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Abstract: Testing software for defects exhaustively 

remains a computationally intensive problem. Therefore, 

deciding when to stop the test of a software product is one of 

the main issues in software engineering. Introducing fewer 

defects, detecting defects earlier in the development process 

and reducing the time to delivery are the primary objectives 

of software organizations. In particular, we have been 

working to address this problem within the realm of the 

automotive suppliers of car-embedded electronic modules 

and have developed case research with Johnson Controls. In 

this paper, we describe our approach to automatically 

generate test cases for a software product and develop the 

details of our objective and constraint functions for 

optimizing the test generation. It is based on a compromise 

between the structural and functional formal coverage and the 

cost of the generated tests. Finally, we propose a plan to 

validate and monitor the new software testing process. 

Keywords: test design space, exploration, decision 

making, software testing, software quality. 

1- Introduction 

Since the 1970s, software engineering methods have been 

focused on overcoming the quality problems in software 

systems. In software development [B1], once the design of a 

software module is completed, the module is sent to a testing 

group which must check that the module meets the client’s 

requirements. For that reason, testers design a set of test cases 

to be simulated on the software module. Presently, at Johnson 

Controls (and in many automotive companies), they still 

manually design the test cases whose size is often much 

larger than that of the module code itself. The stopping 

criteria when generating the series of tests are most often 

based primarily on covering the software program and on the 

budget and time constraints. Since there is no unified model 

to represent the software functional requirements in the 

automotive industry, assessing a functional coverage of these 

requirements strongly depends on the organization’s internal 

definition of the requirements.  

In [AY1], we (the authors) have recently developed and 

experimented a new approach to automatically generate test 

cases for a software module. The test generation is monitored 

by a set of formal quality indicators such as the structural and 

functional coverage but also the tests cost that we thoroughly 

present in this paper. In the next (second) section, we 

characterize the conventional software test design process 

presently used at Johnson Controls and we identify the issues 

stemming from the existing lack of a stopping criteria model. 

In the third section, we discuss a measurement to stop 

software testing. In the fourth section, we briefly present our 

new test design approach. In the fifth section, we focus on the 

objective and constraint functions used for optimizing the test 

generation and more precisely on the functional coverage of 

our simulated model to represent the functional requirements. 

We also describe the optimization process of designing a test 

case (selection of test steps). In the sixth section, we outline 

our plan to validate our new approach; this results in a set of 

quality attributes related to the testing process that we intend 

to use for driving a continuous improvement on this software 

testing process. In the final section, we make some 

concluding remarks. 

2- The software test design process at Johnson 
Controls 

At Johnson Controls, the lifecycle of a software product is 

divided into 5 global stages: Request For Quotation, Design, 

Design Validation, Production Validation and Production. 

Within each stage, the engineering activities are performed 

according to the standard V-cycle of the software industry 

and in an iterative way in order to take the carmaker 

constraints and requirements priorities into account. The 

main engineering processes are Requirements specification 

and management, Global design, Component development, 

Integration and Validation. We notice that each of the 

development, integration and validation processes perform a 

software testing activity in order to verify and validate the 

correctness of the software delivered at the end of the 

process. Software defects are detected in each of these 

processes, analyzed, corrected and capitalized in the defects 

database of the company. 

The software testing activity consists in: 

1) Analyzing the carmaker software requirements: testers 

who need to design tests must first read, analyze and 
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understand the carmaker software requirements. 

2) Designing the test cases: presently, testers proceed to a 

manual design of the test cases. The performance of this 

activity is mainly based on the experience of the testers. 

3) Simulating the test cases on the software product and 

detecting the defects: once the test cases are developed, 

they are simulated on the software product in order to 

check that they are “ok” and as free of defects as 

possible. 

What is a “client functionality”? 

A “functionality” is a set of services delivered by the 

software product. A functionality is specified by a set of 

inputs, outputs and a set of requirements. A “client 

functionality” is a functionality that delivers a service to the 

clients (carmakers and/or drivers). For example, the door lock 

management functionality. 

What is a “test case”? 

