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Abstract

In order to solve the problem of the arrangement of letters on a
computer keyboard, an abstract representation of a keyboard is intro-
duced and an evaluation function taking account of ergonomic criteria
is proposed. Based on the generic framework of Ant Colony Optimiza-
tion, an algorithm is developed and applied to the described problem.
New effective keyboard arrangements are deduced for several languages.
Comparisons are made with standard manually optimized keyboards.

Keywords: evolutionary computations, ant colony optimization, key-
board arrangement

1 Introduction

A computer user or typist is easily surprised when first looking at the seemingly
arbitrary arrangement of letters on a standard computer keyboard. Neither
does the arrangement have any alphanumeric logical order nor is it optimized
according to a high hit rate or ergonomic comfort. The keyboard was even
optimized to slow down typists to prevent the keys getting stuck. In fact, it is
more the result of the historical development of the typewriter market and no-
tably the achieved dominance of the Remington II typewriter which imposed
the arrangement. Introduced by the Sholes brothers in 1873, the keyboards
using this arrangement have become known as Sholes or QWERTY keyboards.
Initially designed in an Anglophone context, they were slightly changed and
thus adapted to other languages like the French and the German. These
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counter–optimized keyboards were justified during some decades whereas me-
chanical problems remained in typewriters. Rapidly it was no more the case
but despite some serious work to get optimized keyboard arrangements (Dvo-

rak in the USA and Marsan in France [18]), the QWERTY layout remained
the standard.

This fact might be partially explained by the drawbacks to a standard
change, which excludes repeated changes or changes with no guarantee of a
prominent impact. As a matter of fact, ergonomic research in the field of
computer keyboards has so far not been able to supply a satisfying set of rules
for the ergonomic evaluation of a keyboard arrangement. The only set one can
hope for therefore consists of a collection of heuristic rules which are derived
from common sense and verified by experimental studies.

Some attempts have been performed to propose a keyboard arrangement
optimizing a criterion like typing speed or rapid learning of the typing system
[20] but, so far as we know, no paper has been devoted to the optimization of
a keyboard arrangement taking account of more precise ergonomic criteria.

The aim of this paper is to describe the application of an Ant Colony
Optimization (ACO) algorithm to the problem of the arrangement of letters
on a computer keyboard (KAP, for Keyboard Arrangement Problem), using
an evaluation function based on a complex set of ergonomic criteria. Let us
mention that a complementary paper [25], designed from an ergonomic facet,
focuses more heavily on the definition of ergonomic criteria, their respective
importance and the analysis of the results.

Up to now, ACO algorithms have already been used to solve very differ-
ent types of optimization problems. Among these problems are the Travel-
ing Salesman Problem (TSP) [8, 10, 22], the Quadratic Assignment Problem
(QAP), the sequential ordering problem [12], the graph coloring problem [7]
and several other combinatorial, static optimization problems as well as dy-
namic ones which are primarily found in the routing for telecommunication
networks [4, 5]. ACO algorithms have proven to be a powerful and easily
adaptable tool which yields excellent results over highly combinatorial prob-
lems.

Most of the problems that have challenged ACO algorithms so far distin-
guish themselves by one characteristic feature – the objective function is easily
calculated. Once a tour is chosen in the TSP or an assignment established for
the QAP, the calculation of the quality of the solution requires very little time.
The calculation of the objective function for the KAP, on the contrary, requires
a significant amount of time.

Besides the modeling of the keyboard arrangement problem and the at-
tempt to obtain optimized keyboard arrangements, the aim of this paper is to
evaluate the suitability of ACO algorithms for such an optimization problem,
involving a complex objective function. It may furthermore establish a new
benchmark problem for comparing different types of metaheuristic, such as
genetic algorithms, simulated annealing or taboo search.

It is worth to mention that other researches have been conducted concern-
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ing the arrangement of letters on a keyboard but in a different direction. The
problem then considers the situation of a keyboard where the number of letters
exceeds the number of available positions and the objective is to minimize the
inherent ambiguity (see [14, 21] for instances).

The paper is organized as follows. In section 2 an abstract model of a
keyboard is introduced, which allows a representation of different types of
keyboards, and the expression of heuristic ergonomic criteria is presented. It
results in the definition of the KAP. After a bibliographic review of ACO algo-
rithms, section 3 presents the solution algorithm. In section 4 computational
results are given and the specificities of the algorithm as well as the quality of
the obtained optimized keyboard arrangements commented on. The conclu-
sion points out possible directions in which future research will be conducted.

