proof of Lemma 5.11. To study ⌫̆
(1)
n (t), we consider, as for the drift case, an

orthonormal basis ( λ,λ 2 Jm) of Sm with respect to L
2
⇡ . So,

E

 
sup

t2Sm,ktkπ=1

(⌫̆(1)n (t))2

!

X

λ2Jm

E((⌫̆(1)n ( λ))
2).

Then, we use the fact that V
(1)
k∆ is a martingale increment and obtain:

E((⌫̆(1)n ( λ))
2) =

1

n2

nX

k=1

E( 2
λ(Xk∆)E([V

(1)
k∆ ]2|Fk∆)).

Then,

E((V
(1)
k∆ )2|Fk∆)  2

∆2

"
E((

Z (k+1)∆

k∆

σ(Xs)dWs)
4|Fk∆)

+E((

Z (k+1)∆

k∆

σ2(Xs)ds)
2|Fk∆)

#
.

Using the Burkholder–Davis–Gundy inequality, we obtain:

E((V
(1)
k∆ )2|Fk∆)  Cσ4

1 .

This gives the first part.

For the second part, note that the maximal space Sn is equipped with an or-

thonormal basis ('λ,λ 2 Ln) with respect to L
2 which satisfies for both col-

lections (see (5.11) – (5.12))

k
X

λ2Ln

'2
λk1  Φ2

0Nn,

with Φ2
0 = rmax + 1. For i = 2, 3,

E

 
sup

t2Sn,ktk1

(⌫̆(i)n (t))2)

!

X

λ2Ln

E((⌫̆(i)n ('λ))
2).
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Since the martingale increments (V
(i)
k∆) are uncorrelated, we have:

E((⌫̆(i)n ('λ))
2) =

1

n2

nX

k=1

E
⇣
'2
λ(Xk∆)(V

(i)
k∆)2

⌘
.

Therefore, interchanging sums in λ and k, we get:

X

λ2Ln

E((⌫̆(i)n ('λ))
2)  Φ2

0Nn

n

1

n

nX

k=1

E((V
(i)
k∆)2). (5.36)

Now,

E((V
(2)
k∆ )2) =

1

∆2
E[((σ2)0(X0)σ(X0))

2]

Z (k+1)∆

k∆

((k + 1)∆− s)2ds

 C∆(1 + (E(X0))
4)

and

E((V
(3)
k∆ )2) = 4E(b2(Xk∆)

Z (k+1)∆

k∆

σ2(Xs)ds)

 4

 
E(b4(Xk∆))E[(

Z (k+1)∆

k∆

σ2(Xs)ds)
2]

!1/2

 4
(
E(b4(X0))E(σ

4(X0))
)1/2

∆  C∆(1 + E(X4
0 )).

Since ktk2  ktk2⇡/⇡0, we join the above bounds and (5.36) and obtain the

first inequality in (5.35). Since Nn  n∆/ ln2 n, Nn∆/n  ∆2/ ln2 n. This

gives the second inequality. 2

Now, we can prove Proposition 5.8. As for the drift, the starting point is:

γ̆n(t)− γ̆n(σ
2) = kσ2 − tk2n + 2⌫̆n(σ

2 − t) + 2⌧̆n(σ
2 − t).

Introducing the orthogonal projection σ2
m of σ2 on Sm, we have:

γ̆n(σ̂
2
m)− γ̆n(σ

2)  γ̆n(σ
2
m)− γ̆n(σ

2).

After some computations analogous to those done for the drift study, we are

led to the following inequality which holds on Ωn (see (5.24)):

1

4
kσ̂2

m − σ2
Ak2n  7

4
kσ2

m − σ2
Ak2n + 8 sup

t2Bπ
m(0,1)

⌫̆2n(t) +
8

n

nX

k=1

⌧2k∆,

where B⇡
m(0, 1) = {t 2 Sm, ktk⇡ = 1}. Now we apply Lemma 5.10 and

Lemma 5.11. This yields the first three terms of the right-hand-side of (5.30).

The study on Ωc
n is the same as for b with the regression model Uk∆ =

σ2(Xk∆)+ ⇠k∆, where ⇠k∆ = Vk∆ + ⌧k∆. By standard inequalities, E(⇠4∆) 
K{∆4

E(b8(X0)) + E(σ8(X0))}. Hence, E(⇠4∆) is bounded. Moreover, using

Lemma 5.4, P(Ωc
n)  c/n2. 2
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5.6.3 Proof of Theorem 5.9

This proof follows the same lines as the proof of Theorem 5.3. We start with a

Bernstein-type inequality.

