Roy Awedikian
email: roy.awedikian@graduates.centraliens.net

Bernard Yannou
email: bernard.yannou@ecp.fr

Design of a validation test process of an automotive software

Keywords: test design space, exploration, decision making, software testing, software quality

Testing software for defects exhaustively remains a computationally intensive problem. Therefore, deciding when to stop the test of a software product is one of the main issues in software engineering. Introducing fewer defects, detecting defects earlier in the development process and reducing the time to delivery are the primary objectives of software organizations. In particular, we have been working to address this problem within the realm of the automotive suppliers of car-embedded electronic modules and have developed case research with Johnson Controls. In this paper, we describe our approach to automatically generate test cases for a software product and develop the details of our objective and constraint functions for optimizing the test generation. It is based on a compromise between the structural and functional formal coverage and the cost of the generated tests. Finally, we propose a plan to validate and monitor the new software testing process.

1-Introduction

Since the 1970s, software engineering methods have been focused on overcoming the quality problems in software systems. In software development [B1], once the design of a software module is completed, the module is sent to a testing group which must check that the module meets the client's requirements. For that reason, testers design a set of test cases to be simulated on the software module. Presently, at Johnson Controls (and in many automotive companies), they still manually design the test cases whose size is often much larger than that of the module code itself. The stopping criteria when generating the series of tests are most often based primarily on covering the software program and on the budget and time constraints. Since there is no unified model to represent the software functional requirements in the automotive industry, assessing a functional coverage of these requirements strongly depends on the organization's internal definition of the requirements. In [START_REF] Awedikian | Automatic test case prioritization through a model-based statistical testing approach: application in the automotive industry[END_REF], we (the authors) have recently developed and experimented a new approach to automatically generate test cases for a software module. The test generation is monitored by a set of formal quality indicators such as the structural and functional coverage but also the tests cost that we thoroughly present in this paper. In the next (second) section, we characterize the conventional software test design process presently used at Johnson Controls and we identify the issues stemming from the existing lack of a stopping criteria model. In the third section, we discuss a measurement to stop software testing. In the fourth section, we briefly present our new test design approach. In the fifth section, we focus on the objective and constraint functions used for optimizing the test generation and more precisely on the functional coverage of our simulated model to represent the functional requirements. We also describe the optimization process of designing a test case (selection of test steps). In the sixth section, we outline our plan to validate our new approach; this results in a set of quality attributes related to the testing process that we intend to use for driving a continuous improvement on this software testing process. In the final section, we make some concluding remarks.

2-The software test design process at Johnson Controls

At Johnson Controls, the lifecycle of a software product is divided into 5 global stages: Request For Quotation, Design, Design Validation, Production Validation and Production. Within each stage, the engineering activities are performed according to the standard V-cycle of the software industry and in an iterative way in order to take the carmaker constraints and requirements priorities into account. The main engineering processes are Requirements specification and management, Global design, Component development, Integration and Validation. We notice that each of the development, integration and validation processes perform a software testing activity in order to verify and validate the correctness of the software delivered at the end of the process. Software defects are detected in each of these processes, analyzed, corrected and capitalized in the defects database of the company. The software testing activity consists in: 1) Analyzing the carmaker software requirements: testers who need to design tests must first read, analyze and understand the carmaker software requirements. 2) Designing the test cases: presently, testers proceed to a manual design of the test cases. The performance of this activity is mainly based on the experience of the testers. 3) Simulating the test cases on the software product and detecting the defects: once the test cases are developed, they are simulated on the software product in order to check that they are "ok" and as free of defects as possible.

What is a "client functionality"?

A "functionality" is a set of services delivered by the software product. A functionality is specified by a set of inputs, outputs and a set of requirements. A "client functionality" is a functionality that delivers a service to the clients (carmakers and/or drivers). For example, the door lock management functionality.

What is a "test case"?

Let us consider a client functionality with two input signals:

I1(with domain D(I1)={0,1}
) and I2 (D(I2)={1,2,3}). We first call "operation", the fact that an input signal is set to a value. For example, I2=3 is an operation. A "test case" is the succession of k operations separated by time intervals and the expected results on the output signals after each operation.

