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Abstract 

The present paper deals with a micromechanical model of interface able to couple the damage 

(micro-crack) evolution, the non-penetration conditions (Signorini equations) and the friction 

effect (Coulomb’s law). At a typical point of the interface, a Representative Volume Element 

(RVE) is considered; it is characterized by the presence of two different materials and by a 

microcrack evolving along the material discontinuity. Thus, a deductive approach based on a 

micromechanical analysis and on a homogenization procedure is proposed, in order to derive 

an imperfect, i.e. soft, interface model. In particular, the solution of the micromechanical 

problem on the RVE is determined considering three subproblems and properly 

superimposing their solutions. Then, a simplified micromechanical approach is performed by 

modeling the behavior of the material constituting the RVE in a very essential manner. 

Evolutionary laws for the crack growth are given and the equations governing the unilateral 

and friction phenomena are presented. In particular, the original proposed procedure is 

applied to derive an interface model for masonry structures considering the brick-mortar 
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interaction. The solutions of the three subproblems are determined adopting the finite element 

method on the specific RVE for different crack lengths; then, the solutions are interpolated by 

developing a spline technique. A numerical procedure based on the return-mapping algorithm 

and the classical backward-Euler integration scheme is  presented  for the specific considered 

evolutive problem. Some numerical tests, for monotonic and cyclic loadings are presented, 

remarking the ability of the proposed approach to reproduce the complex features of brick-

mortar interfaces; comparisons between the results obtained adopting the simplified and the 

proposed models are performed. 

 

Keywords: Interface, micromechanics, damage and friction, masonry. 

 

1. Introduction 

In many structural problems in mechanical and civil engineering, nonlinear phenomena occur 

in thin layers characterized by high strain and damage gradient, e.g. (Lorentz, 2008; Oinonen 

and Marquis, 2011; Parriniello et al., 2009; Salles et al., 2011; Spada and Giambanco, 2009). 

The behavior of these thin layers can be modeled introducing special mathematical elements, 

named interfaces, which are characterized by zero thickness and are governed by the relative 

displacements occurring between two surfaces. 

The interest and the use of the interfaces in mechanics are really wide. Interfaces are adopted 

to model the behavior of different bodies in contact, eventually in adhesion, considering 

friction effects, to reproduce the growth and evolution of fractures in a body or to simulate the 

presence of damage or plasticity bands. 
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Considerable effort has been supplied in the last years on the modeling of the interface 

behavior. Two main problems arise in the definition of an interface model; one concerns the 

capability to define a model whose governing parameters are dependent on the materials 

which are bonded together; the other one is related to the fact that a finite (low) stiffness is 

associated with an element characterized by a zero thickness.  

At least two different mechanical approaches are used to model these interfaces. In the first 

one (phenomenological), the thickness of the interface is zero and the mechanical properties 

are obtained from physical considerations and experiments. There exists a large class of such 

models. Another approach  (deductive) can be developed considering the thin layer of the 

body material which contains the potential fracture line. This thin layer of material is named 

in the following as interphase. The mechanical parameters of the interface model, 

characterized by zero thickness, are identified on the basis of the parameters of the material 

(or of the materials) constituting the interphase. In fact, the dependence parameters are linear 

or nonlinear spring-like parameters depending on the thickness and on the mechanical 

behavior of the interphase. In the deduced interface model, the interfacial stress vector 

becomes (usually) continuous, but the displacements at either side of the interface  become 

discontinuous, with the interfacial stress vector depending on the jump in displacement. These 

boundary conditions have been extensively used to model imperfect interface properties, 

which might lead to physically unrealistic phenomenon, such as the interpenetration at the 

interface. 

Interface models presenting important advances on the consideration of very strongly 

nonlinear effects as adhesion, friction or damage has been presented by Raous et al. (1999), 

Del Piero and Raous (2010) and Freddi and Frémond (2006); they formulated the model in 

the framework of continuum thermodynamics, considering the contact zone as a material 

http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6V32-4607XR6-5&_user=4013381&_coverDate=08/31/2002&_alid=1112399885&_rdoc=4&_fmt=high&_orig=search&_cdi=5718&_docanchor=&view=c&_ct=581561&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=3a693a8bd4a16bf28a3464b7e782c93d
http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6V32-4607XR6-5&_user=4013381&_coverDate=08/31/2002&_alid=1112399885&_rdoc=4&_fmt=high&_orig=search&_cdi=5718&_docanchor=&view=c&_ct=581561&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=3a693a8bd4a16bf28a3464b7e782c93d
http://www.sciencedirect.com.gate6.inist.fr/science?_ob=ArticleURL&_udi=B6V32-4607XR6-5&_user=4013381&_coverDate=08/31/2002&_alid=1112399885&_rdoc=4&_fmt=high&_orig=search&_cdi=5718&_docanchor=&view=c&_ct=581561&_acct=C000061186&_version=1&_urlVersion=0&_userid=4013381&md5=3a693a8bd4a16bf28a3464b7e782c93d
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boundary and deriving the constitutive laws by the choice of two specific surface potentials: 

the free energy and the dissipation potential. 

Particular interest received the development and the use of interfaces in modeling the 

behavior of masonry elements, as it can be found for example in (Uva and Salerno, 2006) and 

the references therein. Interfaces are used to model fractures at macroscopic level, i.e. at the 

structural scale, but also to simulate the mechanical response of the masonry at the material 

scale. In fact, interfaces can be used to model the response of the mortar joining the bricks of 

the masonry or to describe the behavior of the mortar-brick interaction. In the first case, the 

mortar is substituted in the mathematical model of the masonry by interfaces, suitably 

increasing the size of the bricks. This approach has been adopted by several researchers. 

Among the others, Lofti and Shing (1994) proposed an interface constitutive model able to 

reproduce the initiation and propagation of the fracture in the mortar joints, due to the 

presence of normal and shear stresses and accounting for the possible dilatancy. Giambanco 

and Di Gati (1997) and Giambanco and Mroz (2001) formulated a simple cohesive model 

based on a Coulomb type yield function, with tensile cut-off and non-associative evolution 

law. Lourenço and Rots (1997) and, then, Oliveira and Lourenço (2004) implemented a 

constitutive interface model formulated in the frame of the plasticity theory, capable of 

simulating the cyclic behavior of the cohesive zone, reproducing the nonlinear response in the 

unloading phase. 

Interface models are used in the context of masonry response to simulate the interaction 

occurring between the mortar joint and the bricks. In this framework, a model based on the 

adhesion intensity was developed by Fouchal et al. (2009), simulating decohesion between 

mortar and full or hollow bricks and the damage occurring in the mortar itself. A mortar-brick 

interface model, which takes the damage of the mortar joint into account, has been presented 
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by Pelissou and Lebon (2009), based on the material model for the mortar proposed by 

Gambarotta and Lagomarsino (1997). The model is derived assuming the brick-mortar 

interaction governed by three phases: the brick, the mortar and a thin interphase between the 

two materials, subjected to damage and friction. Since the interphase is thin, the interface 

model is recovered by performing an asymptotic analysis, as in Lebon et al. (2004) and Lebon 

and Zaittouni (2010).  

