
HAL Id: hal-00748745
https://hal.science/hal-00748745v1

Submitted on 16 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Space Ordering at a Topological Level in Space
Planning

Benachir Medjdoub, Bernard Yannou

To cite this version:
Benachir Medjdoub, Bernard Yannou. Dynamic Space Ordering at a Topological Level in Space Plan-
ning. Artificial Intelligence in Engineering , 2001, 15 (1), pp.47-60. �10.1016/S0954-1810(00)00027-3�.
�hal-00748745�

https://hal.science/hal-00748745v1
https://hal.archives-ouvertes.fr

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 1

Dynamic Space Ordering at a Topological Level

in Space Planning

Benachir Medjdoub* and Bernard Yannou**

*
The Martin Centre, University of Cambridge

6 Chaucer Road, CB2 2EB, Cambridge, UK

Phone: (01223)331714

Fax: (01223)331701

bm230@cam.ac.uk

**

 Laboratoire Productique Logistique, Ecole Centrale Paris,

Grande Voie des Vignes, 92295 Chatenay Malabry, France

Phone: (33) 1 41 13 16 05

Fax: (33) 1 41 13 12 72

yannou@pl.ecp.fr

mailto:bm230@cam.ac.uk

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 2

Abstract. We are here dealing with the problem of space

layout planning. We present an approach based on an

intermediate topological level with dynamic space

ordering (dso) heuristics. Our software ARCHiPLAN

proceeds through a number of steps. First, all the

topologically different solutions, without presuming any

precise dimension, are enumerated. Next, we may evolve

in this topological solution space, and than refine some

of them to form consistent geometrical solutions. For

each topological solution chosen, the optimising

geometrical solution is determined from a cost, useful

surface or wall length. By using dynamic space ordering

heuristics in the topological level the enumeration time

has been reduced.

Keywords: layout planning, topological solution, heuristics,

constraints, preliminary design.

1. Introduction

Space layout planning is one of the most

interesting and complex of the formal

architectural design problems, i.e. finding a

satisfactory space arrangement with regards to

objective requirements. Objective requirements

are expressed by constraints:

 • Dimensional constraints: over one space, i.e.

constraints on surface, length or width or space

orientation.

 • Topological constraints: over a couple of spaces,

i.e. adjacency, adjacency to the perimeter of the

building, non-adjacency or proximity.

 In the past, many attempts of space layout

planning in architecture have used expert systems

(André, 1986; Flemming, 1988). These

approaches present many disadvantages: we are

never sure of the completeness and the

consistency, we are never sure of obtaining the

global optimum, and reply times are long.

 Another recent approach, the evolutionary

approach (Damski and Gero, 1997; Jo and Gero,

1997) is an optimisation process which deals with

practical problems (up to 20 spaces and several

floors) but leads to sub-optimal solutions.

 Also, application of shape grammars in

architectural design has been investigated (Knight

1998, Stiny and Mitchell 1975). This approach

uses sets of composition rules for the generation

of shapes and produces all possible alternatives

exhaustively.

 Finally, it has been shown that constraint

programming techniques bring a great flexibility

in the constraint utilisation since the constraint

definition is separated from resolution algorithms,

and that they were able to deal with

highly combinatorial problems as it is the case for

optimal placement (Aggoun and Beldiceanu,

1992; Charman, 1994; Baykan and Fox, 1991). In

this NP-complete problem, dynamic variable

ordering (dvo) heuristics can have a profound

effect on the performance of backtracking search

algorithms (Haralick and Elliott 80). In Sadeh and

Fox (Sadeh and Fox, 1996), particular variable

and value ordering heuristics for the job shop

scheduling constraint satisfaction problem have

been developed. Tsang et al. (Tsang et al., 1995)

show that there does not appear to be a universally

best algorithm, and that certain algorithms may be

preferred under certain circumstances.

 All these approaches enumerate the

geometrical solutions exhaustively. Then, two

quasi-equivalent solutions, with a same topology

but where only space sizes are slightly different,

are considered as two different solutions (see

Figure 1). It is clear that, in preliminary design in

architecture, it is useless to discriminate between

two geometrical close solutions. It provokes an

explosion of solutions (typically several thousands

or millions). In addition, they are too precise at

this design stage. Conceptual designs are more

judicious in a first stage, they can be compared to

rough architects’ sketches.

 Several approaches (Mitchell et al., 1976,

Schwarz et al 1994), based on a graph-theoretical

model, have already introduced the topological

level as a part of the computational process.

Contrarily to our approach, the topological level

does not allow any initial domain reduction of the

variables. This fact makes impossible to evaluate

or graphically represent the topological solutions.

The evaluation and the graphical representation of

the solutions are only possible at the geometrical

level. More important is the fact that it is not

possible to eliminate topologies which apparently

are in accordance with topological constraints but

which are not feasible when taking into account

geometrical constraints.

 1
2

4

3

5

1
2

4

3

5

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 3

Figure 1 Two different geometrical solutions with a same

topology (1 and 2 have different sizes).