An excerpt from a test case designed is given in figure 1:

In test step 96, testers wait for 500 ms without carrying out any actions on the product and check that the outputs of the product haven't changed.

In test step 97, testers activate a switch, wait for 200 ms and check that the concerned outputs are activated according to the expected behaviour.

3-A semi-formal measurement to stop software testing

At the beginning of a project, automotive suppliers officially receive the carmaker requirements. The software department of Johnson Controls like many software organizations adopts the SRS (Software Requirement Specification) model to express the various expectations of a software product. In [I1], we can find the IEEE (Institute of Electrical and Electronics Engineers, Inc.) recommended practices for the SRS. Once the SRS document is ready, it is the unique source of inspiration for testers to design their test cases for the software product. Presently, the major number of automotive suppliers has a manual test design process which is highly dependent to the experience of testers. Indeed, for each client functionality, we can associate a potential test space. But, as the software product becomes more and more complex, it is illusory to be able to check that the software product responds correctly to all possible operations. Therefore, each tester has a different perception of the possible test space and designs the test cases according to this perception. In addition, the criteria to stop designing test cases are based, on the one hand, on a non expressed combination of code and/or requirements coverage (semi-formal measurements) and, on the other hand, on time and money remaining for the project.

In software engineering, the term "coverage" means the extent or degree to which something is observed, analyzed, and reported.

3.1-Structural coverage

Currently, during the structural testing of a software component at Johnson Controls, practitioners mainly use the code coverage as a criterion to stop testing (A survey on code coverage based testing tools is done in [START_REF] Yang | A Survey of Coverage Based Testing Tools[END_REF]). Code coverage is a way to measure how thoroughly a set of test cases cover a program (see figure 2): the coverage rate of statements (lines of code), procedures, conditions (control flow) and decisions in the software product under test. There is a large variety of code coverage measurement criteria but the four listed before are the most used in automotive industry. These criteria are apparently relevant since the goal of the testing activity is to check if all the pieces of the software module have been tested. But it is not that simple!

3.2-Functional coverage

The criterion of structural coverage does not directly assess the compliance of the software module to the carmaker requirements; this is a biased indicator. In fact, the functional coverage is related to the coverage of the functional requirements of the software under test. Through a literature review (see [START_REF] Offutt | Criterion for generating specification-based tests[END_REF]), several stop testing criteria based on covering software specification have been proposed. They primarily deal with the transitions coverage of a graph-based specification. At Johnson Controls, the carmaker requirements are referenced and managed using professional tools (Doors) and therefore the coverage rate of these requirements is used as the primary criterion to stop software functional testing. Paradoxically and even a 100% coverage of the functional requirements has been reached during the Johnson Controls testing of a software module, the carmaker is able to detect a nonconformity between the code and their specification. This could lead to the conclusion that the present Johnson Controls definition of a requirement is not Therefore, he decides to stop testing these requirements and to set them as covered. In fact, through the test #1, the tester covers at 100% the first requirement but the test #2 does not cover at 100% the second requirement. Indeed, the second requirement can be splitted into three requirements to be tested:

-In case of input I1 is equal to 1 and input I2 is equal to 1, therefore the output O2 must be set to 1covered by test #2 -In case of input I1 is equal to 0 and input I2 is equal to 1, therefore the output O2 must be set to 1not covered by the tests -In case of input I1 is equal to 0 and input I2 is equal to 0, therefore the output O2 must be set to 1not covered by the tests Consequently and in order to automate the design of test cases and to monitor this automation by quality indicators such as a formal functional coverage, we develop a new approach based on representing the software functional requirements in a simulated model.

4-Our new approach for automating the software test generation

Our new approach of automated test generation presents a much different workflow for generating test series than the present one. The new workflow is based on seven activities which are manual, semi-automatic or automatic and managed by different individuals (requirement engineers and testers). These activities are: 1. Represent the carmaker functional requirements in a simulated model that we developed keeping in mind the automotive context and its constraints. In fact, each client functionality has a set of input, output and intermediate signals. We can find a detailed description of our model for modelling and simulating the software functional requirements in [START_REF] Awedikian | A simulated model of software specifications for automating functional tests design[END_REF]. 2. Verify and validate the consistency and compliance of the software requirement model [S1]. Verification is done to ensure that the consistency and completeness of the developed model. To do so, we defined a set of integrity rules to be checked automatically once a model is developed. We can find these rules in [START_REF] Awedikian | A simulated model of software specifications for automating functional tests design[END_REF].