Let us consider a client functionality with two input signals: 

I1(with domain D(I1)={0,1}) and I2 (D(I2)={1,2,3}). We 

first call “operation”, the fact that an input signal is set to a 

value. For example, I2=3 is an operation. A “test case” is the 

succession of k operations separated by time intervals and the 

expected results on the output signals after each operation. 

An excerpt from a test case designed is given in figure 1: 

In test step 96, testers wait for 500 ms without carrying out 

any actions on the product and check that the outputs of the 

product haven’t changed. 

In test step 97, testers activate a switch, wait for 200 ms and 

check that the concerned outputs are activated according to 

the expected behaviour. 

 

 
Figure 1. Excerpt from a test case (two operations) as designed by 

Johnson Controls testers 

3- A semi-formal measurement to stop software 

testing 

At the beginning of a project, automotive suppliers officially 

receive the carmaker requirements. The software department 

of Johnson Controls like many software organizations adopts 

the SRS (Software Requirement Specification) model to 

express the various expectations of a software product. In 

[I1], we can find the IEEE (Institute of Electrical and 

Electronics Engineers, Inc.) recommended practices for the 

SRS. Once the SRS document is ready, it is the unique source 

of inspiration for testers to design their test cases for the 

software product. Presently, the major number of automotive 

suppliers has a manual test design process which is highly 

dependent to the experience of testers. Indeed, for each client 

functionality, we can associate a potential test space. But, as 

the software product becomes more and more complex, it is 

illusory to be able to check that the software product 

responds correctly to all possible operations. Therefore, each 

tester has a different perception of the possible test space and 

designs the test cases according to this perception. In 

addition, the criteria to stop designing test cases are based, on 

the one hand, on a non expressed combination of code and/or 

requirements coverage (semi-formal measurements) and, on 

the other hand, on time and money remaining for the project. 

In software engineering, the term “coverage” means the 

extent or degree to which something is observed, analyzed, 

and reported. 

3.1- Structural coverage 

Currently, during the structural testing of a software 

component at Johnson Controls, practitioners mainly use the 

code coverage as a criterion to stop testing (A survey on code 

coverage based testing tools is done in [YJ1]). Code coverage 

is a way to measure how thoroughly a set of test cases cover 

a program (see figure 2): the coverage rate of statements 

(lines of code), procedures, conditions (control flow) and 

decisions in the software product under test. There is a large 

variety of code coverage measurement criteria but the four 

listed before are the most used in automotive industry. 

 

 
Figure 2. Structural (code) coverage indicators 

These criteria are apparently relevant since the goal of the 

testing activity is to check if all the pieces of the software 

module have been tested. But it is not that simple! 

3.2- Functional coverage 

The criterion of structural coverage does not directly assess 

the compliance of the software module to the carmaker 

requirements; this is a biased indicator. In fact, the functional 

coverage is related to the coverage of the functional 

requirements of the software under test. Through a literature 

review (see [OX1]), several stop testing criteria based on 

covering software specification have been proposed. They 

primarily deal with the transitions coverage of a graph-based 

specification. At Johnson Controls, the carmaker 

requirements are referenced and managed using professional 

tools (Doors) and therefore the coverage rate of these 

requirements is used as the primary criterion to stop software 

functional testing. Paradoxically and even a 100% coverage 

of the functional requirements has been reached during the 

Johnson Controls testing of a software module, the carmaker 

is able to detect a nonconformity between the code and their 

specification. This could lead to the conclusion that the 

present Johnson Controls definition of a requirement is not 

Test Step

Test Step No Test Actions Expected Results

… … …

96
Test # 96

Wait 500 ms

Output_1 = 0

Output_2 = 0

Output_3 = 0

97
Test # 97

Input_1 = 1

Output_1 = 7

Output_2 = 3

Output_3 = 0

… … …
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enough refined. In fact, presently, one requirement can hide 

two or more other requirements. Let us consider an excerpt of 

software functional requirements as they were defined by a 

Johnson Controls requirement engineer (see figure 3). These 

requirements have two inputs and one output: I1(with domain 

D(I1)={0,1}), I2 (D(I2)={0,1}), O1 (D(O1{0,1}). 

