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The reliability of paleomagnetic data is a keystone to obtain trustable kinematics interpretations. The determination of the real paleomagnetic component recorded at certain time in the geological evolution of a rock can be affected by several sources of errors: inclination shallowing, declination biases caused by incorrect restoration to the ancient field, internal deformation of rock volumes and lack of isolation of the paleomagnetic primary vector during the laboratory procedures (overlapping of components). These errors will limit or impede the validity of paleomagnetism as the only three-dimension reference. This paper presents the first systematic modeling of the

effect of overlapped vectors referred to declination, inclination and stability tests taking into account the key variables: orientation of a primary and secondary (overlapped to the primary) vectors, degree of overlapping (intensity ratio of primary and secondary paleomagnetic vectors) and the fold axis orientation and dip of bedding plane. In this way, several scenarios of overlapping have been modeled in different fold geometries considering both polarities and all the variables aforementioned, allowing to calculate the deviations of the vector obtained in the laboratory (overlapped) with respect to the paleomagnetic reference (not overlapped). Observations from the models confirm that declination errors are larger than the inclination ones. In addition to the geometry factor, errors are mainly controlled by the relative magnitude of the primary respect to the secondary component (P/S ratio). We observe larger asymmetries and bigger magnitudes of errors along the fold location if the primary and secondary records have different polarities. If the primary record (declination) and the fold axis orientation are perpendicular (Ω = 90º), errors reach maximum magnitudes and larger asymmetries along the fold surface (different dips). The effect of overlapping in the fold and reversal tests is also qualitatively analyzed in this paper.

Introduction

Paleomagnetism provides an independent reference frame that helps from the platetectonic to fold-and-thrust belt scales to understand and quantify three-dimensional deformation patterns. However, any paleomagnetic study should prove: 1) the absence of inclination shallowing (in sedimentary rocks), 2) a correct restoration to the ancient reference system in case of complex deformation patterns, 3) the absence of internal deformation and 4) a perfect isolation of paleomagnetic components in the laboratory ( Van der Voo, 1990). All these causes are controlled by the geometry of deformation and will introduce errors that can seriously affect the interpretation of the data [START_REF] Rodríguez-Pintó | Errors in paleomagnetism: Structural control on overlapped vectors -mathematical models: a case of study in the Balzes anticline (southern Pyrenees)[END_REF].

Concerning the last one, the main goal of the demagnetization procedures in the laboratory is to fully isolate all paleomagnetic components (Van der Voo, 1990). The overlapping of paleomagnetic components involves large number and different nature of variables: type of magnetic carrier, grain size, relaxation time and the related unblocking temperatures and coercivities, as well as the geometry of the demagnetization spectra. If there are two or more components sharing a common temperature or coercivity window, then an overlapping of components occurs and any further analysis or interpretation of paleomagnetic data may become non-sense and will lack any reliability. Partial or total simultaneous removal of two paleomagnetic components cannot be ruled out during paleomagnetic analyses. The lack of overlapping should not be assumed and the isolation of paleomagnetic components has to be effectively demonstrated by the internal coherence of the dataset.

The study of this source of error started very early during the development of paleomagnetic methods (Kramov, 1958;[START_REF] Halls | A least-squares method to find a remanence direction from converging remagnetization circles[END_REF][START_REF] Roy | Multiphase magnetizations: problems and implications[END_REF][START_REF] Bailey | Estimate of confidence in paleomagnetic directions derived from mixed remagnetization circle and direct observational data[END_REF][START_REF] Schmidt | Bias in converging great circle methods[END_REF][START_REF] Mcfadden | Comments on "A least squared method to find a remanence direction from converging remagnetization circles[END_REF][START_REF] Mcfadden | Comments on "A least squared method to find a remanence direction from converging remagnetization circles[END_REF][START_REF] Mcfadden | The combined analysis of remagnetization circles and direct observations in palaeomagnetism[END_REF]Dinarés and McClelland, 1991) but neither a diagnostic test nor a way of filtering this error have been developed until today. Other sources of error in the stability tests have been considered such as apparent synfolding results in a fold test caused by structural complications [START_REF] Tauxe | The fold test: an eigen analysis approach[END_REF]Weil and Van der Voo, 2002;[START_REF] Rodríguez-Pintó | Errors in paleomagnetism: Structural control on overlapped vectors -mathematical models: a case of study in the Balzes anticline (southern Pyrenees)[END_REF] [START_REF] Tauxe | Essecials of paleomagnetism[END_REF]Fig 9.10). In summary, this source of error can strongly modify the interpretation of paleomagnetic directions, magnetochrons, vertical axis rotations and also the stability tests (fold and reversal ones).