Verification ensures that mistakes have not been made in implementing the model but does not ensure the compliance of the model to the carmaker software requirements which is the scope of the model validation.

In fact, we proposed three main scenarios to validate a software requirement model in our context. We can find more details on these scenarios in [AY3] 3. Define some behavioural characteristics of a car driver when using the client functionality under test. To do so, we develop in [START_REF] Awedikian | A Radical improvement of software defects detection when automating the test generation process[END_REF] three types of constraints that engineers can affect to an input signal of the requirements model in order to eliminate or favour specific "successive" operations. These constraints aim to reduce the number of possible combinations on the input signals and to more thoroughly pinpoint which ones have a high potential to detect defects. In case of input I1 is equal to 1 and input I2 is equal to 0, therefore the output O2 must be set to 0 Requirement 2:

In other cases, Output O2 is always set to 1

4. Reuse the defects and the test cases respectively detected and developed in the past on the same client functionality [F1]. In fact, using capitalized defects and test cases seems to be beneficial in automotive context since more than 50% of the functionalities performed by a software product are common to any series of cars. To do this, we developed a framework which takes the capitalized defects (under a specific format: operations that lead to the defect and the time intervals between these operations) and existing test cases and generates automatically a set of successive operations with time intervals to be primarily simulated on the functionality under test. Therefore, we can better address the problem of detecting defects by generating tests to check the nonexistence of recurrent defects and reducing the test design space by focusing on the test scenarios based on our returns of experience. 5. Enrich the requirement model with knowledge on the driver recurrent operations and the testers' experience [M1]. To do so, we propose to set probabilities between all possible successive operations of a client functionality. Therefore, we build a matrix that we name "operation matrix" which is a square matrix with all possible operations in columns and in rows. Between the two operations of a pair we define:

-The probability that two operations are in sequence.

-The time between these two operations, modelled as an interval of possible values (a uniform probability) Let us consider a client functionality with 3 input signals:

I1 (with domain D(I1)={0,1}), I2 (D(I2)={1,2,3}) and I3 (D(I3)={0,1}
). The "operation matrix" associated to this example can be seen in fig. 5.

Figure 5. Operation matrix

We can find more details on activities 3, 4 and 5 in [START_REF] Awedikian | A Radical improvement of software defects detection when automating the test generation process[END_REF].

6. Manage the test generation with the cost, delay and quality indicators. 7. Automate the generation of test cases from the enriched model (by activities 3 to 5) of functional requirements. In the following, we further detail our objective and constraint functions for optimizing the test generation and our optimization algorithm to design efficient test cases fulfilling one or more predefined targets on the quality indicators.

5-A compromise to stop designing test cases when fulfilling the test objectives and constraints

Testing software exhaustively remains a very hard problem to solve. Therefore, software testing must often be based on specific assumptions and objectives which help practitioners and managers to decide when to stop the testing protocol [START_REF] Dalal | When should one stop testing software?[END_REF]. Several stopping criteria have been proposed in the software testing literature. In [START_REF] Awedikian | Quality of the design of test cases for automotive software: design platform and testing process[END_REF], we (the authors) made a detailed survey on these criteria. In this paper and in order to monitor the automatic generation of test cases, we develop: -an objective function based on formal structural (code) and functional (specification) coverage, -a constraint function based on test execution time and cost, and an optimization algorithm which aims to fulfill the test objectives while respecting the time and cost constraints. Indeed, we develop a panel interface to allow the test engineers to set the test generation objectives and constraints (see figure 11). We also define a set of weights (wi) that test engineers can associate for each defined objective or constraint: 0 (to be ignored), 1 (not very important), 5 (important), 10 (very important). The panel helps test engineers to express their objectives and constraints in terms of the required software quality and tests cost and therefore generate test cases fulfilling their expectations.

