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Abstract 

 

Pairwise comparison methods are convenient procedures for providing a sound weight 

vector from a set of binary comparisons between elements to be rated. In such procedures, 

each decision maker is asked to separately consider pairs of elements which are not 

necessarily independent from each other. For this reason the votes collected are liable to 

contain inconsistencies. In this paper we are providing a selective indicator that focuses on the 

inconsistencies the decision group is willing to correct in conformity with its vote strategy. 
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1. Introduction 

Rating a set of n elements (e1,…,en) can be a demanding task even when a unique 

criterion is considered. A convenient class of methods called pairwise comparison 

methods (PCM) notably simplifies the problem by focusing the attention on pairs of 

elements to be compared under a given property or criterion. The comparison matrix 

(see figure 1) represents all possible combinations. 

More generally, the theory of preference
1
 representation addresses such mappings 

from local comparisons to global ratings/rankings. It proposes a general multi-criteria 

decision-making framework where variable grades of preference are considered in 

combination with importance coefficients and even hierarchical structures on the 

criteria in order to assess, from a comprehensive point of view, the corresponding 

system of order on the elements set [17]. 

The different approaches articulate on common components [3]: 

- elements (alternatives or sub-objectives) to be compared; 

- criteria to assess them; 

- aggregation methods; 

- criteria-based evaluations of elements or alternatives; 

- inter-criteria information such as for example weights. 

                                                 
*
 E-mail address: <frej_limayem><Bernard_yannou>@hotmail.com 

1
 The intangible nature of preference induces different approaches among existing PCM schools. For 

example, the Multi-Attribute Value Theory (MAVT) measures preferences through an origin/unit scale 

(p=u+) by comparing differences of preference of the form (pi-pj)/(pk-ph), while the AHP school 

directly compares preferences of the form pi/pj, assuming more intuitive the existence of an absolute 

origin for preference (=0) [2]. Despite the criticism it is subject to, the later hypothesis is adopted in 

an important part of the literature and numerous applications [20]. 

mailto:Bernard_yannou@hotmail.com;frej_limayem@hotmail.com


2 

In group decision making, the three first points are generally common to all the 

participants. The group can enclose several roles (ex: decision makers, facilitators, 

experts), different profiles (degree of power/influence, degree of expertise, etc.) and 

several points of view
2
. Three generic modes are proposed in the literature to deal 

with the differences: 

- consensual merging of views through a causal analysis of their divergence in 

order to reduce it; 

- finding a compromise through a vote or the calculation of a representative value; 

- comparing independent results in order to negotiate a consensual view without 

necessarily reducing the underlying divergences [3]. 

A vote strategy can be perceived as a particular mapping between the group 

structure and the five components above. 

This paper considers a mono-criteria decision making framework where pairwise 

comparisons are associated, through a given ratio scale
3
, to numerical values cij in 

order to estimate the ratio of element weights wi/wj (note 1). 

Chronologically, the first applications [11] addressed basic comparison matrices 

with exactly one deterministic (precise) opinion per comparison. In parallel to the 

introduction of imprecision and uncertainty (ex: [4;10]), pairwise comparison methods 

have lately evolved to tackle abstentions or situations where the presence of several 

decision makers (DMs) can lead to more than one opinion per binary comparison. The 

concept of comparison matrix can then be extended to a comparison cube. 

Let cihx represent the opinion of the DM of index x when estimating the importance 

ratio of ei over eh. Since there are n unknown weights and up to dn² different 

equations (if each DM expresses n² comparisons), the system is likely to be over-

constrained with no a priori best set of weights. This is why different optimization 

logics may be considered. 

This redundancy generally results in a cardinal intransitivity (if at least one of the 

following equalities do not hold: cijx cjhychiz=1; i,j,h=1,2,…,n; x,y,z=1,2,…,d)
4
. An 

even more severe form (because illogical), called ordinal intransitivity, occurs in 

presence of cyclic binary comparisons (ex: cihx>1 and chjy>1 but cijz<1; i,j,h=1,2,…,n; 

x,y,z=1,2,…,d). When DMs reduce to a unique voter, the so called intransitivity is 

generally perceived as inconsistency especially for the ordinal form. 

