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Abstract. In this paper, we give a characterization for any abelian subgroup
G of a lie group of diffeomorphisms maps of Cn, having a somewhere dense
orbit G(x), x ∈ Cn: G(x) is somewhere dense in Cn if and only if there are
f1, . . . , f2n+1 ∈ exp−1(G) such that f2n+1 ∈ vect(f1, . . . , f2n) and Zf1(x) +
· · ·+Zf2n+1(x) is dense in Cn, where vect(f1, . . . , f2n) is the vector space over
R generated by f1, . . . , f2n.

1. Introduction

Denote by Diff r(Cn), r ≥ 1 the group of all Cr-diffemorphisms of Cn. Let Γ
be a lie subgroup of Diff r(Cn), r ≥ 1 and G be an abelian subgroup of Γ, such
that Fix(G) 6= ∅, where Fix(G) = {x ∈ Cn : f(x) = x, ∀f ∈ G} be the global
fixed point set of G. There is a natural action G×Cn −→ Cn. (f, x) 7−→ f(x). For
a point x ∈ Cn, denote by G(x) = {f(x), f ∈ G} ⊂ Cn the orbit of G through x.
A subset E ⊂ C

n is called G-invariant if f(E) ⊂ E for any f ∈ G; that is E is a

union of orbits. Denote by E (resp.
◦

E ) the closure (resp. interior) of E.

Recall that E ⊂ Cn is somewhere dense in Cn if the closure E has nonempty

interior in Cn. An orbit γ is called somewhere dense (or locally dense) if
◦
γ 6= ∅.

The group G is called hypercyclic if it has a dense orbit in C
n. Hypercyclic is also

called topologically transitive.

The purpose of this paper is to give a characterization for any subgroup G of a
lie group of diffeomorphisms maps of Cn, having a dense orbit. In [1], the authors
present a global dynamic of every abelian subgroup of GL(n,C) and in [2], they
characterize hypercyclic abelian subgroup of GL(n,C). Our main result is viewed
as a continuation of [7] and [8].
Denote by:
- C∗ = C\{0} and N∗ = N\{0}.
- Cr(Cn,Cn) the set of all Cr-differentiable maps of Cn.
- For a subset E ⊂ Cn (resp. E ⊂ Cr(Cn,Cn)), denote by vect(E) the vector
subspace of Cn (resp. Cr(Cn,Cn)) over R generated by all elements of E.
- exp : Cr(Cn,Cn) −→ Diff r(Cn) the exponential map defined by exp(f) = ef ,
f ∈ Cr(Cn,Cn).
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- H the lie algebra associated to Γ.
- exp : H −→ Γ be the exponential map.
- Hx = {f(x), B ∈ H}, it is a vector subspace of Cn over R.
- g = exp−1(G), it is an additive group because G is abelian.
- gx = {f(x), B ∈ g}, it is an additive subgroup of Cn because g is an additive
group.

Our principal results can be stated as follows:

Theorem 1.1. Let Γ be an abelian lie subgroup of Diff r(Cn) and x ∈ Cn\{0}.
Then the following assertions are equivalent:
(i) Hx = Cn.

(ii)
◦

Γ(x) 6= ∅.

In general, the Lie algebra g̃ is not explicitly defined, so we give an explicitly
test to the existence of somewhere dense orbit by the following theorem:

Theorem 1.2. Let G be an abelian subgroup of a lie group Γ ⊂ Diff r(Cn) and

x ∈ Cn\{0}. Then
◦

G(x) 6= ∅ if and only if there exist f1, . . . , f2n+1 ∈ exp−1(G̃)
such that f2n+1 ∈ vect(f1, . . . , f2n) and Zf1(x)+ · · ·+Zf2n+1(x) is a dense additive
subgroup of Cn.

Let’s introduce the arithmetic property: We say that f1, . . . , f2n+1 ∈ Cr(Cn,Cn)
satisfy property D(x) for some x ∈ C

n if f1, . . . , f2n are linearly independent,
f2n+1 ∈ vect(f1, . . . , f2n) and for every (s1, . . . , s2n+1) ∈ Z2n+1\{0}:

rank




Re(f1(x)) . . . Re(f2n+1(x))
Im(f1(x)) . . . Im(f2n+1(x))

s1 . . . s2n+1


 = 2n+ 1.