Moreover, an interesting study in the development of interface elements consists in the 

derivation of a model which takes into account at the macroscopic scale the effects resulting 

from microscopic and mesoscopic scales; in other words, to propose multi-scale interface 

models. A crucial challenge is to take into account the nonlinear phenomena occurring at 

cracks at the microscopic scale, which are essentially the unilateral contact and the friction on 

the mouths of the crack as well as the evolution of this crack. A proposal in this direction has 

been presented by Alfano and Sacco (2006) and by Alfano et al. (2006). In these papers, the 

interface damage is considered governed, at a micromechanical level, by the partial 

decohesion due to the nucleation of micro-cracks, while the progressive interface damage 

corresponds to the micro-crack growth and coalescence until the formation of macro-cracks, 

i.e. of the fracture. These phenomena are modeled by assuming that a representative 

elementary area of the interface can be decomposed into an undamaged part and a completely 

damaged part, where a unilateral friction law is introduced. Then, the initial model has been 

properly modified and applied to describe the brick-mortar interface by Sacco and Toti 

(2010). 

The objective of the present work is the development of a new procedure, based on the 

homogenization technique, for the derivation of an innovative and effective interface model, 

able to reproduce the complex features of brick-mortar interfaces. In fact, a micro-macro 
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interface model is proposed, which takes into account at the micro-scale non-penetration 

conditions, friction, sliding and crack evolution but it is characterized by reduced 

computational cost. The model is built on the basis of the deductive approach, considering the 

interphase and, then, defining a soft interface, i.e. characterized by finite stiffness (Lebon et 

at., 2004).  

The paper is divided in four parts. In section 2, the considered interphase is introduced and the 

interface model is derived. In particular, the problem is studied at a microscopic level, the 

damage variable is defined and damage evolution laws are introduced. Section 3 is devoted to 

the solution technique, defining three subproblems and, also, a simplified homogenization 

approach is discussed. In section 4, the numerical procedure is introduced using finite 

elements (FE) and a classical backward-Euler integration scheme is detailed for the specific 

nonlinear evolutive problem under consideration. Section 5 deals with some numerical 

applications, developed making use of a spline regression of the FE solutions. In particular, 

mode I, mode II and mixed mode tests are presented and the ability of the proposed approach 

to reproduce the complex features of brick-mortar interfaces is remarked. 

2. Interface model 

2.1. Micromechanical approach 

Let a typical point of the mortar-brick interface be considered. A representative volume 

element (RVE) at that typical point is defined as an interphase region. It is characterized by 

the presence of microcracks which can evolve, can be open or closed and can develop 

frictional stresses. 

The geometry of the RVE, schematically reported in Figure 1, is determined by the height h , 

obtained as the sum of the thicknesses of the mortar and brick involved in the degradation 
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phenomenon at interphase, the length 2 b , determined as the characteristic distance between 

the microcracks and the width w , which depends on the size of the mortar-brick. 

Following standard arguments of Continuum Damage Mechanics, the damage parameter D  is 

introduced as ratio between the crack length 2a and the total size of the RVE: 

 /D a b=  (1) 

Three different states can be recognized at the brick-mortar interphase, as reported in Figure 

2: 

• at the interface point A, the mortar-brick bond is absolutely undamaged,  

• at the interface point B, partial decohesion between the two contact surfaces of the 

different materials occurred; 

• at the interface point C, the decohesion phenomenon is complete. 

Considering the RVE at the point A, the contact surfaces do not present any microcrack. The 

RVE associated to point B contains partial decohesion due to the presence of microcracks. In 

the RVE corresponding to point C the coalescence of microcracks occurred and a total 

decohesion is present, so that a macrocrack appears into the representative element which 

results completely damaged. 

The relative displacement vector at the typical point of the mortar-block interface is denoted 

by s . Accordingly, the RVE associated to a typical point is subjected to an overall relative 

displacement equal to s . In particular, the vector s  represents in the RVE the relative 

displacement between the two edges parallel to the microcrack direction, i.e. to the line of 

material discontinuity, as schematically illustrated in Figure 3. 

With reference to Figure 3, simple geometrical evidences lead to: 
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 ' '' '' 'B B B B+ + = + ⇒ = −s h s h s s s s  (2) 

Denoting with the subscripts N  and T  the components in the normal and tangential direction 

of the interface, respectively, according to the local coordinate system illustrated in Figure 3, 

the relative displacement can be written as { }T
T Ns s=s . 

Note that the relative displacement s  induces in the RVE only the average strain components 

/NT TE s h=  and /N NE s h= , i.e  

 { } /T
NT NE E h= =E s   (3) 

As matter of fact, the normal strain in the direction of potential fracture is mostly neglected in 

the interface models. 

The average shear and normal stress components in the RVE are introduced as (Hill, 1963): 

 1 1,NT NT N NV V
dV dV

V V
σ σΣ = Σ =∫ ∫  (4) 

where V  represents the RVE volume, while the average of the local normal stress in the 

direction of potential fracture is neglected. 

2.2. Interface mathematical model 

In this section, the RVE at the typical point of the interface is considered. The constitutive 

laws for the mortar and brick materials are reported; the governing equations of the friction-

contact effect are given and a damage model is illustrated. 

2.2.1.  Mortar and brick constitutive laws 

Indeed, linear elastic constitutive laws are considered for the mortar and brick materials: 

 ,m m m b b b= =σ C ε σ C ε  (5) 
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where mC  and bC  are the 3 3×  isotropic elasticity matrices for the mortar and brick 

materials, respectively. 

2.2.2. Unilateral contact and friction 

Denoting by { }T
T Nd d=d  the relative displacement of the crack mouths, and by τ  and σ  

the shear and normal stresses on the crack, the following possible cases can occur: 

 0

0

0, 0, 0, 0
0, 0, 0,
0, 0, 0,

N T

N T

N T

d d
d d
d d

σ τ
σ τ τ
σ τ τ

> ≥ = =
= = < <
= ≥ < =

 (6) 

where 0τ  is the limit shear stress associated to the normal stress σ . The unilateral contact is 

governed by the conditions: 

 0 , 0 , 0N Nd dσ σ≥ ≤ =  (7) 

Introducing the set of admissible relative displacements at the crack mouths, { }: 0N Nd dΓ = ≤

, the condition (7) can be written in the equivalent form as: 

 ( )NI dσ Γ∈∂  (8) 

where ( )NI dΓ  is the indicator function of the set Γ , i.e. 

