
HAL Id: hal-00748721
https://hal.science/hal-00748721

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a validation test process of an automotive
software

Roy Awédikian, Bernard Yannou

To cite this version:
Roy Awédikian, Bernard Yannou. Design of a validation test process of an automotive software.
International Journal on Interactive Design and Manufacturing, 2010, 4 (4), pp.DOI 10.1007/s12008-
010-0108-2. �10.1007/s12008-010-0108-2�. �hal-00748721�

https://hal.science/hal-00748721
https://hal.archives-ouvertes.fr

1

Design of a validation test process of an automotive software

Roy Awedikian, Bernard Yannou

Ecole Centrale Paris

Laboratoire Genie Industriel

Grande Voie des Vignes

92290, Chatenay-Malabry, France

roy.awedikian@graduates.centraliens.net, bernard.yannou@ecp.fr

Abstract: Testing software for defects exhaustively

remains a computationally intensive problem. Therefore,

deciding when to stop the test of a software product is one of

the main issues in software engineering. Introducing fewer

defects, detecting defects earlier in the development process

and reducing the time to delivery are the primary objectives

of software organizations. In particular, we have been

working to address this problem within the realm of the

automotive suppliers of car-embedded electronic modules

and have developed case research with Johnson Controls. In

this paper, we describe our approach to automatically

generate test cases for a software product and develop the

details of our objective and constraint functions for

optimizing the test generation. It is based on a compromise

between the structural and functional formal coverage and the

cost of the generated tests. Finally, we propose a plan to

validate and monitor the new software testing process.

Keywords: test design space, exploration, decision

making, software testing, software quality.

1- Introduction

Since the 1970s, software engineering methods have been

focused on overcoming the quality problems in software

systems. In software development [B1], once the design of a

software module is completed, the module is sent to a testing

group which must check that the module meets the client’s

requirements. For that reason, testers design a set of test cases

to be simulated on the software module. Presently, at Johnson

Controls (and in many automotive companies), they still

manually design the test cases whose size is often much

larger than that of the module code itself. The stopping

criteria when generating the series of tests are most often

based primarily on covering the software program and on the

budget and time constraints. Since there is no unified model

to represent the software functional requirements in the

automotive industry, assessing a functional coverage of these

requirements strongly depends on the organization’s internal

definition of the requirements.

In [AY1], we (the authors) have recently developed and

experimented a new approach to automatically generate test

cases for a software module. The test generation is monitored

by a set of formal quality indicators such as the structural and

functional coverage but also the tests cost that we thoroughly

present in this paper. In the next (second) section, we

characterize the conventional software test design process

presently used at Johnson Controls and we identify the issues

stemming from the existing lack of a stopping criteria model.

In the third section, we discuss a measurement to stop

software testing. In the fourth section, we briefly present our

new test design approach. In the fifth section, we focus on the

objective and constraint functions used for optimizing the test

generation and more precisely on the functional coverage of

our simulated model to represent the functional requirements.

We also describe the optimization process of designing a test

case (selection of test steps). In the sixth section, we outline

our plan to validate our new approach; this results in a set of

quality attributes related to the testing process that we intend

to use for driving a continuous improvement on this software

testing process. In the final section, we make some

concluding remarks.

2- The software test design process at Johnson
Controls

At Johnson Controls, the lifecycle of a software product is

divided into 5 global stages: Request For Quotation, Design,

Design Validation, Production Validation and Production.

Within each stage, the engineering activities are performed

according to the standard V-cycle of the software industry

and in an iterative way in order to take the carmaker

constraints and requirements priorities into account. The

main engineering processes are Requirements specification

and management, Global design, Component development,

Integration and Validation. We notice that each of the

development, integration and validation processes perform a

software testing activity in order to verify and validate the

correctness of the software delivered at the end of the

process. Software defects are detected in each of these

processes, analyzed, corrected and capitalized in the defects

database of the company.

The software testing activity consists in:

1) Analyzing the carmaker software requirements: testers

who need to design tests must first read, analyze and

mailto:roy.awedikian@graduates.centraliens.net
mailto:bernard.yannou@ecp.fr

2

understand the carmaker software requirements.

2) Designing the test cases: presently, testers proceed to a

manual design of the test cases. The performance of this

activity is mainly based on the experience of the testers.

3) Simulating the test cases on the software product and

detecting the defects: once the test cases are developed,

they are simulated on the software product in order to

check that they are “ok” and as free of defects as

possible.

What is a “client functionality”?

