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Abstract: Once a design concept chosen and parameterized, the embodiment 
design stage consists in choosing materials and dimensions to ensure a “good 
matching” with the expected performances. In this context of the first stages of 
a parametric design, several approaches exist which correspond to slightly 
different complexities and issues, which are more or less easy to implement and 
must, consequently, be used at different stages. We consider in this paper three 
families of approaches: (1) exploring design (parametric) dimensioning under 
uncertainty (through constraint programming techniques, representations of 
feasible design points or Pareto frontiers), (2) robust design and multi-
disciplinary optimization and, lastly, (3) design for reliability. One advocates 
and states in this paper that these approaches must be used in that order of 
increasing complexity. Indeed, applying an approach allows to quickly figure 
out inadequacies with performance specifications or initial allowable bounds of 
design parameters and then to backtrack or to refine the design issue before 
passing to the next stage or approach. We illustrate that phenomenon in 
successively applying the three approaches on an ever more complex 
parametric dimensioning issue of a two-member truss structure. We clearly 
show that the successive optimal designs obtained by the three categories of 
methods are notably different, but that the optimal point obtained in a given 
approach is used to explore its surroundings in the next approach. 
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1 Introduction and overview of embodiment design methods 

The exploration of design parametric dimensioning under uncertainty can be made 

in using (1) fuzzy sets theory applied to design engineering (Antonsson and Otto, 1995), 

(2) Monte Carlo simulations (i.e. generating feasible design points) followed by an 

exploration within the feasible design space (see for example (Stump et al., 2004)) and 

(3) constraint programming techniques (Yannou and Harmel, 2005). We have already 

experimented that constraint programming techniques may be convenient (as soon as 

they are well tuned) to quickly result in an encompassing approximation of the design 

space (see (Yannou and Hamdi, 2004)). In addition, a further Monte Carlo sampling 

within this approximate space has been shown (see (Yannou et al., 2005)) to be very 

efficient to straightforwardly obtain a good ratio of feasible design points (i.e. respecting 

the different design constraints and specifications). An exploration of a set of feasible 

design points is a valuable alternative and even may be preferred to the use of a global 

objective function (or a global preference aggregation function) because in preliminary 

design the weighting of the different objectives may be very subjective. This is why we 

believe that exploration lets the designer to be more opportunistic and even to acquire a 

better comprehension of the potential of its parameterized design. Lastly, techniques for 

generating and exploring the Pareto optimal solutions are evoked. On the example of 

the truss structure, it is shown that the design issue is already well constrained and that a 

tradeoff is useful to loosen somewhat some specifications in order to keep a sufficient 

degree of freedom to tackle robust design and design for reliability. 

The multi-disciplinary design uses multi-objective optimization algorithms to find 

the best design that fulfills the numerous performances to be reached. These 

performances are evaluated using numerous disciplinary theories. It is often difficult to 

take the different theories into account in the unique formalism of an optimization 

approach. We propose to use a metamodel (or surrogate model) (Papalambros, 2002) 

that enables to formalize multi-disciplinary knowledge and to evaluate several 

performances using just one kind of mathematical formulation. To illustrate the 

elaboration of a metamodel, the design of experiments method and an identification 

method (least mean square method) are used to identify predefined mathematical 

functions that link design parameters to performances. 

Once these functions are validated, they represent with a unique form several physical 

phenomena and can be used to evaluate, approximately but very quickly, the behavior of 

the design that can be evaluated. This evaluation can be made according to different 

criteria such as robustness or reliability. 

As defined by Taguchi, a robust design is a design of a product so that its 

functionality varies minimally despite of disturbing factor influences, which can be 

associated to environment factors, usage factors or technical factors such as design 

parameters… The aim is not to find the most performing design according to the set of 

performances to be reached, but to guarantee that the higher level of performing is 

guaranteed whatever the perturbations on the definition, process, usage or environment 

parameters are. The use of desirability functions to formalize the optimization goal and 

the signal/noise ratio in design of experiments enables to find on the truss structure the 

most robust solution.  
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The design for reliability aims to find the optimal solution that fulfills a given 

reliability condition. The fluctuation of loads, the variability of material properties and 

the uncertainties regarding the analysis models, contribute to make the performance of 

the optimal design different from the expected one. In this sense, the optimization process 

has a large effect on the structural safety and/or reliability. However, the safety factor 

approach cannot ensure the required safety level, as they do not explicitly consider the 

probability of failure regarding some performance criteria. In other words, the optimal 

design resulting from deterministic optimization procedures does not necessarily ensure 

the required reliability level. The design for reliability allows us to consider the safety 

margin evolution, leading to the settlement of the best compromise between the life-cycle 

cost and the required reliability. This task is further complicated due to the inherent non-

deterministic nature of the input information. For this reason, many analysis methods 

have been developed to deal with the statistical nature of data. The process efficiency is 

mandatory to deal with realistic engineering problems (Kharmanda et al., 2002); the 

metamodels can thus be very helpful in achieving the reliability-based optimal design 

with a reasonable computation effort. The solution obtained on the reliability basis is 

rather robust as the uncertain parameters are penalized during the design process, 

compared to a greater commitment of the well-controlled parameters. Practically, the 

design problem is formulated as a minimization of the cost function under some 

prescribed reliability targets (Aoues and Chateauneuf, 2007, in Press). 