 ( )
0 if 0

if 0
N

N
N

d
I d

dΓ

≥
= ∞ <

 (9) 

The friction phenomenon can be described by means of the vector p , representing the 

inelastic slip relative displacement occurring at the typical point of the crack; the evolution of 

p  is assumed to be governed by the classical Coulomb yield function: 

 ( ),φ τ σ µ σ τ µσ τ
−

= + = +  (10) 
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where µ  is the friction coefficient and the symbol σ
−
denotes the negative part of the 

contact normal stress. Note that in relationship (10) it is not strictly necessary to perform the 

negative part of the contact normal stress, as it results 0σ ≤  because of equation (8). 

The following non-associated flow rule is considered for the evolution of the components of 

the vector p : 

 
0 0

d
d

τφ
τλ λτ

  
   = =   
      

p    (11) 

together with the Kuhn-Tucker conditions: 

 ( ) ( )0, , 0, , 0λ φ τ σ λφ τ σ≥ ≤ =   (12) 

where λ  is the so-called plastic multiplier. Finally, the friction inelastic vector takes the form 

{ }0 T
Tp=p . It can be remarked that, when 0Nd ≥  it results 0τ =  and, as a consequence, 

from equation (10) it results ( ),φ τ σ τ= , leading to 0τ =  and T Tp dλ= = . 

2.2.3. Damage evolution law 

About the evolution of the damage parameter D , i.e. the crack growth, a model which 

accounts for the coupling of mode I of mode II of fracture is considered.  

In particular, it is assumed that the damage evolution is governed by the overall relative 

displacement acting on the RVE. The two quantities Tη  and Nη , defined as the ratios between 

the first cracking relative displacements 0
Ts  and 0

Ns  and the full crack relative displacements 

f
Ts  and f

Ns  are introduced: 

 0 0/ , /f f
T T T N N Ns s s sη η= =  (13) 
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Then, the parameter η , which relates the two modes of fracture, is defined as follows: 

 ( )2 2
2

11 N N T Ts sη η η
α +

= − +  (14) 

where the quantity Ns
+

 is the positive part of the normal relative displacement Ns  and the 

parameter α  is evaluated according to the formula:  

 ( )2 2
N Ts sα

+
= +  (15) 

Finally, the damage parameter is assumed to be a function of the history of relative 

displacement as follows: 

 { }{ }max min 1,
history

D D=   (16) 

where D  can be expressed by the relationship : 

 1
1

D β
η β
 

=  + 
  (17) 

with β  the quantity given by the expression: 

 
2 2

0 0

1N T

N T

s s
s s

β +
   

= + −   
  

 (18) 

The damage evolution law is completed by the mode I and mode II fracture energies (per unit 

of area) which are given by the relationships: 

 0 0

0 0

with 0

with 0

cI N N N N NT

cII NT NT NT T N

G h E s

G h E s

δ δ

δ δ

∞ ∞

∞ ∞

= Σ = Σ Σ =

= Σ = Σ Σ =

∫ ∫
∫ ∫

 (19) 

Different evolutionary damage laws can be adopted in the model. The use of damage laws 

governed by the relative displacement vector s  leads to a crack growth which does not 
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depend on the contact-friction; this is a great advantage from a computational point of view, 

as shown in the following. 

The damage evolution can be also deduced by applying the classical Linear Fracture 

Mechanics (LFM), whose Griffith equation gives: 

 ( ) ( ) ( ), c

U a
G a G a G

w a
∂

= − =
⋅∂

 (20) 

i.e. there is fracture evolution when the release rate energy ( )G a  is equal to the critical 

fracture energy cG ; in first of the equations (20), ( )U a  represents the internal energy of the 

RVE. Solving the second of equations (20), the crack length a  can be determined and, as 

consequence, the damage parameter is deduced from formula (1). 

Recalling the classical Hill’s condition (Hill, 1963), which states that the volume average of 

an energy-like representation can be computed as the product of volume averages of stress 

and strain fields, it results: 

 ( ) ( )1 1
2 2N N NT NT N N NT NTV

U dV V E Eσ ε σ ε= + = Σ +Σ∫  (21) 

with evident meaning of the symbols. Setting: 

 1 1,
2 2N N N NT NT NTU V E U V E= Σ = Σ  (22) 

the release rate energy in mode I and mode II are defined, respectively, as: 

 ( )1 1,
2 2I N N N II NT NTG V E H E G V E

w a w a
∂ ∂   = − Σ = − Σ   ⋅∂ ⋅∂   

 (23) 
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where ( ) 1NH E =  if 0NE >  and ( ) 0NH E =  if 0NE ≤ . Introducing the critical energy in 

mode II and mode I, cIIG  and cIG , respectively, the crack evolution law is assumed to be 

governed by the relationship: 

 
0 no fracture evolution

1
0 fracture evolution

I II

cI cII

G Gg
G G

<
= + − =

  (24) 

According to the R -curve theory, proposed by Irwin (1960) to study the crack grow in metals 

and, then, adopted for cementitious composites and ceramics (Cook et al., 1987; Bazant et al., 

1993; Marfia and Sacco, 2001), the fracture energies cIG  and cIIG  can be assumed functions 

of a . Considering different types of functions for cIG  and cIIG , it is possible to obtain 

different mechanical responses of the RVE. In particular, specific functions for ( )cIG a  and 

( )cIIG a  allow to recover the same response obtained using the damage model proposed 

above. 

3. Solution procedure 

In order to recover the interface model by means of the homogenization procedure, the RVE 

is considered subjected to the average relative displacement s , i.e. to the average strain E ; it 

is required the determination of the overall average stress Σ . To determine the solution, the 

problem is split in three subproblems. 

3.1. Definition of the subproblems 

According to the scheme illustrated in Figure 4, the overall behavior of the RVE can be 

obtained studying the following three problems. 
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• The first problem (p1) considers the RVE subjected to a relative displacement s , i.e. 

to the strain E , assuming that the relative displacement at the crack mouths is not 

constrained in any way; as consequence, crack opening or superposition of the 

material is possible. The relative displacement at the crack is denoted as ed . 

• In the second problem (p2), the relative displacement c e= −d d  is prescribed between 

the crack mouths, while the overall relative displacement is enforced to be zero.  

• Finally, in the third problem (p3), the RVE is subjected to a relative displacement 

{ }0 T
Tp=p  at the crack mouths, corresponding to the frictional sliding, leaving the 

overall relative displacement equal to zero. 

The solution of the three problems, p1, p2 and p3, are denoted in the following as s1, s2 and 

s3, respectively. 

The solution of three linear elastic problems allows to evaluate: 

Solution  s1  s2  s3 
Average strain  E   0   0  
Average stress  eΣ   cΣ   fΣ  
Stress at the crack  0   c cτ σ   f fτ σ  
Relative displacement 
at crack  ed   c e= −d d   { }0 T

Tp=p
 

 

where the framed quantities are prescribed. By simple superposition of the three solutions, it 

is possible to recover any possible mechanical situation. 