For a vector v ∈ Cn, we write v = Re(v)+ iIm(v) where Re(v) and Im(v) ∈ Rn.

As an immediate consequence of Theorem 1.2, we have:

Corollary 1.3. Let G be an abelian subgroup of a lie group Γ ⊂ Diff r(Cn) and

x ∈ Cn\{0}. Then
◦

G(x) 6= ∅ if and only if there exist f1, . . . , f2n+1 ∈ exp−1(G)
and satisfying property D(x).

As an important consequence of the Theorem 1.2, we give the following Corollary
which simplifies the test given by Theorem 1.3 proved in [2] for the abelian subgroup
of GL(n,C):

Corollary 1.4. Let G be an abelian subgroup of GL(n,C) and x ∈ Cn\{0}. Then

G(x) = Cn if and only if there exist B1, . . . , B2n+1 ∈ exp−1(G) such that ZB1x +
· · ·+ ZB2n+1x is dense in C

n.

This paper is organized as follows: In Section 2 we prove Theorem 1.1. Section3
is devoted to prove Theorem 1.2 and Corollaries 1.3, 1.4.
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2. Proof of Theorem 1.1

We will cite the definition of the exponential map given in [3].

2.1. Exponential map. In this section, we illustrate the theory developed of the
group Diff(Cn) of diffeomorphisms of Cn. For simplicity, throughout this section
we only consider the case of C = R; however, all results also hold for complexes
case. The group Diff(Rn) is not a Lie group (it is infinite-dimensional), but in
many way it is similar to Lie groups. For example, it easy to define what a smooth
map from some Lie group G to Diff(Rn) is: it is the same as an action of G on Rn

by diffeomorphisms. Ignoring the technical problem with infinite-dimensionality for
now, let us try to see what is the natural analog of the Lie algebra g for the group
G. It should be the tangent space at the identity; thus, its elements are derivatives
of one-parameter families of diffeomorphisms.
Let ϕt : G −→ G be one-parameter family of diffeomorphisms. Then, for every
point a ∈ G, ϕt(a) is a curve in G and thus ∂

∂tϕ
t(a)/t=0 = ξ(a) ∈ TaG is a tangent

vector to G at m. In other words, ∂
∂tϕ

t is a vector field on G.

The exponential map exp : g −→ G is defined by exp(x) = γx(1) where γx(t) is the
one-parameter subgroup with tangent vector at 1 equal to x.
If ξ ∈ g is a vectorfield, then exp(tξ) should be one-parameter family of diffeo-
morphisms whose derivative is vector field ξ. So this is the solution of differential
equation

∂

∂t
ϕt(a)/t=0 = ξ(a).

In other words, ϕt is the time t flow of the vector field. Thus, it is natural to define
the Lie algebra of G to be the space g of all smooth vector ξ fields on R

n such that
exp(tξ) ∈ G for every t ∈ R.

We will use the definition of Whitney topology given in [6].

2.2. Whitney Topology on C0(Cn,Cn). For each open subset U ⊂ C
n × C

n let

Ũ ⊂ C0(Cn,Cn) be the set of continuous functions g, whose graphs {(x, g(x)) ∈
Cn×Cn, x ∈ Cn} is contained in U . We want to construct a neighborhood basis of

each function f ∈ C0(Cn,Cn). Let Kj = {x ∈ C
n, ‖x‖ ≤ j} be a countable family

of compact sets (closed balls with center 0) covering Cn such that Kj is contained

in the interior of Kj+1. Consider then the compact subsets Lj = Kj\

◦︷ ︸︸ ︷
Kj−1, which

are compact sets, too. Let ǫ = (εj)j be a sequence of positive numbers and then
define

V(f ;ǫ) = {f ∈ C0(Cn,Cn) : ‖f(x)− g(x)‖ < εj , for any x ∈ Lj, ∀j}.