For the robust design and design for reliability approaches, the truss structure 

example has been made more complex in adding two performances: fundamental 

frequency and section area. 

This paper can be considered as a brief survey of the main approaches that can be 

followed during the embodiment design stage of a product. Its purpose is, on a practical 

example of the parametric dimensioning of a truss structure, to concurrently apply these 

approaches so as to figure out that it is worthy to apply them successively in an ever 

refining embodiment design process. The paper is structured into five more sections: a 

presentation of the truss structure dimensioning issue, one section for each of the three 

approaches and a section of concluding remarks. 

2 The truss structure dimensioning design issue: A first modelling 

Our case study consists of dimensioning the two members of the truss structure shown in 

Figure 1. This problem was originally proposed by Wood, et al. (Wood et al., 1989) to 

compute imprecise performance parameters from imprecise design parameters via fuzzy 

sets theory. This example has also been used by Scott, et al. (Scott and Antonsson, 2000) 

in a different parameterized form to select an optimal Pareto solution that could not be 

selected via a linear aggregation function using importance weights. For this example, we 

use the exact parameterization and initial design variable ranges of the truss structure 

described by Wood, et al. (Wood et al., 1989), but we have chosen the more complex 

design constraints and performance parameters used by Scott, et al. (Scott and 

Antonsson, 2000). 
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Figure 1  The parameterization of the truss structure 

The requirement is to design a mechanical structure supporting an overhanging vertical 

load at a distance L from the wall with a minimal mass. One possible configuration (see 

Figure 1) consists in a two-member pin-jointed bracket with a horizontal member (CD) 

and a compression member (AB) attached to the wall at an angle of sixty degrees. The 

common pin is located at two thirds of L from the wall. Both members have rectangular 

cross sections: wAB t for (AB) and wCD t for (CD), w standing for width and t for 

thickness. Additional design decisions have been made: the material of both members is 

steel, and we impose wCD = wAB - 0.025. The designer has to make decisions for the 

values of the following design parameters: t, wAB and L. Moreover, the specification of 

the overhanging load W is imprecise at the beginning of the design process, varying from 

15-20 kN; consequently, W is treated as a fourth design variable.  

The two mechanical constraints to satisfy are: 

 the maximum bending stress, b, in member (CD) must be less than or equal to the 

allowable bending limit, r (here 225 MPa for steel). 

 the compression force FAB in member (AB) must be less then or equal to the buckling 

limit Fb. 

The maximum bending stress, b, is located at point B and is given by the following 

formulas involving WCD, the weight of member (CD): 

025.0
      with  

6
2

2

ABCD

CDCD

CD

CD

b
ww

tLgwW

tw

W
WL

  (1) 

The compression force in member (AB) is given by the following formulas involving 

WAB, the weight of member (AB): 
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The buckling limit in member (AB) is given as: 

2

3

2 64
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AB
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b

 (3) 

The performance variables are the mass M of the structure (to be minimized) and the 

safety factor, s, i.e., the amount of over-dimensioning beyond the satisfaction of the two 

mechanical constraints. The mass M is given by: 

CDAB WWM
 (4) 

The safety factor of the truss structure s is the minimum between the safety factor below 

the allowable bending limit, b, namely, s , and the safety factor below the buckling 

limit, Fb, namely, sF, which is expressed as: 

F

AB

b
F

b

r sss
F

F
ss ,min,,  (5) 

The two mechanical constraints may be merely expressed by: 1,1 Fss  or simply 

by the single constraint:  

1s       (6) 

3 Exploration of design parametric dimensioning under uncertainty 

Design space exploration during embodiment design is an active research field. It 

consists in exploring the relationships between the choices of design parameter values 

and the performance variable values. This exploration provides the designer with a deep 

understanding of the potential of the given design concept that is studied, in comparison 

of a direct optimization of an objective function (function of the performance values). 