3.2. Possible mechanical situations 

3.2.1. Open crack 

If the crack is open, the solution of the problem is s1: 
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Average strain Average stress Stress at the crack Relative displacement at crack 

E  e=Σ Σ  0 0τ σ= =  
e=d d  

3.2.2. Closed crack with no-sliding 

If the crack is closed and no-sliding occurs at the crack mouths, the solution of the problem is 

s1+s2: 

Average strain Average stress Stress at the crack Relative displacement at crack 

E  e c= +Σ Σ Σ  
c cτ τ σ σ= =  =d 0  

3.2.3. Closed crack with sliding 

If the crack is closed and sliding occurs at the crack mouths, the solution of the problem is 

s1+s2+s3: 

Average strain Average stress Stress at the crack Relative displacement at crack 

E  
e c f= + +Σ Σ Σ Σ  

c f c fτ τ τ σ σ σ= + = +  { }0 T
Tp= =d p

 
Note that, in this case, the average strain can be considered as the sum of two quantities 

e= +E E P , where eE  and P  represent the overall elastic and friction inelastic part of the 

strain, respectively. The overall inelastic part of the strain is evaluated as the average strain 

which leads to zero average stress when the relative displacement at crack is equal to p : 

 e c f= + + = =
Average strain Average stress Relative displacement at crack

P Σ Σ Σ Σ 0 d p  (25)
 

3.3. Determination of the solutions 

3.3.1. Solution s1 

The solution s1 is determined prescribing the average strain E  and enforcing zero stresses at 

the crack mouth. The overall stress and the relative displacement at the crack are evaluated by 

the relationships: 

 ,e e= =Σ CE d DE  (26) 
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where the overall elastic matrix matrix C  and the localization D  matrix of the relative 

displacement at crack mouths are determined solving the following two linear elastic 

problems: 

Prescribe Compute 

Average strain Stress at the crack Overall elastic matrix 
Localization matrix for 

the relative 
displacement 

1
0

NT

N

E
E

=
=

 
0
0

τ
σ
=
=

 TT NT

NT N

C
C

= Σ
= Σ

 
e

TT T
e

NT N

D d
D d

=
=

 

0
1

NT

N

E
E

=
=

 
0
0

τ
σ
=
=

 TN NT

NN N

C
C

= Σ
= Σ

 
e

TN T
e

NN N

D d
D d

=
=

 

 

Note that, contrarily to the matrix C , D  is function of the position of the point along the 

crack; in fact, once the average strain E  is assigned, it is possible to evaluate the relative 

displacement at any point of the crack mouths. 

3.3.2. Solution s2 

The solution s2 is determined prescribing the relative displacement field c e= −d d  between 

the crack mouths and enforcing the average strain E  equal to 0 . The overall stress and the 

shear and normal stresses at the crack are evaluated by the relationships: 

 ( ) ( ), ,
T Tc c c c c cτ σ= = =Σ C E T E S E  (27) 

where the overall contact matrix cC  and the localization vectors cT  and cS  of the stresses at 

the crack mouths are determined solving the following two linear elastic problems: 

Prescribe Compute 

Relative displacement Average strain Overall elastic matrix 
Localization matrix for 

the relative 
displacement 

c e
T T TT
c e
N N TN

d d D
d d D

= − = −
= − = −

 
0
0

NT

N

E
E

=
=

 
c c
TT NT
c c
NT N

C
C

= Σ
= Σ

 
c c

T
c c
T

T
S

τ
σ

=
=
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c e
T T NT
c e
N N NN

d d D
d d D

= − = −
= − = −

 
0
0

NT

N

E
E

=
=

 
c c
TN NT
c c
NN N

C
C

= Σ
= Σ

 
c c

N
c c
N

T
S

τ
σ

=
=

 

 

3.3.3. Solution s3 

The solution s3 is determined prescribing the relative displacement field { }0 Tf fu=d , 

characterized by an assumed distribution of the tangential relative displacement between the 

crack mouths, and enforcing the average strain E  equal to 0 . The overall stress and the shear 

and normal stresses at the crack are evaluated by the relationships: 

 , ,f f f f f fT Sλ τ λ σ λ= = =Σ C  (28) 

where λ  is set such that f f
Td uλ=  with  

 max 1fu =  (29) 

and the overall friction vector fC  and the localization scalars fT  and fS  of the stresses at 

the crack mouths are determined solving the following the linear elastic problem: 

Prescribe Compute 

Relative displacement Average strain Overall elastic matrix 
Localization matrix for 

the relative 
displacement 

1fu =  
0
0

NT

N

E
E

=
=

 
f f

T NT
f f

N N

C
C

= Σ
= Σ

 
f f

f f

T
S

τ
σ

=
=

 

 

Note that the relative displacement fd  represents the friction sliding occurring on the crack 

mouths; in other words, it results: f =d p . 
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3.3.4. Remark 

All the quantities are computed for the three considered subproblems assuming fixed the 

crack length, i.e. for a given value of the damage variable D . As a consequence, they have to 

be implicitly considered all functions of the damage. 

On the base of equations (26)-(28), the overall inelastic strain defined by relationships (25) 

can be computed as: 

 ( ) 1c f c fλ λ
−

= + + = ⇒ = − +Σ CP C P C 0 P C C C  (30) 

where Tpλ = . 

3.4. Simplified approach 

A direct approach can be recovered assuming a drastic simplification of the material behavior 

constituting the RVE. In fact, the continuous model is substituted with a simple mechanistic 

model obtained considering springs in the normal and tangential direction as schematically 

illustrated in Figure 5. Let NmK  and NbK  be the stiffnesses of the mortar and brick springs, 

respectively, in the normal direction; while TmK  and TbK  denote the stiffnesses of the mortar 

and brick springs, respectively, in the tangential, i.e. shear, direction. 

Recalling that /NT TE s h=  and /N NE s h=  and introducing the equivalent stiffness as: 

 ,Nb Nm Tb Tm
N T

Nb Nm Tb Tm

K K K KK K
K K K K

⋅ ⋅
= =

+ +
 (31) 

it can be set: 

 
ˆ ˆ

,NN TT
N T

C CK K
h h

= =  (32) 
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where ˆ
TTC  and ˆ

NNC  denote the normal and shear stiffnesses of the undamaged interface, 

respectively. 

