N
N

N

HAL

open science

Online codesign on reconfigurable platform for parallel
computing

Clément Foucher, Fabrice Muller, Alain Giulieri

» To cite this version:

Clément Foucher, Fabrice Muller, Alain Giulieri. Online codesign on reconfigurable platform for
parallel computing. Microprocessors and Microsystems: Embedded Hardware Design , 2013, 37 (4-5),
pp.482-493. 10.1016/j.micpro.2011.12.007 . hal-00748837

HAL Id: hal-00748837
https://hal.science/hal-00748837

Submitted on 15 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00748837
https://hal.archives-ouvertes.fr

Online Codesign on Reconfigurable Platform for Parallel
Computing

Clément Foucher®, Fabrice Muller, Alain Giulieri

University of Nice-Sophia Antipolis (UNS)
Laboratoire d’Electronique, Antennes et Télécommunications (LEAT) / CNRS
Bat.4, 250 rue Albert Einstein
06560, Valbonne, France
Faz: +33 4 92 9] 28 12

Abstract

Reconfigurable hardware offers new ways of accelerating computing by
implementing hardware accelerators at run time. In this article, we present
an approach allowing a hardware/software codesign of applications in which
implementation can be chosen at run time depending on available resources.
We propose a platform supporting this flow and describe its different im-
plementations used to prove the feasibility of our approach. This platform
allows the underlying hardware to be virtualized in order to have a generic
architecture that can be used to run applications. Partial dynamic recon-
figuration is used over Xilinx Virtex 5 boards to enhance reconfiguration
capabilities.

Keywords:
Parallelism, Reconfigurable computing, Hardware virtualization, Online
codesign

1. Introduction

Computing-intensive structures traditionally rely on parallelism. Super-
computers, or High Performance Computers (HPCs), are massive grids of
Processing Elements (PEs) linked together to compute distributed applica-
tions.

*Corresponding author. Tel: +33 4 92 94 28 69
Email addresses: Clement.Foucher@unice.fr (Clément Foucher),
Fabrice.Muller@unice.fr (Fabrice Muller), Alain.Giulieri@unice.fr (Alain Giulieri)

Preprint submitted to Microprocessors and Microsystems December 5, 2011

Over the past few years, reconfigurable hardware has been increasingly used
as a way to enhance computing power. Indeed, with reconfigurable hard-
ware, we can instantiate hardware accelerators specifically matching the
application’s needs. Bringing flexibility to previously static structures has
removed a major obstacle to using hardware accelerators.

But most current reconfigurable architectures introduce hardware as an ex-
tension of software applications [16]. General applications are run on soft-
ware PEs, which delegate some work to hardware units. Software dominance
over hardware is a feature of pratically all systems because static hardware
needs to be controlled dynamically depending on the application; a require-
ment that can only be met using software.

But now that hardware is (almost) as flexible as software, we belive that the
time has come to change this relationship. This paper describes a way to
build applications in a hardware/software online codesign approach. With
this approach, an application is split into various application kernels which
can either be hardware, software or can even have both implementations.
In that case, the implementation choice is made at runtime.

Section 2 describes the current state of the art as regards intensive comput-
ing through parallelism and reconfigurable hardware. Section [3| goes on the
describe our approach. After what, section [4 describes the platforms used
to evaluate the validity of this approach. Finally, section [5| looks at future
work to be completed.

2. Increasing computing power — overview of actual methods

Parallelism is a way of increasing computing power by using arrays of
PEs instead of a single PE. Applications are split into kernels, which are
subelements that can be computed independently. For completely indepen-
dent kernels, doing so makes it possible to achieve a maximum computing
speed gain, which is equal to the number of PEs. But actual application
kernels communicate together, dramatically impacting this gain. This is
why we have to proceed carefully to fully avail of the powers of a parallel
computing platform. Moreover, the gain realized will depend to a great ex-
tent on our knowledge of the kernel’s communication.

For many years, parallelism was used only in the professional world, and
with intensive computing applications. But, a few years ago, it began to
spread to the personal computing world as a mean to keep increasing com-
puting power.

For a certain period, hardware had been used to speed up dedicated tasks.
But hardware’s static nature meant that it could not always be used since

a specific, dedicated, electronic logic was required. Reconfigurable comput-
ing, with the ability to change logic circuit at runtime — and thus making it
possible to map a hardware accelerator according to the needs of the appli-
cation — has extended the range of applicable uses for hardware acceleration.
Parallel design of applications requires taking into consideration many pa-
rameters such as communication between kernels, memory dispatching and
resources conflicts. Dealing with such applications requires a rigorous mod-
eling of the application to ensure correct management of these issues.
Section depicts the currently existing parallel architectures; section
describes the advances brought to parallel systems by reconfigurable archi-
tectures. Finally, section [2.3] presents models used to design these applica-
tions and languages used to implement them.

2.1. Parallel architectures

Parallel computing ranges from small multicore processors to large HPC
grids containing thousands of PEs.

2.1.1. Multicore

Multicore chips, as well as multiprocessors systems, offer various PEs
working in the same environment. Such systems are called Symmetric Mul-
tiProcessing (SMP) platforms. Figure|l|shows a simple view of such systems,
which allows for data to be exchanged between PEs through the shared mem-
ory or dedicated channels.

SMP System

(CTTT T N
1
.V PE 1
1
[Shared memory]

Figure 1: SMP platform.

Each PE can itself be a Single Instruction Multiple Data (SIMD) unit [11],
in which case the same instruction to be run on several data items at the

same time. In the general case, a SIMD unit working on words of 2™ bits
can process 2P words of 2" 7P bits in a single instruction.

Multicore chips can be homogeneous or heterogeneous. Homogeneous sys-
tems contain a number of implementations of the same PE, while heteroge-
neous systems contain different kinds of PEs specialized for specific treat-
ments. One of the first commercial multicore chips was the Cell Broadband
Engine (Cell BE) by IBM, Sony and Toshiba [26], a heterogeneous system.
The Cell BE contains a power processor element, which is a 64-bit core,
and eight synergistic processor elements, that are 128-bit SIMD units. The
power processor element runs the main program and delegates work to the
synergistic processor elements.

2.1.2. Manycore

Increasing the number of cores in a single system leads to architecture-
based limitations as SMP is not relevant any more when reaching about a
dozen cores [3]. Indeed, managing concurrent memory accesses and com-
munication between PEs becomes very tricky beyond this point. A new
kind of architecture is then used when moving from multicore to what is
called manycore [24, 44]. Manycore architectures are built using the net-
work paradigm, each core being an island linked to others through a Network
on Chip (NoC) [5].
Interesting prototypes exists such as Intel’s Single-chip Cloud Computer
[27, 28], proposed as a research platform. It includes 24 nodes on the
same chip, each node being a dual core IA-32 Pentium processor, and us-
ing message-passing to communicate between nodes. A NoC is in charge of
internal communication, implementing the message-passing protocol at the
hardware level. There are different levels of memory, including a shared one
at the top. This is a complete processing system, bearing greater resem-
blance to a grid (or cloud) of computers than to a multicore processor.
Another manycore-like architecture is mppSoC [33], reproducing the early
HPCs’ array topology on a chip. MppSoC uses a theoretical model in which
an array control unit controls a 2-D array of PEs able to perform SIMD
parallel computing. PEs communicate using two channels. First, MpNoC is
a global NoC allowing communication between any two PEs in the design.
Second, a local network, X-Net, allows local communication between a PE
and its 8 neighbors. The Array Control Unit uses a modified instruction set
architecture adding specific instructions for parallelism and communication.