 Our approach and its implementation within

ARCHiPLAN prototype is based on a constraint

programming approach which importantly avoids

the inherent combinatorial complexity for

practical space layout problems. In addition, we

propose to get closer to natural architect’s design

processes in considering a primary solution level

of topological solutions. These topological

solutions must respect the specification constraints

of the design problem and they must lead to

consistent geometrical solutions (see Figure 2).

For that purpose, we have proposed a new

definition of a topological solution as well as a

specific dynamic space ordering heuristic. This

dso heuristic is an extension of a dvo heuristic

(Gent and all 1996, Smith and Grant 1998) from

variable ordering to space ordering, according to

our definition of a topological solution.

Figure 2 Solution levels in ARCHiPLAN: topological, geometrical.

 Our topological solution turns out to be an

equivalence class of geometrical solutions

respecting the same conditions of relative

orientation (north, south, east, west) between all

the pairs of spaces (Medjdoub and Yannou, 2000).

Thus, two topologically different solutions are

differentiated by at least one different adjacency.

We noticed that such a topological solution

representation corresponds to a sketch drawing,

i.e. a sketch made by the architect in the

preliminary design. The advantage of the

topological solution level is the low number of

existing solutions, a number that can be easily

apprehended by the architects. Architects are now

able to have a global view of all the design

alternatives; they will then only study in detail a

small number of topologies corresponding to their

appreciation. Next, thanks to the optimisation, a

geometrical step determines the optimal

geometrical solution for each topological solution

from a set of user-defined criteria. On the one hand,

optimisation leads to geometrical solutions minimising

or maximising criteria such as wall length or some

surface area, these criteria are useful for architects. On

the other hand, optimisation limits the number of

solutions.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 4

 In the next section we present the architectural

model. We then go on to describe our constraint

model in section 3. The algorithm of topological

solution enumeration is reported in section 4 and

the geometrical solution enumeration is presented

in section 5. Before concluding, in section 6, we

present a case study.

2 Model of architectural space representation

Our model (see Figure 3) regroups the main

architectural elements corresponding to empty

spaces, i.e. which are not structural elements

(walls, beams, windows, etc.). Each defined class

is characterised by a set of attributes (Medjdoub

and Yannou, 2000). Space class is the generic

class of all the other classes. Three sub-classes:

room, circulation and floor have been defined.

The knowledge model is extensible to other

classes.

Space class

Circulation FloorRoom

Corridor Stair

A flight of stairs A double flight of stairs

Figure 3 Hierarchy class in ARCHiPLAN.

2.1 Space class

The geometry of space class is a rectangle (see

Figure 4), which is representative of a large

number of architectural problems. This class

regroups all common attributes to its sub-classes.

It is characterised by two reference points (x1, y1)

and (x2, y2), a length l, a width w, a surface area s

and a degree of constraints dg-cont. The reference

points, the length, the width and the surface area

are integer constrained variables related by

obvious equations. The degree of constraints is an

integer variable used in the dynamic space

ordering heuristic.

Figure 4 Geometrical representation of space class.

3 CONSTRAINT REPRESENTATION

MODEL

The constraints are defined in an extensible

library. We have proposed two constraint groups:

• specification constraints,

• research space reduction constraints.

3.1 specification constraints

These constraints regroup dimensional and

topological constraints. They are applied by the

user and stored in a functional diagram.

3.1.1 Dimensional constraints

Dimensional constraints are applied on attributes

of a single space, i.e. they consist in assigning a

maximal or a minimal value to the geometrical

attributes of this space. Table 1 presents an

example of a house with two floors (this

benchmark is our own proposal).

Table 1 Dimensional constraints applied on the spaces of the “house with two floors”. Each length and width unit correspond

to 0.5m (l-min: minimum length, w-min: minimum width).

Unit Area domain

values

l-min w-min Unit Area domain

values

l-min w-min

 Ft_Floor [320 ,320] 20 16 Sd_Floor [320,320] 20 16

Living [72 ,128] 6 6 Room1 [48, 60] 6 6

Kitchen [36 ,60] 5 5 Room2 [48, 60] 6 6

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 5

Toilet/Sh [16, 36] 4 4 Room3 [48, 60] 6 6

Office [36, 60] 6 6 Room4 [48, 72] 6 6

Corridor [9, 64] 3 3 Bath1 [16, 36] 4 4

Staircase [24, 28] 4 4 Bath2 [16, 36] 4 4

Corridor2 [9, 64] 3 3 Balcony [12, 24] 3 3

 As soon as the constraints are applied,

constraint propagation and domain reductions can

operate. We use the arc-consistency on integers

which explains the necessity of adopting a

dimensional distance increment, but this is not too

limitative because architects use to reason with

modules.

