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1 Introduction 

A design process can be seen as an iterative and complex process guided by a final and 

ultimate objective, which is to make the developed product fitting the customer 

aspirations. Hence, predicting customers’ satisfaction level when one develops a new 

product is fundamental. Designers need tools to help them understanding customers’ 

needs and thereby predicting their appreciation level of a new product. During a design 

process, designers are facing two main issues that we explain through the two following 

questions. The first one is a question of simulation of performances (deductive 

reasoning), denoted hereafter direct/analysis: what is the impact of a given decision 

related to the design parameters (i.e. technical and/or functional parameters) on the final 

customer perception. The second is more narrowly related to the design goal itself, 

starting from the need (expected performances or perceived impacts) and inducing a 

satisfactory design solution, denoted hereafter the inverse/synthesis scenario: what are 

the optimal levels of design technical attributes that can meet a given expected 

perception by a customer?  

Certainly, the two questions are connected and can be handled if the correlation 

between the design attribute levels and the customer perceived impact levels is known. 

This correlation can be learnt through experience. In other words, experienced engineers 

are capable to convert a subjective expected perception expressed by customers in 

concrete technical design attribute levels. However, their suggestions remain subjective 

and generally difficult to explain. The second way to rationalize this correlation is to 

construct an analytic predictive model. In this paper, we propose to construct such a 

model using data mining learning techniques and more specifically Bayesian Networks 

(BNs).  

As a case study, we propose to use customers’ evaluations of perceptual attribute 

levels of existing car dashboards in order to predict the customer perception of new car 

dashboards by assuming their technical attributes or main design parameters (design 

analysis situation). Conversely, we also propose to advise designers on values of 

dashboard physical attributes so as to better ensure meeting given customer perceptions 

on these dashboards (design synthesis). Henceforth, we call technical (or physical) 

attribute any parameter that deals with the design characteristics (shape type, number of 

colors, subsystem location, average curvature radius of shapes, etc.). In other words, 

technical attributes are parameters that a designer can tune to change and ultimately 

optimize his design. We call perceptual (or subjective) attributes all variables that deal 

with the customer evaluation of the design (comfort, novelty, cultural values). In the 

following, perceptual attributes are assessed by a set of customer in an non-hedonistic 
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way, i.e. perceptual attributes are assessed on an absolute scale independently of personal 

preferences (as much as possible). This scale is automatically built using pairwise 

comparison techniques which are widely presented in (Petiot and Yannou, 2004, Yannou 

and Petiot, 2004, Yannou, 2007) and which are not the subject of this paper. 

Various scientific approaches relating physical attributes and perceptual attributes 

have been gathered by Japanese researchers under the name of Kansei Engineering, ours 

may be considered as such. This research aims at exploring the structure of emotions by 

building a database on consumer feelings. From the consumer’s point of view, a forward 

mapping process from perceptual words to design elements is established, and from the 

designer’s point of view, a backward process from drawings to perceptual words is 

proposed (Nagamachi, 1995, Nagamachi, 2002). These two processes exactly correspond 

to, respectively, the aforementioned synthesis and analysis use scenarios. Some methods 

of category classification methods based on the Semantic Differential Method (SDM) 

have been used for the design of car interiors for example (Jindo and Hirasago, 1997). 

More sophisticated methods based on genetic algorithms, neural networks or fuzzy logic 

have been applied to ensure mappings between perceptual words and design elements, 

but these systems are often opaque for designers and consumers. A semantic 

transformation method for automotive form design is proposed in (Hsiao and Wang, 

1998), allowing an automatic regulation of the shape with respect to the required image 

required. The aim of this paper is to study the use of a still rarely used technique in 

design, namely the Bayesian Networks. Its main advantages compared to other 

techniques are that they are not opaque to the designer and that they can be easily used in 

compound analysis/synthesis scenarios, complying with actual design problems. 

After presenting Bayesian Networks in section 2, the collect protocol for perceptual 

data is briefly evoked in section 3. Section 4 describes the model building and the use 

scenarios. Section 5 is a discussion of the present approach. 

2 Theoretical background: Bayesian network 

Consider “A”= “use comfort”={weak, good} as one of the perceptual attributes and 

“B”=”control button shape”={circular, square) as one of the physical attributes 

characterizing the dashboards. The double functionality of our model (direct and inverse) 

is possible thanks to Bayesian Networks (BNs), which are based on the Bayes theorem 

given by formula (1): 

P(B)

P(A) P(B/A).
 P(A/B)  (1) 

BNs are directed acyclic graphs used to represent uncertain knowledge in Artificial 

Intelligence (Jensen, 1996). A BN is defined as a couple: BN=(S, P), where: 

 S=(N, A) represents the structure (i.e. the graph);  

 “N” is a set of nodes. Each node represents a discrete variable X having a 

finite number of mutually exclusive states (modalities). In our case study, X 

may be a perceptual attribute as well as a technical attribute; 
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 “A” is a set of edges; the relation “N1 is a parent of N2” is represented by an 

edge linking N1 to N2. In our case study, an edge may be interpreted as a 

causal relation. 