2.1.8. Supercomputers

According to Oyanagi [38], “supercomputers are regarded as the comput-
ers which have an order of magnitude higher performance” than traditional
computers. Main HPCs architectures gather nodes linked by a network or
a bus, each node being a SMP system. Figure [2| presents a classical HPC

system.
System System System System

Figure 2: HPC nodal architecture.

The nodes communicate using message passing, with various protocols to
send and receive data and control information. Such a system is said to be
globally distributed, locally shared in terms of memory. Hager and Wellein
[22] describe supercomputers architectures for communication and memory.
They offer a well-structured analysis by explaining each architectural ele-
ment and the reason for their presence.

As computers evolved, dedicated hardware appeared to help the Central
Processing Unit (CPU) with some specific tasks. Of particular note is the
graphic card, which can include hardware codecs for widely used video stan-
dards. Graphic cards also include a specific execution unit called Graphical
Processing Unit (GPU). GPUs are built as arrays of PEs with the ability to
process the various elements to be rendered at the same time. While GPUs
were designed to process graphical computations, their parallel nature means
enhanced computing power for various kinds of applications. The present
trend is to talk of Global Purpose GPUs (GPGPUs) to indicate a capacity
to be used for a wider range of computations than just graphical.

We can illustrate this trend by taking a look at the TOP 500, which ranks
the most powerful supercomputers according to the results of the test high
performance LINPACK [13]. In the year 2010, the most powerful HPC was
Jaguar, a farm of 37,376 six-core AMD Opteron CPUs. For the current year
of 2011 however, the leader is the Tianhe-1A, a cluster of 14,336 six-core
Intel Xeon, also including 7,168 nVidia GPGPUs, each one containing 448

CUDA Coredl

The Open Computing Language (OpenCL) [37] offers an open development
platform for designing GPGPUs solutions. OpenCL is designed by the Khro-
nos Group, a non-profit organization aimed at maintaining open standards,
such as the well-know OpenGL graphical application programming interface.
OpenCL is a combination of a C-based dedicated language along with an ap-
plication programming interface allowing computation on various resources
such as CPUs and GPGPUs. OpenCL splits the computation kernels from
the program management, allowing for the dispatching of various kernels to
heterogeneous PEs.

The TOP 500 ranking offers interesting insight into the current high lev-
els of supercomputing. An interesting observation is made by Iushchenko
[29] about studies by Dongarra, which is one of the LINPACK test devel-
oper. “On the average, a computer that leads the ‘Top-500’ list in terms
of performance takes the last place in it after 6-8 years. The capacity of a
supercomputer that takes the last place in this list is compared with that of
a personal computer after 8-10 years”. If this observation remains true in
the future, we can expect to have 2.57 petaflops (Tianhe-1A score at high
performance LINPACK) in our personal computers in about 15-20 years
from now.

2.2. Reconfigurable parallel architectures

Reconfigurable hardware relies on arrays of programmable logical ele-
ments linked by a configurable network. These components, such as Field
Programmable Gate Arrays (FPGAs) allow the mapping of various complex
logical elements such as digital signal processors, video decoders or proces-
SOTS.

2.2.1. Reconfigurable hardware

With the recent Partial Dynamic Reconfiguration (PDR) technology, one
part of a reconfigurable device can be changed without affecting the other
part. On a FPGA chip hosting a design containing multiple Intellectual
Property blocks (IPs), this means that an IP can be changed while others
are running. In this respect, the FPGA can be considered as an array of
independent IPs. This new technology adds much more flexibility to FPGA-
based hardware components by allowing dynamic IP changes during system

!The Compute Unified Device Architecture (CUDA) [36] is a GPGPU architecture
developped by nVidia. CUDA Cores is the name of the parallel PEs in this architecture.

life.

Reconfigurable hardware allows integrating accelerators in systems easier
than using dedicated hardwired resources. Indeed, integrating generic hard-
ware resources can offset the cost of dedicated hardware as various acceler-
ators can be integrated on demand. Moreover, implementing algorithms as
hardware circuitry instead of software code can be useful in devices where
energy matters. Actually, a slow-clocked hardware implementation of an
algorithm can offer the same performance as a higher speed software imple-
mentation, with less energy consumption [32]. Thus, reconfigurable hard-
ware can improve energy efficiency of CPU- and GPU-based systems [30].
Reconfiguration also comes at a cost, the overhead of the reconfiguration
time, during which it is impossible to use an IP, and the energy cost of the
reconfiguration itself. PDR avoids a complete FPGA reconfiguration and
acts on smaller bitstreams, bringing an appreciable speed gain.

For Birk and Fiksman [6], the reconfigurable hardware capabilities are close
to the software concept of dynamic libraries, with the capacity to be in-
stantiated when needed, and even replicated if needed more than once at a
time. Their approach to dynamic reconfiguration entails using multi-context
FPGAs. In these architectures, reconfigurable elements contain one active
configuration and one or more standby configurations. The standby con-
figuration can be dynamically reconfigured while the active configuration
is running. This allows an instant switch between active and standby con-
figurations whenever needed, hiding the reconfiguration overhead. Clearly,
this approach is resources-greedy since at any given moment, each reconfig-
urable element has an idle configuration monopolizing unused resources. Its
use then becomes a tradeoff between wasting time and reducing the usable
area of a device, depending on application priority.

European project Ather [2] presented an architecture based upon networked
reconfigurable components. FEach component can communicate with its
neighbors to form Self-Adaptive Network Elements (SANEs) [§]. The SANEs
communicate to form a platform able to run an application. In this struc-
ture, computation elements can be of various sizes by using more or less
components linked together, making it possible to run kernels with different
resources needs. This avoids wasting too many resources by using recon-
figurable regions sizes matching the larger element needs. Work has been
done on resources scheduling upon SANEs [35] as well as on simulation of
the SANEs environment and scheduling strategies impact [17].

In reconfigurable systems, there are more bitstreams to store since a single
reconfigurable area can support various IPs over time. Bitstream storage
needs to be addressed as embedded systems have limited memory. Crenne

presents a bitstream storage architecture similar to a cache stack, with vari-
ous levels leading to various performances [12]. Level 1 (L1) is local storage
in RAM, while L2 and L3 are stored over a network. L2 contains bitstreams
stored over a local area network, while L3 supposes a wireless connection.
Bitstreams are directly copied from the content of network packets to the
Internal Configuration Access Port (ICAP) [46, [47], Xilinx’s FPGAs inter-
nal reconfiguration IP. This avoids too much local storage while imposing
penalties when a needed bitstream is not present in L1.