2 The Keyboard Arrangement Problem

In order to define well this problem, the following approach is used. First,
an abstract model of a keyboard is proposed enabling the representation of
different types of keyboards. Second, an evaluation function for the ergonomic
factors of a particular keyboard is defined, using heuristic criteria based on
Marsan’s work [19, 17, 18]. More details concerning these heuristic criteria
can be found in [25] and in [15].

2.1 Representation of a keyboard

A keyboard basically serves to enter a string of characters into a computer
by hitting a sequence of keys. An abstract definition therefore consists of a
set of typeable characters and the respective sequences of keys which enable
their construction. For instance, “E” is associated with the sequence of first
hitting the “shift” key and then the key labeled “e”. To this definition a
geometrical representation has to be added in order to locate every key on
the keyboard. Since most keyboards are arranged in rows and columns, we
propose to represent the geographic position of a key by:

• a hand (left, right)

• a column (0-7 for the left hand and 0-8 for the right hand)

• a row (0-5, 0 standing for the top row and 3 for the rest row)

The above given number of columns and rows allows the representation of most
of the presently available keyboards, notably the QWERTY keyboard and its
German and French equivalents as well as the Marsan keyboard [19, 17, 18].
In addition, the following rule was used which is true for the standard typing
systems on all presently available keyboards: A given column is always hit by
the same finger. Since conventional keyboards dispose of a home row which
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determines the location of the fingers in a relaxed position, this row serves as
a reference row for calculations in optimization considerations.

Without any supplementary condition, there is an infinite number of pos-
sible layout solutions, any sequence of keys being a candidate for a letter. In
order to simplify the problem by reducing the size of the solution space, the
size and the structure of sequences are enforced. For example, the capital letter
“E” is composed by hitting the shift key and the key which is used to produce
the character “e”. “E” and “e” therefore form a set which is subsequently
called a combination character set (a table of the combination character sets
may be found in [15]). It is the assignment of these combination character
sets to keys which is addressed in the definition of the KAP. Besides, modifier
keys like the “shift” or “AltGr” keys have a physically fixed position. These
choices are justified by the ergonomic rule which demands a rapid mastery of
the standard typing system and then by considerations of logical associations
in terms of memorization. An assignment of a combination character set to
a key is called an elementary assignment. A solution is therefore given by
a complete set of elementary assignments, meaning that every combination
character set is associated to a key.

An example for the transcription of the standard French AZERTY key-
board to the proposed model is given in figure 1.

2.2 Ergonomic criteria

A keyboard design should comply with four main objectives:

• Allow typing a text without fatigue

• Maximize typing speed

• Reduce the number of typing errors

• Allow rapid mastery of the touch typing method

As already pointed out, these objectives cannot be easily translated into math-
ematical criteria which could serve for an evaluation of a given keyboard. In-
deed, a first difficulty can be found in the different types of exhaustion and their
potential pathological nature. Short–term exhaustion reduces the succeeding
typing speed but does not present a danger to the writer’s health whereas long
term exhaustion might lead to disorders like cumulative trauma disorders. A
second uncertainty consists of the localization of exhaustion. Since typing re-
quires movements of fingers, arms and shoulders and since those movements
are produced by a combination of actions of muscles, joints and tendons it is
difficult to quantify exhaustion. This justifies heuristic criteria introduced in
the following paragraphs.
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Figure 1: Representation of the AZERTY keyboard

2.3 The evaluation function

Because of the lack of exact ergonomic criteria, a set of heuristic rules estab-
lished in [19], [18] and modified in [15] is used. They are supported by sets of
rules established in [20] and [3]. The rules will not be explained in depth nor
will a justification be given (see [15] for details).

Since the ergonomic criteria form two major groups, the notion of mono–
and digraphs has to be introduced. A monograph is an isolated key which
is struck in the process of typing a text. A digraph is a sequence of two
consecutive keys hit in the process of typing a text. This idea allows the
distinction between rules that concern the absolute position of a given key
and the relative position of two consecutive keys.