A “functionality” is a set of services delivered by the

software product. A functionality is specified by a set of

inputs, outputs and a set of requirements. A “client

functionality” is a functionality that delivers a service to the

clients (carmakers and/or drivers). For example, the door lock

management functionality.

What is a “test case”?

Let us consider a client functionality with two input signals:

I1(with domain D(I1)={0,1}) and I2 (D(I2)={1,2,3}). We

first call “operation”, the fact that an input signal is set to a

value. For example, I2=3 is an operation. A “test case” is the

succession of k operations separated by time intervals and the

expected results on the output signals after each operation.

An excerpt from a test case designed is given in figure 1:

In test step 96, testers wait for 500 ms without carrying out

any actions on the product and check that the outputs of the

product haven’t changed.

In test step 97, testers activate a switch, wait for 200 ms and

check that the concerned outputs are activated according to

the expected behaviour.

Figure 1. Excerpt from a test case (two operations) as designed by

Johnson Controls testers

3- A semi-formal measurement to stop software

testing

At the beginning of a project, automotive suppliers officially

receive the carmaker requirements. The software department

of Johnson Controls like many software organizations adopts

the SRS (Software Requirement Specification) model to

express the various expectations of a software product. In

[I1], we can find the IEEE (Institute of Electrical and

Electronics Engineers, Inc.) recommended practices for the

SRS. Once the SRS document is ready, it is the unique source

of inspiration for testers to design their test cases for the

software product. Presently, the major number of automotive

suppliers has a manual test design process which is highly

dependent to the experience of testers. Indeed, for each client

functionality, we can associate a potential test space. But, as

the software product becomes more and more complex, it is

illusory to be able to check that the software product

responds correctly to all possible operations. Therefore, each

tester has a different perception of the possible test space and

designs the test cases according to this perception. In

addition, the criteria to stop designing test cases are based, on

the one hand, on a non expressed combination of code and/or

requirements coverage (semi-formal measurements) and, on

the other hand, on time and money remaining for the project.

In software engineering, the term “coverage” means the

extent or degree to which something is observed, analyzed,

and reported.

3.1- Structural coverage

Currently, during the structural testing of a software

component at Johnson Controls, practitioners mainly use the

code coverage as a criterion to stop testing (A survey on code

coverage based testing tools is done in [YJ1]). Code coverage

is a way to measure how thoroughly a set of test cases cover

a program (see figure 2): the coverage rate of statements

(lines of code), procedures, conditions (control flow) and

decisions in the software product under test. There is a large

variety of code coverage measurement criteria but the four

listed before are the most used in automotive industry.

Figure 2. Structural (code) coverage indicators

These criteria are apparently relevant since the goal of the

testing activity is to check if all the pieces of the software

module have been tested. But it is not that simple!

3.2- Functional coverage

The criterion of structural coverage does not directly assess

the compliance of the software module to the carmaker

requirements; this is a biased indicator. In fact, the functional

coverage is related to the coverage of the functional

requirements of the software under test. Through a literature

review (see [OX1]), several stop testing criteria based on

covering software specification have been proposed. They

primarily deal with the transitions coverage of a graph-based

specification. At Johnson Controls, the carmaker

requirements are referenced and managed using professional

tools (Doors) and therefore the coverage rate of these

requirements is used as the primary criterion to stop software

functional testing. Paradoxically and even a 100% coverage

of the functional requirements has been reached during the

Johnson Controls testing of a software module, the carmaker

is able to detect a nonconformity between the code and their

specification. This could lead to the conclusion that the

present Johnson Controls definition of a requirement is not

Test Step

Test Step No Test Actions Expected Results

… … …

96
Test # 96

Wait 500 ms

Output_1 = 0

Output_2 = 0

Output_3 = 0

97
Test # 97

Input_1 = 1

Output_1 = 7

Output_2 = 3

Output_3 = 0

… … …

3

enough refined. In fact, presently, one requirement can hide

two or more other requirements. Let us consider an excerpt of

software functional requirements as they were defined by a

Johnson Controls requirement engineer (see figure 3). These

requirements have two inputs and one output: I1(with domain

D(I1)={0,1}), I2 (D(I2)={0,1}), O1 (D(O1{0,1}).