Duhem et al. [14] presents a superset of Xilinx’s ICAP called Fast Reconfig-
uration Manager (FaRM). FaRM speeds up the reconfiguration process by
implementing direct memory accesses to get bitstreams from local memory.
This IP also implements bitstream compression in order to reduce needed
storage and bitstream transfers overhead. The bitstream is dynamically
uncompressed before being sent to the ICAP. The bitstream is temporar-
ily stored in a local Block-RAM (BRAM)-based FIFO, allowing the data
transfer to continue transfers while uncompressing the bitstream.

2.2.2. High performance reconfigurable computers

Lately, supercomputers have begun using reconfigurable hardware to ac-
celerate specific kernels. In the past, hardware accelerators were hard-wired
circuits to which the software could delegate some special jobs (e.g. graphical
cards usually embedded a MPEG2 decoder chip). Due to the static nature
of these elements however, it was difficult to use them in HPCs, since dif-
ferent applications have different requirements. Adding generic hardware
brings a lot of flexibility by allowing computing-demanding applications to
map needed IPs on reconfigurable areas, not requiring a specific hardwired
hardware accelerator.
An example of HPRC system is the Cray XD1 in which nodes are consti-
tuted by a dual AMD Opteron system in which a Xilinx Virtex II Pro or a
Virtex 4 FPGA can be added. Communication between CPUs and FPGAs
is done through a RapidArray fabric offering a 3.2 GB/s duplex channel.
Gothandaraman et al. [20] use the Cray XD1 to identify the possible gain
on executing Quantum Monte Carlo application on reconfigurable super-
computers. They compare an application’s performances on this integrated
platform to results conducted on a platform consisting in a dual Intel Xeon
coupled to two Xilinx Virtex IT Pro FPGAs using a 66 MHz PCI interface.
Their results highlight that the bandwidth between the processors and the
reconfigurable devices is a real bottleneck.
HPRC systems integrate reconfigurable hardware jointly with software PEs
in the nodes, or separated on dedicated nodes depending on the architec-

ture [I6]. In both cases, the main application runs on software PEs. When
reaching critical sections of codes for which hardware acceleration has been
developed, a software PE books a reconfigurable PE, configures it with ap-
propriate bitstream, then launches the run. This leads to the finding that
the system is still mainly software, with dynamic hardware resources per-
ceived as coprocessors used to accelerate specific kernels.

In current HPRC systems, FPGAs are reconfigured atomically, not imple-
menting PDR. First experimentations involving PDR on HPRCs systems
were conducted by El-Araby et al. [I5] on the Cray XD1 system. They use
the concept of Hardware Virtualization, the reconfigurable hardware being
mapped to generic hardware like pages of a memory system. Their work
shows the gain obtained by reconfiguring parts of the device instead of a
monolithic bitstream at once.

2.8. Parallelism tools: models and languages

Building parallel applications requires adapted models to describe it and
ways to program it. When computer science turned to parallelism, many
programming tools already existed for sequential behaviors. Based on that,
two approaches were taken: adapt existing tools, like programming lan-
guages C and Pascal, or create new tools specifically adapted to parallelism.
ADA is one of the first programming language to manage parallelism by
nature, dealing with processes, which are entities that can be run in paral-
lel. But most of the applications already written also needed to be adapted
to avail of parallel platforms. Most existing parallel applications are thus
based on C or Pascal, with a superset layer adding parallelism features.
OpenMP’s [10, 25] compiler directives allow communication through the
shared memory. It is described as compiler pragmas added to a C or Pascal
source code to indicate parallelism of applications. The compiler then in-
cludes thread creation and deletion in the application, resulting in a fork/join
model.

On most distributed systems, message-based communication relies on the
Message Passing Interface (MPI) [21, 23], which defines a set of communi-
cation routines. MPI is widely used in the industry and seen as a standard.
The routines defined by the interface allow various communication calls be-
tween two threads of more. The implementation of the different calls can
take the underlying hardware into consideration to offer a low-level Quality
of Service using resources at their best. Thus, there are various implemen-
tations of this interface, including proprietary ones specifically designed for
each hardware platform, as well as open-source ones.

MPI manages parallelism explicitly, requiring adding specific calls to send

and receive functions to manage inter-thread communication. Conversely,
OpenMP is implicit as the programmer describes which parts of the applica-
tion should be run in parallel, the compiler taking care of the inducted com-
munication. MPI is said to be a local view because developers describe the
code that must be run on each node to form the application, while OpenMP
offers a global view by describing the application that is distributed upon
PEs. Figure[3|shows the difference in terms of application description. It de-
scribes a simple sum between two arrays, followed by a sum on the resulting
array. The local view has to handle communication “manually”, while the
global view simply indicates that the operation has to be done in parallel.
Note that the local view tools, such as MPI, also define reduction operation,
so that gathering and then summing data can be done in a single call, unlike
this example.

H Local view)

Ais integer
B is integer
local_sum is integer

Global view

Ais array of integers range 1 to 10

B is array of integers range 1 to 10 local_sum <=A +B
C is array of integers range 1 to 10
sum is integer if node number is 1 do

C is array of integers range 1 to 10
do parallel sum is integer

C<=A+B

end do C[1] <= local_sum

receive C[2] to C[10] from other nodes
sum <= C[1] + C[2] + ... + C[10] sum <= C[1] +C[2] + ... + C[10]

else do

send local_sum to node 1

(I end if)

Figure 3: Global view versus local view in application description.

Defining the architecture of a parallel application is a delicate operation and
must be done carefully, since a single bottleneck can impact the whole sys-
tem; the entiere application can end up getting blocked because of a resource
starvation in a single part of the program. Worse, parallel management adds
traps like deadlocks, definitely blocking an application if too few precautions
are taken.

Before implementing an application, we need to model it in order to gain
information about potential constraints, such as data dispatching and com-
munication between threads. Thanks to the model, we can enhance an
application’s parallel profile to optimize execution time, and prevent it from
falling into a parallel pitfall. According to Skillicorn and Talia [39], program-

10

ming languages are models, since they allow applications to be represented
no matter what the underlying hardware is.

Models such as Unified Modeling Language (UML) [43] allows for the im-
plementing of an application by using design tools to translate virtual op-
erations into actual languages. In terms of parallel models, UML offers an
interesting profile called Modeling and Analysis of Real-time and Embedded
systems (MARTE) [42]. MARTE addresses embedded systems containing
both hardware and software resources, allowing us to describe their relation-
ship.

Architecture Analysis & Design Language (AADL) [I] is another modeling
tool. It describes hardware resources such as PEs, devices and buses, as
well as software elements that will use these resources, to describe the whole
system. AADL has a graphical approach, and can be defined as an UML
profile.

SystemC [40)] is also a major modelisation tool, providing us with a number
of approaches from low-level cycle-accurate simulation to transaction-level
modeling. It implements concurrency between processes, allowing simula-
tion of parallel system natively. It is primarily used to make general high
level verification, but many development tends to use it as a HDL descrip-
tion tool.