 

 
Figure 3. An excerpt of software functional requirements as defined 

by a Johnson Controls requirement engineer 

While testing the conformity of the developed code regarding 

these two carmaker functional requirements, testers designed 

two tests in order to cover the previous requirements: 

Test 1: set I1 to 1, I2 to 0 and check if O1 is equal to 0 

Test 2: set I1 and I2 to 1 and check if O1 is equal to 1 

Therefore, he decides to stop testing these requirements and 

to set them as covered. In fact, through the test #1, the tester 

covers at 100% the first requirement but the test #2 does not 

cover at 100% the second requirement. Indeed, the second 

requirement can be splitted into three requirements to be 

tested: 

­ In case of input I1 is equal to 1 and input I2 is equal to 1, 

therefore the output O2 must be set to 1 – covered by test 

#2 

­ In case of input I1 is equal to 0 and input I2 is equal to 1, 

therefore the output O2 must be set to 1 – not covered by 

the tests 

­ In case of input I1 is equal to 0 and input I2 is equal to 0, 

therefore the output O2 must be set to 1 – not covered by 

the tests 

Consequently and in order to automate the design of test 

cases and to monitor this automation by quality indicators 

such as a formal functional coverage, we develop a new 

approach based on representing the software functional 

requirements in a simulated model. 

4- Our new approach for automating the 
software test generation 

Our new approach of automated test generation presents a 

much different workflow for generating test series than the 

present one. The new workflow is based on seven activities 

which are manual, semi-automatic or automatic and managed 

by different individuals (requirement engineers and testers). 

These activities are: 

1. Represent the carmaker functional requirements in a 

simulated model that we developed keeping in mind the 

automotive context and its constraints. In fact, each 

client functionality has a set of input, output and 

intermediate signals. These signals are interconnected 

through elements. An element is a set of functional 

requirements of the same type. We propose at a first 

level two types of functional requirements : 

Combinatorial if the outputs values at instant t depend 

on the sole inputs values at instant t. 

Sequential if the outputs values at instant t not only 

depend on inputs values at instant t but also on the 

outputs values at instant t-1. 

Therefore, we propose to model these two types of 

functional requirements thanks to two types of modelling 

elements, namely Decision Table (DT) [C2] and Finite 

State Machine (FSM) [G1]. We provide, in figure 4, a 

graphical illustration of our functional requirements 

model. This example has 4 input signals, 4 output 

signals, 5 intermediate signals and 4 elements. A 

“clock” signal is required since the behaviour of a 

software product is ruled by synchronism. In fact, a 

clock is just a signal that alternates between zero and 

one, back and forth, at a specific pace (cycle time). It sets 

the “pace” for the functional simulation of the model. 

 

Figure 4. Graphical illustration of our simulated model to represent 

functional requirements 

We can find a detailed description of our model for 

modelling and simulating the software functional 

requirements in [AY3]. 

2. Verify and validate the consistency and compliance of 

the software requirement model [S1]. Verification is 

done to ensure that the consistency and completeness of 

the developed model. To do so, we defined a set of 

integrity rules to be checked automatically once a model 

is developed. We can find these rules in [AY3]. 

Verification ensures that mistakes have not been made in 

implementing the model but does not ensure the 

compliance of the model to the carmaker software 

requirements which is the scope of the model validation. 

In fact, we proposed three main scenarios to validate a 

software requirement model in our context. We can find 

more details on these scenarios in [AY3] 

3. Define some behavioural characteristics of a car driver 

when using the client functionality under test. To do so, 

we develop in [AY2] three types of constraints that 

engineers can affect to an input signal of the 

requirements model in order to eliminate or favour 

specific “successive” operations. These constraints aim 

to reduce the number of possible combinations on the 

input signals and to more thoroughly pinpoint which 

ones have a high potential to detect defects. 