5.1-Objective function

The objective function, F Objective , is defined as in formula (1).

(1) where StrucCovTarget and FuncCovTarget are the coverage goals as defined by the test engineers, StrucCovCurrent and FuncCovCurrent are the coverage reached by the test case under design and wis are weights. The structural and functional coverage are expressed in terms of ratios of coverage and, then, are normalized which aim to reach a value of 100%.

5.1.1-Structural coverage

While generating a test case, and for each test step generation, we simulate the test step on the software product under test and we evaluate the code coverage in terms of statements, procedures, conditions and decisions coverage (see figure 2). To do so, we use C-Cover from Bullseye as a code coverage measurement tool.

5.1.2-Functional coverage

Once we define a model to formally represent the software functional requirements, we consider a formal coverage rate of the requirements model (see figure 6):

The coverage rate of an element

There are two types of elements, namely: Decision table (see figure 7): We use a DT to characterize a set of combinatorial software functional requirements. A DT is a tabular form that presents a set of exclusive conditions on the inputs (Ci) and their corresponding set of actions on the outputs (Ai). A condition (for example, C1) must require that at least one input is set to a specific value (i3=1), the other inputs may be indifferent ().

Figure 7. A decision table (DT) element

Finite state machine (see figure 8): We use a FSM to characterize a set of sequential software functional requirements. A FSM is a model of behaviour composed of an initial state, a finite number of states with a set of actions on the outputs (A), a set of transitions between these states and, for each transition, a set of exclusive conditions on the inputs (C) that allows the transition to be passed.

Figure 8. A finite state machine (FSM) element

The element coverage of a requirements model consists of the coverage rate of the conditions of each Decision Table and the coverage rate of the states, transitions and conditions of each Finite State Machine. Moreover, when designing the functional requirements model, practitioners can affect to conditions, states and transitions a normalized criticity level between 0 and 1. Consequently, we define a second set of coverage rates for expressing the degrees of coverage of the most critical elements (in fact, this is a weighted coverage of an element).

The coverage rate of a signal domain

In fact, each signal (input, output or intermediate) has a discrete domain. The signal domain coverage of a requirements model consists of the coverage rate of the domains of the inputs, outputs and intermediates signals. In addition, since testing the boundary values of a signal often reveals many defects, we also assess the coverage rate of the minimum and maximum values of each signal. In figure 9, we illustrate the coverage of a signal by a practical example. In fact, the signal "Signal_3" is covered at 100% while the two values of this signal were visited at least once during the generated tests. The signal "Signal_1" has a coverage rate of 33,33% (1 value visited over 3 values in total).

Figure 9. Signals domain coverage

The coverage rate of an operation matrix

The operation matrix coverage of a requirements model consists of the coverage rate of all successions between pairs of operations visited. Once a succession probability is set between each two operations, we define a coverage rate of the critical successions where the succession probability is above a certain level defined by the practitioner. Let us consider the example of figure 10. After generating a test case, some cases of the matrix have been highlighted. In fact, in the generated test case, the operation #4 has followed the operation #1, the operation #2 has followed the operation #2, the operation #2 has followed the operation #3 and so on. This way, we compute the coverage rate of successions between pairs of operations (around 38% : 5 successions of operations were covered over 13 possible successions)

5.2-Constraint function

The constraint function, F Constraint , is defined as:

(2)

where Cons Target are the constraints' values as defined by the test engineers, Cons Current are the constraints' values reached by the test case under design and w i s are weights.

5.2.1-Test execution time and cost constraints

Unfortunately, in the automotive industry, the time and money spent to test a software product is the major criterion to stop testing. When generating test cases automatically, one can have a tendency to generate too many tests. In fact, executing test cases on the software under test and analyzing the results can cost too much time and money and more especially when the execution is performed manually by a test engineer. In the proposed approach and when generating a test case, test engineers can set a group of time and cost constraints that should be respected:

- Constraints on time and cost are helpful in case of tight planning and budget on the project. It can also be useful on projects where the test execution is performed manually. In that case, the execution time and number of test steps must be reduced and the repetitive test steps or succession of test steps must be avoided. Typically, when testing a Graphical User Interface (GUI), test engineers have to check visually the expected results. Nevertheless, new testing platforms allow even to automate the testing of GUI using a camera system.