 P represents a set of probability distributions that are associated to each node. When 

a node is a root node (i.e. it does not have a parent), P corresponds to the probability 

distribution over the node states. When a node is not a root node, i.e. when it has 

some parent nodes, P corresponds to a conditional probability distribution that 

quantifies the probabilistic dependency between that node and its parents. It is 

represented by a Conditional Probability Table (CPT). 

Because a Bayesian network is a complete model for the attributes and their relationships, 

it can be used to answer probabilistic queries about them. For example, the network can 

be used to find out updated knowledge of the state of a subset of attributes when other 

attributes (the evidence attributes) are observed. This process of computing the posterior 

distribution of attributes given evidence is called probabilistic inference. Various 

inference algorithms can be used to compute marginal probabilities for each unobserved 

node given information on the states of a set of observed nodes. The most classical one 

relies on the use of a junction tree (see (Jensen, 1996), pp. 76). Inference in BN (Huang 

and Dawiche, 1996) allows then taking any state attribute observation (an event) into 

account to update the probabilities of the other attributes. Without any event observation, 

the computation is based on a priori probabilities. When observations are given, this 

knowledge is integrated into the network and all the probabilities are updated 

accordingly. 

The use of Bayesian networks in industry is continually growing up especially in risk 

management fields, in marketing, and generally in domains where there is uncertainty 

and thereby a need to predict a complex behavior such as in a decision making process. 

Many commercial tools provide users with HMI allowing graphical representation of 

Bayesian networks to model expert knowledge. They are also providing users with a 

panel of supervised and unsupervised learning algorithms to extract automatically 

knowledge from data bases (see section 4).  

3 Data preparation 

The data colleting protocol has been described in (Yannou, 2007) and already 

experimented on another case study in (Petiot and Yannou, 2004, Yannou and Petiot, 

2004). Ten dashboards, displayed in Figure 1 (AUDI A2, CITROEN C2, FIAT Idea, 

LANCIA Ypsilon, NISSAN Micra, PEUGEOT 206, RENAULT Clio, RENAULT 

Modus, TOYOTA Yaris, VW Polo), are evaluated by 11 customers. Each dashboard is 

represented by a 19-dimensional feature vector, X={x1, …, x19}, depicting 19 

measurements made on the dashboard from 19 attributes that we present hereafter in 

more details: 8 technical (or physical) attributes and 11 perceptual attributes.  
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Figure 1 The 10 dashboards evaluated by customers 

We defined a set of 8 technical (or physical) attributes characterizing the dashboards with 

corresponding modalities (two at least, but the number may increase): the “Speedometer 

dial position”={behind steering wheel, at the center of the dashboard}, “Display lay-

out”={Analogue, Digital}, “Air conditioner control”={Button, Other}, “Air vent 

shape”={Rounded, Square}, “Dashboard color”={Single color, Two colors}, “Aerator 

shape”={Rounded, Square}, “Arrangement space”={Many, Few} and “Style lay-

out”={Curved lines, Straight lines}. The characterization of the 10 dashboards according 

to the technical attributes is objective and do not depend on the preference of customers. 

It is presented in table 1. 

We also defined a set of 11 perceptual attributes, which describe the customer 

perception of the “Space organization”, “Control button comprehensibility”, “Aerator 

lay-out”, “Arrangement space”, “Comfort”, “Simplicity”, “Sportive lay-out”, 

“Masculinity lay-out”, “Quality”, “Novelty” and “Harmony” (see (Harvey, 2005) for 

details on attributes) The customer evaluations of the dashboard perceptual attribute 

levels is made in qualitatively pairwise comparing the 10 dashboards under each of the 11 

perceptual attributes (see (Limayem and Yannou, 2004) for mathematical details). It 

leads to 11 normalized score vectors. The advantage of this method is that the value scale 

is automatically built thanks to the pairwise comparison mechanism without the need to 

define a specific metrics (for instance, a score of 0.1 for the “Masculinity lay-out” means 

much more feminine than a score of 0.3). Next, each normalized score vector (the scores 

sum is 1) is transformed to fit into a standard scale of [0, 20]. Finally, continuous 

attribute levels are projected into discrete categories: [0, 5]=Very low, [6, 10]=Low, [10, 

14]=Medium, [15, 17]=High, [18, 20]=Very high. As 11 customers have participated to 

this study, a 110 x 19 matrix is then constructed: rows=10 dashboards x 11 customers, 

columns=8 technical & 11 perceptual attributes. 
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Table 1 The physical characterization of the 10 dashboards 

 

 

We are aware that data discretization has some drawbacks: for instance, although 13 is as 

similar to 14 as 15, they belong to different categories. In spite of this limitation, results 

we obtained are satisfactory (cf. section 4.3). In an underway work, we apply bayesian 

network directly on data stemmed from pairwise comparisons and thereby we do not 

need to descritize data. The data discretization issue may also be handled by the use of 

fuzzy logic. Applying bayesian learning on fuzzy data would then be an interesting 

research perspective. 