3.1.2. Topological constraints

As we said, topological constraints allow to

specify adjacency, non-adjacency or proximity of

a space with another space or with the contour of

the current floor. As we will see, the non-

overlapping between spaces is an implicit

constraint systematically considered (even if it can

be released) which, consequently, is not

considered as a specification constraint. The

topological constraints can be combined with

logical operators such as "OR" and "AND". In the

house with two floors, the topological constraints

are:

The constraints between floors

• the first floor is over the second floor,

• the staircase Communicates between the first

floor and the second floor,

The constraints between spaces of the first floor

• all the spaces of the first floor are adjacent to

the corridor with 1 meter minimum for contact

length,

• the kitchen and the living room are adjacent

with 1 meter minimum for contact length,

• the kitchen is on the south wall or on the north

wall of the building contour,

• the kitchen and the Toilet/Shower-unit are

adjacent,

• the living room is on the south wall of the

building contour,

• all the rooms are naturally lit,

• no space is wasted (the total of the space areas

of the first floor correspond to the first floor

area),

The constraints between spaces of second floor

• all the spaces of the second floor are adjacent to

the corridor with 1 meter minimum for contact

length,

• room4 and bath2 are adjacent with 1 meter

minimum for contact length,

• room4 and balcony are adjacent with 1 meter

minimum for contact length,

• the balcony is on the south wall of the building

contour,

• all the rooms are naturally lit,

• no space is wasted (the total of the space areas

of the first floor correspond to the second floor

area),

All these constraints have been introduced into

ARCHiPLAN interactively by graph handling and

incremental construction (see the resulting

functional diagram in Figure 5).

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 6

Figure 5 Functional diagram of the house with two floors.

Adjacency constraints

Designing buildings is largely the fact to fix the

adjacencies between the rooms and the circulation

or to fix a distance between two rooms. In fact, we

have developed a generalised adjacency

constraint, i.e. not reduced to a direct contact, but

allowing the control of the distance between two

spaces. Two parameters are important in this

constraint: The contact length d1 and the distance

d2 between two spaces.

 Variable d1 is an integer constrained variable

which allows a communication between two

spaces (see Figure 6). By default, Min(D(d1))=0

and Max(D(d1))=+ (D(x) standing for domain of

variable x). In practice, it is used to impose a

minimal width communication for the people

circulation: Min(D(d1))=d1min>0.

e
1

e
2

d
1

Figure 6 Contact length d1 between e1 and e2.

 Variable d2 extends the notion of the direct

adjacency (see Figure 7). It is also an integer

constrained variable. By default, its value domain

is reduced to the single value 0, which

corresponds to the direct adjacency. Often, it is

necessary to isolate some storage area (e.g. for

stocking hazardous products) or to impose a safety

perimeter; this is expressed as Min(D(d2))=

d2min>0 and Max(D(d2))=+. We can also

impose a maximal and a minimal distance

between two spaces: Max(D(d2))= d2max>0 and

Min(D(d2))= d2min>=0.

e
1

e
2

d
2

d
2

Figure 7 Distance d2 between e1 and e2.

 Adjacency constraint generates a new discrete

constrained variable named adjacency variable

defined over the domain {E, W, N, S}. The

adjacency constraint is a "dæmon" constraint for

which an instantiation of the adjacency variable

triggers a propagation and consequently a domain

reduction thanks to the arc-consistency technique.

In fact, each adjacency constraint through its

adjacency variable corresponds, in the search tree,

to a choice point (see Figure 8) leading, at a

moment, to a one-side adjacency.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 7

Adjacent (e
1
,e

2
,d

1
,d

2
) Var{E,W,S,N}

Var

Adjacent to the north (e
1
,e

2
,d

1
,d

2
)

Adjacent to the east (e
1
,e

2
,d

1
,d

2
)

Adjacent to the south (e
1
,e

2
,d

1
,d

2
)

Adjacent to the west (e
1
,e

2
,d

1
,d

2
)

EN WS

Figure 8 The adjacency variable: each choice corresponds

to a basic one-side adjacency.

Non-overlapping constraints

A non-overlapping constraint expresses the fact

that a space cannot overlap another space; it is

automatically applied between all pairs of spaces.

Of course, pairs of rooms which are already

constrained to be adjacent verify the non-

overlapping constraint. Figure 9 shows

permissible positions for e2.x2 and e2.y2 (e2.y2

represents the constrained variable y2 of space e2)

by the non-overlapping constraint between spaces

e1 and e2. This constraint is dependent on the

minimal space dimension notion (dmin). The

minimal space dimension is, at any moment, equal

to the smallest dimension value (width or length)

of all spaces. This value is used to constrain two

spaces to be adjacent, or to be sufficiently, for

another space to be inserted in between. As the

Adjacency constraint, the non-overlapping

constraint, introduces a new non-overlapping

variable with four values {E,W,N,S}. This

variable divides the space surroundings in four

(see Figure 9) but not symmetrically. Indeed, we

observe that N and S choices give more solutions

that E and W choices. It is the instantiation of the

non-overlapping variables and the adjacency

variables which, if it proved consistent, gives a

topological solution. We can consider the

following equivalence:

 non-overlapping (e1, e2)=Adjacent (e1, e2, d1,

d2) (1) with d1 [0+] and d2 [0 +].

Figure 9 Permissible positions for (e2.x2, e2. y2) after non-

overlapping constraint with the e1. The partitioning of the

surroundings of a space in {E,W,N,S} is given.

3.2. Research space reduction constraints

These constraints allow the combinatorial

reduction. They regroup:

• the incoherent space elimination constraint

• the symmetry constraint,

• the topological reduction constraint,

• the propagation orientation constraint.

.