5.3-How to design optimal test cases?

Once the functional requirement model is ready and at least one "operation matrix" is established, automatically generating a test case requires performing a set of test steps until the stopping criteria are reached. Two automated activities are necessary to generate one test step:

Activity 1: Perform a Monte Carlo simulation on an "operation matrix" Two sub-steps are required:

Step 1: an operation is chosen according to the probabilities between each two successive operations [START_REF] Marre | An experimental evaluation of formal testing and statistical testing[END_REF].

Step 2: the inter-operation time is randomly chosen within the time interval.

Activity 2: Simulate the functional requirements model and calculate the expected values of the output signals A synchronized functional simulation is performed on the model of software functional requirements. The simulation is done with an oriented acyclic logic going from the input to the output signals of the client functionality. The simulation order of the elements has to be defined when designing the requirements model (element 1 then element 2 then element 3 …). A "clock" input synchronizes the behaviour of the functional model. At each cycle time of the clock, all elements are simulated following the predefined order. Simulating an element consists of calculating its output signals values according to its input signals values. In [START_REF] Awedikian | A simulated model of software specifications for automating functional tests design[END_REF], we can find a detailed presentation of the simulation of our software requirements model.

Through the proposed approach, the process of designing a test case is monitored by an optimization algorithm based on a mix of simulated annealing and look-ahead strategies. The aim of this algorithm is to reach the coverage objectives while respecting at most the time and cost constraints. During a test case design session and after each test step design (after activity 1 / step 1), the contribution of the designed test step to the objectives fulfillment is assessed. In case of no contribution, the designed test step is rejected and a new test step is designed. In the other case, the coverage and constraint indicators are updated and the objective and constraint functions are assessed. The quality objectives (structural and functional coverage) may be fulfilled following different orders and the first objective fulfilled does not immediately stop the process. We stop the process: 1) When the objective function (F Objective) attains zero.

2) When the constraint function (F Constraint) increases for a certain number of successive generated test steps without any improvement in the objective function (F Objective). In fact, for a set of targets and weights on the quality indicators, the practitioner can generate more than one test case fulfilling these predefined objectives. Afterwards, the optimal test case is automatically selected. To do so, we compare the generated test cases in pairs and we select the one which has the lowest value of the aggregated preference F of the quality indicators. If the two test cases have the same value of F, we select the utmost one that meets each individual targets going from the higher to the lower weights. simulation with a weight of 10 Please note that, in this example, we do not deal with criticity, structural coverage and non-repetitive test step number. In figure 12, and after generating one test case with objectives and constraints defined below, we can see the current (reached) target and weight of each the quality indicators. In fact, even if the inputs and outputs boundaries coverage have respectively reached and exceeded their targets (respectively 85% and 94% of coverage), our optimization algorithm did not stop the tests generation expecting that the intermediate boundaries coverage reaches its target. But once the maximum test simulation time which has a weight of 10 (very important) has been exceeded (110255 ms instead of 108000 ms), the optimization algorithm decides to stop generating test steps even if the intermediates boundaries coverage is not already reached. The validation of our new approach consists of two initiatives.

In the first stage, we verified the results on two case studies (the "front wiper" and "fuel gauge" functionalities) with historical data. The second case study differs from the first one in that it contains different formats of the carmaker's software requirements and it is considered to be a more complex software product. The aim of the experiment was to test our new approach with a software product that was already tested through Johnson Control's conventional approach. The results of these case studies highlight the benefits of our new approach: -We increase by at least 100% the number of defects detected since the first testing phase (front wiper: from 12 to 24 defects, fuel gauge: from 2 to 18 defects)

-We decrease by at least 60% the number of defects detected by the carmaker (front wiper: from 5 to 2 defects, fuel gauge: from 5 to 1 defects) -We increase by at least 25% the number of defects detected by Johnson Controls and not by the carmaker (front wiper: from 17 to 24 defects, fuel gauge: from 18 to 22 defects) -On the first case study, we detect 5 new "minor" defects.