3. Our approach

Increasing computing power can be addressed in different ways. One
possibility is to increase the speed and integration of components in the
PEs. Another way is to increase the number of PEs. Finally, integrating
dedicated hardware is also a possibility to speed up specific kernels.

3.1. Background and preliminary observations

In the past, the personal computer experience has been enhanced mainly
by increasing integration while professional computing added parallelism to
reach the upper echelons in terms of computing power. Recent years how-
ever have showed the limits of increasing single-treaded computation speeds,
mainly because of leakage current and heat issues. Thus, personal comput-
ers turned to parallelism by introducing multicore chips in order to keep on
increasing the levels of computing performance. Introducing multiple cores
in former purely-sequential architectures exposed inherent flaws in legacy
programs: their inability to use multiple PEs, and thus enjoy the full ben-
efits of this rise in performances. Thanks to the use of multitask operating

11

systems, there is still a possible gain on parallel architectures by running
independent applications of the different PEs.

While personal computing needs to learn from the professional experience
in terms of parallelism, a new challenge in the quest to increase computing
power has emerged. Reconfigurable computing allows applications to del-
egate jobs to hardware accelerators specifically matching the application’s
needs. But introducing this new capability in current architectures leads
to the same problems as introducing parallelism in sequential architectures:
the applications, and moreover the platforms, are not able to enjoy the ben-
efits that could come from such a tool.

There is a need for a new methodology to support reconfigurable hardware
natively rather than as a speed-up tool for software codes. With a code-
sign methodology such as is used in Application-Specific Integrated Circuit
(ASIC) design, we can dispatch application kernels upon hardware or soft-
ware implementation. By considering hardware/software relationships prior
to system building, we can optimize the implementation of kernel in the light
of factors given as important in the application specifications, such as re-
quired performance, minimization of implementation cost, energy efficiency,
etc.

Such ASIC systems are specific to an application and are static, but even for
reconfigurable systems, applying the ASIC methodology is not that simple;
for example, if we later decide to change the kernel implementation, this
could lead to expensive changes in the whole system if the kernel’s com-
munication with the system is specific to its software/hardware nature and
has to be changed with it. Moreover, auto-adaptive systems have specific
and highly unpredictable needs, changing with their environment. In some
specific cases, this situation can lead to the exhaustion of reconfigurable
hardware resources and/or processor time.

This is why we propose a new approach involving hardware/software online
codesign. Online codesign is a notion where some or all of the kernels have
both software and hardware implementation, the one we use being chosen
at execution time depending on available resources and process criticality.

3.2. Ezecution model

Our approach consists in viewing an application as a gathering of inde-
pendent kernels communicating with each other. An application description
is a list of kernels to run along with their input and outputs. Threads (run-
ning instances of kernels) are automatically linked when one’s output data
is the other’s input data. The kernels’ hardware or software nature is not
considered when building the application.

12

Independently of the application, kernel implementations are defined, pos-
sibly re-using existing IPs. More than a hardware/software issue, multiple
hardware implementations can be defined for a single kernel, using different
hardware resources. Then, executing the application is done by reading the
sequence of kernels to run, then choosing an implementation for each kernel
depending on available resources. This is a virtualization process in which
the application knows the processes to run, but has no idea as to how they
will be processed.

This virtualization approach is somehow close to the OpenCL methodology.
Indeed, OpenCL explicitly manages the software kernels execution on the
PEs [41]. Creating an OpenCL application consists of listing the kernels
that can benefit from the execution on dedicated PEs present in the system,
and explicitly map the kernels on these resources. The program then adopts
a system view, managing the software kernels and allocating their execution
to the hardware resources. OpenCL can manage any software resources in
a system like CPUs, GPUs, or even particular resources like DSPs, Cell BE
[18], etc.

But our flow differs in many points from OpenCL. First, our approach is
built to enable the use of dynamic hardware on reconfigurable resources
while OpenCL is designed for software PEs management. Another difference
is that our methodology is not application-based, but rather kernel-based.
OpenCL describes an application that, at some point, makes use of a kernel
and maps it on a specific resource. In our approach, the application is only
a set of kernels, with no precision on their implementations. Our kernel-
centric view allows a kernel to be totally independent from the others, thus
from the application itself.

Figure [4] presents the general flow used to build an application and run
it on a dedicated platform. Stage A presents the application description,
starting with an application’s specifications (step A.1), that must be split
into various independent kernels (step A.2). Dependencies between kernels
are identified (step A.3) in order to build the final application’s description
(step A.4). Stage B presents the implementation of the abstract application
kernels (step B.1), which can be implemented for the application purpose or
can re-use existing IPs and/or software parts (step B.2). On the hardware
side, we use standard material such as FPGAs, on which a virtualization
platform is built. This enables us to disregard the actual nature of the un-
derlying hardware from the application point of view. Finally, on stage C,
the application is run over the platform, and kernels are dynamically instan-
tiated over hardware and software resources.

Achieving independence from the implementation is only possible if access

13

<Kernel>

</Ker!el> Hardware platform
<Kernel>

= = = P
<Kernel>
= ». >,
</Kernel>
<Kernel>

</Kernel>
Network

Initial Identification Identification XML
application of application of kernels descriptor
description kernels dependencies writing

@ @) ® @

U
;@ Spcin et e @ @

© offine O
A < Network >
B) Implementation of each kernel »_\

@ @ Mapping on execution platform

Kernel implementations: O Online

Kernel: -
abstract representation actual ways of doing the work
of the work to do Created hardware
/ implementation

9 Reused software
implementation

Reused hardware
implementation

Figure 4: General flow used to build an application.

to the kernels is also virtualized. Different implementations of the same
kernel require the same data and should provide the same results; it is how
input data is furnished to the kernel, and outputs retrieved from the kernel,
that changes. This is why each implementation of a kernel has a description
of how to get and set data. Data is managed independently of the kernel’s
implementation, the matching get and set procedures being applied trans-
parently. Finally, independence also requires that starting, stopping and
suspending a kernel be automated, as well as a way of knowing if a kernel
has finished processing.

These automations are defined using action sets, which are sequences of ac-
tions to perform in a specific order. An action can be a read/write in a

14

register or on a memory range, or a sequence of FIFO actions on a register.
An other way to provide and get data is using pointers to memory. These
are handled by booking a memory range and passing on its address and size
to the IP using register actions. Specific actions are also defined such as
masking and comparing data words; in this way, we can check that an TP
has completed its work.

The application is described upon XML files containing the above structure.
The job descriptor lists the kernels to run and their data dependency. A
kernel descriptor is needed for each kernel, listing the implementations and
their related files. Related files are obviously the kernels binaries and/or
bitstreams, but also parameters descriptors and thread access descriptors
that are specific to each implementation. A parameter descriptor contains
the action sets needed to provide and retrieve data to/from the kernel. A
thread access descriptor contains the action sets needed to interact with a
thread.

By virtualizing the management of kernels, we can use the same input and
output data format without needing to concern ourselves about the im-
plementation of the end application, thus enhancing what we call online
codesign.