Lemma 5.12 Under the assumptions of Theorem 5.9,

P

⇣
⌫̆(1)n (t)) ≥ ✏, ktk2n  v2

⌘
 exp

✓
−Cn

✏2/2

2σ4
1v

2 + ✏ktk1σ2
1v

◆

and

P

⇣
⌫̆(1)n (t) ≥ vσ2

1(2x)
1/2 + σ2

1ktk1x, ktk2n  v2
⌘
 exp(−Cnx). (5.37)

The proof that the first inequality implies the second one above is rather tricky

and proved in Birgé and Massart (1998). Consequently, we just prove the first

one.

Proof of Lemma 5.12. First we note that:

E

⇣
eut(Xn∆)V

(1)
n∆ |Fn∆

⌘
= 1 +

+1X

p=2

up

p!
E

n
(t(Xn∆)V

(1)
n∆ )p|Fn∆

o

 1 +
+1X

p=2

up

p!
|t(Xn∆)|pE

⇣
|V (1)

n∆ |p|Fn∆

⌘
.

Next we apply successively the Minkowski inequality and the Burkholder–

Davis–Gundy inequality with best constant (Proposition 4.2 of Barlow and

Yor (1982)). For a continuous martingale (Mt), with M0 = 0, for k ≥ 2,

M ⇤
t = supst |Ms| satisfies kM ⇤kk  ck1/2khMi1/2kk, with c a universal

constant. And we obtain:

E(|V (1)
n∆ |p|Fn∆)  2p−1

∆p

8
<
:E

0
@
∣∣∣∣∣

Z (n+1)∆

n∆

σ(Xs)dWs

∣∣∣∣∣

2p

|Fn∆

1
A

+E

 ∣∣∣∣∣

Z (n+1)∆

n∆

σ2(Xs)ds

∣∣∣∣∣

p

|Fn∆

!)

 2p−1

∆p
(c2p(2p)p∆pσ

2p
1 +∆pσ

2p
1 )  (2σ1c)

2ppp.

Therefore,

E

⇣
eut(Xn∆)V

(1)
n∆ |Fn∆

⌘
 1 +

1X

p=2

pp

p!
(4uσ2

1c
2)p|t(Xn∆)|p.
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Using pp/p!  ep−1, we find

E

⇣
eut(Xn∆)V

(1)
n∆ |Fn∆

⌘
 1 + e−1

1X

p=2

(4uσ2
1c

2e)p|t(Xn∆)|p

 1 + e−1 (4uσ
2
1c

2e)2t2(Xn∆)

1− (4uσ2
1c

2ektk1)
.

Now, let us set

a = e(4σ2
1c

2)2 and b = 4σ2
1c

2ektk1.

Since for x ≥ 0, 1 + x  ex, we get, for all u such that bu < 1,

E

⇣
eut(Xn∆)V

(1)
n∆ |Fn∆

⌘
 1 +

au2t2(Xn∆)

1− bu
 exp

✓
au2t2(Xn∆)

1− bu

◆
.

This can also be written:

E

✓
exp

✓
ut(Xn∆)V

(1)
n∆ − au2t2(Xn∆)

1− bu

◆
|Fn∆

◆
 1.

Therefore, iterating conditional expectations yields

E

"
exp

(
nX

k=1

✓
ut(Xk∆)V

(1)
k∆ − au2t2(Xk∆)

1− bu

◆)#
 1.

Then, we deduce that

P

 
nX

k=1

t(Xk∆)V
(1)
k∆ ≥ n✏, ktk2n  v2

!

 e−nu✏
E

(
1ktk2nv2 exp

 
u

nX

k=1

t(Xk∆)V
(1)
k∆

!)

 e−nu✏
E


1ktk2nv2 exp

(
nX

k=1

(ut(Xk∆)V
(1)
k∆ − au2t2(Xk∆)

1− bu
)

)

⇥ e(au
2)/(1−bu)

Pn
k=1 t2(Xk∆)

]

 e−nu✏e(nau
2v2)/(1−bu)

E

"
exp

(
nX

k=1

(ut(Xk∆)V
(1)
k∆ − au2t2(Xk∆)

1− bu
)

)#

 e−nu✏e(nau
2v2)/(1−bu).