Figure 3. An excerpt of software functional requirements as defined

by a Johnson Controls requirement engineer

While testing the conformity of the developed code regarding

these two carmaker functional requirements, testers designed

two tests in order to cover the previous requirements:

Test 1: set I1 to 1, I2 to 0 and check if O1 is equal to 0

Test 2: set I1 and I2 to 1 and check if O1 is equal to 1

Therefore, he decides to stop testing these requirements and

to set them as covered. In fact, through the test #1, the tester

covers at 100% the first requirement but the test #2 does not

cover at 100% the second requirement. Indeed, the second

requirement can be splitted into three requirements to be

tested:

­ In case of input I1 is equal to 1 and input I2 is equal to 1,

therefore the output O2 must be set to 1 – covered by test

#2

­ In case of input I1 is equal to 0 and input I2 is equal to 1,

therefore the output O2 must be set to 1 – not covered by

the tests

­ In case of input I1 is equal to 0 and input I2 is equal to 0,

therefore the output O2 must be set to 1 – not covered by

the tests

Consequently and in order to automate the design of test

cases and to monitor this automation by quality indicators

such as a formal functional coverage, we develop a new

approach based on representing the software functional

requirements in a simulated model.

4- Our new approach for automating the
software test generation

Our new approach of automated test generation presents a

much different workflow for generating test series than the

present one. The new workflow is based on seven activities

which are manual, semi-automatic or automatic and managed

by different individuals (requirement engineers and testers).

These activities are:

1. Represent the carmaker functional requirements in a

simulated model that we developed keeping in mind the

automotive context and its constraints. In fact, each

client functionality has a set of input, output and

intermediate signals. These signals are interconnected

through elements. An element is a set of functional

requirements of the same type. We propose at a first

level two types of functional requirements :

Combinatorial if the outputs values at instant t depend

on the sole inputs values at instant t.

Sequential if the outputs values at instant t not only

depend on inputs values at instant t but also on the

outputs values at instant t-1.

Therefore, we propose to model these two types of

functional requirements thanks to two types of modelling

elements, namely Decision Table (DT) [C2] and Finite

State Machine (FSM) [G1]. We provide, in figure 4, a

graphical illustration of our functional requirements

model. This example has 4 input signals, 4 output

signals, 5 intermediate signals and 4 elements. A

“clock” signal is required since the behaviour of a

software product is ruled by synchronism. In fact, a

clock is just a signal that alternates between zero and

one, back and forth, at a specific pace (cycle time). It sets

the “pace” for the functional simulation of the model.

Figure 4. Graphical illustration of our simulated model to represent

functional requirements

We can find a detailed description of our model for

modelling and simulating the software functional

requirements in [AY3].

2. Verify and validate the consistency and compliance of

the software requirement model [S1]. Verification is

done to ensure that the consistency and completeness of

the developed model. To do so, we defined a set of

integrity rules to be checked automatically once a model

is developed. We can find these rules in [AY3].

Verification ensures that mistakes have not been made in

implementing the model but does not ensure the

compliance of the model to the carmaker software

requirements which is the scope of the model validation.

In fact, we proposed three main scenarios to validate a

software requirement model in our context. We can find

more details on these scenarios in [AY3]

3. Define some behavioural characteristics of a car driver

when using the client functionality under test. To do so,

we develop in [AY2] three types of constraints that

engineers can affect to an input signal of the

requirements model in order to eliminate or favour

specific “successive” operations. These constraints aim

to reduce the number of possible combinations on the

input signals and to more thoroughly pinpoint which

ones have a high potential to detect defects.

Element

N 1 Element

N 3
Element

N 4

Element

N 2

Input signals

Output signals

Intermediate signals

Clock

Requirement 1:
In case of input I1 is equal to 1 and input I2 is equal
to 0, therefore the output O2 must be set to 0
Requirement 2:
In other cases, Output O2 is always set to 1

4

4. Reuse the defects and the test cases respectively detected

and developed in the past on the same client

functionality [F1]. In fact, using capitalized defects and

test cases seems to be beneficial in automotive context

since more than 50% of the functionalities performed by

a software product are common to any series of cars. To

do this, we developed a framework which takes the

capitalized defects (under a specific format: operations

that lead to the defect and the time intervals between

these operations) and existing test cases and generates

automatically a set of successive operations with time

intervals to be primarily simulated on the functionality

under test. Therefore, we can better address the problem

of detecting defects by generating tests to check the non-

existence of recurrent defects and reducing the test

design space by focusing on the test scenarios based on

our returns of experience.

5. Enrich the requirement model with knowledge on the

driver recurrent operations and the testers’ experience

[M1]. To do so, we propose to set probabilities between

all possible successive operations of a client

functionality. Therefore, we build a matrix that we name

“operation matrix” which is a square matrix with all

possible operations in columns and in rows. Between the

two operations of a pair we define:

­ The probability that two operations are in sequence.