Thanks to virtualization, an application described for our flow could work
on any system containing reconfigurable resources if the kernels bitstreams
and binaries are synthesized/compiled accordingly. To illustrate this, we
proceeded by building platforms supporting this flow. The purpose of these
platforms is to prove the feasibility of our system by showing a working
implementation.

4. Platforms

We called our general platform the Simple Parallel platfOrm for Re-
configurable Environment (SPORE). This platform adapts a simple HPC
topology, with nodes composed of computing PEs and a communication-
dedicated element, as in figure [5| Using our virtualization flow, the under-
lying hardware does not need to be taken into consideration, thus the nodes
could be heterogeneous, plugging various kind of device together.

SPORE is a theoretical platform, from which we developed two implemen-
tations. The first one, Software HPC Platform (SHP), is intended to eval-
uate the general architecture and check if HPC hierarchy can be applied
to FPGAs boards. The second one, Hardware Stream Dynamic Platform
(HSDP) will demonstrate that our method of hardware virtualization is

15

Node Node Node
E

compictr] | | [comunate] | | - (Gemantte)

Network

Figure 5: View of the system distributed upon various nodes.

actually applicable. This section describes these two platforms and their
characteristics.

4.1. Software HPC' Platform

Before introducing reconfigurable hardware and other elements of our
approach, we first needed to make a basic test: was the HPC architecture
easily implementable on our test material? This architecture was first pre-
sented in [19].

4.1.1. Overview

The worker PEs are called computing cells while the communication
component is called a host cell. Intra-node communication is done through
the shared memory while the host cell is responsible for handling inter-node
communication through the Ethernet access. Computing cells do not need
an OS since they will process a single task at once. We only need a small
runtime program able to launch the process and to send results when fin-
ished.
Figure [6] presents the implemented design from a software point of view,
including the intra-node communication elements. We decided to use MPI
for inter-node communication, as this is the standard communication tool
in current architectures. Implementing OpenMP for intra-node use on that
platform would have required re-writing a complete compiler, due to the fact
that computing cells do not have an OS. Since this was not a viable solution
for us, we preferred to use MPI for both inter- and intra-node communica-
tion, adding a prozy layer for intra-node communication. Calls between host
cell and computing cells are handled by a generic interface which is called
by the application-dependant proxy. A server is plugged to the network
along with the nodes and is simply an entry point for launching the MPI
application on the nodes.
Xilinx ml507 development boards [49] contain a Virtex 5 fx70t FPGA [45],

16

-

Host cell

MPI Program

MPI

To server

~
2
©
o
o
£
5
a
£
3
O

PowerPC 3

§L|T>
J Mailboxes

FPGA Board

program

Proxy

Interface

Runtime

MicroBlaze

v

Figure 6: Software stack.

256 MiB of DDR2 and a CompactFlash reader. The fx70t FPGA integrates
a hardwired PowerPC 440 and two Ethernet controllers. Figure [7] presents

(]

/160'

Computing cells

L
[2]
o)
T =

9]
o=
® ®
E-Q
S
(&)

(DDR

J

A
/ Xilinx Virtex 5 fx70t FPGA ;{i \
A »

440

Host cell

-
\. $ 7 Y $
v
’ Mailbox ’ Mailbox ’ Mailbox
v] v [
G
SysACE PowerPC l

Ethernet MAC

A\

/,

-
C

\

Memory controller /

Legend

Memory
i Processor
<\:1'> System bus

Links’ color is the
K same as the mastey

Nodes

y
Ethernet link

Figure 7: Implementation of SHP upon Xilinx ml507 board.

the system implemented upon this board.
With this set of components, we can build a complete, nonvolatile system by

17

Table 1: Resources used by the SHP components (percentages expressed on Virtex 5 fx70%t
global resources).

Resource Uncached Cached Host cell
occupation || computing cell | computing cell
LUTs 3,870 (8.6%) 4,441 (9.9%) | 2,559 (5.7%)
BRAMs 17 (11.5%) 34 (23.0%) 23 (15.5%)
DSP48Es 6 (4.7%) 6 (4.7%) 0 (0.0%)

using a CompactFlash card to host the filesystem. The PowerPC 440 is used
as the core of the host cell, supporting a Linux kernel, while the computing
cells been built using Xilinx’s MicroBlazes softcore processors [48]. Enabling
data and/or instruction cache requires two direct accesses to memory, while
disabling both means that we can use a single access through the bus. On
figure [7], the right-most computing cell is cached, while the other two are
uncached. The Multi-Port Memory Controller (MPMC) allows up to eight
accesses. One being used for the host cell, this allows three cached cells or
seven uncached cells on the same board.

While data communication between host cell and computing cells is made
through the memory, the Mailbox components allow control communica-
tion. Mailboxes are composed of two FIFOs allowing bidirectional transfers
between two buses. Table [1| presents the resources used by this implementa-
tion. The computing cells with cache use BRAMs as cache storage resources,
doubling the total BRAM count. Moreover, the number of LUTs is increased
by 15% as the cache management uses logic to be implemented. The host
cell seems to be lighter that the computing cells, but the real resource cost
is hidden by the use of the hardwired PowerPC.

On the software side, we use a Linux implementation built on the kernel
provided by Xilinx for use with its boards [50]. The filesystem is created
using Buildroot [7], a simple tool providing the base libraries required to run
the system. As said previously, MPI has open-source implementations. We
chose the MPI CHameleon 2 (MPICH2) [34], which is a free implementation
of the MPI2 protocol.

4.1.2. Platform evaluation

In order to evaluate the system, we needed an evaluation program repre-
sentative of a HPC application. We chose a benchmark developed by NASA
Advanced Supercomputing (NAS), the NAS Parallel Benchmark (NPB) In-
teger Sort (IS). NPB [4] is a set of tests used to benchmark parallel archi-

18

tectures, and NPB IS is a simple bucket-based integer sort algorithm. The
general performance of the benchmark is not the matter since MicroBlazes
are small processors that are not computing-intensive. Nevertheless, run-
ning this application using different configurations highlights the impact of
the various factors. NPB benches can be run using various classes, each
class representing a different amount of data to match different HPC sizes.
The possible classes for the IS bench are, in ascending order, S, W, A, B, C
and D. We chose class A as a tradeoff between a minimum size correctly rep-
resenting HPC applications and a maximum size that was reasonable given
our limited number of boards.

The computing cells can be configured to enable or disable the instruction
cache, while the data cache is always disabled. Indeed, activating cache
over data results in a general slowdown when executing this bench over our
platform. This is due to the frequent accesses to different arrays, forcing
frequent cache line flushes and loads. Note that this is specific to this con-
figuration, and different sizes of cache, or running different applications on
this platform, could result in a speedup when data cache is activated. But
due to the limited amount of BRAM, cache size cannot be increased. BRAM
resources use is already almost at maximum level: cached systems use 84.5%
of the BRAMSs with one host and three computing cells.