This is less true for group decision making where opinions’ redundancy occurs 

naturally. In such a context, various vote strategies can be considered, in which 

intransitivity is not synonym of inconsistency and in which consistency indicators 

should take into account both the vote strategy and procedure. Let us mention the case 

                                                 
2
 Decision makers can for example be perceived as a non disjoint set of voting entities (of one or 

several DMs), providing each a uniform point of view on a subset of the criteria-based evaluations and 

having homogenous attributes (ex: weight, access to others votes, etc.) [13]. 
3
 Ratio scales associate numerical values to linguistic variables expressing different orders of 

importance/preference. Different scales are used in the literature according to the nature of the elements 

to be rated (ex: objects or criteria) [16] or the type of aggregation function in which the weights are 

going to be used (ex: additive or multiplicative). As illustrated in [20], ratio scales often distort the 

quality of the results (ex: min and max boundaries for the weights). Two examples of ratio scales are 

given in the remainder of this paper, at section 5. 
4
 Intransitivity is easy to observe on paths of length 2 (ex: cij cji1) or 1 (when cii1). As mentioned in 

[21], intransitivity can also be pointed out through indirect paths of length l>3 (ex: of the form cij cjk ckh 

chi1, for l=4). In general the longer the path the more excusable the intransitivity since more difficult 

to trace for DMs. 
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where the decision group is not necessarily seeking a unique point of view shared by 

all the participants but a solution that could be representative of divergent opinions, 

for instance the barycenter of group’s judgments. In such a case, the violation of the 

transitivity condition should be allowed for opinions expressed by different DMs and 

no corrective actions
5
 should be initiated towards the outliers. Beyond the redundancy 

of opinions within the group, other properties can be questioned at DMs’ scale such as 

for example the reciprocity of the comparison matrix, i.e. the fact that symmetrical 

opinions are inverse of each other; one also speaks about reciprocal opinions. Indeed, 

in a blind test involving sensorial evaluations (ex: beverage/food tasting or perfume 

smelling), the ordering in which each of the two elements is considered can 

significantly influence the appreciation. In such a case it is quite normal to expect 

from a same DM non reciprocal opinions (between cijk and cjik) and thus tolerate the 

corresponding part of inconsistency. 

More generally, at different voting levels (ex: isolate DMs versus DMs’ clusters)
2
, 

consistency measures should be able to reflect the conformity of the decision making 

process to the vote strategy. Among the existing indicators, just a few are able to 

tackle such nuances. 

This paper attempts to provide a more selective approach that helps in focusing on 

inconsistencies that the decision group is willing to correct. As it opens interesting 

perspectives, it also highlights some limits of this concept of « selective assessment of 

inconsistencies ». 

In the following section, a brief literature review sets the focus on indicators that 

have addressed the issue of group decision making. Next, section 3 introduces a new 

consistency indicator based on a logarithmic regression approach. The perspective of 

a selective assessment of inconsistency is then developed in section 4. Before 

concluding, an illustrative example is presented in section 5. 

2. Existing indicators 

Table 1 classifies some of the indicators published in the literature according to 

two criteria: their sensitivity to rating scales and the underlying pairwise comparison 

method (EV for Eigenvector, GM for geometric mean, MP for mathematical 

programming and LLSR for logarithmic least squares regression) 

                                                 
5
 Inconsistency measures are usually associated to threshold values ([10], [18], [12]) and/or followed 

by corrective actions that can take the form of iterative feedback loops between individuals consistency 

[5] and overall group’s consistency ([13], [15]). 
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No specific 

method 
EV GM MP LLSR 

Scale 

dependent 

Golden and 

Wang’s 

indicator [12] 

Saaty’s 

indicator [19] 

Takeda’s indicator 

[21] 

Bryson and 

Joseph’s 

indicator [5] 

Crawford and 

Williams’ 

indicator [7] 

Scale 

independent 

Salo’s 

indicator [20] 
    

Tab. 1: Some indicators published in the literature 

In the remainder of this section one reviews more in detail indicators that have 

addressed the issue of group decision making. 