Using a given keyboard layout, any text may be decomposed into a se-
quence of keys which have to be struck in order to type the text. This se-
quence may be seen as a sequence of monographs or a sequence of digraphs.
It may therefore serve to establish a statistic of the appearance of mono– and
digraphs. Subsequently, fmi

and fdi
stand for appearance frequencies of the

monograph mi and the digraph di, respectively, for a given keyboard layout
and a given text. These frequencies serve as data for the evaluation of the
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ergonomic criteria defined in the following.

Accessibility and Load The combination character sets should be dis-
tributed on the keys in a way that the total load is shared in an adequate way
by all fingers. The fact that some keys are less accessible than others has to be
taken into account. In order to be able to evaluate a grade, an optimal distri-
bution of the hit load has to be defined for each key position. In a first step, a
value is assigned to each hand representing a possible difference between their
performances and endurances. Since there is no valid scientific argument for
preferring one of the hands, the coefficient is chosen to be 50% for each hand.
Each column then receives a ratio which takes into account the relative finger
agility and endurance and each row receives a ratio representing the relative
accessibility of that row (see table 1). The optimal load distribution f opt

mi
is

then calculated by multiplying the three corresponding ratios for each key.

Nr. row column
0 10.87% 15.38%
1 13.04% 10.26%
2 15.22% 15.38%
3 43.48% 23.08%
4 10.87% 17.95%
5 6.52% 6.41%
6 5.13%
7 3.85%
8 2.56%

Table 1: Ideal load distribution

This ideal load distribution is given in figure 2 for the right hand. It

Figure 2: Ideal load distribution
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presents the nine columns assigned to the different fingers, starting on the left
with one column for the thumb, two columns for the forefinger, a column for
the middle and ring finger respectively and four columns for the little finger.
The third row represents the home row and the height of the bars the ideal
hit load normalized to have a maximum of 10000.

The grade evaluates the variance of the load distribution on a keyboard
from the ideal distribution and is given by the following equation

v1 =
∑

mi∈Ξm

1

(fmi
− f opt

mi
)2 (1)

where Ξm
1

is the set of all monographs.

Key number In order to minimize the total hit load, the number of hits
necessary to compose a given text has to be minimized. The indicator v2 is
therefore calculated by dividing the number of characters present in a text
by the number of keystrokes necessary to produce the text. Being relatively
important for the most general definition, this grade does not vary between the
different solutions of the KAP. This is due to the enforcement of the structure
of the sequences used to obtain the characters, which fixes the number of
necessary keys. It should nevertheless be mentioned that the keyboard which
allows the highest productivity in terms of words per minute, the so–called
chord keyboard, requires significantly more hits than a standard keyboard
(see [1]).

Hand alternation The fastest and most comfortable typing is assured,
when consecutive keys are not hit by the same hand. In order to quantify
the hand alternation indicator, we sum the frequency of the digraphs which
are typed by fingers of the same hand. In terms of mathematical formulation
the indicator is calculated as follows:

v3 =
∑

di∈Ξd

3

fdi
(2)

where Ξd
3

is the set of all digraphs which are typed by fingers of the same hand.

Consecutive usage of the same finger The preceding alternation rule is
true for the fingers as well. Two consecutive keys should not be hit by the
same finger. The indicator is calculated by summing the frequencies of the
corresponding digraphs and multiplying each of them with a distance coeffi-
cient. The greater the distance, the more penalizing a consecutive usage. The
relevant set Ξd

4
is therefore the set of digraphs which are typed using the same

finger of one hand. The equation derived is:

v4 =
∑

di∈Ξd

4

fdi
dist(di) (3)
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The chosen distance function is the Manhattan distance given by:

dist(di) = |c2 − c1| + |r2 − r1| (4)

where c2 and c1 are the respective columns of the two keys which establish the
digraph and r2 and r1 the corresponding rows.