The inequality holds for any u such that bu < 1. In particular, u = ✏/(2av2 +
✏b) gives −u✏+ av2u2/(1− bu) = −(1/2)(✏2/(2av2 + ✏b) and therefore

P

 
nX

k=1

t(Xk∆)V
(1)
k∆ ≥ n✏, ktk2n  v2

!
 exp

✓
−n

✏2/2

2av2 + ✏b

◆
. 2
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We now finish the proof of Theorem 5.9. As for b̂m̂, we introduce the additional

penalty terms and obtain that the risk satisfies

E(kσ̂2
m̂ − σ2

Ak2n1Ωn
)

 7⇡1kσ2
m − σ2

Ak2 + 4gpen(m) + 32E

 
sup

t2Bπ
m,m̂

(0,1)

(⌫̆n(t))
2
1Ωn

!

−4E(gpen(m̂)) +K 0∆2 (5.38)

where B⇡
m,m0(0, 1) = {t 2 Sm + Sm0 , ktk⇡ = 1}. We use that

(⌫̆n(t))
2  2[(⌫̆(1)n (t))2 + (⌫̆(2)n (t) + ⌫̆(3)n (t))2].

By Lemma 5.11, since B⇡
m,m0(0, 1) ⇢ {t 2 Sn, ktk⇡ = 1},

E

 
sup

t2Bπ
m,m̂

(0,1)

(⌫̆(2)n (t) + ⌫̆(3)n (t))2

!
 K∆2.

There remains the main term to study

Ğm(m0) = sup
t2Bπ

m,m0 (0,1)
|⌫̆(1)n (t)|. (5.39)

As for the drift, we write

E(Ğ2
m(m̂))  E[(Ğ2

m(m̂)− p̃(m, m̂))1Ωn
]+ + E(p̃(m, m̂))


X

m02Mn

E[(Ğ2
m(m0)− p̃(m,m0))1Ωn

]+ + E(p̃(m, m̂)).

Now we have the following statement.

Proposition 5.13 Under the assumptions of Theorem 5.9, for

p̃(m,m0) = σ4
1

Dm +Dm0(1 + Lm0)

n
+K∆2,

where  is a numerical constant, we have

E[(Ğ2
m(m0)− p̃(m,m0))1Ωn

]+  cσ4
1

e−Dm0Lm0

n
.

The result of Proposition 5.13 is obtained from inequality (5.37) of Lemma

5.12 by a L2
⇡−L1 chaining technique. A description of this method, in a more

general setting, is given in Propositions 2–4, pp. 282–287, in Comte (2001),

Theorem 5 in Birgé and Massart (1998) and Proposition 7, Theorem 8 and

Theorem 9 in Barron et al. (1999). For the sake of completeness and since the

context is slightly different, we detail the proof in the Appendix, Section 5.9.

Note that there is a difference between Propositions 5.6 and 5.13 which comes

from the additional term ktk1 appearing in Lemma 5.12.
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Choosing gpen(m) ≥ ̃σ4
1Dm(1 + Lm)/n with ̃ = 16, we deduce from

(5.38), Proposition 5.13 and Dm  Nn  n∆/ ln2(n) that,

E(kσ̂2
m̂ − σ2

Ak2n)  7⇡1kσ2
m − σ2

Ak2 + 8gpen(m) + cσ4
1

X

m02Mn

e−Dm0Lm0

n

+K 0∆2 + E(kσ̂2
m̂ − σ2

Ak2n1Ωc
n
).

The bound for E(kσ̂2
m̂ − σ2k2n1Ωc

n
) is the same as the one given in the end

of the proof of Proposition 5.8. It is less than c/n. The result of Theorem 5.9

follows. 2

5.7 Examples and practical implementation

In this section, we consider classical examples of diffusions for which an exact

simulation of sample paths is possible and for which the estimation method has

been implemented with [GP]. For exact simulation of sample paths, when it is

not directly possible, we have in view the retrospective exact simulation algo-

rithms proposed by Beskos, Papaspiliopoulos, and Roberts (2006) and Beskos

and Roberts (2005). Models of Families 1 and 2 below can be simulated by the

algorithm EA1. Among the assumptions, requiring that σ be bounded is rather

stringent and not always satisfied in our examples. The other assumptions hold.

More details may be found in Comte et al. (2006, 2007)

5.7.1 Examples of diffusions

Family 1

First, we consider (5.1) with

b(x) = −✓x, σ(x) = c(1 + x2)1/2.

Standard computations of the scale and speed densities show that the model is

positive recurrent for ✓ + c2/2 > 0. In this case, its stationary distribution has

density

⇡(x) / 1

(1 + x2)1+✓/c2
.