2.1. Saaty’s indicator 

Saaty’s consistency indicator is based on the well known eigenvector method [18] 

and requires, in addition to exactly one opinion per comparison, a reciprocal 

comparison matrix, where all symmetrical binary comparisons are inverse of each 

other (i.e. cij=1/cji; i,j = 1,2,…,n). In the formula hereafter, the largest eigenvalue max 

equals n for perfectly consistent comparison matrices (C.I.Saaty=0) and take large 

values
6
 for very inconsistent ones. 

  
 weighted.be  toelements ofnumber  :

matrix, comparison  the toassociated eeigen valulargest  :
with  

, 
1

..

max

max

n

n

n
IC Saaty










 (1) 

When exactly one opinion is required, four vote strategies seem to prevail for the 

group [6]: preliminary consensus on each entry, vote compromise on each entry, 

average of the individual judgments on each entry or weighted average of the 

individual judgments on each entry. In such a context an alternative form called 

relative departure from consistency [19] has been used to estimate the relative 

divergence between a given decision maker and the group (formula 2). 
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6
 In order to rescale his indicator between 0 and 1, Saaty proposes a linear transformation dividing his 

indicator by the quantity n(g-1)/(n-1), with g the number of values composing the notation scale. He 

has also considered the sensitivity of his indicator to the number of elements to be weighted. The 

statistical study shows that, whatever the notation scale, his indicator strongly decreases when the 

number of elements to be weighted increases. 
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2.2. Bryson and Joseph’s indicator 

Bryson and Joseph’s method [5] formulates the mapping from a non necessarily 

reciprocal vote cube C to a suitable set of weights in a mathematical programming 

approach. Since there is no need to limit the number of entries per binary comparison, 

no preliminary synthesis of the individual judgments is required. Up to a logarithmic 

transformation, their approach is presented in formula 3. 
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In the associated constraints each ratio of weights wi/wj is multiplied by a ratio of 

real numbers pijk/qijk (pijk1 and qijk=1 or pijk=1 and qijk1) in order to coincide with the 

vote cijk of decision maker k. The geometric mean of the products pijk qijk constitutes 

the objective function to minimize. The optimum represents the minimum average 

value that each entry in the vote cube would have to be multiplied or divided by in 

order to reach consistency. The inverse of this quantity has been chosen as 

consistency indicator by Bryson and Joseph. It ranges between 0 (maximal 

inconsistency) and 1 (perfect consistency). In their illustrative example, Bryson and 

Joseph adopt an arbitrary cut-off value (80%) and assess the consistency of both the 

group and the individual DMs. 

3. An indicator based on the logarithmic least squares regression approach 

3.1. The linear regression approach 

A regression model may be considered as an optimized approximation of the 

relation between a random variable said to be dependent and a set of prediction 

variables assumed not to be random. 

In linear regression [8], an observation Yi of the dependent variable y is related to 

values taken by prediction variables x1,...,xn through equations of the form 

Yi01X1,i...nXn,ii 
7
. The constant coefficients 0,1,...n are parameters to be 

estimated for completing the model. Coefficient i is a random coefficient of error 

representing the difference between the linear model’s estimation and the observation 

i. In matricial notation, the equation set may be expressed as: 

                                                 
7
 For example, if one assumes that the size S of a person (dependent variable) is linearly related to his 

or her age A (prediction variable), a linear regression approach consists in finding the straight line, of 

the form Si0 1 Ai, modeling at best a set of (age, size) measurements performed on a sample of 

representative individuals. 
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In this framework, the least squares estimator of , represented in the following by 

, corresponds to the minimal sum of error squares (Yi-Ŷi)
2
 between the measured 

values of the dependent variable (Y) and the estimated ones (Ŷ=X). When  exists it 

is the solution of the normal equation set: X
t
Y=X

t
X. If the errors follow a 

probabilistic distribution with a mean equal to zero,  is considered as a non biased 

estimator of  ([7], [8]). 

3.2. Application to the pairwise comparison framework 

In order to discuss the application of the linear regression approach to the context 

of pairwise comparison, let us first, introduce the binary parameter ijk 










constant). positive (arbitrary 0   and otherwise  ,0 
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0cc

ck

ijk

ij

ijk  

If one considers Yijk=ijk log(cijk) i,j=1,...,n, ij as the observations of the 

dependent variable, the equation ijk log(cijk)ijk (log(wi)-log(wj)+ijk)
8
 links in a 

linear manner Yijk to the set of prediction variables: 

(Xijk ,10, ..., Xijk ,i ijk, Xijk ,i+10, ..., Xijk, j -ijk,Xijk, j+10, ..., Xijk, n0), 

with the constant coefficients to be estimated: 

0=0, 1log(w1), ..., ilog(wi), ..., jlog(wj), ..., nlog(wn)). 