Element

N 1 Element

N 3
Element

N 4

Element

N 2

Input signals

Output signals

Intermediate signals

Clock

Requirement 1: 
In case of input I1 is equal  to 1 and input I2 is equal 
to 0, therefore the output O2 must be set to 0
Requirement 2:
In other cases, Output O2 is always set to 1



  
4 

 
  

4. Reuse the defects and the test cases respectively detected 

and developed in the past on the same client 

functionality [F1]. In fact, using capitalized defects and 

test cases seems to be beneficial in automotive context 

since more than 50% of the functionalities performed by 

a software product are common to any series of cars. To 

do this, we developed a framework which takes the 

capitalized defects (under a specific format: operations 

that lead to the defect and the time intervals between 

these operations) and existing test cases and generates 

automatically a set of successive operations with time 

intervals to be primarily simulated on the functionality 

under test. Therefore, we can better address the problem 

of detecting defects by generating tests to check the non-

existence of recurrent defects and reducing the test 

design space by focusing on the test scenarios based on 

our returns of experience. 

5. Enrich the requirement model with knowledge on the 

driver recurrent operations and the testers’ experience 

[M1]. To do so, we propose to set probabilities between 

all possible successive operations of a client 

functionality. Therefore, we build a matrix that we name 

“operation matrix” which is a square matrix with all 

possible operations in columns and in rows. Between the 

two operations of a pair we define: 

­ The probability that two operations are in sequence. 

­ The time between these two operations, modelled as 

an interval of possible values (a uniform probability) 

Let us consider a client functionality with 3 input 

signals: I1 (with domain D(I1)={0,1}), I2 

(D(I2)={1,2,3}) and I3 (D(I3)={0,1}). The “operation 

matrix” associated to this example can be seen in fig. 5. 

 

Figure 5. Operation matrix 

We can find more details on activities 3, 4 and 5 in [AY2]. 

6. Manage the test generation with the cost, delay and 

quality indicators. 

7. Automate the generation of test cases from the enriched 

model (by activities 3 to 5) of functional requirements. 

In the following, we further detail our objective and 

constraint functions for optimizing the test generation and our 

optimization algorithm to design efficient test cases fulfilling 

one or more predefined targets on the quality indicators. 

5- A compromise to stop designing test cases 
when fulfilling the test objectives and 

constraints 

Testing software exhaustively remains a very hard problem to 

solve. Therefore, software testing must often be based on 

specific assumptions and objectives which help practitioners 

and managers to decide when to stop the testing protocol 

[DM1]. Several stopping criteria have been proposed in the 

software testing literature. In [AY4], we (the authors) made a 

detailed survey on these criteria. In this paper and in order to 

monitor the automatic generation of test cases, we develop: 

­ an objective function based on formal structural (code) 

and functional (specification) coverage, 

­ a constraint function based on test execution time and 

cost, 

and an optimization algorithm which aims to fulfill the test 

objectives while respecting the time and cost constraints. 

Indeed, we develop a panel interface to allow the test 

engineers to set the test generation objectives and constraints 

(see figure 11). We also define a set of weights (wi) that test 

engineers can associate for each defined objective or 

constraint: 0 (to be ignored), 1 (not very important), 5 

(important), 10 (very important). The panel helps test 

engineers to express their objectives and constraints in terms 

of the required software quality and tests cost and therefore 

generate test cases fulfilling their expectations. 

5.1- Objective function 

The objective function, FObjective, is defined as in formula (1). 

 

 

   (1) 
where StrucCovTarget and FuncCovTarget are the coverage 

goals as defined by the test engineers, StrucCovCurrent and 

FuncCovCurrent are the coverage reached by the test case 

under design and wis are weights. The structural and 

functional coverage are expressed in terms of ratios of 

coverage and, then, are normalized which aim to reach a 

value of 100%. 

5.1.1- Structural coverage 

While generating a test case, and for each test step 

generation, we simulate the test step on the software product 

under test and we evaluate the code coverage in terms of 

statements, procedures, conditions and decisions coverage 

(see figure 2). To do so, we use C-Cover from Bullseye as a 

code coverage measurement tool. 