These defects were not detected by Johnson Controls nor by the carmaker -We lower by at least 20% the time spent in testing the software (front wiper: 39 instead of 53,75 eight-hour days, fuel gauge: 41,5 instead of 50 eight-hour days)

In addition to estimating the benefits in terms of defects detection and time spent in testing the software, we plan to verify the three properties of a reliable measurement system [B2]: reproducibility, repeatability and accuracy.

Reproducibility: In our new approach of software testing, two main activities depend on the operator (i.e., human intervention). The first one is the design of the requirements model and the second one is the definition of a set of targets and weights. Therefore, two operators must independently model the same software requirements and define a set of targets from the same global test objectives. Finally, each operator has to generate automatically a set of test cases fulfilling the predefined targets.

Repeatability: Since our test optimization algorithm is partly based on a stochastic process, the repeatability must be verified. Consequently, for each operator, we perform two automatic test generations from the same model and targets. Once simulating, on the software module under test, the test cases generated by the two operators, we can measure the number of detected defects by piece. In our case, a piece can be associated with a C (programming language) procedure of the software module. Consequently, we can assess the R&R (Reproducibility & Repeatability) degree for which the automotive industry standard is 90% for 30 pieces.

Accuracy: It is important to assess the correctness of the results delivered by our measurement system. Therefore, we plan to measure: -The ratio between the number of new defects detected by our approach and the total number of defects already detected through the conventional testing approach. -The ratio between the number of "true" defects detected by our approach and the total number of defects already detected through the conventional testing approach. -The ratio between the number of "false" defects detected by our approach and the total number of defects already detected through the conventional testing approach.

In the second stage, we plan to monitor the quality of our new testing process. To do so, it seems that within the Design for Six Sigma (DFSS) framework, the Define, Measure, Analyze, Design, Optimize, and Verify (DMADOV) methodology is the appropriate approach. This will allow us to put the proper focus on the up front design of the testing process. Therefore, we need to establish the set of measurable, customer-oriented attributes, which can be defined, measured, analyzed, optimized and verified (DMADOV) in the software testing process. These attributes need to be directly built into the testing process so that it is specifically geared to producing pre-defined quality limits. This means embedding specific design intent within the software testing algorithm to meet specific and understood, customer-facing performance metrics. Below, we identify two types of critical-to-customer metrics concerning the software testing process at Johnson Controls. We plan to assess the following metrics on each software module that undergoes testing: Critical-to-Quality (CTQ) metrics: Y1. The capacity to reach 100% of the functional coverage: the reached functional coverage Y2. The capacity to reach 100% of the structural coverage:

the reached structural coverage Y3. The accuracy of the testing process: the ratio between the number of "false" defects detected and the total number of defects Y4. The capacity to reduce the number of defects detected by the carmaker: the ratio between the number of defects detected by carmakers and the total number of defects Y5. The capacity to reduce the number of defects detected by the end user (driver): the ratio between the number of defects detected by the end users and the total number of defects Critical-to-delivery (CTD) metrics: Y6. The time spent to test the software module Y7. The capacity to detect the defects earlier in the software development cycle: the ratios between the number of defects detected by Johnson Controls during the different testing phases and the total number of defects Y8. The number of versions of the software module Y9. The capacity to deliver software module free of defects since the first delivery: the ratio between the number of defects detected by Johnson Controls in the first testing phase and the total number of defects Since we place a high premium on reducing the number of defects detected by carmakers and end users (Y4 and Y5), one solution is to increase the functional and structural coverage. But, experimentations reveal that some defects cannot be detected even if our functional requirements model and code are covered at 100%. This leads to the realization that we need to refine our functional coverage model. Typically, we can consider the coverage rate of the succession of two transitions in a FSM element.

7-Conclusion

In this paper, we focus on the objective function that we developed and implemented in our global automatic test approach in order to optimize the test generation. The basic aim of this model is to make a compromise between the software quality and the cost of testing. We assess the quality through two indicators: the structural coverage of the program under test and the formal functional coverage of the requirement model. We also initiate the plan to validate our new testing approach through the use of a case study with historical data. The results of this first investigation were promising. Properties such as reproducibility, repeatability and accuracy will be verified on the developed case studies. Finally, we describe a set of quality attributes to monitor the quality of the software testing process and therefore identify improvement actions to be performed on the process. As a perspective, we have to manage the change of the practices and activities of hundreds of testers at Johnson Controls. Indeed, testers' technical skills will have to switch from a manual design to a high level modelling of the test scenarios and objectives in using in a flexible manner our design approach.