­ The time between these two operations, modelled as

an interval of possible values (a uniform probability)

Let us consider a client functionality with 3 input

signals: I1 (with domain D(I1)={0,1}), I2

(D(I2)={1,2,3}) and I3 (D(I3)={0,1}). The “operation

matrix” associated to this example can be seen in fig. 5.

Figure 5. Operation matrix

We can find more details on activities 3, 4 and 5 in [AY2].

6. Manage the test generation with the cost, delay and

quality indicators.

7. Automate the generation of test cases from the enriched

model (by activities 3 to 5) of functional requirements.

In the following, we further detail our objective and

constraint functions for optimizing the test generation and our

optimization algorithm to design efficient test cases fulfilling

one or more predefined targets on the quality indicators.

5- A compromise to stop designing test cases
when fulfilling the test objectives and

constraints

Testing software exhaustively remains a very hard problem to

solve. Therefore, software testing must often be based on

specific assumptions and objectives which help practitioners

and managers to decide when to stop the testing protocol

[DM1]. Several stopping criteria have been proposed in the

software testing literature. In [AY4], we (the authors) made a

detailed survey on these criteria. In this paper and in order to

monitor the automatic generation of test cases, we develop:

­ an objective function based on formal structural (code)

and functional (specification) coverage,

­ a constraint function based on test execution time and

cost,

and an optimization algorithm which aims to fulfill the test

objectives while respecting the time and cost constraints.

Indeed, we develop a panel interface to allow the test

engineers to set the test generation objectives and constraints

(see figure 11). We also define a set of weights (wi) that test

engineers can associate for each defined objective or

constraint: 0 (to be ignored), 1 (not very important), 5

(important), 10 (very important). The panel helps test

engineers to express their objectives and constraints in terms

of the required software quality and tests cost and therefore

generate test cases fulfilling their expectations.

5.1- Objective function

The objective function, FObjective, is defined as in formula (1).

 (1)
where StrucCovTarget and FuncCovTarget are the coverage

goals as defined by the test engineers, StrucCovCurrent and

FuncCovCurrent are the coverage reached by the test case

under design and wis are weights. The structural and

functional coverage are expressed in terms of ratios of

coverage and, then, are normalized which aim to reach a

value of 100%.

5.1.1- Structural coverage

While generating a test case, and for each test step

generation, we simulate the test step on the software product

under test and we evaluate the code coverage in terms of

statements, procedures, conditions and decisions coverage

(see figure 2). To do so, we use C-Cover from Bullseye as a

code coverage measurement tool.

5.1.2- Functional coverage

Once we define a model to formally represent the software

functional requirements, we consider a formal coverage rate

of the requirements model (see figure 6):

0
I1

I2

I3

I1 I2 I3Input

signals

1

1

2

3

0

1

0 1 1 2 3 0 1 1. Succession probability

2. Time interval

Time between 2

operations

Time
Tmin Tmax

Domains

5

Figure 6. Functional coverage indicators

The coverage rate of an element

There are two types of elements, namely:

Decision table (see figure 7): We use a DT to characterize a

set of combinatorial software functional requirements. A DT

is a tabular form that presents a set of exclusive conditions on

the inputs (Ci) and their corresponding set of actions on the

outputs (Ai). A condition (for example, C1) must require that

at least one input is set to a specific value (i3=1), the other

inputs may be indifferent ().

Figure 7. A decision table (DT) element

Finite state machine (see figure 8): We use a FSM to

characterize a set of sequential software functional

requirements. A FSM is a model of behaviour composed of

an initial state, a finite number of states with a set of actions

on the outputs (A), a set of transitions between these states

and, for each transition, a set of exclusive conditions on the

inputs (C) that allows the transition to be passed.

Figure 8. A finite state machine (FSM) element

The element coverage of a requirements model consists of the

coverage rate of the conditions of each Decision Table and

the coverage rate of the states, transitions and conditions of

each Finite State Machine. Moreover, when designing the

functional requirements model, practitioners can affect to

conditions, states and transitions a normalized criticity level

between 0 and 1. Consequently, we define a second set of

coverage rates for expressing the degrees of coverage of the

most critical elements (in fact, this is a weighted coverage of

an element).

The coverage rate of a signal domain

In fact, each signal (input, output or intermediate) has a

discrete domain. The signal domain coverage of a

requirements model consists of the coverage rate of the

domains of the inputs, outputs and intermediates signals. In

addition, since testing the boundary values of a signal often

reveals many defects, we also assess the coverage rate of the

minimum and maximum values of each signal. In figure 9,

we illustrate the coverage of a signal by a practical example.