Avoid big steps When one hand is used for two consecutive hits, great
distances which require awkward hand posture should be avoided. This is the
case for keys whose vertical distance is greater or equal to one. The relevant
set Ξd

5
is therefore the set of digraphs which are typed using the same hand, but

not the same finger and the vertical distance between the two keys is greater
than or equal to one row. A weight coefficient depending on the two fingers
used is assigned to each digraph. The coefficient increases with the following
pairs of fingers, 1 representing the thumb and 5 the little finger (2-3, 2-5, 3-5,
2-4, 3-4, 4-5).

v5 =
∑

di∈Ξd

5

κ(di)fdi
(5)

where κ(di) is the weight coefficient. The chosen heuristic values for κ(di) =
κ(u, v) are represented in table 2, u and v representing the first and second
finger respectively.

thumb forefinger middle finger ring finger little finger
thumb 0 0 0 0 0

forefinger 0 0 5 8 6
middle finger 0 5 0 9 7
ring finger 0 8 9 0 10
little finger 0 6 7 10 0

Table 2: Big step coefficients

Hit direction For digraphs typed by using one hand only, the preferred hit
direction is from the little finger towards the thumb. This is the natural finger
movement for most of people, which may easily be verified by tapping on the
table according to the two possible directions. Ξd

6
is therefore the set of all

digraphs which are produced by using one hand only and whose hit direction
is not the preferred one. The indicator is given by:

v6 =
∑

di∈Ξd

6

fdi
(6)
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Global grade In order to define a global grade, which allows a direct com-
parison with any other keyboard arrangement, the indicators vj (1 ≤ j ≤ 6)
are used. Since these indicators have different ranges and units and since they
have different relative importance, they are divided by the respective indicators
of a reference keyboard vj,ref . Once the indicators are turned dimensionless
they can be multiplied by a relative weight coefficient γj and summed. The
values of γj are represented in table 3. This leads to the final formula:

V =
6∑

j=1

vj

vj,ref

γj (7)

that defines the evaluation of a keyboard for the KAP. The lower the grade is,
the better is the keyboard arrangement.

Rule γj

load and accessibility 0.45
Key number 0.5
Hand alternation 1.0
Consecutive usage of the same
finger

0.8

Avoid steps 0.7
Hit direction 0.6

Table 3: Weight coefficients γj

3 An ACO algorithm for the KAP

The KAP is a discrete, combinatorial optimization problem. The evaluation
function is neither linear nor convex. As such, the natural solution strategy
may be found in metaheuristic optimization algorithms such as taboo search,
genetic algorithms, simulated annealing or ant colony systems. Another im-
portant characteristic of the evaluation function should be stated: Compared
to more classical problems as the traveling salesman problem or the quadratic
assignment problem, the time necessary to calculate the global grade is ex-
cessive. An efficient algorithm should therefore not demand the evaluation of
many solutions.

Most optimization algorithms like simulated annealing and genetic algo-
rithm and most local search procedures use the global grade and an abstract
memory as the only means to direct the search. In contrast, Ant Colony Opti-
mization algorithms additionally take advantage of local information in order
to construct solutions as described in the following. This local information
and the memory are both easily accessible and relatively cheap in terms of
computational time. The successful application of these types of algorithms
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to several different optimization problems like the TSP and the QAP finally
led to the conclusion that their potential to solve the KAP might exceed the
potential of other approaches.

Ant Colony algorithms were first introduced for solving combinatorial prob-
lems in [10]. Their fundamental idea is based on the behavior of natural ants
who succeed in finding shortest paths from their nest to food sources by com-
municating via a collective memory which consists of pheromone trails. Due
to its weak global perception of its environment, an ant moves essentially at
random when no pheromone is present. However, it tends to follow a path
with high pheromone level when many ants move in a common area, which
leads to an autocatalytic process. Finally, the ant does not choose its direc-
tion based exclusively on the level of pheromone, but also takes into account
the proximity of the nest and the food source respectively. This allows the
discovery of new and potentially shorter paths.

Applied to the keyboard assignment problem, the algorithm can be defined
as follows: A colony consists of N ants. Each ant is a simple agent that
arranges the combination character sets on its own keyboard starting from
a specific string of letters to distribute. In order to do so, it start with an
empty keyboard, i.e. a keyboard whose keys are available to be assigned to any
combination character set. Subsequently, the combination character sets which
correspond to the letters in the string are assigned to the keys on the keyboard
in a random manner, but taking into account successful placements in the
past and respecting as much as possible the ergonomic rules established in 2.3.
Therefore the pheromone matrix acts as an abstract memory by indicating all
pheromone levels that link a key to a combination character set. Once every
ant has assigned all combination character sets to a key, a cycle is finished and
the keyboards are evaluated. The ants place pheromone on the elementary
assignments which are part of its solution. The amount of pheromone that
each ant places is proportional to the quality of its solution. The pheromone
is then partially evaporated, the keyboards are cleared and the ants restart the
search process with new character strings until a predefined stopping criterion
is met.