3.2.1 The incoherent space elimination

constraint

This constraint is also dependent on the minimal

space dimension (dmin). The aim is to constrain

each space to be either directly adjacent to the

building unit contour or to be distant from a

certain value, for another space to be inserted in

between: dmin=Min(l-min,w-min). This constraint

is applied if and only if the total recovery

constraint is activated, i.e. the total recovery

constraint expresses the fact that there is no lost

space in the building unit and therefore, that the

sum of the space surface areas equals the whole

building unit surface area. Figure 10 shows (e1.x2,

e1.y2) permissible positions relatively to the

building unit contour. The algorithm is described

in Figure 11.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 8

Permissible positions for (e
1
.x

2
, e

1
.y

2
)

Ee1

dmin

dmin

Figure 10 Permissible positions for (e1.x2, e1.y2) after

the incoherent space elimination constraint

application.

Constraint Eliminate-inconsistency (IN: e1, E)

For i varying from 1 to (dmin - 1)

 e1.x1 E.x1+i

 e1.x1 E.x2 - e1.l + i

For j varying from 1 to (dmin - 1)

 e1.y1 E.y1+j

 e1.y1 E.y2 - e1.w + j

End Constraint

Figure 11 The incoherent space elimination constraint

algorithm. E is the building unit.

3.2.2 The symmetry constraint

The symmetry constraints are meant to avoid

functionally identical solutions by solution

combinations over spaces of the same type and

with the same constraints: same initial domains

and same topological constraints with other

spaces. For example, let us take a house with three

similar rooms having the same initial dimensional

domains and the same direct adjacency constraint

with the corridor.

 In order to rule out symmetrical combinations

between two spaces e1 and e2, it is sufficient to

constrain e1.x1 to always be lower than or equal to

e2.x1 and when e1.x1=e2.x1, one must impose

e1.y1<e2.y1 (see Figure 12). This procedure is

applied for n symmetrical spaces, the algorithm is

described in Figure 13.

Figure 12 (e2.x2,, e2.y2) permissible positions after the

symmetry and non-overlapping constraints application.

Symmetry Constraint (I: List-of-symmetrical-spaces)

n = length (l)

For i varying from 1 to n

 ei = element-of (i, l)

 For j varying from (i + 1) to n

 ej = element-of (j, l)

 ei.x1 ej.x1

 When V(ei.x1)V(ej.x1)

 ei.y1 < ej.y1

End Constraint

Figure 13 The symmetry constraint algorithm. E is

the building unit space.

This elementary symmetry constraint algorithm

has been generalised to the different orientations

of a space, the orientation attribute having

{0°,90°} initial domain. In the case where two

symmetrical spaces have two possible

orientations, the previous elementary symmetry

constraint is triggered each time both orientation

attribute values are equal. When

(V(orientation.e1)=0° and V(orientation.e2)=90°),

there is no symmetrical solutions. But all solutions

corresponding to V(orientation.e1)=90° and

V(orientation.e2)=0° have been enumerated in the

previous case V(orientation.e1)=0° and

V(orientation.e2)=90°. In order to rule out these

redundant solutions, we will consider only the

case when the orientation attribute values are

different only once. Figure 14 illustrates the

symmetry constraint generalised to different

orientations.

GenSymmetry Constraint (I: List-of-symmetrical-spaces)

n = length (l)

For i varying from 1 to n

 ei = element of (i, l)

 For j varying from (i + 1) to n

 When V(ei.orientation) V(ej.orientation)

 (Symmetry (list(ei, ej)))

 When V(ei.orientation) V(ej.orientation)

 When V(ei.orientation) 90°

 V(ej.orientation) 0°

End Constraint

Figure 14 The symmetry constraint generalised to

different orientations.

3.2.3 The topological reduction constraint

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 9

The topological reduction constraint operate

when adjacency constraints with the building unit

contour exist. The principle is: when space e1 is

On-north-contour, no space can be to the north of

e1. The topological reduction constraint rules out

the {N} value of the domains of the (n-1) non-

overlapping variables relatively to e1 (see Figure

15). When reducing these variable domains, we

directly eliminate some inconsistent topologies.

Var1

Var2

(Non-overlapping space1 space2) Var1

(Non-overlapping space1 space3) Var2

N

WN E S

E S

WN E S WN E S WE SN

W

Space1 On-North-Contour

Figure 15 Elimination of the {N} value from the non-overlapping variable domains when On-north-

contour(space1) exist.

This topological reduction constraint is similar

for the three other orientations.

3.2.4 The orientation propagation constraint

The orientation propagation constraint uses the

orientation transitivity property to automatically

instantiate non-overlapping variables. For

instance, if e1 is to the north of e2 and e2 is to the

north of e3, thus e1 is to the north of e3. We

developed such a transitivity constraint for

relative orientations: North and South. We did not

develop equivalent constraints for East and West

because the non symmetrical partitioning into {N,

E, O, S} does not guarantee the transitivity (see

Figure 9). This partitioning considers north-west

and north-east as a part of North, and south-west

and south-east as a part of South (e.g., if space e1

is to the east of e2 and e2 is to the east of e3, then

e1 can be to the north or south of e3).

4. TOPOLOGICAL ENUMERATION

ALGORITHM

We wanted our topological solution definition to

correspond to the architect's notion of sketch

where the adjacency between spaces is defined but

where space sizes are imprecise. The geometrical

refinement is presented in the next section.