In fact, the signal “Signal_3” is covered at 100% while the

two values of this signal were visited at least once during the

generated tests. The signal “Signal_1” has a coverage rate of

33,33% (1 value visited over 3 values in total).

Figure 9. Signals domain coverage

The coverage rate of an operation matrix

The operation matrix coverage of a requirements model

consists of the coverage rate of all successions between pairs

of operations visited. Once a succession probability is set

between each two operations, we define a coverage rate of

the critical successions where the succession probability is

above a certain level defined by the practitioner. Let us

consider the example of figure 10. After generating a test

case, some cases of the matrix have been highlighted. In fact,

in the generated test case, the operation #4 has followed the

operation #1, the operation #2 has followed the operation #2,

the operation #2 has followed the operation #3 and so on.

This way, we compute the coverage rate of successions

between pairs of operations (around 38% : 5 successions of

operations were covered over 13 possible successions)

Figure 10. Operation matrix coverage

Finally, while generating the tests, practitioners can visualize

in real time the covered zones of the functional requirements

Operations Op1 Op2 Op3 Op4

Op1 0,2 - [100;200] 0,1 - [200;200] 0,4 - [100;300] 0,3 - [100;200]

Op2 0 0,5 - [100;200] 0 0,5 - [100;100]

Op3 0,2 - [200;200] 0,4 - [100;200] 0,2 - [100;300] 0,2 - [100;300]

Op4 0,2 - [100;400] 0,2 - [100;200] 0 0,6 - [100;200]

Signal_1

Signal_2

Signal_3

Signal_4

Signal_5

Signal_6

Signal_7

Element N 1
Finite

State

Machine

Element N 3
Decision

Table
Element N 4

Finite

State

Machine

Element N 2
Decision

Table

Clock

Finite State Machines coverage

Decision Tables coverage

Signals domain coverage

O
p

e
ra

ti
o

n
 m

a
tr

ix
 c

o
v
e

ra
g

e

6

model. An estimate of the coverage rate is computed after

each test step generation.

5.2- Constraint function

The constraint function, FConstraint, is defined as:

 (2)

where ConsTarget are the constraints’ values as defined by the

test engineers, ConsCurrent are the constraints’ values reached

by the test case under design and wis are weights.

5.2.1- Test execution time and cost constraints

Unfortunately, in the automotive industry, the time and

money spent to test a software product is the major criterion

to stop testing. When generating test cases automatically, one

can have a tendency to generate too many tests. In fact,

executing test cases on the software under test and analyzing

the results can cost too much time and money and more

especially when the execution is performed manually by a

test engineer. In the proposed approach and when generating

a test case, test engineers can set a group of time and cost

constraints that should be respected:

­ Constraint 1: Execution time. The time that a test

engineer will spend in executing manually the generated

test case on the software product.

­ Constraint 2: Number of test steps in the generated test

case.

­ Constraint 3: Number of “distinct” test steps in the

generated test case. Two test steps are distinct if they

have different input data.

In order to have a consistent aggregated constraint function

(FConstraint), we normalize to 100% the time and cost

constraints. These constraints are expressed in millisecond

(ms) and in number of generated test steps. We illustrate the

normalization process of these constraints through an

example. At each time, test engineers decide to set a

constraint Ci, the normalized target of this constraint

ConsTarget(Ci) is immediately set to 100%. For instance, once

a test engineer decide to generate a test case that the total

execution time do not exceed 108000 ms, the normalized

target of the test execution time constraint is set to 100%

(ConsTarget(test execution time)= 100%). After generating a

set of test steps, the normalized current value of this

constraint (ConsCurrent(Ci)) is assessed by calculating the ratio

(current_constraint_value*100/target_constraint_value).

When generating a set of test steps with a total execution time

of 21600 ms, ConsCurrent(test execution time) is assessed to

(21600*100)/108000 (ConsCurrent(test execution time)= 20%).

Constraints on time and cost are helpful in case of tight

planning and budget on the project. It can also be useful on

projects where the test execution is performed manually. In

that case, the execution time and number of test steps must be

reduced and the repetitive test steps or succession of test

steps must be avoided. Typically, when testing a Graphical

User Interface (GUI), test engineers have to check visually

the expected results. Nevertheless, new testing platforms

allow even to automate the testing of GUI using a camera

system.

5.3- How to design optimal test cases?