We claim this is a neighborhood system of the function f in C0(Cn,Cn). Since Li

is compact, the set U = {(x, y) ∈ Cn × Cn : ‖f(x) − g(x)‖ < εj , if x ∈ Lj} is

open. Thus, V(f ;ǫ) = Ũ is an open neighborhood of f . On the other hand, if O is
an open subset of Cn×Cn which contains the graph of f , then since Lj is compact,
it follows that there exists εj > 0 such that if x ∈ Lj and ‖y − f(x)‖ < εj , then

(x; y) ∈ O. Thus, taking ǫ̃ = (εj)j we have V(f ;ǫ̃) ⊂ Õ, so we have obtained the
family V(f ;ǫ) is a neighborhood system of f . Moreover, for each given ǫ = (εj)j ,
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we can find a C∞-function ǫ : Cn −→ R+, such that ǫ(x) < εj for any x ∈ Lj. It
follows that the family V(f ;ǫ) = {(x, y) ∈ Cn × Cn : ‖f(x)− g(x)‖ < ǫ(x)} is also
a neighborhood system.

Denote by:

- G̃ = G ∩Diff r(Cn), where G is the closure of G in Cr(Cn,Cn) for the withney

topology defined above. So G̃ is an abelian lie subgroup of Γ.

- A(G̃) the algebra generated by G. See that G ⊂ A(G̃).

- Φx : A(G̃) −→ Cn the linear map given by Φx(f) = f(x), f ∈ A(G̃).
- E(x) = Φx(A(G)).

Lemma 2.1. The linear map Φx : A(G̃) −→ E(x) is continuous.

Proof. Firstly, we take the restriction of the Whitney topology to A(G̃). Secondly,

let f ∈ A(G̃) and ε > 0. Then for ǫ = (εj)j with εj = ε and for V(f ;ǫ) be a

neighborhood system of f , we obtain: for every g ∈ V(f ;ǫ) ∩ A(G̃) and for every
y ∈ Lj, ‖f(y)− g(y)‖ < ε, ∀j. In particular for j = j0 in which x ∈ Lj0 , we have
‖f(x)− g(x)‖ < ε, so ‖Φx(f)− Φx(g)‖ < ε. It follows that Φx is continuous. �

2.3. Proof of Theorem 1.1.

Proposition 2.2. ([3], Theorem 3.29) Let G be a Lie group acting on Cn with lie
algebra g̃ and let u ∈ Cn.
(i) The stabilizer Gx = {B ∈ G : Bu = u} is a closed Lie subgroup in G, with Lie
algebra hx = {B ∈ g̃ : Bu = 0}.
(ii) The map G/Gx

−→ Cn given by B.Gx 7−→ Bu is an immersion. Thus, the
orbit G(x) is an immersed submanifold in Cn. In particular dim(G(x)) = dim(g̃)−
dim(hx).

Here hx = Ker(Φx) since Ker(Φx) ⊂ g̃. Write:

- L̃ the vector subspace of g̃ supplement to Ker(Φx), (i.e. L̃⊕Ker(Φx) = g̃). It is

clear that dim(L̃) = cod(Ker(Φx)) ≤ n, then L̃ is closed.

- exp : L̃⊕Ker(Φx) −→ G̃ the exponential map. Since G̃ is abelian, so is g̃, then

exp(f + h) = exp(f) ◦ exp(h) for every f ∈ L̃ and h ∈ Ker(Φx).

- G̃x the stabilizer of G̃ on the point u. So it is a lie subgroup of G̃ with lie algebra
Ker(Φx).

As a directly consequence of Proposition 5.13, given in [4], applied to Γ, we have
the following Lemma:

Lemma 2.3. ([4], Proposition 5.13) Let G be an abelian subgroup of a lie group Γ.
There exists an open neighborhood U of 0 in H such that exp : U −→ exp(U) is

a diffeomorphism and exp(U ∩ g̃) = exp(U) ∩ G̃.

Denote by V = exp(U), where U is the open set defined in Lemma 2.3.