Via this logarithmic transformation, the linear regression has been applied to the 

pairwise comparison field since the eighties by De Graan [9] and Lootsma [15], in 

order to handle incomplete comparison matrices
9
. As illustrated in [14], this technique 

called Logarithmic Least Squares Regression (LLSR) generalizes the geometric mean 

based pairwise comparison approach and provides, at least from a probabilistic point 

of view, a pertinent estimator of the weights’ vector [7]. 

3.3. Consistency indicator 

In a regression model, the estimated sum of squares is always lower than the sum 

of squares of the observations. The difference, called residual sum of squares or errors 

sum of squares, corresponds to the information the model is unable to explain. This is 

a classical result in the literature on regression (see for example [8]). A short proof is 

given in formula 4. 

 

                                                 
8
 With equations of the type ijklog(cijk)ijk(log(wi)-log(wj)+ijk), the regression approach is unable 

to represent the reflexive opinions (ciik, i=1,2,…,n; k=1,2,…,d) which are assumed equal to 1. This 

assumption does not deteriorate the quality of the optimal weight vector and the induced comparison 

matrix is reciprocal by construction. 
9
 The lack of opinions can be tolerated so long the rank of the normal equations system remains equal 

to n-1. To fulfill this condition each element to rate/weight must be represented in at least one opinion 

and no pair of elements (ei,ej) must be disjointed by transitivity (i.e. ihkhjk=0, h=1,2,...,n; k=1,2,...,d). 
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The ratio: (estimated sum of squares) / (sum of squares of the observations) is 

given by: (Ŷ 
t
Ŷ / Y 

t
Y) = (tXt

Y/ Y 
t
Y). This quantity is an alternative form of the well 

known R
2
 determination factor for models with no constant term

10
. The ratio 

represents the Explained Fraction of the Observation sum of Squares. In this paper, it 

is named EFOS to avoid confusion with the canonical form of the R
2
 determination 

factor. For reciprocal comparison cubes, EFOS’ value is identical to the R
2
 

determination factor and expresses the fraction of the original variance explained by 

the regression model. 

In the context of pairwise comparisons this ratio constitutes a consistency indicator 

since it measures the adequacy between the consistent matrix induced by the 

estimated weights and the original comparison cube
11

. EFOS ranges between 0 when 

the original comparison cube is extremely inconsistent and 1 when estimations and 

observations fully coincide. The more consistent the original cube, the higher the 

explicative power of the LLSR model. 

In the following section, EFOS is extended towards a more selective assessment of 

inconsistency in order to take several vote strategies into account within a group 

decision-making framework. 

4. Selective assessment of inconsistency 

As illustrated in section 1, the notion of group inconsistency should not be 

restricted to the notion of cardinal or ordinal inconsistency. More generally, indicators 

should be able to reflect the rules underlying the vote strategy and point out the 

inconsistency that the decision group is willing to correct. 

                                                 
10

 Typically, the R
2
 correlation factor requires the presence of an 0 among the parameters of the 

model before optimization. However, in the regression model associated to the general pairwise 

comparison problem, there is no 0 parameter: 0 is, intrinsically, set to 0. The addition of an 0 

parameter is only possible if one assumes the vote cube to be reciprocal. In such a case the least squares 

optimum corresponds to 0=0. 
11

 Crawford and Williams’ indicator [7] is also inspired from the LLSR approach. They suggested the 

use of the residual mean square to measure consistency. This quantity (E
t
E/ number of degrees of 

freedom) is an unbiased estimator of the variance of the errors. Aguarón and Moreno- Jiménez [1] showed a 

linear correlation between Crawford and Williams’ indicator and Saaty’s one. 



8 

4.1. A selective indicator 

In this section, the denominator of the indicator EFOS (Y
t
Y=tXt

Y+E
t
E) is 

adjusted by relaxing from the error sum of squares (E
t
E) quantities that are tolerated 

and that should not be part of the information the model is expected to explain (as 

showed hereafter by formula 5). 
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(5) 

 

4.2. Relaxed errors 

In the context of pairwise comparisons, the presence of different opinions for a 

same binary comparison cij is a non avoidable source of errors which are called pure 

errors. At best any LLSR model will predict the average value  

Y*=(k Yijk)/(k ijk.). 

In contrast, the presence of non reciprocal opinions (ijxcijxjiy1/cjiy; 

i,j=1,2,…,n; x,y=1,2,…,d) generates fitting errors. For such symmetrical opinions, the 

best a linear model of the form ŷ=x1-x2
12

 can locally predict (ignoring the opinions of 

other DMs) is Yij
*
=(Yijk-Yjik)/2 and Yji

*
= -(Yijk-Yjik)/2= -Yij

*
. Figures 2 and 3 illustrate 

the concept of pure and fitting errors
13

. 