 Finally, we converge to the following definition

of a topological solution:

Each CSP where the n.(n-1)/21 non-overlapping

variables and adjacency variables are instantiated

and which remains numerically consistent (i.e.,

for which at least one geometrical solution exists)

is a topological solution.

 At this stage, value domains have undergone

reduction but they are not necessarily reduced to a

unique value (i.e. instantiated). We conceive

therefore that there can exist several geometrical

solutions consistent with this topological solution.

An important property is that the constraint model

(especially adjacency constraint and non-

overlapping constraint) (Medjdoub and Yannou,

2000) has been developed in such a way that a

geometrical solution can derive from only one

topological solution. Therefore, topological

solutions are distinct equivalence classes of

geometrical solutions.

 The verification of a topological solution

consistency amounts to the search of a first

geometrical solution. This search uses the same

algorithm as the geometrical solution algorithm

presented in the section 5.

4.1 Dynamic space ordering (dso) heuristic for

layout planning

In the previous approaches, based on the

straightforward geometrical solutions

1

 n being the number of spaces

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 10

enumeration, the search strategy is mainly based

on the choice of the space geometrical parameters

(André, 1986; Eastman, 1973; Pfefferkorn, 1975)

or on the choice of the location where the space

could be placed (Charman, 1994). In both

approaches dynamic variable ordering (dvo)

heuristics are used and more particularly the

smallest-remaining-domain heuristic.

In our approach, we firstly generate the

topological solutions. This corresponds to non-

overlapping and adjacency variables instantiation.

We have developed a particular dvo heuristic,

named dso heuristic, based on the most

constrained space position (x,y). Comparatively to

the dvo heuristics, the dso heuristic is based on the

space ordering and particularly on the space

reference points (x1, y1, x2, y2).

To implement this heuristic, we have introduced a

new attribute in space class called degree of

constraint dg-cont. The more the space is

constrained, the higher the dg-cont value is and

the more the non-overlapping and adjacency

variables corresponding to this space have a

chance to be instantiated first.

The initial value of dg-cont is calculated from the

adjacency constraints with the building unit. For

example, one space constrained to be adjacent to

the south wall of the building unit, will have its

dg-cont value assigned to 4 (see Table 2). If two

spaces have an equal dg-cont value, the space with

the highest average surface area (average of the

surface area variable domain values) is chosen and

if it is not sufficient to distinguish this space, the

first in the list is chosen. Thanks to the rules of dg-

cont value calculation indicated in Table 2, the

more a space is constrained, the higher its dg-cont

value will be.

Table 2 Assigned values to dg-cont in regards to the adjacency constraints.

Constraints dg-cont

Basic adjacency (on the south, north, west or east)

Disjunction of n basic adjacency (1<n<5)

Conjunction of n basic adjacency

4

5-n

n

 After the detection of the most constrained

space with the building unit, its corresponding

adjacency variables with the building unit are

instantiated. After each space choice, one updates

dynamically the dg-cont values of the remaining

spaces. To do this, one considers adjacency

constraints with spaces already chosen and with

the building unit. The process runs until all

topological variables are instantiated but a

backtracking is performed as soon as an

inconsistency is detected.

 An example of the algorithmic steps followed

with such a heuristic is given in Figre 16. Initially,

the building unit bu is empty (see case (a) - Figure

10). Space e1 is chosen and its adjacency variables

with bu are instantiated ; then, e1 is the most

constrained space according to its adjacency with

bu (i.e. dg-cont 8). In the next step, dg-cont

values of the remaining spaces are updated.

Considering the adjacency with e1 the new space

ordering takes place and elects e2 as the new most

constrained space, its dg-cont value being

incremented by 1. This value of 1 is explained by

the fact that a general adjacency is a disjunction of

the four basic adjacencies (north or south or west

or east, see Table 2). Next, the Topological

variable of e2 with bu and e1 are instantiated and

again the dg-cont values of the remaining spaces

are updated (see case c and d) and so on. We do

this, until all the topological variables are

instantiated.

 Thanks to this heuristic the enumeration phase

duration has been approximately reduced by 30%.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 11

Figure 16 Dynamic space ordering heuristic. Numbers in bold correspond to the added values to dg-cont attributes at each

algorithmic step.

 In fact, the dvo heuristic is used for ordering the

constrained topological variables of spaces

remaining to be placed. This heuristic depends on

two criteria:

e1, e2, e3 et e4 are four spaces in building unit bu

 • e1 is adjacent to the south wall and to the west wall of bu

 • e2 is adjacent to the west wall of bu

 • e2 and e1 are adjacent

 • e3 is Adjacent to the north of e1

 • e3 is adjacent to the east of e2

 • e4 is adjacent to the north wall "OR" to the south wall of bu

• e1.dg-cont = 4 + 4

• e2.dg-cont = 4

• e3.dg-cont = 0

• e4.dg-cont = 3

• e2.dg-cont = 4 + (1)

• e3.dg-cont = 0 + (4)

• e4.dg-cont = 3

• e3.dg-cont = 4 + (4)

• e4.dg-cont = 3

• e4.dg-cont = 3
Adj to the north

to
e1

e2

e3

Adj to the west

wall

Adj to the north

to
Adj to the east

Adj to the south
 and
Adj to the west

wall

state (b)

state (a)

state (c)

state (d)

Space ordering

bu

Space ordering

Space ordering

Adj to the south
 and
Adj to the west
wall

e1

bu

e1

e2

Adj to the north

Adj to the west

wall

Adj to the south
 and
Adj to the west

wall

Space ordering

bu

bu

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 12

• the variable type: non-overlapping variables or

adjacency variables. Priority is given to the

adjacency which constrains more than the non-

overlapping.