3.4.1. Solution s1 

The solution s1 of the simplified problem is determined evaluating the components of the 

overall elastic matrix C  and of the localization matrix D , as: 

 ( ) ( )ˆ ˆ1 , 1 , 0
, , 0

TT TT NN NN TN NT

TT NN TN NT

C D C C D C C C
D h D h D D

= − = − = =
= = = =

 (33) 

3.4.2. Solution s2 

According the solution s2 of the simplified problem, the components of the overall contact 

matrix cC  and of the localization vectors cT  and cS  are: 

 
ˆ ˆ, , 0

ˆ ˆ, , 0

c c c c
TT TT NN NN TN NT

c c c c
T TT N NN N T

C DC C DC C C

T C S C T S

= = = =

= = = =
 (34) 

3.4.3. Solution s3 

The relative displacement field { }0 Tfu , characterized by an uniform distribution of the 

tangential relative displacement, is prescribed between the crack mouths. This condition is 

obtained in the simplified model assuming fu  as uniform along the crack mouths; in 

particular, it is set 1fu = . Then, the solution s3 gives: 

 
ˆ , 0

ˆ , 0

f f
T TT N

f f
TT

C DC C

T C S

= − =

= − =
 (35) 

It can be remarked that the simplified model leads to the model proposed by Alfano and 

Sacco (2006). 
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4. Numerical procedure 

A numerical-discrete time integration scheme is adopted to solve the nonlinear evolution 

equations governing the interface behavior. The time integration is performed adopting a 

classical backward-Euler integration procedure. The time interval of interest is subdivided in 

sub-increments and the evolutive problem is solved into a typical interval [ ]1,n nt t + , being 

1n nt t+ > . For brevity of notation, the subscript n  denotes the quantities evaluated at the time 

nt , while subscript is omitted for all quantities evaluated at the time 1nt + . 

Once the solution at the time nt  is known as well as the strain vector / h=E s  at time 1nt + , the 

stress is computed from the strain variables by means of the return-map procedure. 

The following average quantities on the crack are introduced: 

• average elastic relative displacement: 

 
0 0

a a
e e

T Tdx dx
 

= = = 
 

∫ ∫d d D E DE  (36) 

• average contact normal and tangential stresses: 

 
( )

( )

0 0

0 0

Ta a
Tc c c c

T T

Ta a
Tc c c c

T T

dx dx

dx dx

τ τ

σ σ

 
= = = 

 

 
= = = 

 

∫ ∫

∫ ∫

T E T E

S E S E

 (37) 

• average friction normal and tangential stresses: 

 0 0

0 0

a a
f f f f

T T

a a
f f f f

T T

dx T dx T

dx S dx S

τ τ λ λ

σ σ λ λ

= = =

= = =

∫ ∫

∫ ∫
 (38) 
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It can be remarked that, when the model governed by equations (13)-(18) is considered, the 

damage evolution problem can be solved independently from the contact and friction 

problem, as the model assumes that the damage variable D , i.e. a , depends directly on the 

overall relative displacement components Ts  and Ns . Thus, once the strain E  is given at time 

1nt + , the damage can be directly evaluated by means of equations (13)-(18). Of course, the 

damage is an internal variable, i.e. it is a history variable; thus, at the actual time step, the 

equation (16) takes the specific form: 

 { }{ }max ,min 1,nD D D=   (39) 

When the Linear Fracture Mechanics approach is considered, the damage evolution is 

governed by equation (24). According to the LFM, an initial damage is assumed, so that the 

value of the crack length  is different from zero since the beginning of the analysis. Note that 

if LFM is considered, the crack evolution is coupled with contact-friction effects; thus, in 

order to evaluate the possible growth of the crack length, it is necessary to solve the contact 

and friction problem.  

The solution algorithm can be developed considering two possible situations: the crack is 

open or the crack is closed; in the second case, again two cases can arise: there is sliding or 

not. 

4.1. Open crack 

If 0e
Nd >  then there is no contact and the solution at actual time step 1nt +  is: overall average 

strain E , overall average stress e=Σ Σ , stresses on the crack mouths 0τ =  0σ = , relative 

displacement along the crack e=d d . 

If the LFM damage evolution is considered, formulas (23) are rewritten in the explicit form: 
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( )

( )

1
2
1
2

II NT NT NN N NT

I TT NT TN N N

G V C E C E E
w a

G V C E C E E
w a

∂  = − + ⋅∂  
∂  = − + ⋅∂  

 (40) 

Assuming at the time 1nt +  the crack length equal to na  (predictor phase), a trial value of a 

fracture release rate g , defined on the base of relation (24), is computed as: 

 ( )
' ' ' '

1
2

TT NT TN N NT NT NN N
N N NT

cI cII

C E C E C E C EVg E H E E
w G G
 + +

= − + − ⋅  
 (41) 

where the  symbol prime '  indicates the derivative with respect to the crack length a . If g  is 

lower than zero, there is no crack evolution, so that na a= . On the contrary, if g  is less or 

equal to zero, there is crack evolution, so that the actual value of the crack length is 

determined solving, with respect to a , the algebraic equation (corrector phase): 

 ( )
' ' ' ' 2 0TT NT TN N NT NT NN N

N N NT
cI cII

C E C E C E C E wE H E E
G G V
+ + ⋅

+ + =  (42) 

4.2. Closed crack 

If 0e
Nd ≤  then there is contact; the solution at actual time step 1nt +  is obtained by means of a 

predictor-corrector algorithm.  

For a given value of the crack length a , the friction trial step is evaluated as: overall average 

strain E , overall average stress ,trial e c f trial= + +Σ Σ Σ Σ , average stresses on the crack mouths 

,trial c f trialτ τ τ= +  ,trial c f trialσ σ σ= + , relative displacement along the crack { }0 Tf
n n uλ=d

, where it is ,f trial f
nλ=Σ C , ,f trial f

nTτ λ=  and ,f trial f
nSσ λ= . The trial value of the yield 

function (10) is computed as: 
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 ( ) ( ),trial trial trial trial trial c f c f
n nS Tφ φ τ σ µσ τ µ σ λ τ λ= = + = + + +  (43) 

If the trial yield function is lower than zero, i.e. 0trialφ < , the trial state is solution of the 

problem; thus, it results trial=Σ Σ , trialτ τ=  and trialσ σ= . 

On the contrary, if the yield function is not lower than zero, i.e. 0trialφ ≥ , the solution of the 

problem has to be evaluated by a correction phase. In fact, a new value of the parameter 

nλ λ λ= + ∆  is computed solving the following yield equation with respect to λ∆ : 

 ( ) ( )0 c f c f
n nS Tµ σ λ λ τ λ λ = + + ∆ + + + ∆   (44) 

Remarking that / /trial trialτ τ τ τ= , from equation (44) it results: 

 0
trial trial

trial trial f f
trial trial

S Tτ τµσ τ λ µ
τ τ

 
 = + + ∆ +
 
 

 (45) 

Multiplying all the terms by /trial trialτ τ , it is: 

 0
trial trial trial

trial trial f f
trial trial trial

S Tτ τ τµσ τ λ µ
τ τ τ

 
 = + + ∆ +
 
 

 (46) 

i.e.: 

 0
trial trial

trial f f
trial trial

S Tτ τφ λ µ
τ τ

 
 = + ∆ +
 
 

 (47) 

which leads to: 

 
trial

trial
f f

trialS T

φλ
τµ
τ

∆ = −
 
 +
 
 

 (48) 
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Finally, the solution at actual time step 1nt +  corresponding to the prescribed value of the 

overall average strain E  is the overall average stress e c f= + +Σ Σ Σ Σ  and the average 

stresses on the crack mouths c fτ τ τ= +  c fσ σ σ= + , relative displacement along the crack 

( ){ }0 Tf
n uλ λ= + ∆d , where it is ( )f f

nλ λ= + ∆Σ C , ( )f f
n Tτ λ λ= + ∆  and 

( )f f
n Sσ λ λ= + ∆ . 