Based on such local reasonings, several alternatives are proposed for the quantity 

v by formula 6. They represent errors that the linear model is enable to explain and 

that will be partly relaxed from the observations’ sum of squares each time they 

contribute to inconsistencies the decision group tolerates. 

 

                                                 
12

 In the pairwise comparison framework the logarithmic transform of the estimated binary 

comparison ĉij is linked to the logarithmic transforms of the weights by the linear equation:  

log(ĉij) = log(wi)-log(wj). 
13

 See [16] for a detailed presentation of the concept of pure errors and fitting errors. 
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Each vi is computed as a sum of squared logarithmic differences between the considered 

opinions and local averages. These averages represent the LLSR model estimation when a subset 

of the opinions (constraints) is considered. For a given vi, the considered subsets of opinions are 

disjointed, which justifies an additive aggregation of the different squared differences. 

- m(i,j): logarithmic average expressing the absolute value of the LLSR’s local estimation for all 

the opinions concerning the comparison cij and its symmetrical cji. 

- m(i,j),k: logarithmic average expressing the absolute value of the LLSR’s local estimation for the 

opinion cijk and its symmetrical cjik. 

- m(i,j),k: logarithmic average expressing the absolute value of the LLSR’s local estimation for the 

set of opinions corresponding to the comparison cij and its symmetrical cji except the 

opinion cjik replaced by 1/cijk. With this substitution, when cjik1/cijk , the quantity v3 

deduced from the sum of squares is smaller than v1, the one produced with m(i,j) (see the 

proof in the appendix). This procedure helps pointing out eventual inconsistencies on cjik. 
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(6) 

 

The local reasonings supporting the deduced part of errors vi are schematically 

illustrated in figure 3. For the points representing the opinions of DM2, the global 

optimum (black line) induces higher fitting errors than the local optimum represented 

by the gray line. 

It is easy to demonstrate that v1v2 and v1v3 (see appendix). If the comparison 

cube is reciprocal (ijxcijx=jiy/cjiy; i,j=1,2,…,n; x,y=1,2,…,d), one gets the following 

equalities: v2= v0=0 and v3= v1 (in this case v3v2). If the comparison cube reduces 

to a matrix
14

 (maximum one opinion per binary comparison), one gets v2= v1 and 

v3= v0=0 (in this case v2v3). If the comparison cube reduces to a reciprocal matrix, 

one gets v3= v2= v1= v0=0. 

                                                 
14

 For example, in a group where each DM is associated to a disjointed set of binary comparisons, the 

group’s comparison cube reduces to a matrix. 
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The part of errors v1, v2 and v3 are not disjointed since they involve common 

subsets of opinions. For this reason, it does not make sense to combine them 

additively. They express three different vote strategies presented in the following 

section. 

4.3. Implications in terms of tolerated inconsistencies 

For the group: 

 under v0, no specific inconsistency is tolerated; 

 under v1, the decision group tolerates all inconsistencies induced by multiple or 

non reciprocal opinions on a binary comparison and its symmetrical (cij and cji); 

 under v2, the decision group tolerates only fitting errors relative to non 

reciprocal opinions expressed by a same DM k (when ijkcijkjik1/cjik); 

 under v3 the decision group considers (like for v) each binary comparison and 

its symmetrical (cij and cji). In contrast with v2, it tolerates all inconsistencies 

induced by multiple or non reciprocal opinions except fitting errors caused by non 

reciprocal opinions expressed by a same DM k. 

At individual DMs level (comparison matrices): 

 v2 as v1 (v2=v1) expresses a tolerance towards inconsistent symmetrical 

opinions, 

 while, v3 as v0 (v3=v0=0) expresses a full consistency expectation. 

4.4. Limitations and perspectives 

The selective power of EFOS covers two basic situations: the non reciprocity of 

the symmetrical comparisons (cij cji1) and the inconsistencies induced by the 

presence of multiple opinions per binary comparison (cijx cijy). For non reciprocal 

comparison cubes, EFOS does not take into account the notion of “indirect 

intransitivity” induced by paths of length  2 (see note 4). Moreover, because it is 

based on local reasonings (see section 4.2), EFOS relaxes only partially the tolerated 

inconsistencies. 