Often, a design space exploration is performed within a “design under uncertainty” 

process which is a process of dimensioning the product in progressively and consciously 

narrowing the domains (of allowable values) of design parameters while respecting the 

specifications on performance variables and constraints (like the aforementioned 

mechanical constraints). Three family of techniques are used to support the uncertainty 

reduction forwardly (from parameter domains to performance domains) and backwardly 

(from performances to parameter domains): 

 Fuzzy sets theory in design engineering (see (Antonsson and Otto, 1995), not 

detailed here), 

 Probabilistic techniques: most of these approaches consist in generating a number of 

feasible design points (complying with the constraints) and apply graphical post-

processing to visualize correlations between variables, the Pareto frontier or a 

preference structure among the design solutions (see (Stump et al., 2004)). The 

generation of feasible design points is often a statistical (Monte Carlo) generation of 

potential candidates sampled within initial variable domains, followed by the 

checking of constraints, which may become inefficient if the design problem is 
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highly constrained since a majority of candidates that are generated do not belong to 

the (small) feasible solution space. 

 Constraint Programming (CP) techniques. They are not only well adapted to a 

numerical exploration of dimensional values for both performance variables and 

design parameters. In addition, they are also adapted to topological explorations of 

design concepts or architectures under constraints and, by the way, to the 

consideration (and exploration) different configurations of system functioning 

constraints (such as external load conditions) depending of the considered lifecycle 

stages (like flight phases, in case of (Scaravetti et al., 2006b)). Scaravetti et al 

(Scaravetti et al., 2006a) have studied the way that CP techniques modelled under the 

CSP formalism (Constraint Satisfaction Problem, which is generally the case for CP 

techniques) must be used within an industrial deployment of a design project: which 

constrained variables, which constraints, evaluation of several alternatives, choice 

within component catalogs). 

With Constraint Programming (CP) over reals, performance variables and design 

parameters are modelled as intervals of allowable values. These constrained variables 

may be equated to uniform distributions of values in probabilistic modelling. CP 

techniques consist of sophisticated evolutions of interval analysis or interval arithmetics 

(see (Moore, 1979)) applied on a set of analytical constraints. Starting from a set of initial 

domains for the constrained variables and from a set of mathematical constraints linking 

the variables, different CP consistency or filtering techniques (such as Hull, Box, weak-

3B or 3B, see for instance (Benhamou et al., 1999) and (Yannou and Harmel, 2005)) try 

to contract as much as their consistency degree allows the variable domains so as to 

eliminate infeasible values. This domain contraction stage is called the filtering stage. 

One tries to result in the most tightened Cartesian product of intervals, ensuring at any 

moment that any feasible solution is kept inside. This last important property refers to the 

completeness property and guarantees that the contraction process results in an outer 

design space approximation.  

In the second stage, the mechanism of domain splitting (bisection for instance) is 

recursively applied in parallel with the filtering mechanism. A search tree is built until a 

stopping criterion (e.g., width of the domains, number of solutions) is reached. This 

branch-and-prune algorithm allows pruning out large parts of the design space whenever 

a domain is found to be empty. At the end of the process, the design space is 

approximated by a number of elementary and disjointed Cartesian products of small 

intervals, denoted as boxes. The resulting hull of boxes provides the designer with 

valuable information about the potential values remaining for any design variable at this 

stage. Finally, a graphical representation of this collection of n-dimensional boxes (n 

being the number of constrained design variables) is easy and convenient for obtaining 

good pictures of the resulting design space (by 2D or 3D projections on pairs or triplets of 

design variables). 

Figure 2 illustrates the four outer approximations of the design space that we can 

consider in a CP computation process, namely: 

 The initial domains; 

 The filtered domains after the uncertainty reduction propagation has been made for 

the first time; 
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 The hull of boxes, i.e., the projection on variable domains of the collection of boxes 

that have not been considered inconsistent after the domain splitting process (with no 

guarantee of any actual solution inside); and 

 The collection of boxes itself. 

It is obvious that, these four outer approximations of the design space are ordered in an 

increasing rank of refinement. 

We have already showed in (Yannou and Hamdi, 2004) that the graphical 

representations of the collections of boxes could be meaningful for the designer(s) to 

perform relevant analyses of variable correlations and tendencies and making good 

decisions in a multi-stages “design under uncertainty” process. This is a first important 

utility of CP techniques in preliminary parametric dimensioning. Two stages of such a 

dimensioning process are illustrated in Table 1 with two cases: 

 – The case of a “not so constrained” design problem, which means that the initial 

domain is not large compared to the effective solution space. This is the situation of 

Case #1 of the specification constraints on the truss structure (the safety factor is just 

constrained to be greater or equal than 1). 

 – The case of a “highly constrained” design problem, which means that the initial 

domains are much larger than the actual solution space. This is the case of Case #2 

of the specification constraints on the truss structure. 