• the variable domain: each variable is a choice point,

priority is given to the variable with the smallest

domain.

These two heuristics correspond to the classical

heuristics in constraint programming approaches

where the choice of the first variable corresponds

to the most constrained variable.

4.2. Topological graphical representation

Naturally, we tried to represent graphically the

topological solutions by adopting average values

of the value domain of the space attributes

(x1, y1, x2, y2). We then noticed the striking

resemblance between such graphic representations

and sketches that are made by architects in

preliminary design. In the same manner, as a

sketch, the graphic representation of a topological

solution reveals slight overlapping of rectangles.

In the example of the house with two floors, 49

topological solutions are found in 1h36mn with an

IBM Risc6000 320H workstation (see Figure 17).

Figure 17 Some topological solutions of the "house with two floors".

5 GEOMETRICAL SOLUTIONS

Our optimisation approach consists in minimising

an objective function, called cost function. Our

“ branch and bound ” optimisation method leads

to the determination of the global optimum

(eventually global optima) of a geometrical

solution. This is not the case of expert systems

approaches or evolutionary approaches (Damski

and Gero, 1997; Jo and Gero, 1997) which lead to

“satisfactory solutions”.

 The “ Branch and Bound ” algorithm is based

on the enumeration algorithm which builds a

depth-first research tree.

 For the enumeration algorithm, each choice

point in the research tree corresponds to a variable

choice (for example x) among those which have

not been instantiated yet. Each branch corresponds

to a particular instantiated value (for example v) in

the variable domain. Coming down the tree

consists in adding the constraint x =v, coming up

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 13

or backtracking consists in releasing this

constraint, i.e. in restoring the ancient constraint

set. Each addition of a constraint triggers a

constraint propagation which reduces the domains

of the remaining variables to instantiate. When a

domain becomes empty, no solution exists in this

branch and a backtrack is carried out. When using

the variable ordering heuristic, the order of the

choice of variables considerably influences the

size of the tree and consequently the overall

duration of the enumeration process. Typically it

consists in choosing first the most constrained

variable. The heuristic term is somewhat

confusing because this enumeration algorithm

provides the complete solution set; there is no

approximation.

 With the previous enumeration algorithm, the

“ branch and bound ” algorithm consists in

finding a first solution S1. Let us recall that the

objective is to find the solution with the lowest

cost function value. This is why, when solution S1

is found, the new constraint Cost-function<Cost-

function(S1) is applied, and this constraint is not

released when backtracking occurs. This new

constraint provokes domain reductions. The better

the solution S1 is (i.e. Cost-function(S1) is low),

the more efficiently the domains reduction are. A

second solution S2, better than S1, can be found

and a stronger constraint is posed: Cost-

function<Cost-function(S2), and so on until all the

values have been tested. One can conceive here

that the optimisation process duration is related to

the ability to quickly find a good solution.

For the issue of the consistency checking, the fact

that the optimisation process duration and that the

first solution search process duration are very

close is due to two reasons:

• we have a satisfactory dynamic variable

ordering heuristic,

• the actual optimisation criteria of the cost

function are linear criteria of space attributes.

The first solution finding (S1) provokes already

large domain reductions even if S1 is not so

satisfactory.

The fact that both durations are small is also due

to two reasons:

• a topological solution is already a very

constrained problem for which variable domains

have strongly been reduced,

• the inconsistent space elimination constraint,

which is a dynamic constraint, efficiently prune

the research tree. Indeed, as soon as a space is

instantiated, if the minimal distance to the

building unit contour is lower than the lowest side

of the remaining spaces to be placed, it provokes a

backtrack.

 Our objective functions consist in the

minimisation of the wall lengths or of the corridor

surface area. From a viewpoint of CAD user-

friendliness, it is very simple to propose to the

designer an interactive tool to compose his

objective function by tuning the relative

importance of the evoked elementary criteria. One

of our major objectives remains to carry out multi-

criteria optimisation.

 The optimal geometrical solution of each

topological solution is globally displayed in a

collector of geometrical solutions. The most

important function of this collector is to realise a

classification of the topological solutions from the

minimal objective function value of the

geometrical solutions related to each topology. It

can be noted that several geometrical solutions

can correspond to the same optimum. In that case,

they are all enumerated (see Figure 18).

Figure 18 Three different geometrical solutions with

a same topology and with the same optimal objective

value (minimising the corridor surface area).

 Figure 19 presents the geometrical solutions

corresponding to the 49 topological solutions

previously evoked in Figure 17. The objective

function consists here to minimise the corridor

surface area.