If the LFM damage evolution is considered, taking into account the equations reported in 

subsection 3.3, formulas (23) are rewritten in the explicit form: 

 
( ) ( )

( ) ( )

1
2
1
2

c c f
II NT NT NT NN NN N N NT

c c f
I TT TT NT TN TN N T N

G V C C E C C E C E
w a

G V C C E C C E C E
w a

λ

λ

∂  = − + + + + ⋅∂
∂  = − + + + + ⋅∂

 (49) 

so that, according to condition (24), the fracture evolves when: 

 

( ) ( )

( ) ( )

' ' ' ' '

' ' ' ' '

0
2

1
2

c c f
NT NT NT NN NN N N

NT
cII

c c f
TT TT NT TN TN N T

N
cI

C C E C C E CV E
w G

C C E C C E CV E
w G

λ

λ

+ + + +
= −

⋅

+ + + +
− −

⋅

  (50) 

Equation (50) reveals that, as announced above, the damage and friction problems are coupled 

when LFM is employed, as the value of λ  can be determined only after solving the friction 

problem. The splitting solution strategy is adopted, solving iteratively the problems of the 

damage evolution, taking frozen the value of λ , and of the friction-contact, taking frozen the 

value of D . 
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5. Numerical applications 

Some numerical applications are developed in order to assess the ability of the proposed 

model and the developed procedure to simulate the behavior of the brick-masonry interface. 

Initially, the geometry and the mechanical properties of the materials constituting the RVE are 

introduced. With reference to Figure 1, the geometry of the RVE is defined by the following 

data: 

 2 mm, 3 mm, 25 mmm bh h b= = =  

while the mechanical properties of the brick and mortar are: 

 1000 MPa, 0.15, 16000 MPa, 0.15m m b bE Eν ν= = = =  

Because of the symmetry of the RVE, the micromechanical computations are performed 

considering only one half of the RVE, discretized adopting a regular finite element mesh, 

such that each element is square with the side length equal to 1 mm. The adopted mesh is 

illustrated in Figure 6. 

5.1. Preliminary computations 

The formal vector S  collecting the matrices C  and D , related to the solution s1, the matrix 

cC  and the vectors cT  and cS , related to the solution s2, the vector fC  and of the scalars fT  

and fS , related to the solution s3, is introduced, i.e.: 

 { }c c c f f fT S=S C D C T S C  (51) 

Clearly, the vector S  is function of the crack length. In the following, all the components of 

S  are computed for different values of a , adopting finite element schemes. Thus, denoting by 

1a , 2a , .., ma  the m  different crack lengths considered, the vectors 1S , 2S , .., mS  are 
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determined. In order to derive the analytical functions for all the quantities collected in the 

formal vector S , spline interpolations are performed.  

5.1.1. Determination of the solution s1 

In Figure 7 and in Figure 8, the overall elastic moduli along the transversal (shear) and normal 

direction versus the crack length a  are plotted.  

It can be remarked that the variation of the overall elastic moduli TTC  and NNC  with respect 

to a  is linear when the simplified model is considered.  

Finally, because of the symmetry of the RVE, the values of NT TNC C=  results always equal to 

zero. 

In Figure 9 and in Figure 10, the plot of the components of the matrix D  are reported for 

different values of the crack length a , i.e. for different level of the damage state. Note that for 

25 mma = , it results 5TTD = , 0NTD = , 0TND =  and 5NND = . 

In Figure 11, the plot of the average values of the non zero components of the matrix D , i.e. 

TTD  and NND , computed using the formula (36), are plotted versus the crack length a  with 

diamond symbols. In the same Figure, the spline regression and the values determined using 

the simplified model are also plotted with a continuous line and with a dashed-dotted line, 

respectively. According to the simplified model, a constant value for both TTD  and NND  is 

obtained. 

Note that the computations are performed considering only one half of the symmetric RVE; 

thus, even if the values of TND  and NTD  are not zeros for the typical value of the crack length, 
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on the two hales of the RVE they assume opposite values, so that their average on the whole 

RVE is zero, i.e. 0TN NTD D= = . 

5.1.2. Determination of the solution s2 

In Figure 12 and in Figure 13, the variations of the overall contact parameters c
TTC  and c

NNC  

along the transversal (shear) and normal direction, respectively, are reported versus the crack 

length a . In the Figures, the values of c
TTC  and c

NNC , computed performing finite element 

micromechanical analyses are reported using diamond symbols; in the same figures, the 

spline regression and the simplified model results are also reported. The values of c c
NT TNC C=  

results always equal to zero. 

It can be simply noted that the following relationships hold true: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

c c
TT TT TT TT

c c
NN NN NN NN

C a C a C C b

C a C a C C b

+ = =

+ = =
 (52) 

Then, micromechanical analyses are performed for different values of the crack length in 

order to compute the contact stress parameters c
TT  and c

TS  as a function of a . The determined 

values of c
TT  and c

NS  are plotted in Figure 14 versus the crack length. In the same Figure the 

spline regression and the values obtained adopting the simplified model are also plotted. It 

can be remarked that, because of the symmetry of the chosen RVE, the contact stress 

parameters c
NT  and c

TS  are equal to zero. 

5.1.3. Determination of the solution s3 

The relative displacement field { }0 Tfu  is prescribed between the crack mouths; the 

displacement distribution is set such that the maximum absolute value, occurring at 
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25mmTx = , is set as max 1fu = . The relative displacement distributions to prescribe are 

determined for each crack length a , considering a uniform tangential stress along the crack 

mouths. The problems for the different lengths of the crack are solved by finite element 

method. The solution in terms of relative displacements is reported in Figure 15. 

In Figure 16(a), the variation of the overall contact moduli f
TC  along the transversal (shear) 

direction is reported. In the Figure, the values of f
TC , computed performing finite element 

micromechanical analyses are reported using diamond symbols; in the same figures, the 

spline regression and the simplified model solution are also reported. Note that, because of the 

symmetry of the chosen RVE, the overall contact parameter f
NC  is always equal to zero. 

Then, micromechanical analyses are performed in order to compute the contact stress 

localization parameter fT . The determined values of fT  are plotted in Figure 16(b) versus 

the crack length a . In the same figures the regression function and the simplified model 

solution are also plotted. Because of the symmetry of the chosen RVE, the parameter fS  is 

always equal to zero. 