Note that in both cases, the ever more constrained problem is performed throughout 

constraints on performances. It means that the designer(s) can, here, really design in a 

functional manner, starting from the need and propagating consequences towards the 

solution (the means). This interesting facility is here permitted by the back-propagation 

properties of the CP filtering mechanisms. 
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Figure 2 Initial interval domains of design parameters and performance variables for the truss-
structure problem (left). The four successive outer approximations of the design space 
available after a Constraint Programming (CP) computation (right). 

Another interesting case of domain reductions by CP techniques may be seen on the 

design exploration of an aircraft air conditioning system by Scaravetti et al (Scaravetti et 

al., 2006b). The design problem consists in optimizing the internal structures of the heat 

exchangers while satisfying the functioning constraints imposed by the system 

environment. The design variables are geometric and structural variables (lengths, surface 

types and pass number in the exchangers) but also thermodynamic variables (pressures, 

mass flow rates, temperatures). The performance variables are linked to efficiencies, 

mass, drag induced. 

After having sufficiently explored the design space of our truss structure and after 

several domain (and uncertainty) reductions, the designer(s) has converged toward a 

small design space of interest. It is time now to use probabilistic techniques to result in 

a cloud of feasible design points that one could apprehend one by one. We can perform a 

brute Monte Carlo simulation in sampling 100,000 design points by random trials within 

the initial domains of the design parameters (provided in Figure 2.left). After the 

checking of mechanical constraints, we have obtained (see also (Yannou et al., 2005)) 

15,000 feasible design points in the “not so constrained” case (case #1) versus only 4 in 

the “highly constrained” case (case #2). These feasible and unfeasible design points have 

been represented in Figure3-left to figure out the very low ratio of feasible design points. 

It is then problematic when the designer wants to finely explore the design space since 

the design space is not dense enough to display a continuous variation of performances. 

A second utility of CP computation techniques has then been proposed by Yannou et al in 

(Yannou et al., 2005): the ratio of feasible design solutions is much more efficient when 

sampling inside the collection of boxes (obtained from a primary CP computation). In 

that case #2, the number of feasible design points has been 9,500 instead of 4 (Yannou et 

al., 2005), a great gain in efficiency. 
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Table 1 CP computation of the truss structure - considering two series of specification 
constraints 

Specif. 
cons-
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Only a subset of the feasible design points may be eligible as the best or preferred 

solution: this is the set of Pareto optimal solutions. This set of Pareto solutions is 

represented as a curve in the performance space: this is the Pareto frontier. By 

definition, a Pareto frontier (see (Messac et al., 2003)) is the locus of non-dominated 

solutions, a dominated solution being a solution (design point) for which at least one 

solution (design point) is better for any of the performances. Highlighting the subset of 

Pareto solutions among the feasible design points is then very meaningful for designers. 

In (Stump et al., 2004) and in (Scaravetti et al., 2006b), the authors have developed 

graphical interactive tools in informing the designer on the performance values of a 

clicked optimal Pareto solution (the click is made in a performance plane or space) and in 

highlighting the corresponding design parameter values (made in a –design– parameter 

plane or space).  
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Figure 3 Representation of feasible and unfeasible design points in the performance space for 
case #2 with a sampling of 100,000 design points within two different sets of domains 
X=[t,w,L,W]. 

At this stage, it would be useful to benefit from a procedure to choose one of the Pareto 

optimal solutions as the preferred solution. Here, optimization techniques are often 

used. An objective function must then be built as a function of the performances (here M 

and s). A traditional form of this objective function is given by the following formula: 

1,01
minmax

max

minmax

min with
ss

ss

MM

MM
 (7) 

The weighting factor  must be identified by the designers. It is well known that, in case 

of a convex Pareto frontier, making varying  results in running all along the Pareto 

frontier (see Figure 4). But, in case of a concave Pareto frontier, some portions are not 

covered by an optimization process and, consequently, some Pareto solutions practically 

become non-eligible. This non trivial issue may be solved in using more sophisticated 

forms of the objective functions (see Scott and al for instance (Scott and Antonsson, 

2000)). 



   

 

   

   

 

   

   

 

   

    B. Yannou, N. Troussier, A. Chateauneuf, N. Boudaoud, D. Scaravetti    
 

    

 

 

   

   

 

   

   

 

   

       
 

 

  

  

Figure 4 An optimization of an objective function (function of s and M), making varying the  
parameter of linear combination, describes the all Pareto frontier. 

4 Robust design 

The aim of this section is to use a robust design approach as described by Taguchi 

(Fowlkes and Creveling, 1995) on the truss example. The first section has presented how 

to explore the design space and to identify the space of decision among the values of the 

different design parameters in order to reach fixed specifications or performances. Then, 

knowing the ranges of parameters that enable to reach the specifications, several criteria 

can be formalized to focus not only on a convenient design, but also on the best design. 