5.1.2- Functional coverage 

Once we define a model to formally represent the software 

functional requirements, we consider a formal coverage rate 

of the requirements model (see figure 6): 

 

0
I1

I2

I3

I1 I2 I3Input 

signals

1

1

2

3

0

1

0 1 1 2 3 0 1 1. Succession probability

2. Time interval

Time between 2 

operations 

Time
Tmin Tmax

Domains
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Figure 6. Functional coverage indicators 

The coverage rate of an element 

There are two types of elements, namely: 

Decision table (see figure 7): We use a DT to characterize a 

set of combinatorial software functional requirements. A DT 

is a tabular form that presents a set of exclusive conditions on 

the inputs (Ci) and their corresponding set of actions on the 

outputs (Ai). A condition (for example, C1) must require that 

at least one input is set to a specific value (i3=1), the other 

inputs may be indifferent (). 

 

 

Figure 7. A decision table (DT) element 

Finite state machine (see figure 8): We use a FSM to 

characterize a set of sequential software functional 

requirements. A FSM is a model of behaviour composed of 

an initial state, a finite number of states with a set of actions 

on the outputs (A), a set of transitions between these states 

and, for each transition, a set of exclusive conditions on the 

inputs (C) that allows the transition to be passed. 

 

 

Figure 8. A finite state machine (FSM) element 

The element coverage of a requirements model consists of the 

coverage rate of the conditions of each Decision Table and 

the coverage rate of the states, transitions and conditions of 

each Finite State Machine. Moreover, when designing the 

functional requirements model, practitioners can affect to 

conditions, states and transitions a normalized criticity level 

between 0 and 1. Consequently, we define a second set of 

coverage rates for expressing the degrees of coverage of the 

most critical elements (in fact, this is a weighted coverage of 

an element). 

The coverage rate of a signal domain 

In fact, each signal (input, output or intermediate) has a 

discrete domain. The signal domain coverage of a 

requirements model consists of the coverage rate of the 

domains of the inputs, outputs and intermediates signals. In 

addition, since testing the boundary values of a signal often 

reveals many defects, we also assess the coverage rate of the 

minimum and maximum values of each signal. In figure 9, 

we illustrate the coverage of a signal by a practical example. 

In fact, the signal “Signal_3” is covered at 100% while the 

two values of this signal were visited at least once during the 

generated tests. The signal “Signal_1” has a coverage rate of 

33,33% (1 value visited over 3 values in total). 

 

 

Figure 9. Signals domain coverage 

The coverage rate of an operation matrix 

The operation matrix coverage of a requirements model 

consists of the coverage rate of all successions between pairs 

of operations visited. Once a succession probability is set 

between each two operations, we define a coverage rate of 

the critical successions where the succession probability is 

above a certain level defined by the practitioner. Let us 

consider the example of figure 10. After generating a test 

case, some cases of the matrix have been highlighted. In fact, 

in the generated test case, the operation #4 has followed the 

operation #1, the operation #2 has followed the operation #2, 

the operation #2 has followed the operation #3 and so on. 

This way, we compute the coverage rate of successions 

between pairs of operations (around 38% : 5 successions of 

operations were covered over 13 possible successions) 

 

 
Figure 10. Operation matrix coverage 

Finally, while generating the tests, practitioners can visualize 

in real time the covered zones of the functional requirements 

Operations Op1 Op2 Op3 Op4

Op1 0,2 - [100;200] 0,1 - [200;200] 0,4 - [100;300] 0,3 - [100;200]

Op2 0 0,5 - [100;200] 0 0,5 - [100;100]

Op3 0,2 - [200;200] 0,4 - [100;200] 0,2 - [100;300] 0,2 - [100;300]

Op4 0,2 - [100;400] 0,2 - [100;200] 0 0,6 - [100;200]
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model. An estimate of the coverage rate is computed after 

each test step generation. 

5.2- Constraint function 

The constraint function, FConstraint, is defined as: 

 (2) 

where ConsTarget are the constraints’ values as defined by the 

test engineers, ConsCurrent are the constraints’ values reached 

by the test case under design and wis are weights. 

5.2.1- Test execution time and cost constraints 

Unfortunately, in the automotive industry, the time and 

money spent to test a software product is the major criterion 

to stop testing. When generating test cases automatically, one 

can have a tendency to generate too many tests. In fact, 

executing test cases on the software under test and analyzing 

the results can cost too much time and money and more 

especially when the execution is performed manually by a 

test engineer. In the proposed approach and when generating 

a test case, test engineers can set a group of time and cost 

constraints that should be respected: 

­ Constraint 1: Execution time. The time that a test 

engineer will spend in executing manually the generated 

test case on the software product. 