In this paper, a systematic mathematical modeling of overlapped vectors as function of the fold geometry is developed. The final goal of the model is to quantify the declination and inclination errors for a wide range of structural locations with a methodology that can be applied to any particular structural setting. Finally, a qualitative evaluation of the influence of the declination and inclination errors in the fold and reversal test is also done.

Apparent single component diagrams.

The case of total overlapping is very challenging because both components are simultaneously removed and an apparent single component demagnetization diagram may result [START_REF] Tauxe | Essecials of paleomagnetism[END_REF]. Thus, additional paleomagnetic or geologic information is needed to detect possible errors.

Examples of artificial Zijderveld diagrams are here used to better understand the effect of the declination and inclination errors in overlapped paleomagnetic vectors. Four different degrees of overlapping (ratio of the magnitude of the primary component respect to the secondary component: P/S) are shown, from non overlapped on the left to a higher degree of overlapping on the right are shown in Fig. 1. The overlapping is considered in a theoretical sample with two components. The primary, secondary and overlapped components are marked with numbers in the orthogonal diagrams between the points of the demagnetization spectra: 1-2 for the secondary, 3-4 for the primary and 2-3 for the overlapped components (Fig. 1). Three different structural situations are presented to see
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Overlapping 4 the effect of the fold geometry (rows). A small portion of the primary isolated vector is displayed at the end of the demagnetization spectra to see the difference with the overlapped direction. As we can observe, apparent clockwise rotations and steeper inclination result in a bed striking 45º (right hand rule) and dipping 50º SE (stereographs on the right side of Fig. 1). The opposite error trend will be detected in a bed striking 135º and dipping 50º SW (counterclockwise -CCW-and shallow inclinations) the inclination error is so large that produces a change in the polarity of the primary component. In summary, the same degree of overlapping produces opposite error trends (CW/CCW-shall/steep) depending on the structural situation, thus, the main factor controlling the magnitude of declination and inclination errors in the overlapping of two components is the fold geometry.

Mathematical modeling of overlapped vectors in cylindrical folds

The mathematical modeling presented in this section considers the overlapping of two paleomagnetic components in a cylindrical fold. To simplify the model, a horizontal flat bed and a primary magnetic vector (P) recorded in the rock are assumed. Later, the rock pile is folded (P f ). After a given time gap, a secondary component overprints the primary signal and both components are overlapped; the result is an intermediate component (P of ).

All variables in the model are known, thus the declination (DEC) and inclination (INC) errors associated to the overlapped component can be calculated after bedding correction in relation to the primary one (Fig. 2). The following subsections display a succinct description of variables, procedures and basic equations (the expanded description of variables, procedures and equations can be found in Appendix 1).

3.1. Description of the variables 3.1.1. The input variables involved in the mathematical model (Figs. 2 and3) are:

-A primary vector (P) defined by: declination (P dec ), inclination (P inc ), intensity | P | and the normal and reverse polarities (P N and P R respectively).

-A secondary and postfolding vector (S) is defined by: S dec , S inc , |S| that only displays one polarity (normal).

-The P/S ratio is given by the fraction of P and S intensities and represents the degree of overlapping between the two components.

-The fold axis orientation; trend (ø) (plunge is considered to be null).
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Overlapping 5 -The obliquity (Ω) is the angle between the primary declination (P dec ), and the fold axis trend (ø) -The dip: Since the plunge of the fold is negligible, the degree of limb rotation is equal to the dip of the limb. Dip is zero for the non-deformed position, and 90° for vertical beds, overturned beds are, in absolute value, larger than 90°.