If X0 = ⌘ has distribution ⇡(x)dx, then, setting ⌫ = 1 + 2✓/c2, ⌫1/2 ⌘ has

Student distribution t(⌫). This distribution satisfies the moment condition [A6]

for 2✓/c2 > 7. See Figure 5.1 for the estimation of b and σ2 in this case.

Then, we consider F1(x) =
R x

0 1/(c(1 + x2)1/2dx = arg sinh(x)/c. By the

Itô formula, ⇠t = F1(Xt) is solution of a stochastic differential equation with

σ(⇠) = 1 and

b(⇠) = −(✓/c+ c/2) tanh(c⇠).
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Figure 5.1 First example: dXt = −θXtdt+, c
p

1 +X2

t
dWt, n = 5000, ∆ = 1/20,

θ = 2, c = 1, dotted line: true function, full line: estimated function.

Assumptions [A1] – [A3] and [A5] hold for (⇠t) with ⇠0 = F1(X0). More-

over, (⇠t) satisfies the conditions of Proposition 1 in Pardoux and Veretennikov

(2001) implying that (⇠t) is exponentially β-mixing and has moments of any

order. Hence, [A4] and [A6] hold. See Figure 5.2 for the estimation of b and

σ2 in this case.

Since Xt = F−1
1 (⇠t), this process is also β-mixing. It satisfies all assumptions

except that σ2(x) is not bounded from above.
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Figure 5.2 Second example: dξt = −(θ/c+ c/2) tanh(cξt) + dWt, n = 5000, ∆ =
1/20, θ = 6, c = 2, dotted line: true function, full line: estimated function.

Family 2

For the second family of models, we consider a process (⇠t) with diffusion

coefficient σ(⇠) = 1 and drift

b(⇠) = −✓ ⇠

(1 + c2⇠2)1/2
, (5.40)

(see Barndorff-Nielsen (1978)). The model is positive recurrent on R for ✓ > 0.

Its stationary distribution is a hyperbolic distribution given by

⇡(⇠)d⇠ / exp(−2
✓

c2
(1 + c2⇠2)1/2).

Assumptions [A1] – [A3], [A5] – [A6] hold for this model. For [A4], we apply

Proposition 1 of Pardoux and Veretennikov (2001).

Next, we consider Xt = F2(⇠t) = arg sinh(c⇠t) which satisfies a stochastic

differential equation with coefficients:

b(x) = −
✓
✓ +

c2

2 cosh(x)

◆
sinh(x)

cosh2(x)
, σ(x) =

c

cosh(x)
.

The process (Xt) is exponentially β-mixing as (⇠t). The diffusion coefficient

σ(x) has an upper bound. See Figure 5.3 for the estimation of b and σ2 in this

case.

To obtain a different shape for the diffusion coefficient, showing two bumps,
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Figure 5.3 Third example, dXt = − [θ + c2/(2 cosh(Xt))] (sinh(Xt)/ cosh
2(Xt))dt

+(c/ cosh(Xt))dWt, n = 5000, ∆ = 1/20, θ = 3, c = 2, dotted line: true function,

full line: estimated function.

we consider Xt = G(⇠t) = arg sinh(⇠t − 5) + arg sinh(⇠t + 5). The function

G(.) is invertible and its inverse has the following explicit expression,

G−1(x) =
1

21/2 sinh(x)

⇥
49 sinh2(x) + 100 + cosh(x)(sinh2(x)− 100)

⇤1/2
.

The diffusion coefficient of (Xt) is given by

σ(x) =
1

(1 + (G−1(x)− 5)2)1/2
+

1

(1 + (G−1(x) + 5)2)1/2
.
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The drift is given by G0(G−1(x))b(G−1(x)) + 1
2G

00(G−1(x)) with b given in

(5.40). See Figure 5.4 for the estimation of b and σ2 in this case.

Figure 5.4 Fourth example, the two-bumps diffusion coefficient Xt = G(ξt), dξt =
−θξt/

p

1 + c2ξ2
t
dt+ dWt, G(x) = arg sinh(x− 5) + arg sinh(x+ 5), n = 5000,

∆ = 1/20, θ = 1, c = 10, dotted line: true function, full line: estimated function.

Family 3

Consider Yt a stationary Ornstein-Uhlenbeck process given by dYt = −✓Ytdt+
cdWt with ✓ > 0 and Y0 ; N (0, c2/(2✓)). The β-mixing coefficient of (Yt)
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can be evaluated using the exact formula (5.2). This gives a direct proof of

(5.3).