The criteria that we propose to use is the robustness, i.e. we search for the design solution 

that guaranties the level of performances whatever the variabilities on the design 

parameters are. That is to say that, the design parameters are chosen in order to have the 

performance levels the less sensitive as possible to the variabilities of design parameters, 

process variables and environment factors. These uncontrolled variabilities (for instance 

due to tolerances) should affect the less as possible the levels of performances. The 
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problem is not to suppress or control the variabilities but to minimize their effects on 

performances.  

Two different scales of design parameter values are used. The first level (concerned with 

the first section of this paper) of the scale is dealing with the variation of design 

parameters (different values of each design parameters that should be chosen to define 

the design). The second level is concerning with the variabilities around a design 

parameter value. These variabilities are small compared to the possible variation of the 

design parameter values but it is very important to be able to take these variabilities into 

account for decision making in the whole design process (Crossland et al., 2003, Ullman 

and D’ambrosio, 1995). 

In the present section, we will take some design parameter values, identified for the 

truss example in the first part of the paper as convenient values, to reach the 

specifications in terms of performances. Around these values some variabilities are 

considered to take into account some uncertainties on design parameters, process 

variables and environment factors. Then, a robust design approach is used to propose the 

most robust design in the design space under uncertainties. 

4.1 Specificities of the truss example for robust design 

Managing the quality of the truss design requires ensuring the reachable performances 

levels in a constrained and uncertain context. Even if a common practice is to find the 

first convenient design that enables to reach the functional specifications, numerous 

research works are conducted to improve the design methodologies in order to be able to 

find the best design instead of a good design. N. Suh with Axiomatic Design (Suh, 2001) 

is one of the first authors who proposes an approach that enables to guide design 

activities based on two axioms that evaluate the design all along the design process. 

Quality Function Deployment is especially appropriated to evaluate the quality of the 

product all along the design process. However, we will use the vocabulary introduced by 

the informational spaces proposed by N. Suh  ( in the following description of the robust 

design approach. Designing is then a transformation between the variables through these 

different spaces. Even if the role of history and knowledge is not highlighted by this 

model, it will be used to formalize the truss problem in order to use a robustness criterion 

for its design evaluation (El-Haik, 2005). 

 

Figure 5 The new parameters of the truss structure 
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On the truss structure the performances or functional requirements initially considered 

are M , s , Fs , s  and the design parameters are t , ABw , L , W  as described in 

Figure 5. Other design parameters are added in the problem formulation in order to have 

more sensitive performances. The two more design parameters that we consider in this 

section are: h , the distance between the top and the bottom of the truss, and  that 

parameterizes the position of the joint linking the two members of the truss along the 

horizontal member.  

4.2 The Taguchi robust design approach  

Axiomatic Design provides two axioms (the independence and minimal information 

axioms) that enable to evaluate the quality of the design (Suh, 2001). If these axioms 

present a great interest for new innovative design on “uncoupled” systems, this design 

context is not usual when complex products are improved from a design to another one 

and the constraints imply that the axioms cannot be respected in practice. For instance, on 

the previous truss design formulation, the two axioms are not respected by the 

formulation used in engineering design. Then, under specific conditions, a multi-

objective optimization formulation can be formulated in order to find the solution that 

provides the best level of performances. However, the design solution obtained is often 

sensitive to design parameters variabilities on design parameters due to the process 

(uncertainties managed as tolerances), the environment (uncertainties not managed but to 

support such as temperature, humidity, etc) but also due to desired variabilities such as 

users preferences, contexts of use of the product, etc. For instance the best solution for 

the truss structure previously defined is very sensitive to several variabilities such as 

illustrated in Figure 6. In this figure, the performance s is provided with respect of the h 

and t design parameters.  

In this case, the robust design approach enables us to find the best solution and the 

most robust to design parameters variabilities. Robust design has been introduced by G. 

Taguchi and is defined in (Flowkes and Creveling, 1995). The usual design approach 

aims at finding a design solution that reaches functional specifications and minimizing 

the uncertainties on design parameters. If some design parameters can be defined 

accurately, some tolerances always exit and perturbing factors can always be considered. 