-The "folded vector" (P f ) is the primary component after folding and before being overlapped.

The output variables

-The overlapped folded primary vector (P of ) -The overlapped restored primary vector (P o ) is P of after bedding correction.

-Inclination (ε inc ) and declination (ε dec ) errors are the difference between the "overlapped and restored (Po)" and the primary (reference) vector (P). ε inc = Po inc -P inc and ε dec = Po dec -P dec respectively. It is worth noticing that the inclination error sense depends on the polarity of the primary vector; smaller inclinations than the reference (negative values of ε inc ) are referred as shallowing and larger ones (positives ε inc ) as steepening (Fig. 3) for the normal polarity. The opposite applies for the reverse polarity.

! P O ! atan(x P O / y P O ) ! P O ! atan(z P O /(y P O 2 ! z P O 2 ))  ! dec ! ! P O ! ! P ! inc ! ! P O ! ! P
where and  are declination and inclination respectively and x, y, z are the Cartesian coordinates (see appendix for details).

Therefore, the main variables considered in the model to calculate the declination and inclination errors ( dec and  inc ) due to the overlapping of two components are the obliquity of the fold axis with respect to the primary component (Ω), the degree of folding (dip) and the P/S ratio. Since  dec and  inc depend upon these three variables as well as the polarity of the primary component, two different sets of nomograms have been produced to quantify the errors respect to the obliquity, dip and P/S (Fig. 4a andb).

Modeling equations and nomograms
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Overlapping 6 These equations allow quantifying all possible declination and inclination errors and building nomograms (Fig. 4), which help understanding the nature of these errors in relation to the fold geometry. Due to the large number of involved variables, some of them are considered constant to build the nomograms: a primary magnetic record with two perfectly antipodal vectors (P N = 000, 45 P R = 180, -45, Fig. 3) recorded in a horizontal bed. After folding (variable Ω and dip values) the secondary field (S = 000, 55) overprints the primary record in a certain demagnetization window (temperature or coercivity). The ratio of overlapping, controlled by the intensity ratio (P/S), remains as a discrete variable. It is worth mentioning that we are considering a total overlapping of the vectors in an undetermined unblocking spectrum, which would correspond to an apparent single component in terms of [START_REF] Tauxe | Essecials of paleomagnetism[END_REF].

Observations from Modeling

The following examples (Figs. 4, 5 and a supplementary table on-line) better illustrate the magnitude of declination and inclination errors obtained with the mathematical model.

They will be used to display the subsequent implications on the fold and reversal tests (section 5).

Example 1: Effects on the polarity in a given structural position (Dip, obliquity (Ω) and P/S ratio are constant. Figs.

[a&c] and 5)

This example focuses in a constant structural position: the southwestern limb of an anticline dipping 60º in a fold axis oriented at 150º respect to the primary field. The obtained declination error ( dec ) of the P R is +53° (clockwise -CW-) while the P N will show a  dec of -41° (counterclockwise -CCW-). Inclination errors are +5,4° for the normal primary polarity and +42 ° for the reverse one, biasing the value of the inclination to a shallower orientation in the reverse polarity and to a stepper in the normal one.

In the particular case of the hinge of the anticline or in any horizontal series (dip= 0 and hence, it is independent of Ω) the subsequent errors are noteworthy and they explained because of the change of polarity). This example remarks the asymmetry of the inclination errors for both polarities. However, declination may display significant errors when Sdec ≠ Pdec (whatever the reason is). Therefore, the reversal test will be affected due to the deflection of the antipodal character of the primary information.