4 Kansei model construction using bayesian network learning  

The Kansei model elaboration consists in constructing a BN in which a node represents 

an attribute (technical or subjective) and edges represent direct probabilistic relations 

between the connected attributes. Attributes are defined over several states (or 

modalities) as we explained previously. The statement of the probabilistic relations 

between attributes may be performed by experts and/or automatically extracted from the 

data set we presented above by the use of supervised and/or unsupervised learning 

techniques. In this paper we use automatic learning of Kansei bayesien model from data. 

There are several techniques for learning Bayesian networks from data (see (Spirtes et 

al., 2000, Neapolitan, 2003, Buntine, 1996, Jordan, 1998, Naïm et al., 1999) for an 

overview). Two main techniques may be distinguished. The first one is a score-based 
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method and the other is a constraint-based method. The constraint-based method employs 

statistical tests on the data set for deciding the existence of edges in the Bayesian 

network. The accuracy of the constraint-based method strongly depends on the size of the 

data set. A huge data set can provide a more accurate statistical independence test. In this 

paper, we use a small data set, so we adopt the score-based approach. 

Methods to learn Bayesian networks from data often consist of two components. The 

first component is a score (i.e. a cost function) which is used to evaluate how well the 

learned model fits the data. The second component is a learning algorithm (i.e. a structure 

search strategy) which is used to identify one or more network structures with high scores 

by searching through the space of possible network structures. 

 The score function: there have been some scores proposed for learning Bayesian 

networks. These includes the AIC score (Akaike, 1974), the BIC score (Schwarz, 

1978), the K2 score (Cooper and Herskovits, 1992), the BDe score (Heckerman et 

al., 1995), the GU score (Mehmet and Gregory, 2002) and the MDL (Minimum 

description length) score (Lam and Bacchus, 1994, Rissanen, 1986, Bouckaert, 1993, 

Suzuki, 1993). Remco R. Bouckaert (Bouckaert, 1993) indicates that the 

performance of learning Bayesian network structure using MDL score is slightly 

better than the performance of the other scores. In this paper, we use the MDL, 

which is an information-theoretic criterion that favors models which provide the 

shortest description of the training data. This description includes both the 

description of the model and the description of the data given the model. Formally, 

given a Bayesian network BN = (S;P), and a training data set D, the MDL score of 

BN is defined as ScoreMDL(BN;D) = MDL(BN) + MDL(D\BN). Without going into 

details of MDL derivation, we just note here that the first term of the MDL score is 

the description length of a Bayesian network, i.e. the number of bits required to 

encode the network parameters, while the second term is the negative log likelihood 

of the model BN given data D, which gives the number of bits needed to describe D 

when using BN. 

 Structure searching strategy: the number of possible network structures (NS) 

grows exponentially with the number of nodes (n) (Robinson, 1977, Friedman and 

Koller, 2003) after formula (2): 

)(2)1()( )1(

1

1 inNS
i

n
nNS ni

n

i

i
 for n>1 (2) 

For example NS(5) = 29281 and NS(10) = 4.2 × 10
18

 (Robinson, 1977). Therefore, 

most algorithms for learning Bayesian networks are heuristic search algorithms. 

Some examples are the K2 algorithm (Cooper and Herskovits, 1992), the Structure 

EM algorithm (Friedman, 1998), the Greedy Equivalent Search (GES) algorithm 

(Meek, 1997, Chickering, 2002a, Chickering, 2002b), and so on. 

We propose in this paper two types of Kansei engineering models: an unsupervised 

model and a supervised model. 
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4.1 Unsupervised Kansei model construction  

An unsupervised Kansei model consists in an unsupervised learning of the whole set of 

probabilistic relationships existing within the data and especially between perceptual 

attributes and technical attributes. We used the SopLEQ technique, which is a quick 

search based on the whole dataset. It uses a cost function based on the MDL score and a 

structure search method based on equivalent model classes (Jouffe and Munteanu, 2001, 

Munteanu and Bendou, 2001, Jouffe, 2002). The description of SopLEQ as well as its 

advantages compared to the other search techniques is pointed out in (Jouffe and 

Munteanu, 2001, Munteanu and Bendou, 2001, Jouffe, 2002). Figure 2 represents the 

constructed BN without any user modifications. 

 

 

Figure 2 Unsupervised learning to identify probabilistic relationships within the data (i.e. 
between dashboard physical - car icon - and perceptual - face icon - attributes) 

Edges in this bayesian network can be interpreted as causal relationships. For instance, 

according to Figure 2, the subjective attribute “Novelty” depends on the two physical 

attributes “Air vent Shape” and “Speedometer position”. Each relation (i.e. edge) is 

expressed through a conditional probability table, which is automatically computed. For 

example, the relation between “Novelty”, “Air vent Shape” and “Speedometer position” is 

represented through Table 2. 
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Table 2  Conditional probabilities representing the causal relation between “Air vent Shape”, 

“Speedometer position” and “Novelty”. According to this table : P(novelty= very 

low Speedometer dial position=at the center & Air vent shape=rounded)=13,6% 

Speedometer dial 
position 

Aerator 
shape 

Novelty 

Very low Low Medium High Very High 

At the centre Rounded 13.6 36.4 31.8 9.1 9.1 

Square 27.3 36.4 27.3 0.0 9.1 

Behind steering 
wheel 

Rounded 24.2 60.6 9.1 6.1 0.0 

Square 75.8 24.2 0.0 0.0 0.0 

 

We notice here that the constructed model (cf. Figure 2) allows identifying three types of 

relationships:  

 Relationships within technical attributes. For example, “Air vent shape” has a 

direct impact on the “Aerator shape”. 