Proposition 5.14 The β-mixing coefficient of (Yt) satisfies

βY (t) 
exp (−✓t)

2(1− exp (−✓t)) .

Proof. We use the expansion of the transition density pt(x, y) of (Yt) in terms

of the sequence of eigenvalues and eigenfunctions of the infinitesimal genera-

tor Lf(y) = σ2

2 f 00(y) − ✓yf 0(y). For this, we refer e.g. to Karlin and Taylor

(1981, p.333). To simplify notations, we assume that σ2/2✓ = 1 so that the

stationary distribution of (Yt) is ⇡(y)dy = N (0, 1). Let us now consider the

n-th Hermite polynomial given, for n = 0, 1, . . ., by:

Hn(x) =
(−1)np

n!
exp (x2/2)

dn

dxn
[exp (−x2/2)].

As defined above, this sequence is an orthonormal basis of L2(⇡) and satisfies,

for all n ≥ 0, LHn = −n✓Hn, i.e., Hn is the eigenfunction associated with

the eigenvalue −n✓ of L. This gives the following expansion:

pt(x, y) = ⇡(y)
+1X

n=0

exp (−n✓t)Hn(x)Hn(y).

Since H0(x) = 1 and the Hn have L2(⇡)-norm equal to 1, we get

kpt(x, y)dy − ⇡(y)dykTV

=
1

2

Z

R

|pt(x, y)− ⇡(y)|dy

 1

2

+1X

n=1

exp (−n✓t)|Hn(x)|
Z

R

|Hn(y)|⇡(y)dy

 1

2

+1X

n=1

exp (−n✓t)|Hn(x)|.

Integrating w.r.t. ⇡(x)dx and repeating the same tool, we obtain:

βY (t) 
1

2

+1X

n=1

exp (−n✓t) =
exp (−✓t)

2(1− exp (−✓t)) .

The interest of this proof is that it can be mimicked for all models for which

the infinitesimal generator has a discrete spectrum with explicit eigenfunctions

and eigenvalues.
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Now, we consider Xt = tanh(Yt). By the Itô formula, we get that (Xt) has

coefficients

b(x) = −(1− x2)


c2x+

✓

2
ln

✓
1 + x

1− x

◆]
, σ(x) = c(1− x2).

Assumptions [A1] – [A6] are satisfied for (Xt).

Finally, we consider

dXt =


dc2

4
− ✓Xt

]
dt+ c

p
XtdWt.

With d ≥ 2 integer, (Xt) has the distribution of
Pd

i=1 Y
2
i,t where (Yi,t) are

i.i.d. Ornstein-Uhlenbeck processes as above. The process (Xt) satisfies all

assumptions except that its diffusion coefficient is not bounded.

5.7.2 Calibrating the penalties

It is not easy to calibrate the penalties. The method is studied in full details in

Comte and Rozenholc (2004). Implementation with [DP] is done on the above

examples in Comte et al. (2007) and for [GP] in Comte et al. (2006). We only

give here a brief description.

For collection [GP], the drift penalty (i = 1) and the diffusion penalty (i = 2)
are given by

2
ŝ2i
n

0
@d− 1 + ln

✓
dmax − 1
d− 1

◆
+ ln2.5(d) +

dX

j=1

(rj + ln2.5(rj + 1))

1
A .

Moreover, dmax = [n∆/ ln1.5(n)], rmax = 5. The constants  and ̃ in both

drift and diffusion penalties have been set equal to 2. The term ŝ21 replaces

σ2
1/∆ for the estimation of b and ŝ22 replaces σ4

1 for the estimation of σ2. Let

us first explain how ŝ22 is obtained. We run once the estimation algorithm of

σ2 with a preliminary penalty where ŝ22 is taken equal to 2maxm(γ̆n(σ̂
2
m)).

This gives a preliminary estimator σ̃2
0 . Now, we take ŝ2 equal to twice the

99.5%-quantile of σ̃2
0 . The use of the quantile here is to avoid extreme values.

We get σ̃2. We use this estimate and set ŝ21 = max1kn(σ̃
2(Xk∆))/∆ for the

penalty of b. In all the examples, parameters have been chosen in the admissible

range of ergodicity. The sample size n = 5000 and the step ∆ = 1/20 are in

accordance with the asymptotic context (great n’s and small ∆’s).
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5.8 Bibliographical remarks

Non-parametric estimation of the coefficients of diffusion processes has been

widely investigated in the last decades. There are two first reference papers

which are only devoted to drift estimation. One is by Banon (1978), who uses

a spectral approach and a continuous time observation of the sample path. The

other one is by Tuan (1981) who constructs and studies kernel estimators of

the drift based on a continuous time observation of the sample path and also

on a discrete observation of the sample path for an ergodic diffusion process.