Example 2: Effects on different positions of the fold (variable dip; Ω and P/S are constant. Fig. 4[a&c])

A second example shows the effect of the secondary component (S) on the reverse polarity (P R ) along different locations of a fold (e.g. Ω =30°), P/S is constant and equal to 1. The  dec is -47° and the  inc is +60.4° in the southeastern limb of an anticline (dipping 30°). In the other limb (northwestern dip= -30°), the  dec is +99° and the  inc is +22.6°

respectively (example 2.a in Fig. 4[a&c]). Despite of the moderated values of obliquity and dip, errors are significant and reach up to 100° of deflection. Both locations of the fold will undergo apparent shallow inclination but with different magnitudes. Now the effect on the normal polarity (P N ) for the same fold locations (Ω = 30° and dip 30° and -30°) is considered. In the southeastern limb the  dec is +20° and the  inc is +9.2° (stepper), whereas for the northwestern limb the  dec -12° and the  inc is -4,7° (shallower). The  dec are moderate but also suggest the same effect, as the deflection caused by a conical fold.

Considering a wider range of dip values (example 2.b in Fig. 4[a&c]) helps to illustrate the potential effect of an exhaustive sampling designed for the fold test. The P R overlaps with a secondary normal one (S N ) in a fold with Ω = 120º. The observed  dec are 24°, 0°, -134°, -139°, -132° and 6° corresponding to dip values of 30º, 0º (hinge), -30º, -60º, -90º

(vertical) and -120º respectively. On the other hand, the  inc for the same dip dataset will range between 68°, 85°, -1°, -19°, -35° and -39°. In the case of P N , the  dec are -15°, 0°, 6°, 8°, 6°, -1° and the  inc are 17°, 5°, -9°, -23°, -37° and -51°. Errors are smaller for the same structural locations if the secondary and primary polarities are the same.

Errors change asymmetrically with dip, especially when the polarity of the primary and secondary components is opposite. On the contrary, and for a given obliquity (Ω = 120°),

there is a relationship between the magnitude and sense of the errors and the limb symmetry; the normal polarity component in a northeastern limb will show the minimum values of  dec , while the southern limb will display the maximum errors. The reverse Example 3: Effects of the obliquity on a certain dip.

(variable Ω; dip and P/S are constant. Fig. 4[a&c] and 5)

If the primary component is reverse (P R ) and the dip= -60°, the  dec and  inc will vary depending on the obliquities. For Ω = 30°, the  dec is 107º and the  inc is -1.81º. For Ω = 60°, errors are 139º and -19,2º respectively; for Ω=120° are -139º and -19.2º; and when Ω = 150°, the  inc is -107º and the  inc is -1.81º. In all these cases, the inclination is steeper.

While positive  dec affect the signal in a CW manner, negative errors affect the result in CCW way. The  dec of supplementary obliquities (i.e. 45° and 135°) are of the same magnitude but opposite sign. On contrary, the  inc corresponding to the supplementary obliquities have the same magnitude and sign. Therefore, there is a remarkable symmetry: the  dec for a given obliquity is the opposite error of the supplementary one, and the  inc is equal to the value of the antipodal obliquity (Figs. 4b and5).

Example 4: Effects of variable P/S for different locations of a given fold (variable P/S and dip; Ω is constant. Fig. 4b [columns I to IV], Figs. 4c and5).

Errors will change for different P/S values (2.3, 1 and 0,43). For example, when Ω = 45º

and dip = ±45 (both limbs). The  dec in one limb (dip = +45º) are apparent CW for the normal polarity (+16º, +32º, +52º respectively), and CCW for the reverse polarity (-18º, -38º, -66º). The  inc are steeper in both cases: +10º, +14º, +17º for the normal vectors, and +20º, +56º and +91º for the reverse ones. In the other fold limb (dip = -45º) the  dec are - +24º and +121º or even +151º (P/S values between 2.3, 1 and 0,43) whereas the  inc range between -3º and +44º. In other cases, the increasing of the errors as a function of the P/S value is less remarkable but still asymmetric: see for example the  dec (Ω = 45º) of the normal polarity in both limbs. The NW limb (dip > 0) display large errors (+16º, +32º and +52º), while the SE limb (dip < 0) show smaller errors for the same P/S ratios (-7º, -11º and-15º).