5.2. Overall interface response 

Computations are developed in order to investigate the ability of the proposed 

micromechanical model in reproducing the effects of the damage, friction and unilateral 

contact of the interface. To this end, Mode I, Mode II and mixed Mode tests for monotonic 

and cyclic loading conditions are illustrated in the following. The aim of this section is the 

assessment of the ability of the proposed approach to reproduce the complex features of brick-

mortar interfaces  

The mechanical parameters adopted for the computations are reported in Table 1. 
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For the simplified model the values of 0
Ts  and 0

Ns  are properly modified in order to recover 

the same fracture energy. 

5.2.1. Mode I tests 

Initially, two simple mode I tests are performed. The loading histories are defined in order to 

perform a monotonic and a cyclic test; in fact, in the first case the maximum normal relative 

displacement 0.05 mmNs =  is reached, setting 0Ts = , while in the second case a loading 

history is assigned for the normal relative displacement, setting 0Ts = . In particular, the two 

loading histories, named as h1I and h2I, are defined as reported in Table 2. 

The results for the considered monotonic and cyclic loading conditions for normal relative 

displacement are reported in Figure 17(a) and Figure 17(b), respectively, in terms of the 

overall normal stress NΣ  versus the normal relative displacement Ns . Results are given 

comparing the response of the proposed model with the simplified one.  

5.2.2. Mode II tests 

Then, two mode II fracture tests are performed. Analogously to the mode I case, even for 

mode II, monotonic and cyclic loading histories are investigated, denoted as h1II and h2II, 

respectively. In particular, the considered loading histories are defined as detailed in Table 3. 

The results for the considered monotonic and cyclic loading conditions for shear relative 

displacement are reported in Figure 18(a) and Figure 18(b), respectively, in terms of the 

overall shear stress TΣ  versus the shear relative displacement Ts . The comparison between 

the results obtained adopting the proposed and the simplified models are given. 
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5.2.3. Mixed mode test 

Finally, a mixed mode test is performed. In particular, the interface is initially subjected to a 

compressive stress induced by prescribing a negative value of the normal relative 

displacement Ns , which remains constant during the whole loading history, while a cyclic 

history is performed for the shear relative displacement Ts . The loading history is reported in 

Table 4. 

In Figure 19, the plot of the overall shear stress TΣ  versus the shear relative displacement Ts  

is given for the proposed and simplified model.  

5.2.4. Discussion of the results 

Concerning the Mode I tests, it can be remarked that the simplified model well captures the 

overall response of the interface for monotonic as well as for cyclic loading histories. 

Nevertheless, slightly differences in the mechanical behavior of the proposed and the 

simplified model can be remarked mainly looking at the monotonic loading history, where it 

is well clear that the simplified model presents a linear softening branch and a higher value of 

the maximum stress. 

For the cyclic load history, the progressive damage of the interface can be remarked; 

moreover, when the reverse load is applied, the recovery of the initial stiffness, due to the 

unilateral effect modeling the closure of the crack, occurs. 

Concerning the Mode II tests, it can be remarked that, for a given value of the full crack 

relative displacement f
Ts  and of the mode II fracture energy, the simplified model presents a 

linear softening branch and a higher value of the maximum shear stress with respect to the 

proposed model. 
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As for the cyclic loading history, the comparison between the results obtained by the 

proposed and simplified model show the quite good agreement between the two models. The 

progressive damage of the interface can be noted, which of course is not recovered when the 

reverse load is applied. 

Concerning the mixed mode test, it can be remarked that the differences between the two 

discussed models are limited in the initial cohesive response of the interface, i.e. during the 

damage evolution phase.  

The illustrated results show that both the models are able to couple the damage evolution with 

the friction effect and are able to reproduce the typical behavior of the brick-mortar interface. 

More specifically, the response of the mixed mode test is characterized by: 

• OA: loading phase characterized by linear stress-strain response; 

• AB: loading phase with nonlinear response due to the damage activation and 

development of friction effect; 

• BC: unloading phase characterized by linear response; 

• CD: unloading phase during which the damage is less than 1 and it remains constant; 

thus, along the crack length, friction effect is present and, because the damage is not 

total, a kind of hardening effect arises; 

• DE: reloading phase characterized by linear response, i.e. there is not damage nor 

friction slip evolution; 

• EF: reloading phase analogous to the phase CD; there is not damage evolution, but 

friction slip effect; 
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• FG: loading phase with nonlinear response due to the damage activation and 

development of friction effect; at the point G, the damage reaches its maximum value, 

i.e. 1D = ; 

• GH: loading phase with nonlinear response due to development of friction effect;  

• HI: unloading phase characterized by linear response; 

• IJ: unloading and reverse loading phase during which the friction slip decreases to 

zero and then becomes negative; 

• JK: reloading phase characterized by linear response; 

• KL: reloading phase during which the friction slip increases until zero at point L. 

A quite different response can be noted for the two models in the nonlinear branch A-G, i.e. 

when both the damage and the friction evolve. In fact, the proposed model allows to reach 

higher values of the shear stress than the simplified model; this effect is due to a different 

coupling between damage and friction in the two models. Moreover, it can be argued that, as 

the fracture energy governing the damage evolution is the same in the two cases, the 

difference is due to the frictional effect, which in the simplified model is as underestimated. 

When the interface is completely damaged and only the friction governs the interface 

behavior, there are not differences between the results of the two models. 

6. Conclusions 

A micromechanical and homogenization procedure has been proposed to derive an interface 

model able to reproduce the behavior of an interphase consisting in two thin layers of 

different materials jointed together. Fracture evolution is considered in the joining surface, 

where also unilateral contact, due to the crack closure, and friction effect are accounted for. 
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The nonlinear micromechanical problem is solved considering three linear subproblems and 

suitably combining their solutions.  

The developed numerical procedure has been used to investigate on some simple but 

interesting examples. In particular, the interface constitutive law of a brick-mortar joint of a 

masonry is derived, implementing the proposed micromechanical and homogenization 

procedure. The procedure has been also applied to a simplified scheme of the RVE. 

Results are carried out for mode I, mode II and mixed mode of fracture; in the latter case, the 

nonlinear response of the interface is shown and the damage-friction interaction is remarked. 

Cyclic loading histories show the gradual degradation of the interface and, for the mixed 

mode tests, the role played by the damage-friction coupling. 

Numerical applications demonstrate the ability of the proposed micro-macro model and of the 

implemented numerical procedure to reproduce the complex features of brick-mortar 

interfaces . 