3.1 Overview over the existing ACO algorithms

In the basic version of the Ant System algorithm [10], each ant proceeds by
constructing elementary assignments by taking into account its apparent qual-
ity and the experience stored in the pheromone trails. Once each ant has found
a complete solution, the quality of all solutions is evaluated and pheromone
is distributed on the elementary assignments which are part of a complete
solution, making sure that elementary assignments which are part of good
solutions obtain more pheromone than those that are part of bad solutions.

This first version exhibited two major disadvantages: The excessive compu-
tational time and a clearly suboptimal convergence. In order to remedy these
two weaknesses, two approaches have been proposed: An algorithm called
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ASelite in [10, 11] and one named ASrank in [2].
ASelite improved the convergence by emphasizing the best solution found.

The modification of the basic version amounts to adding ants following the
path of the best solution and modifying accordingly pheromone trails. By
choosing as the best solution either the best solution found during one cycle of
the algorithm or the best solution from the start of the algorithm, two different
subversions have been developed, the best-of-cycle and the global best.

ASrank introduces a new phase after each cycle of the algorithm. The so-
lutions of all the ants having been evaluated, the ants are ranked according
to the quality of their solutions. Only a fixed percentage p of the best ants
is allowed to update the pheromone levels. This reduces the amount of nec-
essary computational time in the phase when the pheromone is updated and
accelerates the convergence of the algorithm.

A more radical approach to the modification of the algorithm was put
forth in [23] by introducing MAX –MIN Ant Systems. There, only the
best ant is allowed to update the trails. In order to compensate for the thus
emerging premature convergence, a minimum amount of pheromone τmin is
fixed. Once the pheromone deposited on a basic solution drops underneath
this lower bound, it is reset to the minimum value. In order to make sure that
a greater part of the space is searched, the algorithm initializes the pheromone
levels to a preset maximum value τmax which constitutes an upper bound for
the trail intensity.

Tree Search (ANTS)
Approximated Nondet.

Ant Colony System

ASElite

Ant System (AS)

ASRank

AntQ

Max Min AS (MM AS)

antqreference

acoreference

aselitereference

antsreference

mmasreference asrankreference

asreference

PSfrag replacements

[10, 11, 9]
[2]

[16]
[24, 23, 9]

[13]
[9]

[10, 11, 9]

Figure 3: Overview over the different ACO algorithms

Another ant algorithm was derived from so–called Q-Learning which was
introduced in [26]. The resulting algorithm, Ant–Q, was proposed in [13]. The
new ideas consist of partially evaporating the pheromone of an elementary
assignment immediately after its construction in order to speed up the search
of the entire search space. It was the observation that two ants tend to build
similar solutions once they start close to each other that led to this idea.
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Evaporating the pheromone and thus creating a slight demotivation to follow
the same path for the next ant leads to a broader search. A second feature
is the modified rule for choosing the next elementary assignment. With a
certain probability, the locally best possibility is chosen without taking the
others into consideration. If this is not the case, the basic rule is used using
the local and global quality of the solution. This results in a strategy which
closely resembles the elitist approach. The third major change was the idea to
use the prospective quality of the following elementary assignment to calculate
the amount of pheromone deposited on a chosen partial solution. This concept
was quickly abandoned for reasons of inefficiency. Concerning the choice of the
ants which are allowed to deposit pheromone, Ant–Q follows the same strategy
as MAX –MIN Ant Systems: Only the best ant has this privilege.

The so far final and probably best performing algorithm was derived from
Ant–Q by replacing the above mentioned concept by an implicitly guaranteed
minimum of pheromone levels on each elementary assignment. The resulting
algorithm was presented in [9] and named Ant Colony System.

In order to give a complete overview, the Approximate Non-deterministic
Tree Search (ANTS) proposed in [16] should also be mentioned. Since the
algorithm uses procedures which have already been developed for a standard
problem like the TSP, but not yet known for the KAP, its application to the
keyboard assignment problem does not seem very promising at present.

Figure 3 represents an overview of the above different algorithms.