Figure 1 .

 1 Figure 1. Excerpt from a test case (two operations) as designed by Johnson Controls testers

Figure 2 .

 2 Figure 2. Structural (code) coverage indicators

Figure 4 .

 4 Figure 4. Graphical illustration of our simulated model to represent functional requirements

Figure 6 .

 6 Figure 6. Functional coverage indicators

Figure 10 .

 10 Figure 10. Operation matrix coverage Finally, while generating the tests, practitioners can visualize in real time the covered zones of the functional requirements

 Constraint 1: Execution time. The time that a test engineer will spend in executing manually the generated test case on the software product. -Constraint 2: Number of test steps in the generated test case. -Constraint 3: Number of "distinct" test steps in the generated test case. Two test steps are distinct if they have different input data. In order to have a consistent aggregated constraint function (F Constraint), we normalize to 100% the time and cost constraints. These constraints are expressed in millisecond (ms) and in number of generated test steps. We illustrate the normalization process of these constraints through an example. At each time, test engineers decide to set a constraint C i , the normalized target of this constraint Cons Target (C i) is immediately set to 100%. For instance, once a test engineer decide to generate a test case that the total execution time do not exceed 108000 ms, the normalized target of the test execution time constraint is set to 100% (Cons Target (test execution time)= 100%). After generating a set of test steps, the normalized current value of this constraint (Cons Current (C i)) is assessed by calculating the ratio (current_constraint_value*100/target_constraint_value). When generating a set of test steps with a total execution time of 21600 ms, Cons Current (test execution time) is assessed to (21600*100)/108000 (Cons Current (test execution time)= 20%).

Figure 11 .-

 11 Figure 11. Panel of the quality indicators for monitoring the automatic test case generation Let us consider a practical software testing problem in order to illustrate the purpose of our objective and constraint functions. Through the experience feedback of the software testing experts, some software defects often occur when a signal is set to its boundaries values. Consequently, test practitioners could always decide to generate a test case (a set of test steps) which aims to detect potential defects related to the boundaries values. Hereafter, we consider the client functionality which consists in managing the front wiper in a vehicle. The corresponding software component is made of 1229 Lines of code (blank and comment lines excluded), 18 input signals and 8 output signals. We decide to generate a test case fulfilling the following objectives, constraints and weights (see figure 11): -Cover the boundaries input signals at 85% with a weight of 5

Figure 12 .

 12 Figure 12. A result of a test case generation

 Combinatorial if the outputs values at instant t depend on the sole inputs values at instant t. Sequential if the outputs values at instant t not only depend on inputs values at instant t but also on the outputs values at instant t-1. Therefore, we propose to model these two types of functional requirements thanks to two types of modelling elements, namely Decision Table (DT)[C2] and Finite State Machine (FSM)[G1]. We provide, in figure4, a graphical illustration of our functional requirements model. This example has 4 input signals, 4 output signals, 5 intermediate signals and 4 elements. A "clock" signal is required since the behaviour of a software product is ruled by synchronism. In fact, a clock is just a signal that alternates between zero and one, back and forth, at a specific pace (cycle time). It sets the "pace" for the functional simulation of the model.

These signals are interconnected through elements. An element is a set of functional requirements of the same type. We propose at a first level two types of functional requirements :

Table Clock Finite State Machines coverage Decision Tables coverage Signals domain coverage Operation matrix coverage

 Clock

	Element N 1	
	Finite	
	State	Element N 3
	Machine	Decision
		Element N 4
		Table
		Finite
		State
		Machine
	Element N 2
	Decision	
		Signal_1
		Signal_2
		Signal_3
		Signal_4
		Signal_5
		Signal_6
		Signal_7

model. An estimate of the coverage rate is computed after each test step generation.