Once the functional requirement model is ready and at least

one “operation matrix” is established, automatically

generating a test case requires performing a set of test steps

until the stopping criteria are reached. Two automated

activities are necessary to generate one test step:

Activity 1: Perform a Monte Carlo simulation on an

“operation matrix”
Two sub-steps are required:

Step 1: an operation is chosen according to the probabilities

between each two successive operations [MT1].

Step 2: the inter-operation time is randomly chosen within

the time interval.

Activity 2: Simulate the functional requirements
model and calculate the expected values of the output

signals
A synchronized functional simulation is performed on the

model of software functional requirements. The simulation is

done with an oriented acyclic logic going from the input to

the output signals of the client functionality. The simulation

order of the elements has to be defined when designing the

requirements model (element 1 then element 2 then element 3

…). A “clock” input synchronizes the behaviour of the

functional model. At each cycle time of the clock, all

elements are simulated following the predefined order.

Simulating an element consists of calculating its output

signals values according to its input signals values. In [AY3],

we can find a detailed presentation of the simulation of our

software requirements model.

Through the proposed approach, the process of designing a

test case is monitored by an optimization algorithm based on

a mix of simulated annealing and look-ahead strategies. The

aim of this algorithm is to reach the coverage objectives

while respecting at most the time and cost constraints. During

a test case design session and after each test step design (after

activity 1 / step 1), the contribution of the designed test step

to the objectives fulfillment is assessed. In case of no

contribution, the designed test step is rejected and a new test

step is designed. In the other case, the coverage and

constraint indicators are updated and the objective and

constraint functions are assessed. The quality objectives

(structural and functional coverage) may be fulfilled

following different orders and the first objective fulfilled

does not immediately stop the process. We stop the process:

1) When the objective function (FObjective) attains zero.

2) When the constraint function (FConstraint) increases for a

certain number of successive generated test steps without

any improvement in the objective function (FObjective).

In fact, for a set of targets and weights on the quality

indicators, the practitioner can generate more than one test

case fulfilling these predefined objectives. Afterwards, the

optimal test case is automatically selected. To do so, we

compare the generated test cases in pairs and we select the

one which has the lowest value of the aggregated preference

F of the quality indicators. If the two test cases have the same

value of F, we select the utmost one that meets each

individual targets going from the higher to the lower weights.

7

Figure 11. Panel of the quality indicators for monitoring the

automatic test case generation

Let us consider a practical software testing problem in order

to illustrate the purpose of our objective and constraint

functions. Through the experience feedback of the software

testing experts, some software defects often occur when a

signal is set to its boundaries values. Consequently, test

practitioners could always decide to generate a test case (a set

of test steps) which aims to detect potential defects related to

the boundaries values. Hereafter, we consider the client

functionality which consists in managing the front wiper in a

vehicle. The corresponding software component is made of

1229 Lines of code (blank and comment lines excluded), 18

input signals and 8 output signals. We decide to generate a

test case fulfilling the following objectives, constraints and

weights (see figure 11):

­ Cover the boundaries input signals at 85% with a weight

of 5

­ Cover the boundaries output signals at 85% with a

weight of 5

­ Cover the boundaries intermediate signals at 85% with a

weight of 5

­ Do not exceed 30 minutes (108000 ms) of tests

simulation with a weight of 10

Please note that, in this example, we do not deal with

criticity, structural coverage and non-repetitive test step

number. In figure 12, and after generating one test case with

objectives and constraints defined below, we can see the

current (reached) target and weight of each the quality

indicators. In fact, even if the inputs and outputs boundaries

coverage have respectively reached and exceeded their

targets (respectively 85% and 94% of coverage), our

optimization algorithm did not stop the tests generation

expecting that the intermediate boundaries coverage reaches

its target. But once the maximum test simulation time which

has a weight of 10 (very important) has been exceeded

(110255 ms instead of 108000 ms), the optimization

algorithm decides to stop generating test steps even if the

intermediates boundaries coverage is not already reached.

Figure 12. A result of a test case generation

6- Validating and monitoring the new software
testing process

The validation of our new approach consists of two

initiatives.

In the first stage, we verified the results on two case studies

(the “front wiper” and “fuel gauge” functionalities) with

historical data. The second case study differs from the first

one in that it contains different formats of the carmaker’s

software requirements and it is considered to be a more

complex software product. The aim of the experiment was to

test our new approach with a software product that was

already tested through Johnson Control’s conventional

approach. The results of these case studies highlight the

benefits of our new approach:

­ We increase by at least 100% the number of defects

detected since the first testing phase (front wiper: from

12 to 24 defects, fuel gauge: from 2 to 18 defects)

8

­ We decrease by at least 60% the number of defects

detected by the carmaker (front wiper: from 5 to 2

defects, fuel gauge: from 5 to 1 defects)

­ We increase by at least 25% the number of defects

detected by Johnson Controls and not by the carmaker

(front wiper: from 17 to 24 defects, fuel gauge: from 18

to 22 defects)

­ On the first case study, we detect 5 new “minor” defects.