In addition, as any indicator using the regression approach (ex: [7]), EFOS does 

not consider the consistency of the diagonal comparisons (see note 8). The 

consistency of the diagonal comparisons can be of interest for some blind testing 

procedures. 

Despite these limitations, EFOS is still able to qualitatively adjust its response to 

different vote strategies and different levels within the group structure. 

4.5. Applicative field 

To illustrate the applicative aspect of these different alternatives let us consider a 

blind test involving binary comparisons where the ordering for considering each of the 

two elements can significantly influence the result. This is true for sensorial 

evaluations as for example food and beverage tasting. In such a case it is quite normal 

to expect from a same DM non reciprocal opinions (ijkcijkjik1/cjik), especially if 

the decision group includes non experts. 

 If, in addition, the decision group is willing to figure out the diversity of 

opinions (not a common opinion strategy), different appreciations should be 

tolerated for a given binary comparison (cij). Under such conditions, v1 is the 

alternative to choose. 
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 On the contrary, if the decision group seeks one common opinion (identical 

votes), it is important for the consistency indicator to point out inconsistencies due 

to non convergent opinions in the perspective of a compromise. In such case, v2 is 

the option to choose. 

For a different context, where binary comparisons are not sensitive to the ordering 

of elements to be compared or where DMs’ expertise is high, inconsistencies induced 

by non reciprocal opinions expressed by a same DM are less acceptable. 

 If the decision group’s strategy is not common opinion oriented, v3 is the 

alternative to choose.  

 Otherwise, the coefficient v0 must be preferred. 

Tables 2 and 3 respectively summarize the different strategies mentioned above, at 

both group and individual DMs’ levels. 

 

 Uniform vote Non uniform vote 

Blind testing or 

Low expertise 
v2 v1 

High expertise v0 v3 

Tab. 2: Correspondence between the i factors and group’s voting strategies 

No tolerance Tolerance for symmetrical inconsistencies 

v3=v0 v2=v1 

Tab. 3: Correspondence between the i factors and DMs voting strategies 

5. Illustrative example 

The following example consists in a blind quality test of three different olive oils. 

This example has been constructed in order to illustrate the consistency indicator and 

the different scenarios presented in the previous sections. 

The test is achieved by 2 DMs invited to taste all possible combinations of 

different olive oils in different orders and without revealing samples’ identity. When 

available, the estimations of the ratios cij are expressed through the following 

qualitative rating scale: {4 : extremely week;  3 : very week; 

2: week;   : moderately week;  = : equal;  + : moderately strong; 

2+ : strong;  3+ : very strong;  4+ : extremely strong}. The comparison matrices are 

presented in table 4. 
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DM1 DM2 

 o1 o2 o3 

o1  + +  

o2 =     

o3 +   
   

 o1 o2 o3 

o1  +  

o2      

o3 + + + + +  
 

Tab. 4: DMs’ comparison matrices 

Table 5 summarizes consistency and weights’ estimations for the different vote 

strategies presented in this paper both at DMs and group’s level. In order to illustrate 

the rating scale’s effect [20], the qualitative rating levels have been numerically 

translated according to two different ratio scales, respectively inspired from Saaty’s 

[18] and Lootsma’s [16] ones: 

9} 6, 4, 2, 1, ,
2

1
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4

1
 ,

6

1
 ,

9

1
{1 Sc.   and 16} 8, 4, 2, 1, ,

2

1
 ,

4

1
 ,

8

1
 ,

16

1
{2 Sc.  . 

 

 Group DM1 DM2 

EFOS
3 0.927 0.906 

0.829 0.833 0.967 0.931 
EFOS

0 0.911 0.891 

EFOS
1 0.977 0.948 

0.984 0.961 0.975 0.947 
EFOS

2 0.975 0.945 

 Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2 

 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 

 26.5 11.2 62.3 24.9 9.4 65.7 27.3 12.3 60.4 26.3 11.1 62.6 25.9 10.6 63.5 23.9 8.5 67.6 

Tab. 5: Results for the different vote strategies 

For the two alternative scales, the numerical results confirm the incidence of the 

selective assessment of inconsistency and the ability of EFOS to handle the four vote 

strategies detailed in section 4.5. As expected the relaxed variants of the indicator 

(indexes{1,2,3}) provide higher consistency rates
15

. At DMs’ level, the differences 

between selective versions and non selective ones are higher for DM1 who has 

provided a more inconsistent comparison matrix and has taken bigger advantage of 

the relaxation of reciprocal inconsistencies. Furthermore, this example illustrates the 

ability of the indicator to tackle incomplete comparison matrices and cubes. 