Example 5: Effects of variable P/S for different folds (variable P/S and Ω; dip is constant. Fig. 4b [ II column] and 4c)

In this case, the errors in the normal polarity for different obliquities (Ω = 0º, 45º, 90º, 135º and 180º) are considered for a fixed fold location (constant dip= +30) and in two different overlapping ratios (P/S = 0,25 and 4). The  inc have the same magnitude for a

given Ω and its complementary: +1º when Ω = 0º and 180º. The  inc is +5º and +19º for Ω = 45º and 135° and the same relation occurs for the  dec but with opposite sign (±7º, ±29º

for Ω = 0º and 180; and ±6º and ±38º for Ω = 45º and 135º). The largest variations of the  inc for a given dip are seen for Ω = 90º (+8º and +32º) while the  dec are null.

The information derived from these examples allows us recognizing some general rules to understand the declination and inclination errors behavior:

4.1 Relationship of the errors with the obliquity (Ω)

Declination observations

Looking at the nomograms some relationships between Ω and the errors can be established. On one hand, the  dec for a given Ω is equal to the negative error of the supplementary obliquity = 180° -Ω (the antipodal obliquity, Fig. 4b [column I, rows a&e and b&d]). Maximum values of declination error ( dec around 180°), that in turn may imply an apparent polarity change in both primary polarities, are obtained for fold axes perpendicular to the primary component (Ω = 90°) and P/S ≥ 1 (S intensity is equal or larger than P) (Fig. 4b [I-c and III-c]). In the case of the primary reverse polarity (P R , R in the nomograms, Fig. 4b [III and IV columns]), for a given obliquity and a decreasing P/S ratio, the  dec are very asymmetric along the fold limbs. In contrast, the  dec for a primary normal component (P N ) display the opposite behavior in the limbs of the same fold and less pronounced asymmetry (Fig. 4). On the other hand, the  inc for a given Ω is equal to the error derived from the supplementary obliquity. Observing both limbs of a fold, the more orthogonal the P N and the fold axis are, the more asymmetric the errors will be. Maximum values of inclination errors ( inc ) for the P R are near 90° when dip is horizontal for every obliquity. On the contrary, the maximum inclination errors for the P N , in realistic geometries (dip < 120°, that is: 30° overturned beds), are around 55° when the fold axis and the declination of P N are perpendicular (Ω = 90°). Notice the symmetry of Ω = 0 and Ω = 180° errors in both limbs (and both polarities) and the asymmetry of them when Ω = 90° (Fig. 4b). Finally, as a general rule, both the declination and inclination errors are larger when the primary and secondary components have opposite polarities (Fig. 4).

Declination / inclination errors and the P/S ratio

As it was be expected, decreasing values of the P/S ratio (larger overlap) will produce larger errors ( dec and  inc ) in both polarities for a given location of the fold (Figs. 4 and5). Pure mirror symmetries with respect to the axial plane of the fold are displayed when the fold axis is parallel to P and S components (Ω = 0º and 180º Fig. 4b [a&e rows]). The largest asymmetry for the declination and inclination errors between limbs is shown when the fold axis is perpendicular to the primary record (Ω = 90º Figs. 4b [row c] and 4c).

Declination observations

When there is asymmetry of errors at both limbs (for any Ω ≠ 0º &180º Figs. 4b and4c), the  dec are bigger with positive dip and normal polarity. This implies that larger error values may be observed in the southern limb of a fold. In contrast, for reverse polarities (Fig. 4b [III & IV]) larger values are observed with negative dips corresponding to the northern flank (Fig. 4b, III column with negative dips).

Maximum  dec (180º for both polarities) are found when obliquity is Ω=90º but only when P/S≤ 1 (S ≥ P). These maximum errors mostly affect one limb; as lower the P/S ratio, wider the dip window of apparent polarity change will be. For other obliquities (Ω = 0º, 45º, 135º and 180º) in the reverse polarity, maximum  dec of 180º are also observed in a The normal polarity declination error has a particularity; there are points of null error for every P/S value when the Po and P vector share the same declination value. This absence of error is dependent on the obliquity and will be found, for example, when Ω = 0º or 180º and dip = 0, when Ω is 45º and 135º, dip = -128º (Fig. 4b [I]).