­ Constraint 2: Number of test steps in the generated test 

case. 

­ Constraint 3: Number of “distinct” test steps in the 

generated test case. Two test steps are distinct if they 

have different input data. 

In order to have a consistent aggregated constraint function 

(FConstraint), we normalize to 100% the time and cost 

constraints. These constraints are expressed in millisecond 

(ms) and in number of generated test steps. We illustrate the 

normalization process of these constraints through an 

example. At each time, test engineers decide to set a 

constraint Ci, the normalized target of this constraint 

ConsTarget(Ci) is immediately set to 100%. For instance, once 

a test engineer decide to generate a test case that the total 

execution time do not exceed 108000 ms, the normalized 

target of the test execution time constraint is set to 100% 

(ConsTarget(test execution time)= 100%). After generating a 

set of test steps, the normalized current value of this 

constraint (ConsCurrent(Ci)) is assessed by calculating the ratio 

(current_constraint_value*100/target_constraint_value). 

When generating a set of test steps with a total execution time 

of 21600 ms, ConsCurrent(test execution time) is assessed to 

(21600*100)/108000 (ConsCurrent(test execution time)= 20%). 

Constraints on time and cost are helpful in case of tight 

planning and budget on the project. It can also be useful on 

projects where the test execution is performed manually. In 

that case, the execution time and number of test steps must be 

reduced and the repetitive test steps or succession of test 

steps must be avoided. Typically, when testing a Graphical 

User Interface (GUI), test engineers have to check visually 

the expected results. Nevertheless, new testing platforms 

allow even to automate the testing of GUI using a camera 

system. 

5.3- How to design optimal test cases? 

Once the functional requirement model is ready and at least 

one “operation matrix” is established, automatically 

generating a test case requires performing a set of test steps 

until the stopping criteria are reached. Two automated 

activities are necessary to generate one test step: 

Activity 1: Perform a Monte Carlo simulation on an 

“operation matrix” 
Two sub-steps are required: 

Step 1: an operation is chosen according to the probabilities 

between each two successive operations [MT1]. 

Step 2: the inter-operation time is randomly chosen within 

the time interval. 

Activity 2: Simulate the functional requirements 
model and calculate the expected values of the output 

signals 
A synchronized functional simulation is performed on the 

model of software functional requirements. The simulation is 

done with an oriented acyclic logic going from the input to 

the output signals of the client functionality. The simulation 

order of the elements has to be defined when designing the 

requirements model (element 1 then element 2 then element 3 

…). A “clock” input synchronizes the behaviour of the 

functional model. At each cycle time of the clock, all 

elements are simulated following the predefined order. 

Simulating an element consists of calculating its output 

signals values according to its input signals values. In [AY3], 

we can find a detailed presentation of the simulation of our 

software requirements model. 

Through the proposed approach, the process of designing a 

test case is monitored by an optimization algorithm based on 

a mix of simulated annealing and look-ahead strategies. The 

aim of this algorithm is to reach the coverage objectives 

while respecting at most the time and cost constraints. During 

a test case design session and after each test step design (after 

activity 1 / step 1), the contribution of the designed test step 

to the objectives fulfillment is assessed. In case of no 

contribution, the designed test step is rejected and a new test 

step is designed. In the other case, the coverage and 

constraint indicators are updated and the objective and 

constraint functions are assessed. The quality objectives 

(structural and functional coverage) may be fulfilled 

following different orders and the first objective fulfilled 

does not immediately stop the process. We stop the process: 

1) When the objective function (FObjective) attains zero. 

2) When the constraint function (FConstraint) increases for a 

certain number of successive generated test steps without 

any improvement in the objective function (FObjective). 