 Relationships within perceptual attributes. For example, “harmony” perception 

has a direct impact on “comfort” perception. 

 Relationships between technical and perceptual attributes. For example, the two 

physical attributes “Air vent Shape” and “Speedometer position” have an impact on 

the “Novelty” perception. 

4.2 Supervised Kansei model construction  

Instead of learning a Bayesian network representing all the probabilistic relations that 

hold in the data set such as we performed in the previous paragraph, it is possible to apply 

supervised learning algorithms to characterize a specific target attribute. This technique 

allows identifying the attributes that really characterize the target attribute. The target 

attribute may be a perceptual attribute such as “Novelty” when user looks for 

understanding and characterizing a customer satisfaction. It may also be a technical 

attribute when user has to perform a decision about that attribute in order to optimize it.  

When the user looks for characterizing a target attribute (e.g. novelty), the supervised 

learning is more relevant to apply than the unsupervised learning. Indeed, the supervised 

learning focuses the learning on identifying relations between the target attribute and the 

other attributes instead of learning all the probabilistic relations that hold in the data set. 

Thereby, the result of a supervised learning is more accurate with respect to the target 

attribute than the result given by an unsupervised learning. For instance, according to the 

model presented in Figure 3, the main physical attributes really influencing a customer 

perception of a dashboard “novelty” are the “speedometer dial position”, the “dashboard 

color” and the “style lay-out”. This is quite different compared to the result of the 

unsupervised model (cf. Figure 2), which suggests that the “speedometer position” and 

the “air vent shape” are the technical attributes that directly influence the “novelty” 

perception. In section 4.3, we show through a numerical evaluation that the supervised 

learning provides more accurate results than the unsupervised learning when one looks 

for characterizing a given target attribute. 
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 Unsupervised and supervised models are complementary: through a global 

optimization, the unsupervised technique allows having an idea about all relationships 

that hold in the data set. On the other hand, the supervised technique allows refining the 

characterization of a target attribute.   

 

Figure 3 Supervised learning to characterize a target attribute (e.g. “Novelty”). This model 
shows that the main physical attributes really influencing the “novelty” perception of a 
dashboard are the “speedometer dial position”, the “dashboard color” and the “style 
lay-out”. The model also points out a probabilistic relation between the perceptual 
attributes “novelty” and “quality perception”. 

We tested several algorithms to construct the supervised model presented in Figure 3 

(Markov Blanket and Augmented Markov Blanket). All these algorithms give the same 

result. The presentation as well as the comparison of these algorithms is out of the 

purpose of this paper (see (BayesiaLab, 2006) for more details). 

In section 4.4, we show how unsupervised and supervised learnt models, such those 

we constructed respectively in section 4.1 and 4.2, are used by a designer in order to 

evaluate design solutions or/and identifying the best technical solutions so as to optimize 

a target attribute of a design. 

4.3 Model evaluation 

We distinguish two types of model evaluation tasks: expert evaluation and numerical 

evaluation.  

The expert evaluation consists in verifying that the model constructed has identified 

the evident relationships commonly known by the domain experts. Otherwise, an expert 

may use another score function, another structure search strategy and/or reconsider the 

data-preprocessing step (i.e. performing another discretization of the data).  

In this paper, we propose two assessing methods according to the type of the Kansei 

bayesian mode (i.e. unsupervised or supervised). 
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4.3.1 Numerical assessing of unsupervised Kansei model 

 The numerical accuracy of an unsupervised model is written as: P(D|BN) meaning the 

probability of the data given the Bayesian Network (BN). It is more common to use the 

log likelihood of BN given D provided by formula (3): 

n

i

Qi

j

Ri

k

ijijkijk NNNNBNDP
1 1 1

2 )/log(*)/()((log  (3) 

where: 

 U is the set of attributes {X1,X2,….Xn}, n>=1, 

 N is the total number of attributes, 

 Xi is an attribute which takes values from {Xi1,Xi2….}, 

 Ri is the total number of values of Xi, 

 D is the data set over U, 

 BN is a Bayesian network structure over U, 

 N is a number of instances in D, 

 Qi is the total number of value combinations of Pi in BN, 

 Nijk is the number of cases in D in which Xi=Xik and Pi=Wij. 

 

The log likelihood measures how many bits are needed to describe D based on the 

probability distribution P. It also has a statistical interpretation: the higher the log 

likelihood, the closer BN is to model the probability distribution in the data D.  