Inclination observations

The  inc are perfectly symmetric along the fold geometry for Ω = 0º or 180º. Its asymmetry increases when the fold axis is oblique to the P direction (Fig. 4b [II & IV]).

The  inc for the normal component [II], are dominantly negative (shallowing effect), while  inc in the reverse polarities are mainly positive (shallowing because the primary is negative). Their maximum values are close to the fold hinge (dip ≈ 0) in the reverse polarities (Ω = 90º) in contrast, the normal polarity maximum errors are found for overturned locations in one limb and moderate dips (given constant Ω and P/S magnitudes).

In general, there is a significant asymmetry in the errors whatever variable is considered (Ω, dip or polarity). As can be easily deduced, the overlap of components has strong influences in the stability tests.

The effects of the overlapping on the paleomagnetic stability tests

Non-resolved paleomagnetic components in the laboratory may induce significant changes on the stability tests, and therefore may change any geodynamic or tectonic implication of the data. In this section the general observations about the effect of overlapped directions in the fold and reversal tests are extracted by analyzing the examples previously exposed. The expected fold test result, in a non-overlapped primary component, is a significant prefolding direction and an exact antiparallel result in the reversal test. Therefore any deviation from these results will be due to the effects of the overlapping of paleomagnetic components. Overlapping of paleomagnetic components will turn an original primary component (prefolding with significant best-grouping at 100% unfolding), into any other possible result: significant synfolding, significant postfolding or non-significant result. The amount of departure from the expected result is basically controlled by the P/S ratio and the polarities of the primary and secondary components, although the remaining variables (obliquity, dip, etc…) have some influence in the statistical parameters as well.

Example one (Fig. 6) represents a horizontal bed followed by a monocline (Ω = 150°, dip between 0º [horizontal], and 60° and P/S = 1). The overlapping of a primary component of normal polarity with a secondary component of normal polarity will generate an apparent and significant synfolding acquisition (50% unfolding). A different fold obliquity respect to the secondary direction, does not significantly change the synfolding result (Example 2; Ω = 30°, dip between -30 and 30° and P/S:1, best grouping at 50%), but in this case, the synfolding character is better constrained (k values are much higher in the McElhinny test [1964]). Bootstraping [START_REF] Tauxe | The fold test: an eigen analysis approach[END_REF]) would inform about a postfolding normal polarity component and a non-significant record for the reverse one, although this is partially influenced by the small number of points (just two sites). In case of a tighter fold (Ω = 45° and P/S:1; example 2b) and more sites (6 different structural locations; dip from, 30 to -120 [30° overturned]) both fold tests confirm a syntectonic age of acquisition (50%) for the normal component and a nonsignificant result for the reverse one.

As expected, an increasing value of the intensity of the secondary direction (decreasing P/S value) will imply a gradual change from syn-tectonic to post-tectonic (example 4, Fig. 6). It is worth mentioning that, in the case of small number of samples, the

McElhinny's fold test gives a more sensitive result (larger P/S implies a larger % of unfolding) than the [START_REF] Tauxe | The fold test: an eigen analysis approach[END_REF] one, where the larger overlapping ratios trend to show significant postfolding (instead of synfolding) directions.

Since the departure from the expected primary orientation is much larger, the fold test will be non-significant when the secondary vector has the opposite polarity than the 

Reversal test

Considering a similar overlapping ratio between the P and S components, the reversal test is strongly influenced by the structural position since the orientation of the "overlapped P" depends on Ω and the dip and substantially differs between the N and R components.

The reversal test approach with the bootstrapping [START_REF] Tauxe | Essecials of paleomagnetism[END_REF], could not be achieved in the exposed examples either because of insufficient number of samples or because the high scattering of the distributions. In any case, the stereographic scattering in all studied examples shows a large departure from the expected antipodal directions (starts in figure 6, left column).