More recently, several authors have considered drift estimation based on a con-

tinuous time observation of the sample path for ergodic models. Asymptotic

results are given as the length of the observation time interval tends to infinity

(Prakasa Rao (2010), Spokoiny (2000), Kutoyants (2004) or Dalalyan (2005)).

Discrete sampling of observations has also been investigated, with different

asymptotic frameworks, implying different statistical strategies. It is now clas-

sical to distinguish between low-frequency and high-frequency data. In the for-

mer case, observations are taken at regularly spaced instants with fixed sam-

pling interval ∆ and the asymptotic framework is that the number of obser-

vations tends to infinity. Then, only ergodic models are usually considered.

Parametric estimation in this context has been studied by Bibby and Sørensen

(1995), Kessler and Sørensen (1999), see also Bibby, Jacobsen, and Sørensen

(2009). A non-parametric approach using spectral methods is investigated in

Gobet, Hoffmann, and Reiß (2004), where non-standard non-parametric rates

are exhibited.

In high-frequency data, the sampling interval ∆ = ∆n between two succes-

sive observations is assumed to tend to zero as the number of observations n

tends to infinity. Taking ∆n = 1/n, so that the length of the observation time

interval n∆n = 1 is fixed, can only lead to estimating the diffusion coefficient

consistently with no need of ergodicity assumptions. This is done by Hoffmann

(1999) who generalizes results by Jacod (2000), Florens-Zmirou (1993) and

Genon-Catalot, Larédo, and Picard (1992).

Now, estimating both drift and diffusion coefficients requires that the sampling

interval ∆n tends to zero while n∆n tends to infinity. For ergodic diffusion

models, Hoffmann (1999) proposes non-parametric estimators using projec-

tions on wavelet bases together with adaptive procedures. He exhibits mini-

max rates and shows that his estimators automatically reach these optimal rates

up to logarithmic factors. Hence, Hoffmann’s paper gives the benchmark for

studying non-parametric estimation in this framework and assumptions. Nev-

ertheless, Hoffmann’s estimators are based on computations of some random

times which make them difficult to implement.

Finally, let us mention that Bandi and Phillips (2003) also consider the same
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asymptotic framework but with nonstationary diffusion processes: they study

kernel estimators using local time estimations and random normalization.

5.9 Appendix. Proof of Proposition 5.13

The proof relies on the following Lemma (Lemma 9 in Barron et al. (1999)):

Lemma 5.15 Let µ be a positive measure on [0, 1]. Let ( λ)λ2Λ be a finite

orthonormal system in L2 \ L1(µ) with |Λ| = D and S̄ be the linear span of

{ λ}. Let

r̄ =
1p
D

sup
β 6=0

kPλ2Λ βλ λk1
|β|1

.

For any positive δ, one can find a countable set T ⇢ S̄ and a mapping p from

S̄ to T with the following properties:

• for any ball B with radius σ ≥ 5δ,

|T \ B|  (B0σ/δ)D with B0 < 5.

• ku− p(u)kµ  δ for all u in S̄, and

sup
u2p−1(t)

ku− tk1  r̄δ, for all t in T.

To use this lemma, the main difficulty is often to evaluate r̄ in the different

contexts. In our problem, the measure µ is ⇡. We consider a collection of mod-

els (Sm)m2Mn
which can be [DP] or [GP]. Recall that B⇡

m,m0(0, 1) = {t 2
Sm + Sm0 , ktk⇡ = 1}. We have to compute r̄ = r̄m,m0 corresponding to

S̄ = Sm + Sm0 . We denote by D(m,m0) = dim(Sm + Sm0).
Collection [DP]– Sm + Sm0 = Smax(m,m0), D(m,m0) = max(Dm, Dm0), an

orthonormal L2(⇡)-basis ( λ)λ2Λ(m,m0) can be built by orthonormalisation,

on each sub-interval, of ('λ)λ2Λ(m,m0). Then

sup
β 6=0

kPλ2Λ(m,m0) βλ λk1
|β|1

 k
X

λ2Λ(m,m0)

| λ|k1  (rmax + 1) sup
λ2Λ(m,m0)

k λk1

 (rmax + 1)3/2
p

D(m,m0) sup
λ2Λ(m,m0)

k λk

 (rmax + 1)3/2
p

D(m,m0) sup
λ2Λ(m,m0)

k λk⇡/
p
⇡0

 (rmax + 1)3/2
p

D(m,m0)/⇡0.
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Thus here r̄m,m0  (rmax + 1)3/2/
p
⇡0.