To assess our unsupervised Kansei model, we divided the data into two subgroups, a 

training set (Dtraining = 80% of the data set) and a testing set (Dtest = 20% of the data set). 

We selected the testing set so as to be the most representative as possible with respect to 

the original data. Next, we learned a BN using the training set. Then, we compared the 

log likelihood of BN given Dtraining and the log likelihood of BN given Dtest. The model is 

acceptable if the two values are close, i.e. log(P(Dtraining BN))  log(P(Dtest BN)). This 

means that the model is able to represent unseen data (i.e. Dtest).  

log(P(Dtraining BN))=21.75 and log(P(Dtest BN))=24.38. The model fits at least as 

well as good to testing set than to training set. 

4.3.2 Numerical assessing of a supervised Kansei model 

 As we stressed in section 4.2, when the user looks for characterizing a target attribute 

(e.g. novelty), supervised learning is more relevant to apply than unsupervised learning. 

In this section, we show through a numerical evaluation that the supervised learning gives 

also more accurate results than unsupervised learning when one looks for characterizing a 

target attribute. 

To do so, we consider a supervised model and an unsupervised models as classifiers: 

the m modalities of the target attribute are considered as m classes {C1, …, Cm} and the 

role of the bayesian network is to assign an unknown dashboard X to a class Ci according 

to the measurements made on the dashboard. 
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We consider the two models (supervised and unsupervised) we presented in sections 

4.1 and 4.2. They have been constructed from the same training set Dtraining. Then we 

compare their ability to predict the novelty class (i.e. very low, low, medium, high or very 

high) of a set of dashboards Dtest that did not participate in the models learning. We 

define the sensitivity and precision notions to compare the models accuracy by formula 

(4): 

posfpost

post
precision

pos

post
ysensitivit

__

_
,

_  (4) 

where: 

 pos is the number of positives: samples that really belong to class Ci (the sum of 

rows in the occurrency table of Table 3, 

 t_pos is the number of true positives: samples that belong to Ci and were correctly 

classified (the diagonal of the occurrency table of Table 3), 

 f_pos is the number of false positives: samples that do not belong to Ci and were 

uncorrectly classified in Ci (numbers that do not belong to the diagonal of the 

occurrency table of Table 3). 

Table 3 regroups the concurrency tables, the sensitivity tables and the precision tables 

that allow us to compare supervised and unsupervised models accuracy. According to 

these tables, supervised model is more accurate to predict the “novelty” of a dashboard 

characterized by the 18 other attributes.  
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Table 3 The comparison of the sensitivity and the precision of supervised and unsupervised 

Kansei models. According to this table, supervised model is more accurate to predict 
the “novelty” of a dashboard characterized by the 18 other attributes. 

Occurrency table

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 2 2 0 0 0

Low (9) 0 6 2 1 0

Medium (4) 0 1 2 1 0

High (0) 0 0 0 0 0

Very high (1) 0 0 0 0 1

Sensitivity table = t_pos/pos = xij/sum_column

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 50.0 % 50.0 % 0.0 % 0.0 % 0.0 %

Low (9) 0.0 % 66.66 % 22.22 % 11.11 % 0.0 %

Medium (4) 0.0 % 25.0 % 50.0 % 25.0 % 0.0 %

High (0) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Very high (1) 0.0 % 0.0 % 0.0 % 0.0 % 100.0 %

Precision table = xij/sum_lign = t_pos/t_pos+f_pos

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 100.0 % 22.22 % 0.0 % 0.0 % 0.0 %

Low (9) 0.0 % 66.66 % 50.0 % 50.0 % 0.0 %

Medium (4) 0.0 % 11.11 % 50.0 % 50.0 % 0.0 %

High (0) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Very high (1) 0.0 % 0.0 % 0.0 % 0.0 % 100.0 %P
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Occurrency table

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 1 3 0 0 0

Low (9) 1 6 4 2 1

Medium (4) 0 0 0 0 0

High (0) 0 0 0 0 0

Very high (1) 0 0 0 0 0

Sensitivity table = t_pos/pos = xij/sum_column

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 25.0 % 75.0 % 0.0 % 0.0 % 0.0 %

Low (9) 7.14 % 42.85 % 28.57 % 14.28 % 7.14 %

Medium (4) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

High (0) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Very high (1) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Precision table = xij/sum_lign = t_pos/t_pos+f_pos

Very low (2) Low (9) Medium (4) High (2) Very high (1)

Very low (4) 50.0 % 33.33 % 0.0 % 0.0 % 0.0 %

Low (9) 50.0 % 66.66 % 100.0 % 100.0 % 100.0 %

Medium (4) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

High (0) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Very high (1) 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
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4.4 Model simulation 

As we pointed out in the introduction, three main use scenarios of our BN model are 

possible. We present each of them with explaining examples in the following sub-

sections. 

4.4.1 Direct/analysis scenario 

A design process can be perceived as a decision process during which the designer tunes 

a set of technical attributes in order to satisfy a required predefined performance. Before 

carrying out any decision (i.e. technical choice), the designer analyzes the impact of his 

choice on the other attributes (perceptual as well as physical). The direct/analysis 

scenario allows answering the question “what is the probable impact of the choice 

related to physical attributes on the other design attributes and especially on the 

perceptual attributes”. In a sense, this scenario consists in observing a technical attribute 

and analyzing its impact on the other attributes. It may typically be used to compare 

different technical solutions.  