Conclusions

Among the different potential sources of error in paleomagnetism, the overlapping of components can produce a large scattering of data. The scattering is basically controlled by the relationship between the primary and secondary magnitudes (P/S ratio), and the angular relationships of the paleomagnetic components respect to the fold geometry (fold axis orientation [Ω] and the dip of bedding planes). The mathematical model developed in this paper helps to calculate the declination and inclinations errors caused by the overlapping of two components with similar unblocking spectra during the laboratory procedure. The results of the model help establishing some general observations: (1) all errors will increase for decreasing values of the P/S magnitude (larger overlapping degree). ( 2) Larger errors are found if the primary direction has an opposite polarity than the secondary one. This can explain the usual large departure from antipodality in many non-deformed magnetostratigraphic studies.

In addition, the influence of the fold geometry on the declination and inclination errors can be also synthesized from the mathematical model in the following remarks: (3) opposite declination errors will affect opposite limbs of the folds. Besides, the increasing of the obliquity of the fold axis with respect to the primary direction will increase the The influence of the scattering of paleomagnetic data due to overlapping on the stability tests is critical. An original primary direction may turn into any other possible result of the fold test (synfolding, postfolding or non-significant). The larger the degree of overlapping (smaller P/S ratio) the closer will be the result to post folding. In most cases and due to the scattering, a non-significant solution of the fold test will be obtained.

Reversal test is strongly affected. In fact, apparent synfolding magnetizations or poorly antiparallel directions should indicate the possibility of overlapping of paleomagnetic components.

The modeling procedure presented in this paper is useful to model any other particular structural setting, where variables may substantially differ, and it can be very useful to quantify declination and inclination errors as well as controlling the errors induced on the stability tests caused. 
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Modeling equations

The overlapped primary vector (P o ) is the sum of the primary vector (P) and secondary (postfolding) one divided by the intensity coefficient r (the magnitude of the resultant vector). R is the rotation matrix and R' is the inverse rotation matrix; both described below (see Appendix).

476

The error is the difference between the overlapped and the primary vector.

Error ! P O ! P  Rotation matrix:

R ! cos! ! ! 2 ! (1! cos ! ) ! cos ! cos! ! sen! ! (1! cos ! ) sen! ! sen! cos! ! sen! ! (1! cos ! ) sen! ! ! 2 ! (1! cos ! ) ! cos ! ! cos! ! sen! ! sen! ! sen! cos! ! sen! cos ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Where ! is the trend of the fold axis and DLR ! !

, is the magnitude of the rotation. The inverse rotation matrix !! R is the rotation matrix shown above with the opposite magnitude of rotation: DLR ! ! ! .

Summarizing 
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P P dec O ! ! ! ! ! Inclination error: ! inc ! ! P O ! ! P r S P r S R P r S P R R r S P R P unfolded folded O / / ) / ( ) / (               

  but

  inaccurately isolated primary record in the stability test have remained uncovered. Evidences of overlapping include; unexpected inclinations and declination values, inconsistence between two polarities, curved demagnetization diagrams (partial overlapped), "S" shaped demagnetization curves (if one component include another), apparent single component diagrams (if both components are removed simultaneously), in case of total overlap

  the usual deflection of normal and reverse means in horizontal magnetostratigraphic sections affected by overlapping problems. The declination remains constant (Sdec = P dec) but the P N acquires 5° of  inc (steeper) and the reverse acquires + 85° (shallower A c c e p t e d M a n u s c r i p t Overlapping 7

  contrary effect, declination errors are smaller in the southern limb and larger in the northern one.