Then, the robust design approach proposes to take into account the variabilities in the 

performances evaluation instead of avoiding it. Taguchi’s proposition is based on the 

design of experiment (DoE) method to evaluate the sensitivity of the performances taking 

uncertainties into account. These uncertainties or variabilities are introduced as noise 

factors in the Taguchi table of the design of experiment as a small variability around each 

value of the design parameters. The impact of these variabilities around the design 

parameters values can then be analyzed and the most robust solution can be obtained by 

maximizing the signal to noise ratio. 
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Figure 6 An example of a response surface which provides s, one of the performances {FRs} 

with respect to some sensitive design parameters of {DPs}, t and 

The design of experiment considered on the truss example is provided in Table 2. The 

mechanical laws are a bit more sophisticated than those formulated by formulas (1) to (6) 

and are not provided here for reasons of brevity. These laws are used to evaluate the truss 

performances and fulfill the performances evaluation (the two last columns of Table 2). 

For each line of the design of experiment, a set of design parameters values are 

considered and a level of variability around the fixed value is also provided. 

Then the response surfaces (fitted metamodel) are built for each performance and the 

data of robustness level is added on the response surfaces as a color level. For instance, 

Figure 7 provides the representation of a performance (here M and s) with respect to two 

design parameters (h and t) and taking into account the level of the signal to noise due to 

the variabilities on (the higher the color on the surface response, the higher the signal 

to ratio). 
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Table 2 The first lines of the table of experiments used to identify a linear model with 
interactions  

t wab L W h Noise on M s

-1 -1 -1 -1 -1 -1 142 141

-1 -1 -1 -1 -1 1 503,3 504,3

-1 -1 -1 -1 1 -1 507 506

-1 -1 -1 -1 1 1 657,1 658,1

-1 -1 -1 1 -1 -1 142 141

-1 -1 -1 1 -1 1 503,3 504,3

-1 -1 -1 1 1 -1 507 506

-1 -1 -1 1 1 1 657,1 658,1

-1 -1 1 -1 -1 -1 189,3 188,3

-1 -1 1 -1 -1 1 671 672

-1 -1 1 -1 1 -1 553,1 552,1

-1 -1 1 -1 1 1 794,9 795,9

-1 -1 1 1 -1 -1 189,3 188,3

-1 -1 1 1 -1 1 671 672

-1 -1 1 1 1 -1 553,1 552,1

-1 -1 1 1 1 1 794,9 795,9

-1 1 -1 -1 -1 -1 979,8 978,8

-1 1 -1 -1 -1 1 2154 2155

-1 1 -1 -1 1 -1 2166 2165

-1 1 -1 -1 1 1 2654 2655

-1 1 -1 1 -1 -1 979,8 978,8

-1 1 -1 1 -1 1 2154 2155

-1 1 -1 1 1 -1 2166 2165

-1 1 -1 1 1 1 2654 2655

-1 1 1 -1 -1 -1 1306 1305

-1 1 1 -1 -1 1 2872 2873

-1 1 1 -1 1 -1 2489 2488

-1 1 1 -1 1 1 3275 3276

-1 1 1 1 -1 -1 1306 1305

-1 1 1 1 -1 1 2872 2873

-1 1 1 1 1 -1 2489 2488

-1 1 1 1 1 1 3275 3276

1 -1 -1 -1 -1 -1 354,9 353,9

1 -1 -1 -1 -1 1 1258 1259

1 -1 -1 -1 1 -1 1267 1266

1 -1 -1 -1 1 1 1643 1644

1 -1 -1 1 -1 -1 354,9 353,9

1 -1 -1 1 -1 1 1258 1259

1 -1 -1 1 1 -1 1267 1266

1 -1 -1 1 1 1 1643 1644

1 -1 1 -1 -1 -1 473,2 472,2

1 -1 1 -1 -1 1 1678 1679

1 -1 1 -1 1 -1 1383 1382

1 -1 1 -1 1 1 1987 1988

1 -1 1 1 -1 -1 473,2 472,2

1 -1 1 1 -1 1 1678 1679

1 -1 1 1 1 -1 1383 1382

1 -1 1 1 1 1 1987 1988

1 1 -1 -1 -1 -1 2450 2449

1 1 -1 -1 -1 1 5385 5386

1 1 -1 -1 1 -1 5415 5414

1 1 -1 -1 1 1 6635 6636

1 1 -1 1 -1 -1 2450 2449

1 1 -1 1 -1 1 5385 5386

1 1 -1 1 1 -1 5415 5414

1 1 -1 1 1 1 6635 6636

1 1 1 -1 -1 -1 3266 3265

1 1 1 -1 -1 1 7180 7181

1 1 1 -1 1 -1 6222 6221

1 1 1 -1 1 1 8187 8188

1 1 1 1 -1 -1 3266 3265

1 1 1 1 -1 1 7180 7181

1 1 1 1 1 -1 6222 6221

1 1 1 1 1 1 8187 8188

 