1
2

4

3

 5

1
2

 4

3

 5

1
2

1 4

3

2 5

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 14

Figure 19 Some optimal geometrical solutions of the "house with two floors".

6. CASE STUDIES

Several examples in constraint-based space layout

planning were tested (Medjdoub, 1996). The

results of the classical benchmarks were

improved, as the Maculet (1991) problem.

6.1. Implementation

ARCHiPLAN has been developed on IBM

Risc6000 320H (workstation) in Lelisp v.15

interpreted (object oriented language: Lelisp is a

trademark of INRIA), and the constraint library

called PECOS (Puget, 1991). The graphic

interface has been developed with AÏDA graphic

library and Grapher (PECOS, AÏDA and

GRAPHER are trademarks of ILOG S.A.). A new

version of ARCHiPLAN is under development in

a C++ environment.

6.2. The Maculet problem

The Maculet (1991) problem consists in designing

a house with 11 spaces in a placement space of

120 m2.

6.2.1 Dimensional constraints

Table 3 presents the dimensional constraints, the

module being of 1 meter.

Table 3 Dimensional constraints between spaces (Maculet problem).

unit area domain

value

L-min W-min Unit area domain

value

L-min W-min

 Floor [120, 120] 12 10 Corridor2(c2) [1, 12] 3 3

Living (sej) [33, 42] 4 4 Room1 (ch1) [11, 15] 3 3

Kitchen (cuis) [9, 15] 3 3 Room2 (ch2) [11, 15] 3 3

Shower (SDB) [6, 9] 2 2 Room3 (ch3) [11, 15] 3 3

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 15

Toilet (wc) [1, 2] 1 1 Room4 (ch-p) [15, 20] 1 1

Corridor1(c1) [1, 12] 1 1

6.2.2 Topological constraints

Constraints between spaces are:

• the living room is on the south or on the west wall of

the placement space,

• the kitchen is on the south wall or on the north wall

of the placement space,

• room1 is on the south wall or on the north wall of

the placement space,

• room2 is on the south wall or on the north wall of

the placement space,

• room3 is on the south wall or on the north wall of

the placement space,

• room4 is on the south wall of the placement space,

• All the spaces, except the kitchen, are adjacent with

one of the two corridors with 1 meter minimum

for contact length,

• The living room and the kitchen are adjacent,

• the kitchen and the shower are adjacent,

• the toilet is adjacent to the kitchen or to the shower,

• the two corridors are adjacent,

• the principal entry is by the living room,

• no room is wasted (the total spaces area correspond

to the placement space area),

• the spaces don't overlap each other.

 In this example, 72 solutions are enumerated in

30 minutes and displayed by ARCHiPLAN (see

Figure 13). The 72 best geometrical solutions

minimising the corridor surface area, are

displayed in Figure 14.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 16

Figure 13 Some topological solutions among the 72 possible solutions for the Maculet problem.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 17

Figure 14 Some geometrical solutions among the 72 possible solutions for the corridor surface area minimisation criterion.

More examples

We have tested numerous examples with

ARCHIPLAN, improving the results of classical

benchmarks (for more details, see Medjdoub,

1996). Let us briefly cite:

• The Pfefferkorn problem (Pfefferkorn,1975): Six

rectangles of fixed dimensions : 6x2, 4x2, 2x3,

2x3, 2x3 et 2x1 must be assembled into another

rectangle of fixed dimensions 8x5. The rectangles

have a unique 0° orientation.

• The Laurière problem (Laurière, 1976): It is a

variant of the Pfefferkorn problem. Here,

rectangles can have two orientations.

• The Tong problem (Tong, 1987): Four rectangles

where all the sides vary from 4 to 9 and must be

placed into a 9x9 rectangle.

• The 9 perfect squares of Charman (Charman,

1995).

• The Maculet problem (Maculet, 1991) previously

detailed.

But we have also introduced new benchmarks

(Medjdoub, 1996) because a lot of conventional

benchmarks in literature seemed to be restricted to

simple problems defined by:

• fixed dimensions for building unit contours,

• small number of spaces,

• strongly constrained problems, which is not the

case of real problems,

• sometimes spaces of fixed dimensions,

• problems restricted to a unique building unit

contour.

Due to the constraint approach and the generic

topological level, ARCHIPLAN is a flexible

approach which is able to cope with all these

aspects.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 18

7. CONCLUSION

In this paper, we have revisited the space layout

planning problem by considering two solution

levels: topological and geometrical, and on an

original dynamic space ordering (dso) heuristic.

Contrary to the evolutionary approaches (Damski

and Gero, 1997; Jo and Gero, 1997) which deal

with out-size problems (i.e. Ligett problem, 1985)

but obtain under-optimal solutions, our approach

deals with middle-size problems (twenty spaces

with two floors) with exhaustive enumeration (all

the topological solutions) and optimal solutions

(one criterion).

We have a complementary approach to the one of

(Schwarz et All, 1994) that is based on a graph-

theoretical model. In this approach the topological

level is apart of the computation process, but the

evaluation of the solutions is done at the

geometrical level. It is restricted to the small-size

problems (doesn’t exceed nine rooms) and the

shape contour of the building is a result of the

design process. In our approach, thanks to the

constraint programming technique and the

topological constraints of our model, the variables

of the problem are already reduced during the

topological enumeration stage. It allows architects

to be the actors of the design at the topological

level when choosing between feasible sketches

and composing interactively an objective function

for finding the best corresponding geometrical

solutions.