Some techniques can be used to optimize memory access. At the software
level, a method is to optimize memory access patterns in order to enhance
cache usage [31, O]. This technique implies to change the code taking in
consideration the underlying memory and cache layout. On the hardware
side, cache coherency can be maintained between the various processors,
avoiding flush operations. As this first platform is only intended to be a
general behavior evaluation, we did not integrate such advanced tricks.
The evaluation was conducted upon a dozen ml507 boards linked by an
Ethernet network, and using different configurations of the application dis-
tribution. Not all configurations were however allowed since some required
too many boards or too much memory. The application running time was
measured, with details of time spent on computation and on communication
between MPI jobs. The criteria were: instruction cache enabled or not; total
number of jobs; number of jobs per board.

We presented some representative results concerning computation and com-
munication times on figures |§| to Figure |8 shows a dramatic increase
of communication time when we put more jobs on the same board. This is
because of the shared memory, offering a single access at once. Since the
application is single program multiple data, all processes on the same boards
need to access the memory at the same time, leading to congestion. Figure

19

35

Total number
25 of jobs

20

4jobs (no cache)
8 jobs (no cache)

16 jobs (no cache)

Communication time (s)

=4 jobs (cache)
10 L —#38 jobs (cache)

————

1 2 4

Number of jobs on each board

Figure 8: Communication time versus number of jobs on each board.

[0 shows the correct general behavior, namely computation time drops ac-
cording to the total number of jobs on each board. On this figure, we see
that the number of jobs per board only has little impact on computation
time, curves for 1 and 2 jobs per board being quite layered. Nevertheless,
passing to 4 jobs per board begins to have a sensitive impact due to concur-
rent memory accesses. Figure reveals that, if the other criteria remain

200

175

150 \ Number of jobs on

\ each board
125

\ 4 jobs / board (no cache)
100 -2 jobs / board (no cache)
\.\ —4—1job / board (no cache)

75 =2 jobs / board (cache)
=1 job / board (cache)

Computation time (s)

50

25\

4 8 16 32

Total number of jobs

Figure 9: Computing time versus the total number of boards.

stable, the number of jobs per board leads to an increase of total time.
Memory is thus a bottleneck issue, obliging us to reconsider the SMP char-
acteristic of our platform.

Nevertheless, the other characteristics of our platform would not seem to be
a problem as we were able to reproduce a HPC-like behavior with multiple
nodes. These results allowed us to continue our investigations by building a

20

200 T

180

160

__—= Total number
of jobs

/ 4 jobs (no cache)

~#-8 jobs (no cache)
. —#—16jobs (no cache)

80
/ —#=4 jobs (cache)

60 ~8—3 jobs (cache)

140

120

100

Bench run time (s)

40

20

1 2 4

Number of jobs on each board

Figure 10: Total time versus number of jobs per board.

second platform, even if the memory model needs to be reexamined.

4.2. Hardware Stream Dynamic Platform

The second platform focuses on the hardware virtualization flow, thus it
integrates dynamic reconfiguration.

4.2.1. Overview

In order to simplify implementation, we only use hardware computing
cells in that implementation. As a consequence, and since IPs used to eval-
uate the platform do not make use of MPI, this platform does not need to
implement it. Nevertheless, MPI will be present in the final version of the
SPORE platform. HSDP is thus not HPC-oriented; rather it is dataflow-
oriented. Figure [11] presents the HSDP design.
To handle dynamic hardware, we use a software reconfiguration manager
able to send orders to a FaRM IP through a Linux driver. Bitstreams are
stored, along with other application elements, on the data server. The stor-
age manager transfers it to the local storage when needed, in order to make
it accessible by FaRM. SHP’s MP1I server is replaced by a scheduler dispatch-
ing work amongst nodes, where a local scheduler dispatches work amongst
cells. To replace the shared memory-only communication used in SHP, we
allow communication to be done directly through a bus. Implementation is
done, as for SHP, on Xilinx’s ml507 development boards.
Computing cells are split in two parts: a static one and a dynamic one. The
dynamic part, called kernel host, is configured using partial bitstreams. The
static part, namely the kernel controller, is responsible for isolating the bus
from the kernel host during the reconfiguration process. It also manages the

21

N PR Jumy PR ZumN
[b [3 [b
' E : E] E (Legend \
| Kemel k | Kemel 1 | Kemel |
1 1 1 3 ~
: host ! ! host ! : host ! Computing cells r‘ Memories
L ! L L} L ! —
Kernel Kernel Kernel
controller controller controller —>» Reconfiguration
< [> Control
[Host cell N\ > Data
) Operating system \
Cell FARM
mana. Reconf. | N
< 4 manager i
Local Storage Local
sched. manager storage Other Data Global
nodes server scheduler
_ Y

Ethernet link

Figure 11: View of HSDP system.

reset signal for threads. In any other case, it is invisible to the bus, giving
direct access to the IPs’ registers.

The local scheduler is the entry point of the virtualization process for each
node. It receives a job descriptor which will be parsed, extracting informa-
tion about kernels. Then, the local scheduler advises the storage manager
to grab needed files such as kernel descriptors, bitstreams, etc.

The storage manager is in charge of the “cache” management for bitstreams.
Since the bitstream repository has a limited storage capacity, a least recently
used policy is deployed when there is a need to store a new bitstream. Re-
sources occupation for node components is given in table [2, Note that the
kernel host’s resources are always monopolized, even if there is no IP mapped
on, or if the IP has a smaller actual occupation.

4.2.2. Platform evaluation

As this implementation is dataflow-oriented, we chose a test applica-
tion in which a kernel’s output is another kernel’s input, rather than a
communication-oriented evaluation program such as NPB IS. The flow was
evaluated using an AES encoding/decoding chain. The application has two
parallel branches, each one encoding an input file, then decoding it. We

22

Table 2: Resources used by the HSDP components (percentages expressed on Virtex 5
fx70t global resources).

Resource Host cell Kernel Kernel host
occupation controller

LUTs | 12,477 (27.9%) | 290 (0.6%) | 3,340 (8.6%)
BRAMs 42 (28.4%) 0 (0.0%) 0 (0.0%)
DSP48Es 13 (10.0%) 0 (0.0%) 0 (0.0%)

write a job descriptor containing this application. IP behavior is controlled
by writing a thread access descriptor, and the characteristics of each IP are
given using a kernel descriptor. All these files are written in XML using a
specific syntax. As an example, the listing in figure details the thread
access descriptor containing the action sets used to access both encoder and
decoder IPs. Some actions are constant writes to IP registers, while the
cypher key is a reference to an input file. This makes it possible to change
this key without changing the thread access descriptor, which is supposed
to depend only on the kernel implementation.

<Thread_access_descriptor ID="12" Name="AES encoder and decoder thread access descriptor">
<Context>
<Restore>
<!--Connect IP-->
<Action Type="Register" Direction="Write" Data_constant="01" Offset="0" Size="4"/>
<!--Enable reset-->
<Action Type="Register" Direction="Write" Data_constant="03" Offset="0" Size="4"/>
<!--Diable reset-->
<Action Type="Register" Direction="Write" Data_constant="01" Offset="0" Size="4"/>
<!--Cypher key-->
<Action Type='"Memory" Direction="Write" Data_reference="0" Offset="36" Size="4" Count="4"/>
<!--Disable premption-->
<Action Type="Register" Direction="Write" Data_constant="00" Offset="4" Size="4"/>
</Restore>
</Context>
<Behavior>
<start>
<Action Type="Register" Direction="Write" Data_constant="01" Offset="20" Size="4"/>
</Start>
</Behavior>
</Thread_access_descriptor>

Figure 12: Thread access descriptor for AES IPs.