Then, the most robust solution is found (given in Table 3) by maximizing the signal to 

noise ratio for the performances under consideration. The choice of the performance(s) to 

guaranty has to be done. In Table 2, we can find the most robust design solution 

considering the robustness of s performance, taking the variabilities on design 

parameter into account. 
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Figure 7 Example of a response surfaces on which robustness data are added (right part of 
figure) 

Table 3 The best solution with the robustness criteria on s, with variabilities on  

 t wAB L W h  M s 

Robust 
design 

0.1 0.13 3.42 17115 1.5 0.5   

If the most robust design solution is searched, then combination functions can be used, 

such as the desirability (or usability) functions to determine a global robustness. The most 

robust solution can be: 

 the one that provides the less sensitive global desirability taking design parameters 

variabilities into account, 

 the solution that maximizes the global desirability level (or minimizes a global loss 

function calculated on the whole responses), with a desirability level (or a loss level) 

associated to each signal to noise ratio provided by the impact of the variabilities on 

each performance. 

4.3 Results and interests of robust design for uncertainty management in 
embodiment design 

In order to make a decision under uncertainties in an engineering design context, and in 

particular in the embodiment design stage (defined in (Pahl and Beitz, 1996)), the 

robustness analysis can be used. The results provided, using a response surface with a 

color grid to evaluate the signal to noise ratio, enables the designer to choose not only the 

best design solution in the design space but also the less sensitive one to the design 

parameters variabilities due to uncertainties. The robustness can be studied performance 

by performance or considering a set of performances to guaranty. 
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5 Design for reliability 

The design of structures requires the verification of a certain number of rules resulting 

from the knowledge of physics and mechanical experience of designers and constructors. 

These rules come from the necessity to limit the loading effects such as stresses and 

displacements. Each rule represents an elementary event and the occurrence of several 

events leads to a failure scenario. In addition to the deterministic variables dk to be used 

in the system control and optimization, the uncertainties are modeled by stochastic 

variables affecting the failure scenario. The knowledge of these variables is not, at best, 

more than statistical information and we admit a representation in the form of random 

variables (noted Xi whose realizations are xi). For a given design rule, the basic random 

variables are defined by their probability distribution with some expected parameters. 

5.1 Reliability analysis 

The safety is defined as the state where the structure is able to fulfill all the functioning 

requirements: mechanical and serviceability, for which it is designed. To evaluate the 

failure probability with respect to a chosen failure scenario, a performance function 

G(xi,dk) is defined by the condition of good operation of the structure. The limit between 

the state of failure G(xi,dk) ≤ 0 and the state of safety G(xi,dk) > 0 is known as the limit 

state surface G(xi,dk) = 0 (see Figure 8).  

In the First Order Reliability Method, the reliability level is defined by an invariant 

reliability index , which is evaluated by solving the constrained optimization problem: 

0,

)()(min
2

ki

i

jiji

dxG  :constraint the under

    xTxTV
 (8) 

where V( ) is the distance between the median point and the failure subspace in the 

normalized space and Ti( ) is an appropriate probabilistic transformation; the solution of 

this problem is called the design point. At the first order approximation, the failure 

probability Pf  is given as a function of the reliability index: 

  )(0,Pr   kif dxGP  (9) 

where Pr[.] is the probability operator and (.) is the standard Gaussian cumulated 

function. 
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Figure 8 Parameter joint distribution and failure probability 

5.2 Reliability-based design optimization 

The Reliability-Based Design Optimization (RBDO) aims at searching for the best 

compromise between cost reduction and reliability assurance, by taking the system 

uncertainties into account; therefore, the RBDO leads to economical and safe design. It 

offers a good alternative to the safety factor approach, which is based on deterministic 

considerations and cannot take account for reduction of safety margins during the 

optimization procedure. In RBDO models, there are two kinds of variables: 

 The design variables dk which are the deterministic variables to be defined in order to 

optimize the design. They represent the control parameters of the mechanical system 

(e.g. dimensions, materials, loads) and of the probabilistic model (e.g. means and 

standard deviations of the random variables). 

 The random variables xi which represent the structural uncertainties, identified by 

probabilistic distributions. These variables can be related to geometrical dimensions, 

material characteristics and applied external loading. 

Basically, the RBDO aims at minimizing the total expected cost CT (see Figure 9) which 

is given in terms of initial manufacturing and construction costs Cc and direct failure cost 

Cf: 

kiffkcT dxP CdC C ,
 (10) 
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cost
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Figure 9 Expected total cost in terms of failure probability 

Due to difficulties in the failure cost estimation Cf (especially when dealing with human 

lives), the direct use of the above equation is not that easy. A practical formulation 

consists in minimizing the initial cost under the constraint of satisfying a target safety 

level βt: 

U

kk

L

k

tik

kc
d

ddd

xdtosubject

dC
k

,:

min

   (11) 

where dk
L
 and dk

U
 are respectively the lower and upper bounds of the k

th
 design variable. 