 Another advantage of this approach is its

modular aspect thanks to the oriented object

programming and to the constraint programming

(discoupling between constraints and algorithms),

which means that the core of ARCHiPLAN will

remain unchanged in case of architectural objects

extension, constraint model extension or criteria

list extension.

REFERENCES

1. Aggoun, A. and Beldiceanu, N.: 1992, Extending CHIP in

Order to Solve Complex Scheduling and Placement Problems,

Journées françaises de la programmation logique, Marseille.

2. André, J. M.: 1986. Vers un système d'aide intelligent pour

l'aménagement spatial: CADOO, Colloque International d'IA

de Marseille, Marseille.

3. Baykan, C. and Fox, M.: 1991, Constraint Satisfaction

Techniques for Spatial Planning, In Intelligent CAD Systems

III, Practical Experience and Evaluation.

4. Charman, Ph.: 1994. Une approche basée sur les contraintes

pour la conception préliminaire des plans de sol, CERMICS-

INRIA, Sophia-Antipolis.

5. Damski, J. C. and Gero, J. S.: 1997, An evolutionary

approach to generating constraint-based space layout

topologies, in R. Junge (eds), CAAD Future 1997, Kluwer,

Dordrecht, p. 855-874.

6. Eastman, Ch.: 1973, Automated Space Planning. Artificial

Intelligence 4, p. 41-64.

7. Flemming, U.:1988, A generative expert system for the design

of building layouts, Elsiever (eds), Artificial Intelligence in

Engineering: Design, New-York.

8. Gent, I. P. et all. (1996). An empirical study of dynamic

variable ordering heuristics for the constraint satisfaction

problem. In Freuder, E.~C., editor, Principles and Practice of

Constraint Programming, Lecture Notes in Computer Science,

pages 179--193, Berlin, Heidelberg, New York NY. Springer

Verlag.

9. Haralick, R. and Elliott, G. (1980). Increasing tree search

efficiency for constraint satisfaction problems. Artificial

Intelligence, 14(3):263--313.

10. Jo, J. H. and Gero, J. S.: 1997. Space Layout Planning Using

an Evolutionary Approach. Artificial Intelligence in

Engineering, 1997 (to appear).

11. Knight T. W.: 1998, Designing a Shape Grammar: Problems

of Predictability. Artificial Intelligence in Design’98. J. S.

Gero and F. Sudweeks editors. Kluwer Academic Publishers.

12. Laurière, J.-L. (1976) Un langage et un programme pour

résoudre et énoncer des problèmes combinatoires : ALICE.

PhD Thesis of université Paris VI, Paris.

13. Maculet, R.: 1991, Représentation des connaissances spatiales

(algèbre de Manhattan et raisonnement spatial avec

contraintes, Ph.D. Thesis of université Paris VI, Paris.

14. Medjdoub, B. Methode de conception fonctionnelle en

architecture: une approche CAO basee sur les contraintes:

ARCHiPLAN. Ph.D. thesis of Ecole Centrale Paris, Paris,

May (1996).

15. Medjdoub, B. and Yannou, B. Separating topology and

geometry in space planning". Computer Aided Design

2000;32(1), p. 39-61.

16. Mitchell, W. J. Steadman J.P. and Liggett R.S.

Synthesis and Optimization of a Small Rectangular

Floor Plans. Environment and Planning B, (3): 37-70,

1976.

17. Pfefferkorn, C. E.: 1975. A Heuristic Problem Solving Design

System for Equipment or Furniture Layouts, Communications

of the ACM 18.

18. Puget, P.: 1991, Pecos: programmation par contraintes

orientée objets, Génie Logiciel & Systèmes Experts, p. 100-

105.

19. Sadeh, N. and Fox, M.~S. (1996). Variable and value ordering

heuristics for the job shop scheduling constraint satisfaction

problem. Artificial Intelligence, 86(1):1--41.

20. Smith, B.M. and Grant, S.A. (1998). Trying harder to fail

first. In Prade, H., editor, European Conference on Artificial

Intelligence (ECAI), pages 249-253, Chichester, UK. John

Wiley & Sons.

21. Stiny, G. and Mitchell, W. J. The Palladian grammar.

Environment and Planning B, 1978, 5, 5-18.

Medjdoub B., Yannou B., (2001), Dynamic Space Ordering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering, vol. 15(1, january 2001): 47-60, DOI: 10.1016/S0954-1810(00)00027-3.

 19

22. Schwarz et All. On the Use of the Automated Building

Design System. Computer Aided Design, (26): 747-

762, 1994.

23. Tong, C.(1987). Towards an Engineering Science of

Knowledge-based Design, Artificial Intelligence in

Engineering (3): pages. 133-166.

24. Tsang, E.P.K. Borrett, J.E. and Kwan (1995). A.C.M. An

attempt to map the performance of a range of algorithm and

heuristic combinations. In Hybrid Problems, Hybrid

Solutions, pages 203-216. IOS Press. Proceedings of AISB-

95.