Implementing the AES encoder involves using 2430 LUTs (63.3% of the ker-
nel host capacity), while the AES decoder uses 2975 LUTs (77.5%). The
architecture layout can be seen on figure with two computing cells and
the PowerPC being the host cell base. Computing cell 0 is shown imple-
menting an AES encoder while computing cell 1 hosts an AES decoder.

Chain output data is recovered, as well as intermediate data at the encoder

23

Computing
cell0

PowerPC

Computing ||
cell 1

Figure 13: Virtex 5 fx70t layout of HSDP implementation.

output, in order to check the accuracy of the process. The test has been
conducted using a dual-cell and a single-cell platform, leading to different
congestions in reconfiguration. On the dual-cell platform, both branches of
the program can run independently. On the single-cell platform, only one
thread can run at once, the second branch being in a waiting state until
cell is clear. General results reveal that our design flow is correct since the
obtained results are in line with expectations.

The application has been tested using compressed and uncompressed bit-
streams, and the reconfiguration times have been measured and are given

in table Bl

Table 3: Reconfiguration times expressed in clock cycles.
’ Compression H Encoder | Decoder

Enabled 79,633 91,232
Disabled 103,295 | 103,287

24

5. Future work

HSDP implementation of SPORE is still being evaluated, using longer

chains which are more representative of actual applications, in order to iden-
tify potential flaws. Time measures concerning IP run time and reconfigu-
ration overhead will also be conducted.
A third implementation of SPORE is planned in order to implement the
complete flow, namely integrating both the reconfigurable behavior and the
MPI capability. Given that it would be final platform, all elements of our
theory should be present, including the hybrid nature of cells and kernel
implementations, which can either be hardware or software. This platform
would then gather the features of the previous two platforms, but with
improvements to resolve the shortcomings revealed by these versions. This
platform, whose current name is Hybrid HPRC & Stream Platform (HHSP),
will adopt the manycore topology, managing communication through a NoC
in order to overcome the SMP issues.

6. Conclusion

In this paper, we explained the notion of hardware/software online code-
sign. With online codesign, we no longer need to consider the actual im-
plementation of the kernels when at the design stage. Moreover, with this
approach, we handle hardware and software implementation in one single
movement. Thus, some or all of the kernels can have both implementations,
the final one being chosen at run time.

This paper also presented a virtualization mechanism used to manage these
kernels automatically in relation with their actual implementation, which
may not be known before running. This mechanism defines ways to deal
with a kernel implementation such as starting, setting parameters, etc. us-
ing lists of actions to be carried out sequentially on the kernel.

Finally, we presented the SPORE platform and its various implementations,
intended to be a demonstrator for our implementation flow. The various
current and future SPORE implementations give us an opportunity to im-
prove design flow with a real implementation highlighting potential issues
we didn’t seen at design time.

This global flow allows execution of auto-adaptive applications, in which the
used and unused resources are unpredictable and depends on the environ-
ment. This behavior, where hardware or software nature of an application
kernels can be decided at runtime, allows more flexibility than the offline

25

codesign used in most of the current platforms. As an example, a HPRC
application, where hardware routines are statically defined, can run on only
one kind of platform, and would need to be adjusted before it could be run
on another platform. In this case, our virtualization flow, thanks to which
we can disregard the underlying structure when designing the application,
would allow us to run a given application on any platform able to implement
this flow.

Bibliography
[1] AADL website, http://www.aadl.info, 2011.
[2] Ather project website, http://www.aether-ist.org, 2006.

[3] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, et al.,
The landscape of parallel computing research: a view from Berke-
ley, Technical Report UCB/EECS-2006-183, Electrical Engineering and
Computer Sciences, University of California at Berkeley, 2006.

[4] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
et al., The NAS Parallel Benchmarks, http://www.nas.nasa.gov/News/
Techreports/1994/PDF /RNR-94-007.pdf, 1994.

[5] L. Benini, G.D. Micheli, Networks on Chips: A new SoC paradigm,
Computer 35 (2002) 70-78.

[6] Y. Birk, E. Fiksman, Dynamic reconfiguration architectures for multi-
context FPGAs, Comput. Electr. eng. 35 (2009) 878-903.

[7] Buildroot project website, http://buildroot.uclibc.org, 2011.

[8] J.A. Casas, J.M. Moreno, J. Madrenas, J. Cabestany, A novel hardware
architecture for self-adaptive systems, in: AHS ’07: Proceedings of the
Second NASA/ESA Conference on Adaptive Hardware and Systems,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 592-599.

[9] F. Catthoor, N.D. Dutt, C.E. Kozyrakis, How to solve the current mem-
ory access and data transfer bottlenecks: at the processor architecture
or at the compiler level, in: Proceedings of the conference on Design,
automation and test in Europe, DATE 00, ACM, New York, NY, USA,
2000, pp. 426-435.

26

http://www.aadl.info
http://www.aether-ist.org
http://www.nas.nasa.gov/News/Techreports/1994/PDF/RNR-94-007.pdf
http://www.nas.nasa.gov/News/Techreports/1994/PDF/RNR-94-007.pdf
http://buildroot.uclibc.org/

[10]

[11]

[12]

[16]

[17]

[18]

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon,
Parallel programming in OpenMP, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001.

M.O. Cheema, O. Hammami, Application-specific SIMD synthesis
for reconfigurable architectures, Microprocessors and Microsystems 30
(2006) 398 — 412. Special Issue on FPGA’s.

J. Crenne, P. Bomel, G. Gogniat, J.P. Diguet, End-to-end bitstreams
repository hierarchy for FPGA partially reconfigurable systems, in:
G. Gogniat, D. Milojevic, A. Morawiec, A. Erdogan (Eds.), Algorithm-
Architecture Matching for Signal and Image Processing, volume 73 of
Lecture Notes in Electrical Engineering, Springer, 2011, pp. 171-194.

J.J. Dongarra, P. Luszczek, A. Petitet, The LINPACK benchmark:
past, present and future, Concurrency and Computation: Practice and
Experience 15 (2003) 803-820.

F. Duhem, F. Muller, P. Lorenzini, FaRM: Fast reconfiguration man-
ager for reducing reconfiguration time overhead on FPGA, in: 7th In-
ternational Symposium on Applied Reconfigurable Computing (ARC
2011), Belfast, United Kingdom.

E. El-Araby, 1. Gonzalez, T. El-Ghazawi, Exploiting partial runtime
reconfiguration for High-Performance Reconfigurable Computing, ACM
Trans. Reconfigurable Technol. Syst. 1 (2009) 21:1-21:23.

T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
D. Buell, The promise of High-Performance Reconfigurable Comput-
ing, Computer 41 (2008) 69-76.