In fact, for a set of targets and weights on the quality 

indicators, the practitioner can generate more than one test 

case fulfilling these predefined objectives. Afterwards, the 

optimal test case is automatically selected. To do so, we 

compare the generated test cases in pairs and we select the 

one which has the lowest value of the aggregated preference 

F of the quality indicators. If the two test cases have the same 

value of F, we select the utmost one that meets each 

individual targets going from the higher to the lower weights. 
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Figure 11. Panel of the quality indicators for monitoring the 

automatic test case generation 

Let us consider a practical software testing problem in order 

to illustrate the purpose of our objective and constraint 

functions. Through the experience feedback of the software 

testing experts, some software defects often occur when a 

signal is set to its boundaries values. Consequently, test 

practitioners could always decide to generate a test case (a set 

of test steps) which aims to detect potential defects related to 

the boundaries values. Hereafter, we consider the client 

functionality which consists in managing the front wiper in a 

vehicle. The corresponding software component is made of 

1229 Lines of code (blank and comment lines excluded), 18 

input signals and 8 output signals. We decide to generate a 

test case fulfilling the following objectives, constraints and 

weights (see figure 11): 

­ Cover the boundaries input signals at 85% with a weight 

of 5 

­ Cover the boundaries output signals at 85% with a 

weight of 5 

­ Cover the boundaries intermediate signals at 85% with a 

weight of 5 

­ Do not exceed 30 minutes (108000 ms) of tests 

simulation with a weight of 10 

Please note that, in this example, we do not deal with 

criticity, structural coverage and non-repetitive test step 

number. In figure 12, and after generating one test case with 

objectives and constraints defined below, we can see the 

current (reached) target and weight of each the quality 

indicators. In fact, even if the inputs and outputs boundaries 

coverage have respectively reached and exceeded their 

targets (respectively 85% and 94% of coverage), our 

optimization algorithm did not stop the tests generation 

expecting that the intermediate boundaries coverage reaches 

its target. But once the maximum test simulation time which 

has a weight of 10 (very important) has been exceeded 

(110255 ms instead of 108000 ms), the optimization 

algorithm decides to stop generating test steps even if the 

intermediates boundaries coverage is not already reached. 

 

 

Figure 12. A result of a test case generation 

6- Validating and monitoring the new software 
testing process 

The validation of our new approach consists of two 

initiatives. 

In the first stage, we verified the results on two case studies 

(the “front wiper” and “fuel gauge” functionalities) with 

historical data. The second case study differs from the first 

one in that it contains different formats of the carmaker’s 

software requirements and it is considered to be a more 

complex software product. The aim of the experiment was to 

test our new approach with a software product that was 

already tested through Johnson Control’s conventional 

approach. The results of these case studies highlight the 

benefits of our new approach: 

­ We increase by at least 100% the number of defects 

detected since the first testing phase (front wiper: from 

12 to 24 defects, fuel gauge: from 2 to 18 defects) 
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­ We decrease by at least 60% the number of defects 

detected by the carmaker (front wiper: from 5 to 2 

defects, fuel gauge: from 5 to 1 defects) 

­ We increase by at least 25% the number of defects 

detected by Johnson Controls and not by the carmaker 

(front wiper: from 17 to 24 defects, fuel gauge: from 18 

to 22 defects) 

­ On the first case study, we detect 5 new “minor” defects. 

These defects were not detected by Johnson Controls nor 

by the carmaker 

­ We lower by at least 20% the time spent in testing the 

software (front wiper: 39 instead of 53,75 eight-hour 

days, fuel gauge: 41,5 instead of 50 eight-hour days) 

In addition to estimating the benefits in terms of defects 

detection and time spent in testing the software, we plan to 

verify the three properties of a reliable measurement system 

[B2]: reproducibility, repeatability and accuracy. 

Reproducibility: In our new approach of software testing, two 

main activities depend on the operator (i.e., human 

intervention). The first one is the design of the requirements 

model and the second one is the definition of a set of targets 

and weights. Therefore, two operators must independently 

model the same software requirements and define a set of 

targets from the same global test objectives. Finally, each 

operator has to generate automatically a set of test cases 

fulfilling the predefined targets. 

Repeatability: Since our test optimization algorithm is partly 

based on a stochastic process, the repeatability must be 

verified. Consequently, for each operator, we perform two 

automatic test generations from the same model and targets. 