3.2 Principles of the algorithm

The algorithm finally is a combination of several of the algorithms presented
above. As a basic framework, we use the Ant Colony System algorithm since
it displays the most promising feature. Besides, the basic ideas of ASElite are
added by assigning more pheromone to the ant that found the best solution
during one cycle. Thus, the importance of the best solution found is em-
phasized. MAX –MIN AS also contributes to the final algorithm, since a
minimum and a maximum values are defined for the pheromone level. Finally,
ASRank principle is included by selecting the ants that are allowed to update
the pheromone according to the respective ranking of their solutions.

Beyond the mere choice of certain characteristics of past algorithms, some
other extensions are included. In the literature, one idea, which seems to
have a promising impact on the characteristics of the algorithm, has been
mentioned, but not yet thoroughly examined: A non-uniform initialization of
the pheromone levels. In the standard version, the pheromone is initially dis-
tributed uniformly over all possible elementary assignments. However, since
there are some interesting starting points for the search in the form of ex-
isting good quality keyboard arrangements like the Dvorak or the Marsan

keyboards, we have proposed to consider a non–uniform initialization of the
pheromone matrix. This distribution – first suggested in [6] – translates an a–
priori knowledge of the subspace in which the optimal solution may be found.
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By attributing a higher pheromone level to the elementary assignments de-
fined by a set of high quality keyboard arrangements than to the rest of the
elementary assignments, the concentration of the search on the desired sub-
space may be implemented. The obvious inconvenience of this concentration
is the fact that an optimal solution outside the determined subspace is found
with a smaller probability than in the case of a uniform initial pheromone
distribution.

A second noteworthy modification is related to the fact that it is intractable
to guarantee that all the characters are present in the text string used by a
given ant to establish its keyboard. Indeed, some rarely used combination
character sets are usually not attributed during a cycle. This possibly results
in an incomplete keyboard at the end of the construction phase and prohibits a
valid evaluation of the quality of the keyboard. Due to their minor importance,
those sets are randomly assigned to the remaining keys.

3.3 Description of the algorithm

From the previously mentioned principles, the following algorithm has been
deduced. The algorithm consists of two parts. The first one is an initialization
phase which creates the necessary data structure and sets all parameters to
their initial value. The second part is the iterative phase of the algorithm which
is repeated until a stopping criterion is satisfied. This criterion is defined to
be a certain amount of cycles.

3.3.1 Initialization

During the initialization phase, the following tasks are carried out:

1. An Ant Colony of N agents is created.

2. A text source is defined.

3. An empty character string of fixed length l is assigned to each ant.

4. An empty keyboard is assigned to each ant.

5. A pheromone matrix is created and its elements are set to values that
take into account an a–priori knowledge of the solution in the form of
high quality keyboard arrangements.

6. The algorithm parameters (see definitions later) are initialized.

3.3.2 Iteration

The second part of the algorithm is repeated until a certain number of itera-
tions has been completed. The subsequent steps are:

1. The keyboards assigned to the ants are emptied.
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2. The strings assigned to the ants are initialized using the text source.

3. Each ant reads its string and produces a sequence of combination char-
acter sets that it places on its keyboard until the end of the string is
reached. This procedure is described in detail in section 3.3.3.

4. The remaining combination character sets are randomly assigned to the
remaining keys.

5. Each ant evaluates the solution it has found.

6. The pheromone matrix τ evaporates with a coefficient ρall :

τ ← ρall · τ (8)

7. A number p of the best solutions are selected and pheromone is updated
according to their rank: The kth best ant, with 1 ≤ k ≤ p, deposits a
quantity ∆τ · q(k) of pheromone on each elementary assignment that it
has chosen, where ∆τ represents a quantity of pheromone and the vector
q is a measure of importance of the best ants.

8. The pheromone matrix is modified to fit the allowed range [τmin, τmax].

A representation of the algorithm in pseudocode is given in figure 4.

3.3.3 Character placement

The subsequent steps allow an ant to choose the most adequate key to place
the combination character set i under consideration:

1. The ant verifies if the combination character set has already been placed
on the keyboard. If so, the ant skips the following steps and continues
with the next combination character set.