M. El Khodary, J.P. Diguet, G. Gogniat, F. Muller, M. Auguin, On
simulating operating environment decisions in a sane network, in: 2nd
ATHER - MORPHEUS Workshop- Autumn School From Reconfig-
urable to Self - Adaptive Computing (IST AMWAS 08), Lugano,
Switzerland.

R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell,
R. Badia, E. Ayguade, J. Labarta, Optimizing the exploitation of mul-
ticore processors and gpus with OpenMP and OpenCL, in: K. Cooper,
J. Mellor-Crummey, V. Sarkar (Eds.), Languages and Compilers for
Parallel Computing, volume 6548 of Lecture Notes in Computer Sci-
ence, Springer Berlin / Heidelberg, 2011, pp. 215-229.

27

[19]

[20]

[21]

[26]

C. Foucher, F. Muller, A. Giulieri, Exploring FPGAs capability to host
a HPC design, in: 28th Norchip Conference (Norchip 2010), Tampere
Finland, pp. 1-4.

A. Gothandaraman, G.D. Peterson, G.L. Warren, R.J. Hinde, R.J. Har-
rison, FPGA acceleration of a quantum monte carlo application, Par-
allel Comput. 34 (2008) 278-291.

W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel
Comput. 22 (1996) 789-828.

G. Hager, G. Wellein, Architecture and performance characteristics of
modern High Performance Computers, in: H. Fehske, R. Schneider,
A. Weie (Eds.), Computational Many-Particle Physics, volume 739 of
Lecture Notes in Physics, Springer Berlin / Heidelberg, 2008, pp. 681—
730.

R. Hempel, D.W. Walker, The emergence of the MPI message passing
standard for parallel computing, Comput. Stand. Interfaces 21 (1999)
51-62.

M.D. Hill, M.R. Marty, Amdahl’s law in the multicore era, Computer
41 (2008) 33-38.

J.P. Hoeflinger, B.R. De Supinski, The OpenMP memory model, in:
Proceedings of the 2005 and 2006 international conference on OpenMP
shared memory parallel programming, IWOMP’05/ITWOMP’06,
Springer-Verlag, Berlin, Heidelberg, 2008, pp. 167-177.

H.P. Hofstee, Power efficient processor architecture and the Cell proces-
sor, in: HPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, IEEE Computer Society,
Washington, DC, USA, 2005, pp. 258-262.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, et al., A 48-core
TA-32 message-passing processor with DVFS in 45nm CMOS, IEEE
International Solid-State Circuits Conference (2010).

Intel Labs., SCC External Architecture Specification,
http://techresearch.intel.com /spaw2/uploads/files/SCC_EAS.pdf,
2010.

28

http://techresearch.intel.com/spaw2/uploads/files/SCC_EAS.pdf

[29]

[30]

31]

[32]

[36]

[37]

[38]

[39]

[40]

R.A. Iushchenko, Measuring the performance of parallel computers with
distributed memory, Cybernetics and Sys. Anal. 45 (2009) 941-951.

S. Kestur, J.D. Davis, O. Williams, Blas comparison on fpga, cpu and
gpu, in: Proceedings of the 2010 IEEE Annual Symposium on VLSI,
ISVLSI ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp.
288-293.

P. Kjeldsberg, F. Catthoor, S. Verdoolaege, M. Palkovic, A. Vandecap-
pelle, Q. Hu, E. Aas, Guidance of loop ordering for reduced memory
usage in signal processing applications, Journal of Signal Processing
Systems 53 (2008) 301-321.

P. Kwan, C. Clarke, FPGAs for improved energy efficiency in processor
based systems, in: T. Srikanthan, J. Xue, C.H. Chang (Eds.), Advances
in Computer Systems Architecture, volume 3740 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2005, pp. 440-449.

P. Marquet, S. Duquennoy, S. Le Beux, S. Meftali, J.L.. Dekeyser, Mas-
sively parallel processing on a chip, in: Proceedings of the 4th inter-

national conference on Computing frontiers, CF ’07, ACM, New York,
NY, USA, 2007, pp. 277-286.

MPICH2 website, http://www.mcs.anl.gov/research/projects/mpich2,
2011.

F. Muhammad, F. Muller, M. Auguin, Dynamic and self adaptive re-
source management: aether operating environment, in: 3rd IEEE Int.
Conference on Emerging Technologies, Islamabad.

J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel program-
ming with CUDA, in: ACM SIGGRAPH 2008 classes, SIGGRAPH ’08,
ACM, New York, NY, USA, 2008, pp. 16:1-16:14.

OpenCL official website, http://www.khronos.org/opencl, 2011.

Y. Oyanagi, Future of supercomputing, Journal of Computational and
Applied Mathematics 149 (2002) 147-153.

D.B. Skillicorn, D. Talia, Models and languages for parallel computa-
tion, ACM Comput. Surv. 30 (1998) 123-169.

SystemC website, http://www.systemc.org, 2011.

29

http://www.mcs.anl.gov/research/projects/mpich2
http://www.khronos.org/opencl/
http://www.systemc.org

[41]

[48]

[49]

[50]

P. Thoman, K. Kofler, H. Studt, J. Thomson, T. Fahringer, Automatic
OpenCL device characterization: Guiding optimized kernel design, in:
E. Jeannot, R. Namyst, J. Roman (Eds.), Euro-Par 2011 Parallel Pro-
cessing, volume 6853 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2011, pp. 438-452.

UML profile for MARTE, http://omgmarte.org, 2011.
Unified Modeling Language website, http://www.uml.org, 2011.

D.H. Woo, H.H.S. Lee, Extending Amdahl’s law for energy-efficient
computing in the many-core era, Computer 41 (2008) 24-31.

Xilinx, Inc., Xilinx Virtex 5 family, http://www.xilinx.com/support /
documentation/data_sheets/ds100.pdf, 2009.

Xilinx, Inc., Partial Reconfiguration User Guide,
http://www.xilinx.com/support /documentation /sw_manuals/
xilinx12_3 /ug702.pdf, 2010.

Xilinx, Inc., Virtex-5 FPGA Configuration User Guide,
http://www.xilinx.com/support/documentation /user_guides/
ugl91.pdf, 2010.

Xilinx, Inc., Microblaze processor reference guide,
http://www.xilinx.com/support/documentation /sw_manuals/
xilinx13_2/mb_ref_guide.pdf, 2011.

Xilinx, Inc., ml507 devlopment board user guide,
http://www.xilinx.com/support /documentation /boards_and kits/
ug347.pdf, 2011.

Xilinx open source resources, http://xilinx.wikidot.com, 2011.

30

http://omgmarte.org
http://www.uml.org/
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://xilinx.wikidot.com/

	Introduction
	Increasing computing power -- overview of actual methods
	Parallel architectures
	Multicore
	Manycore
	Supercomputers

	Reconfigurable parallel architectures
	Reconfigurable hardware
	High performance reconfigurable computers

	Parallelism tools: models and languages

	Our approach
	Background and preliminary observations
	Execution model

	Platforms
	Software HPC Platform
	Overview
	Platform evaluation

	Hardware Stream Dynamic Platform
	Overview
	Platform evaluation

	Future work
	Conclusion