The two types of models, unsupervised learnt model (Figure 2) and supervised learnt 

model (Figure 3), may be used to help a designer applying this scenario. 

 

(a) The use of a supervised learnt model in a direct scenario 

In a direct use scenario, the input of a supervising learnt model is a technical (or physical) 

attribute. Let us take the speedometer dial position as an example. Analyzing the impact 

of that attribute consists in performing a supervised learning of its relationship with the 

other attributes. 

 

Figure 4 Supervised learning to characterize the relationship of a technical attribute (e.g. 
“Speedometer dial position”) with other technical attributes and its impact on the 
perceptual attributes. 
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The model presented in Figure 4 allows identifying two types of relations:  

 The interactions of the technical target attribute, i.e. the “speedometer dial 

position”, with the other technical attributes. Figure 4 shows that the 

“speedometer dial position” has probabilistic correlations with the “dashboard 

arrangement space”, the “dashboard color” and the “dashboard style lay-out”. In 

other words, a change of the speedometer dial position may impact the arrangement 

space attribute and the choice of the dashboard color and/or the choice of the style 

lay-out. For instance, the model states that positioning the speedometer at the center 

of the dashboard may increase the arrangement spaces (cf. Figure 5). It also states 

that, generally, a dashboard whose speedometer dial is positioned at the center is 

likely to have curved lines style lay-out and two colors (cf. Figure 5). 

 

 

Figure 5 The impact of the choice ““Speedometer dial position=at the center” on the other 
technical attributes (The arrows indicate the evolution of the probability distribution 
when choosing the modality “at the center” compared to the choice of the modality 
“behind the steering wheel”. It is not the distribution that user have to see in this graph 
but the distribution evolution). 

 The impact of the technical target attribute on the perceptual attributes: 

According to the model we presented in Figure 4, the speedometer dial position has 

an impact on the dashboard “novelty perception” as well as on the “control 

comprehensibility”. This model not only helps the design to identify the relevant 

relations between the technical target attribute and the other design attributes, but 

also allows him knowing how it impacts them. For instance, the model states that a 

dashboard whose speedometer dial is positioned at the center is perceived by 

customers as more novel than a dashboard whose speedometer dial is positioned 

behind the steering wheel. However, that choice deteriorates the control 

comprehensibility. In a sense, the model allows designer comparing the two possible 

technical choices related to the speedometer dial position (i.e. at the center or behind 

the steering wheel) in a multicriteria way (cf. Figure 6). 
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Figure 6 The influence of a technical choice “speedometer dial position= at the center” on the 
dashboard novelty lay out as well as on the control comprehensibility 

 

 

Figure 7 The influence of a technical choice “speedometer dial position= behind steering wheel” 
on the dashboard novelty lay out as well as on the control comprehensibility 

The use of a supervised learnt model allows carrying out a local optimization: it concerns 

only the most correlated attributes to the target attribute. For example, choosing to 

position the speedometer dial at the center of the dashboard improves the novelty 

perception, but what about the impact of such a choice on all other attributes? A 
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supervised learnt model does not allow answering such a question and that is why we 

propose in the next sub-section the use of an unsupervised learnt model.  

 

 

Figure 8 The influence of the speedometer dial position on the perceptual attributes 
characterizing a dashboard. According to this figure, placing the speedometer dial at the 
dashboard center improves the novelty perception, the sportive lay-out, the harmony 
perception, the quality perception, the arrangement space perception. But, at the same 
time this choice deteriorates the comfort perception 

(b) The use of an unsupervised learnt model in a direct scenario 

When a designer performs a choice concerning a given technical attribute, he may be 

interested by the information related to his choice impact on all attributes (technical as 

well as perceptual). Indeed, improving a given perceptual attribute may deteriorate 

another perceptual attribute and/or introduce hard technical constraints. This information 

is fundamental for a global optimization of the design. As we noticed in the previous 

section, a supervised learnt model does not allow obtaining such an information. To 

handle that issue, we propose the use of a non supervised model such the one we 

presented in Figure 2. Obviously, such a model is less precise than a supervised model, 

but it is more reliable for the global optimization to avoid erroneous decisions. 

The interactive simulation of the model we presented in Figure 2 allows us having an 

idea about the global impact of the choice related to the speedometer dial position. 

According to Figure 8, locating the speedometer dial at the dashboard centre improves 

the novelty perception, the sportive lay-out, the harmony perception, the quality 
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perception, the arrangement space perception. But, at the same time this choice 

deteriorates the comfort perception. 

A technical choice may also be incompatible with other technical attributes or induce 

hard constraints toward other technical choices (e.g. cost, hard technology, functional 

incompatibility, etc.) (cf. Figure 9). 