Collection [GP]– Here we have r̄m,m0  [(rmax + 1)
p
Nn]/

p
D(m,m0)⇡0.

We now prove Proposition 5.13. We apply Lemma 5.15 to the linear space

Sm + Sm0 of dimension D(m,m0) and norm connection measured by r̄m,m0

bounded above. We consider δk-nets, Tk = Tδk \ B⇡
m,m0(0, 1), with δk =

δ02
−k with δ0  1/5, to be chosen later and we set

Hk = ln(|Tk|)  D(m,m0) ln(5/δk) = D(m,m0)[k ln(2) + ln(5/δ0)].
(5.41)

Given some point u 2 B⇡
m,m0(0, 1), we can find a sequence {uk}k≥0 with

uk 2 Tk such that ku− ukk2⇡  δ2k and ku− ukk1  r̄m,m0δk. Thus we have

the following decomposition that holds for any u 2 B⇡
m,m0(0, 1),

u = u0 +
1X

k=1

(uk − uk−1).

Clearly ku0k⇡  1, ku0k1  r̄(m,m0) and for all k ≥ 1, kuk − uk−1k2⇡ 
2(δ2k + δ2k−1) = 5δ2k−1/2 and kuk − uk−1k1  3r̄(m,m0)δk−1/2. In the sequel

we denote by Pn(.) the measure P(. \ Ωn), see (5.24), (actually only the in-

equality ktk2n  3
2ktk2⇡ holding for any t 2 Sm + Sm0 is required).

Let (⌘k)k≥0 be a sequence of positive numbers that will be chosen later on and

⌘ such that ⌘0 +
P

k≥1 ⌘k  ⌘. Recall that ⌫̆
(1)
n is defined by (5.27) – (5.32) –

(5.33). We have

IPn

"
sup

u2Bπ
m,m0 (0,1)

⌫̆(1)n (u) > ⌘

#

= IPn

"
9(uk)k2N 2

Y

k2N
Tk /

⌫̆(1)n (u0) +
+1X

k=1

⌫̆(1)n (uk − uk−1) > ⌘0 +
X

k≥1

⌘k

#

 IP1 + IP2

where

IP1 =
X

u02T0

IPn(⌫̆
(1)
n (u0) > ⌘0),

IP2 =

1X

k=1

X

uk−12Tk−1
uk2Tk

IPn(⌫̆
(1)
n (uk − uk−1) > ⌘k).

Then using inequality (5.37) of Lemma 5.12 and (5.41), we straightforwardly

infer that IP1  exp(H0 −Cnx0) and IP2 Pk≥1 exp(Hk−1 +Hk −Cnxk)
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if we choose

⇢
⌘0 = σ2

1(
p
3x0 + r̄(m,m0)x0)

⌘k = (σ2
1/
p
2)δk−1(

p
15xk + 3r̄(m,m0)xk).

Fix ⌧ > 0 and choose x0 such that

Cnx0 = H0 + Lm0Dm0 + ⌧

and for k ≥ 1, xk such that

Cnxk = Hk−1 +Hk + kDm0 + Lm0Dm0 + ⌧.

If Dm0 ≥ 1, we infer that

IPn

 
sup

t2Bπ
m,m0 (0,1)

⌫̆(1)n (t) > ⌘0 +
X

k≥1

⌘k

!

 e−Lm0Dm0−⌧

 
1 +

1X

k=1

e−kDm0

!
 1.6e−Lm0Dm0−⌧ .

Now, it remains to compute
P

k≥0 ⌘k. We note that
P1

k=0 δk =
P1

k=0 kδk =
2δ0. This implies

x0 +

1X

k=1

δk−1xk


"
ln(5/δ0) + δ0

1X

k=1

2−(k−1)[(2k − 1) ln(2) + 2 ln(5/δ0) + k]

#

⇥ D(m,m0)

nC

+

 
1 + δ0

X

k≥1

2−(k−1)

!✓
Lm0Dm0

nC
+

⌧

nC

◆

 a(δ0)
D(m,m0)

n
+ (

1 + 2δ0
C

)(
Lm0Dm0

n
+
⌧

n
), (5.42)
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where Ca(δ0) = ln(5/δ0) + δ0(4 ln(5/δ0) + 6 ln(2) + 4). This leads to