  7º, -11º, -15º for the normal component and +24º, +121º and +151º for the reverse component. The  inc are shallower -8º, -14º, -19º for the normal polarity component (gray background [columns I & II]), and -14º, -3º, +44º for the reverse polarity component(white background [columns III & IV]). A steepening of the inclination and CW rotation values associated to one limb (dip > 0) in the reverse polarity and to the other limb (dip < 0) in the normal polarity are observed. In an opposite way, a shallower inclination and CCW rotation values appear when dip < 0 in the reverse polarity and dip > 0 in the normal one. It is worth mentioning the large error amplification in the reverse polarity for dip < 0 and any P/S ratio, the  dec range betweenA c c e p t e d M a n u s c r i p t Overlapping 9

  when dip = 0 (P/S < 1) or in overturned beds. Very high declination errors ( >90°) will be observed between these two extreme cases.

  primary one; this happens in all of the exposed examples where the degree of grouping is very little for the reverse components. All exposed examples display non-significant the[START_REF] Mcelhinny | Statistical significance of the fold test in palaeomagnetism[END_REF], and in the[START_REF] Tauxe | The fold test: an eigen analysis approach[END_REF], except for example 4. Here the bootstrapping for the reverse component in a given structural position (equal Ω and dip) and different P/S ratios gives non-significant result for the lowest overlapping (P/S: 2.3) and postfolding and significant for the other considered ratios (0.43 and 1).

  declination errors among the fold limbs. (4) On contrary, inclination errors may display the same trend in both limbs of the fold (especially when Ω = 0), but the fold obliquity may produce strong and complex asymmetries in this rule. (5) The inclination error range is usually smaller than the declination one. (6) Larger asymmetry and magnitude of errors along the fold are found if the primary direction has an opposite polarity than the secondary one.
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Figure 1 :

 1 Figure captions

Figure 2 .

 2 Figure 2. Lower hemisphere stereographic projection of the parameters and variables involved in the modeling of overlapped vectors. Left: primary, secondary and intermediate vectors before bedding correction (BBC), (different gray-scale in points represent vectors with intermediate overlapping degrees (Po)). Right: Overlapped vectors after bedding correction (ABC). The difference with the expected reference direction (non-overlapped) gives us the ε dec & ε inc . Observe that inclination of P o is shallower than the expected (inclination of P) and declination values have an apparent counter clockwise rotation (CCW) comparing to the reference.

Figure 3 .

 3 Figure 3. Schematic 3D block diagrams and lower hemisphere stereographic projections showing different stages of the magnetic record during folding, overlapping and restoration of Po. The block diagrams show four stages. From left to right 1) undeformed block, whithehead (blackhead) arrows represent reverse and normal polarity of the primary record (P). 2) Folded position of the primary vectors. 3) Folded and overlapped and 4) overlapped vectors restored to the horizontal. Note

  component is assumed to be normal polarity (S N ). The solid line in the block diagrams of 1 & 2 columns represent the paleohorizontal, and dashed lines (in columns 3 &4), are the expected position of P vectors. Straight black and white arrows (3 & 4 columns, block diagram), represent the P o vector with a P/S =1. The stereographic projections represent the four stages in both limbs of the fold to illustrate the different errors.

Figure 4 .

 4 Figure 4. Nomograms representing the results of the mathematic model for the declination (DEC) and inclination (INC) errors (in the Y axis) against dip (in the X axis). a) Nomograms for discrete values of the P/S ratio. Different obliquity (Ω) values as colored inner curves. Columns I and III represent the declination error for the normal and reverse polarity respectively, while columns II and IV represent the inclination errors. Negative values in the X-axis represent one limb of the fold and the positive values represent the contrary. The inner dashed boxes correspond to the enlarged area shown in Fig 4c.b) Nomograms for discrete values of obliquity (Ω). Different P/S ratios as colored inner curves (see also Fig 4b caption). c) Enlargement of the nomograms to better show the examples describe in the text.

Figure 5 .

 5 Figure 5. Stereographic projection illustrating examples 1, 3 and 4 (partially). See more

  INC: declination and inclination before bedding correction (BBC, insitu coordinate system), So (RHR): Bedding plane orientation; azimuth, dip and dip direction following the right hand rule. Po DEC and Po INC: declination and inclination after bedding correction (ABC), ε dec : Declination error, and its sign (clockwise -CW-or counterclockwise -CCW-rotation), ε inc : Inclination error an its effect (shallowing or steepening).
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