This formulation represents two embedded optimization problems. The outer one 

concerns the search for optimal design variables to minimize the cost and the inner one 

concerns the evaluation of the reliability index in the space of random variables. The 

coupling between the optimization and reliability problems is a complex task and leads to 

a very high calculation cost. The major difficulty lies in the evaluation of the structural 

reliability, which is carried out by a particular optimization procedure. In the random 

variable space, the reliability analysis implies a large number of mechanical calls, where 

in the design variable space, the search procedure modifies the structural configuration 

and hence requires the re-evaluation of the reliability level at each iteration. For this 

reason, the solution of these two problems (optimization and reliability) requires very 

important computation resources that seriously reduces the applicability of this approach. 
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5.3 Application to truss structure 

   

Figure 10 Reliability index evolution in terms of truss dimensions 

The truss structure illustrated in figure 1 is now optimized by considering uncertainties. 

The structural limit states are written: 

WL,,wt,FL,wt,FG

WL,,wt,fG

ABABABb

ABbY

2

1
 (12) 

where fY is the yield stress, Fb is the buckling load of member AB, b is the bending stress 

at point B and FAB is the normal force in member AB (detailed expressions are given in 

section 2 of the paper). For a target reliability t = 2 (corresponding to a failure 

probability of 1%), the reliability-based optimization problem is written: 

22:

025.0
9

34
min

21

,

andtosubject

wwgtLWWM ABABCDAB
wt AB

   (13) 

where 1 and 2 are the reliability indexes related to G1 and G2, respectively. In this 

example, the uncertainties are related to the applied load W, the material strength fY and 

the truss length L, where the coefficients of variation are respectively 15%, 8% and 2%.  

Figure 10 shows the reliability index evolution for the two limit states, in terms of the 

design variables wAB and t. For the required safety level  2, the safe design space is 

reduced to points above this level. The search for the minimum weight in this subspace 

leads to the optimal solution given by: wAB =0.091 m and t=0.10 m, corresponding to a 

global mass of 4180 kg. At this solution, the bending limit state is observed as the most 

critical one. This result also indicates a safety factor of 1.38 for this limit state. 
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6 Concluding remarks: Three complementary approaches for 
embodiment design 

The studied approaches of parametric design exploration have shown to be 

complementary and interactive. The exploration of the design space allows us to define 

the region of potentially interesting feasible solutions, which can be efficiently used for 

further investigations. The use of metamodels becomes thus precise as the search region 

is shrunk. These metamodels can then be used for multi-disciplinary design considering 

several performance objectives and constraints. As the design solution is almost 

described, it becomes necessary to carry out a design for reliability in order to take 

parameter and functioning fluctuations into account as well as uncertainties. Finally, the 

whole process allows us to reach a cost-based robust and reliable design. The application 

to a simple truss illustrates the advantages and difficulties in the different stages of the 

proposed process. The three considered successive design stages of design exploration, 

robust design and design for reliability are more and more sophisticated since they need 

more and more modeling information to provide a result. This is the reason why they 

must be successively used within a design process. Indeed, applying one of the three 

approaches allows to quickly figure out inadequacies with performance specifications or 

initial allowable bounds of design parameters and then to backtrack or to refine the 

design issue before passing to the next stage or approach. First, the design space is more 

and more precisely defined like in a Toyota-like set-based approach of design under 

uncertainty – see (Ward et al. 1994; Finch et al. 1997) –. Second, we clearly show that 

the successive optimal designs obtained by the three categories of methods are notably 

different, but that the optimal point obtained in a given approach is used to explore its 

surroundings in the next approach. This paper is just an illustration of this progressive 

and ever complexified preliminary parametric design process. 

Table 4 summarizes that the best considered designs are significantly different in the 

three design stages.  The comparison of the different methods is not that easy, as each one 

is based on specific assumptions. For example, the reliable design indicates that the 

safety factor should be reduced to 1.38 instead of 1.506; this leads to enlarge the design 

exploration space. However, if the designer requires higher reliability levels, the safety 

factor is automatically reduced at the optimal design. 

Table 4 The best solutions found during the stages of design exploration, robust and reliable 
design 

 t wAB L W h  M s 

Opportunistic 
Design 
exploration 
(given in 
(Yannou and 
Hamdi, 2004)) 

 

0.0995 

 

0.0927 

 

3.01 

 

16570 

   

3190 

 

1.506 

Robust design 0.10 0.13 3.42 17115 1.5 0.5   

Reliable design 0.10  0.091  4.00 15385   4180  1.38 
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