In order to compare EFOS to the two other indicators dedicated to group decision 

making, presented in the literature review, the previous comparison matrices of table 4 

has been transformed into symmetrical ones by keeping unchanged the upper 

triangular half-matrices. 

                                                 
15

 Theoretically EFOS
1
 refers to more local optimums and thus relaxes higher sums of errors than 

EFOS
2
 or EFOS

3
 (see the proof in the appendix). 
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 Group DM1 DM2 

EFOS
0 

0.975 0.973 

0.995 1.000 0.987 0.970 
EFOS

2 

EFOS
1 

1.000 0.993 
EFOS

3 

CI Saaty 0.0001 0.0045 0.0031 0.0000 0.0061 0.0179 

CI Saaty DM / group  0.0121 0.0089 0.0152 0.0271 

CI Bryson and Joseph 0.891 0.889 0.909 1.000 0.874 0.794 

 Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2 

 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 

LLSR 
29.5 10.3 60.2 28.1 8.8 63.1 32.3 8.9 58.8 30.8 7.7 61.5 26.9 11.7 61.4 25.5 10.1 64.4 

EV 

MP 30 10 60 30.7 7.8 61.5 32.3 8.9 58.8 30.8 7.7 61.5 26.5 11.2 62.3 24.9 9.4 65.7 

Tab. 6: Results of the consistency indicators EFOS, CI Saaty and CI Bryson and Joseph 

Table 6 presents the different results, detailing the weights for the three methods: 

LLSR, EV
16

 and the MP model of Bryson and Joseph. Unlike Saaty’s indicator that 

varies in the range [0, +[ to indicate a decreasing consistency, the two others 

indicates an increasing consistency from 0 to 1. 

Bryson and Joseph’s indicator is the only one that restricts to the distinction 

between DM’s level and group’s level. In addition, Saaty’s indicator is able to merge 

the two levels. It measures both the consistency and the deviation of DM’s judgments 

from those of the group
17

. For such reciprocal comparison cubes, EFOS’ selective 

power restricts to the inconsistency introduced by the multiplicity of the opinions. 

EFOS is still the only indicator that allows the distinction between several vote 

strategies (two in this case, as detailed in section 4.5). 

6. Conclusion 

The concept of selective assessment of consistency, introduced by this paper, is 

quite innovative and complementary of aspects addressed by previous approaches. 

Compared to its benchmarks within a mono-criteria group decision making 

framework, the consistency indicator EFOS, introduced in this paper, has the 

advantage of delivering consistency measures that take several group’s strategies into 

account. 

Despite the fact that the selective power of EFOS is still partial, such a flexibility 

allows a more realistic modeling of pairwise comparisons in group decision making. 

                                                 
16

 For n=3 and a comparison matrix with exactly one opinion per comparison EV and LLSR produce 

equivalent weight vectors [7]. 
17

 A similar approach could be applied with EFOS. This can be illustrated in formula 5 by 

considering the case of individual DMs and substituting the weights (in ) by those of the group. 
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Fig. 1. The comparison matrix 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical illustration of pure and fitting errors on the case of a 2 x 2 comparison matrix where 

Yijk represents the logarithm of the opinion of DM k for the binary comparison (ei,ej).
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Fig. 3. Graphical illustration of the fact that local estimations generate less errors than global ones on 

the case of a 2 x 2 comparison matrix 
18  20

 

                                                 
18

 The 2x2 comparison matrix corresponds to a 2-variable-regression. The symmetry of the 

comparison matrix model allows a 2 dimensional representation on the plan (x1+x2=0). 
19

 Unlike the linear model the non linear one produces no fitting errors but none of them can avoid 

the pure errors. As illustrated by the equality c
2
 + d

2
 = 2 a

2
 + 2 b

2 
, the sum of errors’ squares is 

equivalent to a sum of pure errors and fitting errors. 
20

 In this example DM1 expresses no opinion on the binary comparison (e2,e1). 
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linear model (0=0) 
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Y121 
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b 

Y122 
a' 

Optimal linear trajectory for 

minimizing fitting errors on DM2’s 

opinions : (X1=1, X2=-1; Y122) and 

(X1=-1, X2=1; Y212). It is always true 

that a
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 +b
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