 1X

k=0

⌘k

!2

 σ4
1

2

"
p
2
(p

3x0 ++r̄m,m0x0

)
+

1X

k=1

δk−1

(p
15xk + 3r̄m,m0xk

)
#2

 σ4
1

2

" 
p
6x0 +

1X

k=1

δk−1

p
15xk

!
+ r̄m,m0

 
p
2x0 + 3

1X

k=1

δk−1xk

!#2

 15σ4
1

2
4
 
p
x0 +

1X

k=1

δk−1
p
xk

!2

+ r̄2m,m0

 
x0 +

1X

k=1

δk−1xk

!2
3
5

 15σ4
1

" 
1 +

1X

k=1

δk−1

! 
x0 +

1X

k=1

δk−1xk

!

+r̄2m,m0

 
x0 +

1X

k=1

δk−1xk

!2
3
5 .

Now, fix δ0  1/5 (say, δ0 = 1/10) and use the bound (5.42). The bound for

(
P+1

k=0 ⌘k)
2 is less than a quantity proportional to

σ4
1

"
D(m,m0)

n
+

Lm0Dm0

n
+ r̄2m,m0

✓
D(m,m0)

n
+

Lm0Dm0

n

◆2

+
⌧

n
+ r̄2m,m0

⌧2

n2

]
.

Now in the case of collection [DP], we have Lm = 1, r̄m,m0 is bounded

uniformly with respect to m and m0 and (D(m,m0)/n)2  (Nn/n)
2 

∆2/ ln4(n) with Nn  n∆/ ln2(n). Thus the bound for (
P
⌘k)

2 reduces to

C 0σ4
1


D(m,m0)

n
+ (1 + rmax)

3∆2/⇡0 +
⌧

n
+ r̄2m,m0

⌧2

n2

]
.
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Next, for collection [GP], we use that Lm  c ln(n), r̄2m,m0  (rmax +

1)3Nn/(⇡0D(m,m0)) and Nn  n∆/ ln2(n) to obtain the bound

r̄2m,m0

✓
D(m,m0)

n
+

Lm0Dm0

n

◆2

 (rmax + 1)3
Nn

⇡0D(m,m0)

D(m,m0)2

n2
(1 + ln(n))2

 (rmax + 1)3
NnD(m,m0)

⇡0n2
(1 + ln(n))2

 (rmax + 1)3
N2

n

⇡0n2
(1 + ln(n))2  2(rmax + 1)3∆2/⇡0.

Thus, the bound for (
P
⌘k)

2 is proportional to

σ4
1


D(m,m0)

n
+

Lm0Dm0

n
+ 2(rmax + 1)3∆2/⇡0 +

⌧

n
+ r̄2m,m0

⌧2

n2

]
.

This term defines p̃(m,m0) as given in Proposition 5.13.

We obtain, for K = (rmax + 1)3/⇡0,

IPn

"
sup

u2Bπ
m,m0 (0,1)

[⌫̆(1)n (u)]2 > σ4
1

✓
Dm +Dm0(1 + Lm0)

n

+K∆2 + 2(
⌧

n
_ 2r̄2m,m0

⌧2

n2
)

◆]

 IPn

"
sup

u2Bπ
m,m0 (0,1)

[⌫̆(1)n (u)]2 > ⌘2

#

 2IPn

"
sup

u2Bπ
m,m0 (0,1)

⌫̆(1)n (u) > ⌘

#

 3.2e−Lm0Dm0−⌧
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so that, reminding that Ğm(m0) is defined by (5.39),

E

✓
Ğ2

m(m0)− σ4
1

Dm +Dm0(1 + Lm0)

n
+K∆2

◆

+

1Ωn

]


Z 1

0

Pn

✓
Ğ2

m(m0) > σ4
1

Dm +Dm0(1 + Lm0)

n
+K∆2 + ⌧

◆
d⌧

 e−Lm0Dm0

 Z 1

2σ4
1/r̄

2
(m,m0)

e−n⌧/(2σ4
1)d⌧

+

Z 2σ4
1/r̄

2
m,m0

0

e−n
p
⌧/(2

p
r̄m,m0σ2

1)d⌧

!

 e−Lm0Dm0 2σ
4
1

n

 Z 1

0

e−vdv +
2r̄2m,m0

n

Z 1

0

e−
p
vdv

!

 e−Lm0Dm0 2σ
4
1

n
(1 +

4r̄2m,m0

n
)  0e−Lm0Dm0 σ

4
1

n

which ends the proof. 2
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