2. For all free keys j, the ant calculates a probability according to the
random–proportional decision rule given in equation 9:

pij =
[τij]

α · [ηij]
β

∑
k∈Ω

[τik]α · [ηik]β
(9)

where Ω is the set of not yet occupied keys and ηij the global grade calcu-
lated according to the formula given in section 2.3 when only the present
and the previously assigned keys are considered. It is worthwhile to note
that the grade ηij only needs a few calculations to be computed. α and β

are two coefficients describing the relative importance of experience and
locally good elementary assignment. The ant uses the calculated proba-
bilities to establish a random variable, according to which it determines
a key among those that are still free.
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Choose the number N of ants;
Set Nt := number of keys;
Set Nc := number of combination character sets;
Set l:= length of a text string;
Initialize the matrix of pheromones P[Nt][Nc];
Repeat

Create N text strings S[N][l];
Create N empty keyboards sets T[N][Nt];
For i := 1 to l do
For k := 1 to N do
c := S[k][i];
If letter c was not already treated by ant k then
Choose a position p for c;
T[k][p] := c;
Evaporate P[p][c];

EndIf;
EndFor;

EndFor;
For all ants k := 1 to N do
Evaluate the result for the ant k;

EndFor;
Choose the best results;
Update P[][];
Verify Min-Max of P[][], modify if necessary;

Until satisfying result;

Figure 4: Solution algorithm for the KAP

3. The ant places the combination character set on the chosen key.

4. The ant evaporates pheromone on the elementary assignment found ac-
cording to the following equation:

τij ← ρ · τij (10)

ρ being the coefficient of evaporation.

3.4 Indicator for the search activity

As stated before, ACO presents an example of an autocatalytic process. While
the ants move in a large part of the search space in the beginning, they con-
tinually tend to concentrate on a subspace of smaller and smaller size. In
order to describe the autocatalytic behavior and compare it to that observed
when applying ACO to other combinatorial optimization problems, an indi-
cator should be introduced. Such an indicator, which quantifies the effective
size of the search space and therefore the search activity itself – the so–called
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λ–branching factor – was defined in [10] and is recalled in the following defi-
nition:

Definition 1 Let Nc be the set of all combination character sets and let Nt

be the set of all keys. For i ∈ Nc, let τi,max = max{τij, j ∈ Nt} and
τi,min = min{τij, j ∈ Nt} be respectively the greatest and the smallest level
of pheromone of the possible elementary assignments of i. Furthermore, let
δτi = τi,max− τi,min be their difference. For a scalar λ ∈ [0, 1], the λ–branching
factor factλ(i) is defined as the number of elementary assignments associating
the combination character set i to a key j, whose pheromone level satisfies the
following equation:

τij > λ · δτi + τi,min (11)

Hence, the λ–branching factor quantifies the number of elementary assign-
ments for a fixed combination character set i which have a significant chance
of being chosen by an ant. Since this search space description is limited to the
combination character set i, another definition defining a global indicator is
necessary.

Definition 2 The mean λ–branching factor is the arithmetic mean of the λ–
branching factors for all combination character sets i.

¯factλ =
1

N
·
∑

i∈Nc

factλ(i) (12)

ACO being an autocatalytic process, the λ–branching factor naturally de-
creases with time, which basically meets the needs of the search activity. In
the beginning, a relatively large space should be searched whereas in the later
stages of the search, the effective search space should be concentrated around
the optimal solution.

4 Computational Results

The experimental work consisted of three major phases. First, an efficient
and effective parameter setting was determined. Then, the algorithm was run
several times using this setting with and without initializing the pheromone
matrix. Finally, the results and the developments of the λ–branching factor
were examined.

4.1 Parameters setting

It is known that the convergence depends strongly on the parameters affecting
the computational formula (see [10]). In the case of the presented algorithm,
N , α, β, ρ, ρall, ∆τ , τmin, τmax, p, l and q had to be determined. As a
starting point for a heuristic determination of the parameters, those used in
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[10] were chosen. Observing the development of the pheromone matrix, the
parameter settings were adjusted experimentally. The best parameters found
are summarized in table 4.

N 30 α 3.0 β 3.0
ρ 0.98 ρall 0.95 ∆τ 0.2

τmin 0.09 τmax 1.0 p 4
l 6000 q [1, 0.5, 0.2, 0.1]

Table 4: Choice of optimization parameters

Since the objective consists of finding a nearly optimal keyboard arrange-
ment, the algorithm is not meant to be for repetitive use. Once a quasi-optimal
solution is found, the algorithm is not used any more, the only apparent reuse
being the application of the algorithm to other languages. In order not to
waste too much time, a statistical examination of different parameter settings
was left out. However, slight changes in some parameters frequently led to a
significant decrease of the solution quality.