The proposed procedure represents a rational way to derive the interface constitutive law. The 

model takes into account the damage evolution, the unilateral effect and the frictional slip, 

and their coupling and interaction are obtained from micromechanical considerations without 

introducing any external assumption at the macroscale. 
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Nomenclature 

RVE representative volume element 
h  height of the RVE 
2b  length of the RVE 
w  width of the RVE 
2a crack length 
D  damage parameter 
s  relative displacement vector 

,NT NE E  shear and normal average strain components of the vector E  

,NT NΣ Σ  shear and normal average stress components of the vector Σ  
eΣ  average stress vector for the subproblem s1 
cΣ  average stress vector for the subproblem s2 
fΣ  average stress vector for the subproblem s3 

V   RVE volume 
mC , 

bC   constitutive matrices for the mortar and brick materials 
d   relative displacement vector along the crack mouths 

ed  relative displacement vector along the crack mouths for the problem p1 
τ , σ   shear and normal stresses on the crack 

cτ , cσ  shear and normal stresses on the crack for the problem p2 
fτ , fσ  shear and normal stresses on the crack for the problem p3 

IΓ  indicator function of the set Γ  
p  inelastic slip relative displacement 

( ),φ τ σ  Coulomb yield function 

µ   friction coefficient 
0
Ts , 0

Ns  first cracking relative displacements  
f

Ts , f
Ns  full crack relative displacements 

cIG , cIIG  mode I and mode II fracture energies 

cG  critical fracture energy 

( )G a  elease rate energy 

( )U a   internal energy 

C  overall elastic matrix of the RVE 
D  localization matrix of the relative displacement vector along the crack mouths 

for the problem p1 
cC  overall matrix for the problem p2 
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cT  localization vector of the shear stress along the crack mouths for the problem p2 
cS  localization matrix of the normal stress along the crack mouths for the problem 

p2 
fC  overall vector for the subproblem s3 
fT  localization function of the shear stress along the crack mouths for the problem 

p3 
fS  localization function of the normal stress along the crack mouths for the problem 

p3 
P  overall inelastic strain 

,N TK K  shear and normal stiffnesses for the simplified model 
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Captions of the Figures 

 

 

Figure 1: Geometry of the RVE. 

Figure 2: Micromechanical scheme of interface mortar-block. 

Figure 3: Kinematics at macro- and micro- scale. 

Figure 4: Schemes 

Figure 5: Simplified scheme for the RVE. 

Figure 6: Finite element mesh for the heterogeneous RVE, with microcrack. 

Figure 7: Variation of the overall elastic coefficient CTT as function of the crack length a. 

Figure 8: Variation of the overall elastic coefficient CNN as function of the crack length a. 

Figure 9: First column of the matrix D versus xT for different values of the crack opening a. 

Figure 10: Second column of the matrix D versus xT for different values of the crack opening 

a. 

Figure 11: Average values and spline interpolation of TTD  (a) and NND  (b) versus the crack 

opening a. 

Figure 12: Variation of the overall elastic coefficient Ce
TT as function of the half crack length 

a. 

Figure 13: Variation of the overall elastic coefficient Cc
NN as function of the half crack length 

a. 

Figure 14: Variation of the contact coefficients Tc
T (a) and Sc

N (b) vs the crack length a. 
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Figure 15: Tangential relative displacement fields uf to prescribe for each value of the half 

crack length a. 

Figure 16: Variation of the contact stress parameters Cf
T (a) and Tf (b) vs the half crack length 

a. 

Figure 17: Normal stress vs normal relative displacement for monotonic (a) and cyclic (b) 

loading conditions. 

Figure 18: Shear stress vs shear relative displacement for monotonic (a) and cyclic (b) loading 

conditions. 

Figure 19: Cyclic loading history for the mixed mode fracture test. 
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Figures 

 

 

 
(a) (b) 

Figure 1: Geometry of the RVE interphase (a) and brick-masonry interface (b). 

 

 
Figure 2: Micromechanical scheme of interface mortar-block. 
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Figure 3: Kinematics at macro- and micro- scale. 

 

 

 

 
Figure 4: Schemes for the computations. 
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Figure 5: Simplified scheme for the RVE. 

 

 

 

 
Figure 6: Finite element mesh for the heterogeneous RVE, with microcrack. 
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Figure 7: Variation of the overall elastic coefficient CTT as function of the crack length a. 

 

 
Figure 8: Variation of the overall elastic coefficient CNN as function of the crack length a. 
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Figure 9: First column of the matrix D versus xT for different values of the crack length a. 

 

 

  

Figure 10: Second column of the matrix D versus xT for different values of the crack length a. 
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(a) 

 

(b) 

Figure 11: Average values and spline interpolation of TTD  (a) and NND  (b) versus the crack length a. 

 

 

 
Figure 12: Variation of the overall elastic coefficient Ce

TT as function of the crack length a. 
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Figure 13: Variation of the overall elastic coefficient Cc

NN as function of the crack length a. 

 

 

(a) (b) 

Figure 14: Variation of the contact coefficients Tc
T (a) and Sc

N (b) vs the crack length a. 
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Figure 15: Tangential relative displacement fields uf to prescribe for each value of the crack length a. 

 

(a)  (b) 

Figure 16: Variation of the contact stress parameters Cf
T (a) and Tf (b) vs the crack length a. 
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(a) (b) 

Figure 17: Normal stress vs normal relative displacement for monotonic (a) and cyclic (b) loading 

conditions. 

 

 

(a) 

 

(b) 

Figure 18: Shear stress vs shear relative displacement for monotonic (a) and cyclic (b) loading conditions. 
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Figure 19: Cyclic loading history for the mixed mode fracture test. 
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Captions of the Tables 

Table 1: Mechanical parameters adopted for the computations. 

Table 2: Loading history for mode I of fracture 

Table 3: Loading history for mode II of fracture 

Table 4: Loading history for mixed mode of fracture 
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Tables 

Table 1: Mechanical parameters adopted for the computations. 

0.0085 Nmm/mmcTG =  
0 0.00072 mmTs =  0.06 mmf

Ts =  

0.0050 Nmm/mmcNG =  
0 0.00044 mmNs =  0.04 mmf

Ns =  

 

Table 2: Loading history for mode I of fracture 

 t 0 1 2 3 4 5 6 

h1I 

Ns [mm] 0 0.05 - - - - - 

Ts [mm] 0 0 - - - - - 

h2I 

Ns [mm] 0 0.02 0 0.03 0 0.05 -0.002 

Ts [mm] 0 0 0 0 0 0 0 

 

Table 3: Loading history for mode II of fracture 

 t 0 1 2 3 4 5 6 

h1II 

Ns [mm] 0 0 - - - - - 

Ts [mm] 0 0.07 - - - - - 

h2II 

Ns [mm] 0 0 0 0 0 0 0 

Ts [mm] 0 0.02 0 0.05 0 0.07 -0.01 
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Table 4: Loading history for mixed mode of fracture 

t 0 1 2 3 4 5 6 

Ns [mm] -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

Ts [mm] 0 0 0.05 0 0.08 -0.05 0 
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