These defects were not detected by Johnson Controls nor

by the carmaker

­ We lower by at least 20% the time spent in testing the

software (front wiper: 39 instead of 53,75 eight-hour

days, fuel gauge: 41,5 instead of 50 eight-hour days)

In addition to estimating the benefits in terms of defects

detection and time spent in testing the software, we plan to

verify the three properties of a reliable measurement system

[B2]: reproducibility, repeatability and accuracy.

Reproducibility: In our new approach of software testing, two

main activities depend on the operator (i.e., human

intervention). The first one is the design of the requirements

model and the second one is the definition of a set of targets

and weights. Therefore, two operators must independently

model the same software requirements and define a set of

targets from the same global test objectives. Finally, each

operator has to generate automatically a set of test cases

fulfilling the predefined targets.

Repeatability: Since our test optimization algorithm is partly

based on a stochastic process, the repeatability must be

verified. Consequently, for each operator, we perform two

automatic test generations from the same model and targets.

Once simulating, on the software module under test, the test

cases generated by the two operators, we can measure the

number of detected defects by piece. In our case, a piece can

be associated with a C (programming language) procedure of

the software module. Consequently, we can assess the R&R

(Reproducibility & Repeatability) degree for which the

automotive industry standard is 90% for 30 pieces.

Accuracy: It is important to assess the correctness of the

results delivered by our measurement system. Therefore, we

plan to measure:

­ The ratio between the number of new defects detected by

our approach and the total number of defects already

detected through the conventional testing approach.

­ The ratio between the number of “true” defects detected

by our approach and the total number of defects already

detected through the conventional testing approach.

­ The ratio between the number of “false” defects detected

by our approach and the total number of defects already

detected through the conventional testing approach.

In the second stage, we plan to monitor the quality of our

new testing process. To do so, it seems that within the Design

for Six Sigma (DFSS) framework, the Define, Measure,

Analyze, Design, Optimize, and Verify (DMADOV)

methodology is the appropriate approach. This will allow us

to put the proper focus on the up front design of the testing

process. Therefore, we need to establish the set of

measurable, customer-oriented attributes, which can be

defined, measured, analyzed, optimized and verified

(DMADOV) in the software testing process. These attributes

need to be directly built into the testing process so that it is

specifically geared to producing pre-defined quality limits.

This means embedding specific design intent within the

software testing algorithm to meet specific and understood,

customer-facing performance metrics. Below, we identify

two types of critical-to-customer metrics concerning the

software testing process at Johnson Controls. We plan to

assess the following metrics on each software module that

undergoes testing:

Critical-to-Quality (CTQ) metrics:

Y1. The capacity to reach 100% of the functional coverage:

the reached functional coverage

Y2. The capacity to reach 100% of the structural coverage:

the reached structural coverage

Y3. The accuracy of the testing process: the ratio between the

number of “false” defects detected and the total number

of defects

Y4. The capacity to reduce the number of defects detected by

the carmaker: the ratio between the number of defects

detected by carmakers and the total number of defects

Y5. The capacity to reduce the number of defects detected by

the end user (driver): the ratio between the number of

defects detected by the end users and the total number of

defects

Critical-to-delivery (CTD) metrics:

Y6. The time spent to test the software module

Y7. The capacity to detect the defects earlier in the software

development cycle: the ratios between the number of

defects detected by Johnson Controls during the different

testing phases and the total number of defects

Y8. The number of versions of the software module

Y9. The capacity to deliver software module free of defects

since the first delivery: the ratio between the number of

defects detected by Johnson Controls in the first testing

phase and the total number of defects

Since we place a high premium on reducing the number of

defects detected by carmakers and end users (Y4 and Y5),

one solution is to increase the functional and structural

coverage. But, experimentations reveal that some defects

cannot be detected even if our functional requirements model

and code are covered at 100%. This leads to the realization

that we need to refine our functional coverage model.

Typically, we can consider the coverage rate of the

succession of two transitions in a FSM element.