4.2 Initialization of the pheromone matrix

The algorithm was launched with and without an initialization of the
pheromone matrix. A comparison showed that an initialization does signif-
icantly accelerate the convergence during the first few cycles, but does not
enable to find better solutions or to reach the chosen solutions with notably
more efficiency. Indeed, the pheromone matrix converges towards a certain
limit which does not change much between runs and the total number of itera-
tions needed to reach the chosen solution is very large. By way of illustration,
figure 7 gives a good idea on the convergence of the solution.

4.3 Evolution of the λ–branching factor

As mentioned in section 3.4, the λ–branching factor is an adequate means
to measure the development of the effective search space. The asymptotic
behavior which is typical for autocatalytic processes can be observed. However,
compared to the development of the λ–branching factor in a TSP application
[13], it displays a much faster convergence and less regularity in the early
stages (see figure 5).

4.4 Optimized keyboard arrangement

The best arrangement found for a French keyboard with the algorithm is pre-
sented in figure 6. It needed about 2000 iterations which corresponds to about
14 hours on a 400MHz PC. The development of the solution quality during
the corresponding run is represented in figure 7. It leads to the satisfactory
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Figure 5: Evolution of the λ–branching factor – mean over ten test runs

global grade of 0.487, with the AZERTY keyboard as a reference. It also leads
to a great improvement compared to the Marsan keyboard and outperforms it
for all of the proposed evaluation criteria (see table 5).

Figure 6: The optimized arrangement for the French language

The best keyboards produced by the algorithm always have the same main
characteristics. They have in common – though they were not identical –
that all the vowels are struck by the same hand and that no frequently used
consonant is found on that side of the keyboard. The relative position of the
vowels and the most frequently used consonants are identical for most of the
runs. This partitioning, also found when starting from random pheromone
matrices, is similar to those of Dvorak (in an English context) and Marsan

manually optimized keyboards, which is intellectually satisfactory.
Experiments were also carried out to find arrangements of letters for a

German and an English keyboards. The resulting layouts are presented in
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Figure 7: Evolution of the solution quality (French language)

algorithm output AZERTY Marsan

load and accessibility 0.479 1 0.489
hand alternation 0.673 1 0.687
consecutive usage of the same finger 0.263 1 0.503
avoid big steps 0.222 1 0.315
hit direction 0.373 1 0.454
global grade 0.487 1 0.568

Table 5: The results in comparison to AZERTY and Marsan (French language)
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figures 8 and 9. It also brings out the great possible improvements of standard
keyboards: The global grade is 0.592 for the German keyboard, with the
QWERTZ keyboard as a reference, while it is 0.593 for the English one, using
the QWERTY keyboard as a reference. Compared to the Dvorak manually
optimized English keyboard, whose global grade is 0.61, we only obtain a minor
improvement, but let us mention that even if parameters are adjusted to the
French language, the algorithm proves to slightly outperform Dvorak results.

Let us also mention that all these arrangements require six rows and there-
fore can not be mapped on the standard keyboard layout, but requires an
ergonomic layout as presented in figure 10.

Figure 8: The optimized arrangement for the German language

Figure 9: The optimized arrangement for the English language

5 Conclusions

In this paper, a new optimization problem that we call the Keyboard Arrange-
ment Problem is addressed. It consists of finding the best possible arrangement
of letters on a keyboard. A function is proposed for the evaluation of a key-
board with respect to a set of ergonomic rules. The paper does not focus
on the design of the function, which has been approved by ergonomists and
detailed in [15] and [25].

The presented algorithm for the solution of the KAP contains elements of
several different ant optimization approaches found in literature. The obtained
results show that the algorithm is effective in finding very good solutions. In
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Figure 10: Ergonomic keyboard layout (with the English optimized solution)

particular, all known manually optimized keyboards such as the Dvorak and
the Marsan keyboard were outranked.

As the reality of typewriting can not be completely taken into account in
a mathematical function, these promising results obviously need a practical
verification.

Though no comparison to other metaheuristics has been carried out, the
excellent results retrospectively justify the selection of ACO for the KAP.
Future research will aim at such a comparison.
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