 

 

Figure 9 The interaction of the speedometer dial position with the technical attributes 
characterizing a dashboard. According to this figure, dashboards whose speedometer 
dial is located at the centre have generally many arrangement spaces, two colors, curved 
lines style lay-out and digital display lay-out1. 

4.4.2 Inverse scenario 

The inverse scenario allows answering the question “what are the best choices (related 

to technical attributes) the designer has to perform in order to maximize a perceptual 

attribute?”. This is a typical question a designer asks when he carries out a design 

synthesis task. In the previous section we showed how a bayesian network allows a 

designer to simulate the impact of a technical choice on perceptual and technical 

attributes: input=design choice, output=impact on design attributes and performances. In 

this section, we show how the same model allows a designer identifying all possible 

                                                 
1  What user should interpret in Figure 9 is not the probability distribution itself, but its evolution 

compared to the opposite choice. For example, although  

 P(Display_lay-out=analogue speedometer_position=at_the_center)=P(Display_lay-

out=digital speedometer_position = at the center), what user should see is the fact that 

P(Display_lay-out=analogue speedometer_position=at_the_center)>P(Display_lay-

out=digital speedometer_position = behind the steering wheel). By the same interpretation 
rule, we can notice that the “Aerator shape” is independent from the “speedometer position”. 
The arrows help user performing such interpretation task. 
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design choices that allow him optimizing a given perceptual attribute (or performance): 

input=perceptual attribute to be optimized, output=possible design choices. In other 

words, this scenario consists in observing a perceptual attribute and analyzing how it 

interacts with the other attributes. 

As an example, we take the “dashboard novelty perception” as target attribute to 

optimize and show how a BN allows identifying the best technical choices designers can 

perform to improve that attribute. Supervised and unsupervised learnt model can be used.  

 

 (a) The use of a supervised learnt model in a inverse/synthesis scenario 

The supervised learned model we presented in Figure 3 states that the main relevant 

technical attributes that impact the novelty perception of a dashboard are the 

“speedometer dial position”, the “dashboard color” and the “style lay out”. Moreover, 

that model can suggest to the designer how to carry out the required adjustments (cf. 

Figure 10) to improve the dashboard novelty perception.  

 

 

Figure 10 Supervised learning to characterize a target attribute (e.g. “Novelty”) and to represent 
its sensitivity towards attributes impacting it. 

According to Figure 10, to improve the novelty perception, a designer should choose the 

second modality of the style lay-out attribute (i.e. “curved lines” instead of “straight 

lines”) and/or the second modality of the dashboard color (i.e. “two colors” instead of 

“single color”) and/or the first modality of the speedometer dial position (i.e. “at the 

centre” instead of “behind steering wheel”). Figure 11 illustrates these statements.  
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Figure 11 The optimal technical choices designer should carry out in order to improve the novelty 
perception. This figure confirms what Figure 10 states: i.e. to improve the novelty 
perception, designer should choose a dashboard having a curved lines style lay-out in 
stead of straight lines style lay-out and/or a two colors dashboard instead of a single 
color dashboard and/or a dashboard whose speedometer dial is at the centre instead of a 
dashboard whose speedometer is behind the steering wheel. 

The use of the supervised model is not sufficient because of the two following reasons: 

 The technical solutions suggested by a supervised model are certainly the most 

relevant to be tuned in order to optimize the target attribute. But, controlling them 

may be hard to carry out because of constraints related to cost, time and/or 

technological difficulties. Then, a designer has to find other levers even though these 

levers are less efficient (in term of their impact) than the ones identified by the 

supervised model.  

 Improving a perceptual target attribute may deteriorate other perceptual attributes. 

To handle those issues, we propose to use a supervised learnt model, which allows a 

designer carrying out a global simulation to analyze the impact of his choices (cf. next 

sub-section). 

 

(b) The use of an unsupervised learnt model in a inverse/synthesis scenario 

The same unsupervised model we presented in Figure 2 may be used to optimize a 

perceptual attribute. Such a model allows the two following points: 

 Identifying all technical choices a designer can perform to improve the perceptual 

target attribute. Thereby, the designer can choose to tune the technical attributes, 

which are at the same time the most relevant (in term of their impact on the target 

attribute) and which engender the least constraints (in term of cost, time, 

technologies, etc.) (cf. Figure 12). 

 Analyzing the impact of the optimization and avoid to deteriorate other perceptual 

performances of the design. For example, Figure 13 shows that improving the 

novelty perception is consistent with the improvement of other perceptual attributes 

such as the “quality”, the “sportive lay-out”, the “harmony”, the “comfort”. 

However, it may at the same time worsen the “control comprehensibility”, the “space 
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organization” and the “masculinity lay out” of a dashboard. Providing a designer 

with all these information is crucial to help him optimizing his choices. 