7- Conclusion

In this paper, we focus on the objective function that we

developed and implemented in our global automatic test

approach in order to optimize the test generation. The basic

aim of this model is to make a compromise between the

software quality and the cost of testing. We assess the quality

through two indicators: the structural coverage of the

program under test and the formal functional coverage of the

requirement model. We also initiate the plan to validate our

new testing approach through the use of a case study with

historical data. The results of this first investigation were

promising. Properties such as reproducibility, repeatability

9

and accuracy will be verified on the developed case studies.

Finally, we describe a set of quality attributes to monitor the

quality of the software testing process and therefore identify

improvement actions to be performed on the process. As a

perspective, we have to manage the change of the practices

and activities of hundreds of testers at Johnson Controls.

Indeed, testers’ technical skills will have to switch from a

manual design to a high level modelling of the test scenarios

and objectives in using in a flexible manner our design

approach.

8- References

[AY1] Awedikian R., Yannou B. Automatic test case

prioritization through a model-based statistical testing

approach: application in the automotive industry. Software

Testing, Verification & Reliability. Submitted on May 2010.

[AY2] Awedikian R., Yannou B., Mekhilef M., Bouclier L.

and Lebreton P., “A Radical improvement of software defects

detection when automating the test generation process”,

Proceedings of the 10th International Design Conference -

DESIGN 2008, Dubrovnik, 2008.

[AY3] Awedikian R., Yannou B., Mekhilef M., Bouclier L.

and Lebreton P., “A simulated model of software

specifications for automating functional tests design”,

Proceedings of the 10th International Design Conference -

DESIGN 2008, Dubrovnik, 2008.

[AY4] Awedikian R., “Quality of the design of test cases for

automotive software: design platform and testing process.”

Doctoral disseration, Extended Abstract, Ecole Centrale

Paris, Châtenay Malabry, France, 2009. Available at

http://www.lgi.ecp.fr/uploads/PagesPerso/PhD_Extended_Ab

stract.pdf [26 September 2010].

[B1] Beizer B., “Software Testing Techniques”, second

edition, 1990 (Van Nostrand Reinhold).

[B2] Breyfogle III Forrest W., “Implementing Six Sigma

Smarter Solutions Using Statistical Methods”, 1999. (John

Wiley & Sons).

[C1] Chávez T., “A decision-analytic stopping rule for

validation of commercial software systems”. IEEE

Transactions on Software Engineering, 2000, 26(9):907-918.

[C2] Chvalovsky V., “Decision tables”, Software: Practice

and Experience, Vol. 13, No.5, 1983, pp. 423-429.

[DM1] Dalal, S. R., Mallows, C. L., “When should one stop

testing software?”, Journal of the American Statistical

Association, 83(403), 1988, pp. 872-879.

[F1] Freimut, B., “Developing and Using Defect

Classification Schemes”, Technical Report, IESE Report No.

072.01/E, 2001.

[G1] Gill A, “Introduction to the theory of finite-state

machines”, McGraw Hill, NJ, 1962.

[I1] Institute of Electrical and Electronics Engineers (IEEE),

“IEEE Std 830-1998: IEEE Recommended Practice for

Software Requirements Specifications” (SRS), 1998.

[M1] Musa, J. D., “Operational Profiles in Software-

Reliability Engineering”, IEEE Software, 10(2), 1993, pp.

14-32.

[MT1] Marre B., Thévenod-Fosse P., Waeselynck H., Le

Gall P. and Crouzet Y. An experimental evaluation of formal

testing and statistical testing. In Safety of Computer Control

System, SAFECOMP ’92, Zurich, Switzerland, 1992, pp.

311-316 (Heinz H. Frey edition).

[OX1] Offutt J., Xiong X. and Liu S., “Criterion for

generating specification-based tests”. In the Fifth IEEE

International Conference on Engineering of Complex

Computer Systems, ICECCS ‘99, Las Vegas, October 1999,

pp. 199-131 (IEEE Computer Society Press).

[S1] Sargent, R. G., “Verification and Validation of

Simualtion Models”, Proceedings of the 37th Winter

Simulation Conference - WSC 2005, Orlando, FL, USA,

2005, pp. 37-48.

[YJ1] Yang O., Jenny Li J. and Weiss D., “A Survey of

Coverage Based Testing Tools”, In International workshop

on Automation of Software Test, AST ’06, Shanghai, China,

May 2006, pp. 99-103.

http://www.lgi.ecp.fr/uploads/PagesPerso/PhD_Extended_Abstract.pdf
http://www.lgi.ecp.fr/uploads/PagesPerso/PhD_Extended_Abstract.pdf