Once simulating, on the software module under test, the test 

cases generated by the two operators, we can measure the 

number of detected defects by piece. In our case, a piece can 

be associated with a C (programming language) procedure of 

the software module. Consequently, we can assess the R&R 

(Reproducibility & Repeatability) degree for which the 

automotive industry standard is 90% for 30 pieces. 

Accuracy: It is important to assess the correctness of the 

results delivered by our measurement system. Therefore, we 

plan to measure: 

­ The ratio between the number of new defects detected by 

our approach and the total number of defects already 

detected through the conventional testing approach. 

­ The ratio between the number of “true” defects detected 

by our approach and the total number of defects already 

detected through the conventional testing approach. 

­ The ratio between the number of “false” defects detected 

by our approach and the total number of defects already 

detected through the conventional testing approach. 

In the second stage, we plan to monitor the quality of our 

new testing process. To do so, it seems that within the Design 

for Six Sigma (DFSS) framework, the Define, Measure, 

Analyze, Design, Optimize, and Verify (DMADOV) 

methodology is the appropriate approach. This will allow us 

to put the proper focus on the up front design of the testing 

process. Therefore, we need to establish the set of 

measurable, customer-oriented attributes, which can be 

defined, measured, analyzed, optimized and verified 

(DMADOV) in the software testing process. These attributes 

need to be directly built into the testing process so that it is 

specifically geared to producing pre-defined quality limits. 

This means embedding specific design intent within the 

software testing algorithm to meet specific and understood, 

customer-facing performance metrics. Below, we identify 

two types of critical-to-customer metrics concerning the 

software testing process at Johnson Controls. We plan to 

assess the following metrics on each software module that 

undergoes testing: 

Critical-to-Quality (CTQ) metrics: 

Y1. The capacity to reach 100% of the functional coverage: 

the reached functional coverage 

Y2. The capacity to reach 100% of the structural coverage: 

the reached structural coverage 

Y3. The accuracy of the testing process: the ratio between the 

number of “false” defects detected and the total number 

of defects 

Y4. The capacity to reduce the number of defects detected by 

the carmaker: the ratio between the number of defects 

detected by carmakers and the total number of defects 

Y5. The capacity to reduce the number of defects detected by 

the end user (driver): the ratio between the number of 

defects detected by the end users and the total number of 

defects  

Critical-to-delivery (CTD) metrics: 

Y6. The time spent to test the software module 

Y7. The capacity to detect the defects earlier in the software 

development cycle: the ratios between the number of 

defects detected by Johnson Controls during the different 

testing phases and the total number of defects 

Y8. The number of versions of the software module 

Y9. The capacity to deliver software module free of defects 

since the first delivery: the ratio between the number of 

defects detected by Johnson Controls in the first testing 

phase and the total number of defects 

Since we place a high premium on reducing the number of 

defects detected by carmakers and end users (Y4 and Y5), 

one solution is to increase the functional and structural 

coverage. But, experimentations reveal that some defects 

cannot be detected even if our functional requirements model 

and code are covered at 100%. This leads to the realization 

that we need to refine our functional coverage model. 

Typically, we can consider the coverage rate of the 

succession of two transitions in a FSM element. 

7- Conclusion 

In this paper, we focus on the objective function that we 

developed and implemented in our global automatic test 

approach in order to optimize the test generation. The basic 

aim of this model is to make a compromise between the 

software quality and the cost of testing. We assess the quality 

through two indicators: the structural coverage of the 

program under test and the formal functional coverage of the 

requirement model. We also initiate the plan to validate our 

new testing approach through the use of a case study with 

historical data. The results of this first investigation were 

promising. Properties such as reproducibility, repeatability 
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and accuracy will be verified on the developed case studies. 

Finally, we describe a set of quality attributes to monitor the 

quality of the software testing process and therefore identify 

improvement actions to be performed on the process. As a 

perspective, we have to manage the change of the practices 

and activities of hundreds of testers at Johnson Controls. 

Indeed, testers’ technical skills will have to switch from a 

manual design to a high level modelling of the test scenarios 

and objectives in using in a flexible manner our design 

approach. 
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