 

Figure 12 The optimal technical choices designer should carry out in order to improve the novelty 
perception of a dashboard. Compared to Figure 11, this model allows identifying all 
technical choices and not only the most relevant. Hence, it provides designer with more 
flexibility and choice possibilities. 
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Figure 13 The impact of improving the novelty perception of a dashboard. Improving the novelty 
perception of a dashboard may be consistent with the improvement of other perceptual 
attributes (e.g. quality, harmony), but it may also deteriorate some other perceptual 
attributes (e.g. control comprehensibility, space organization). 
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4.4.3 A compound scenario for designing under constraints 

In a design process, a designer is confronted to many constraints, which make the control 

of some technical attributes hard (or impossible) because of restrictions related to the cost 

and/or time and/or technology. In that case, the designer has to freeze some technical 

choices and tune others. Suppose a designer looks for the different technical possibilities 

to improve the novelty perception of a dashboard he is developing and suppose he has no 

other choice but putting the speedometer dial behind the steering wheel. According to the 

previous sections (cf.  

Figure 12), this constraint does not fit with his objective because a dashboard whose 

speedometer dial position is at the center looks more novel than a dashboard whose 

speedometer is behind the steering wheel. Thereby the designer must identify the other 

levers (i.e. the other technical choices) he can play with in order to improve the novelty 

perception of the dashboard he is designing as much as possible. The unsupervised model 

we presented in Figure 2 allows handling that issue.  

In a sense, this is a mixed scenario of the two previous ones: at a first step a decision 

about a technical choice, so a direct scenario, is performed (“speedometer dial position” 

= “behind the steering wheel”). Then an inverse scenario is carried out to know what are 

the other technical attributes the designer can tune to optimize the perceptual attribute 

(i.e. to maximize the novelty perception). A simulation of a compound scenario is 

represented in Figure 14. 

 

 

Figure 14 A compound scenario. A direct scenario is performed (“speedometer dial position” = 
“behind the steering wheel”) and then an inverse scenario is carried out (“novelty 
perception” = “High”) to know what are the other technical attributes the designer can 
tune to optimize the perceptual attribute (i.e. to maximize the novelty perception). 
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5 Discussion 

The main point discussed here is related to the reliability of our bayesian models. Since 

our approach to construct these BN models is a learning approach based on collected 

data, then the precision and reliability of these models essentially depend on the 

reliability and precision of the data used. Indeed, if the data used is not representative of 

reality, the reliability of the model may be deceptive. But, two considerations allow 

handling this drawback: 

 The numerical assessment tools we propose here allow evaluating the accuracy of 

the model constructed and thereby to decide if some tasks have to be reconsidered 

such as the data pre-processing, the choice of a score function, the choice of the 

structure search strategy. 

 The expert can implement his knowledge to refine the model automatically 

constructed especially in the data-preprocessing step when he discretizes the 

attributes.  

 Another lever to handle the issue of data incompleteness is the possibility to have a 

larger data set, more representative than the one we used. Practically, if a larger 

number of dashboards are evaluated and a larger number of customers participate in 

the evaluation of these dashboards, the data collected would be more representative 

and thereby the model constructed would be more reliable. 

 These models are evolutive: customer perception of a given design remains 

subjective (despite the non hedonistic condition, the assessments between customers 

may largely differ) and thereby evolves in time and depends on several parameters 

such as culture, geography, etc. Hence, data have to be updated so as to take that 

evolutivity into account. Since our models are automatically based on these data, 

their update (i.e. the update of the relations between attributes and of conditional 

probability tables) is then automatic. 

Finally, the BN models we presented in this paper were presented to experts and their 

simulation results were judged very satisfactory. 

6 Conclusion and perspectives 

In a design process, designers need tools to help them understanding customers’ needs 

and thereby predicting their appreciation level of a new product. In this paper, we 

propose two complementary types of bayesian network models to answer that question:  

 Unsupervised learnt models: these models represent the whole set of probabilistic 

relationships existing within the data. They allow having an idea about all 

relationships that hold in the data set and thereby they are more efficient to carry out 

a global optimization of the design. 

 Supervised learnt models: instead of learning a BN representing all the 

probabilistic relations that hold in the data set, unsupervised models allow refining 

the characterization of a specific target attribute in that they allow identifying the 

attributes that really characterize the target attribute. A target attribute may be a 
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technical attribute as well as a perceptual attribute. These models are more efficient 

to carry out a local optimization of the design. 

In this paper, we defined three scenarios to use our models: 

 A direct/analysis scenario in which the input is a technical attribute and the output 

consists of an analysis of its impacts on the other design attributes (technical and 

perceptual). This scenario is typically used when a designer wants to compare 

different technical solutions. 

 An inverse/synthesis scenario in which the input is a perceptual attribute and the 

output consists of a list of technical choices the designer can perform to optimize the 

perceptual attribute. This scenario is typically used when a designer wants to identify 

all technical solutions to optimize a given performance of his design. He can then 

choose the most relevant and the least constraining technical attributes to tune. 

 A compound scenario in which both technical and perceptual attributes are 

observed and the impact on the other attributes is analyzed. This scenario is typically 

used when a designer wants to optimize a given performance of his design under 

design constraints (cost, time, technology, etc.). 

Finally Bayesian Networks turn out to be a very flexible and powerful technology in 

preliminary perceptual (or emotional) design in terms of simulation and prediction 

capacities. 
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