Lemma 2.4. We have G(x) = G̃(x).
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Proof. It is clear that G(x) ⊂ G̃(x) ⊂ G(x). Let v ∈ G(x), so v = lim
m→+∞

fm(x)

for some sequence (fm)m∈N in G. Then for every m ∈ N, there exists a sequence
(fm,k)k∈N in G such that lim

k→+∞
fm,k = fm, so by continuity of Φx (Lemma 2.1),

we have lim
k→+∞

fm,k(x) = fm(x), thus for every ε > 0, there exists M > 0 and

for every m ≥ M , there exists km > 0, such that ‖fm(x) − v‖ < ε
2 and for every

k ≥ km, ‖fm,k(x)− fm(x)‖ < ε
2 . Then, for every m > M ,

‖fm,km
(x) − v‖ ≤ ‖fm,km

(x)− fm(x)‖ + ‖fm(x) − v‖ < ε,

therefore lim
m→+∞

fm,km
(x) = v. Hence v ∈ G(x). It follows that G̃(x) ⊂ G(x) ⊂

G(x). �

Lemma 2.5. Let W = Φx(V ). Then Φ−1
x (G̃(x) ∩W ) ∩ V = G̃ ∩ V .

Proof. Since W = Φx(V ), it is obvious that G̃ ∩ V ⊂ Φ−1
x (G̃(x) ∩ W ) ∩ V . Let

f ∈ Φ−1
x (G̃(x) ∩ W ). Then there exists g ∈ G̃ ∩ V such that f(x) = g(x). So

g−1 ◦ f(x) = x. Hence g−1 ◦ f ∈ Hx, where Hx be the lie group generated by {h ∈

Diff r(Cn) : h(x) = x}∩A(G̃). So Hx is contained in the stabilizer of Diff r(Cn)

on x. Set Lx be the lie algebra of Hx, so Lx ⊂ {h ∈ Diff r(Cn) : h(x) = 0}∩A(G̃).

Therefore Lx ⊂ Ker(Φx) ⊂ g̃. Hence Hx ⊂ G̃. It follows that g−1 ◦ f ∈ G̃, so

f ∈ G̃ ∩ V . This completes he proof. �

Proof of Theorem 1.1.

Since G̃ is a locally closed sub-manifold ofDiff r(Cn). By Proposition 2.2.(ii), G̃(x)
is an immersed submanifold of Cn with dimension r = dim(g̃)−dim(Ker(Φx)). We
have Im(Φx) = g̃x. Then dim(g̃x) = dim(g̃)−dim(Ker(Φx)). It follows from Propo-
sition 2.2,(ii) that

dim(G̃(x)) = dim(g̃x) (2)

.
Proof of (i) =⇒ (iii) : The proof results directly from (2), and the fact that

dim(G̃(x)) = n if and only if G̃(x) is a non empty open set.

Proof of (iii) =⇒ (ii) : Since G̃(x) ∩ W is a non empty open set then the proof

follows directly from Lemma 2.4.(ii), because G̃(x) ∩W ⊂ G̃(x) ∩W = G(x) ∩W .

Proof of (ii) =⇒ (i) : Since
◦

G(x) ⊂ Im(Φx) ⊂ Cn then the linear map Φx :

A(G̃) −→ Cn is surjective, so it is an open map. By Lemma 2.3 there exists two
open subsets U and V = exp(U) respectively of H and Γ such that the exponential

map exp : U −→ V is a diffeomorphism and satisfying exp(g̃ ∩ U) = G̃ ∩ V . So

exp−1(G̃ ∩ V ) = g̃ ∩ U. (1)
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Recall that W = Φx(V ). Since Φx is an open map and by Lemma 2.4.(i),
◦

G(x) =
◦

G̃(x), so

Φ−1
x (

◦

G(x) ∩W ) = Φ−1
x (

◦

G̃(x) ∩W )

⊂ Φ−1
x (G̃(x) ∩W )

⊂ Φ−1
x (G̃(x) ∩W ) (3)

We have

Φx ◦ exp−1(Φ−1
x (

◦

G(x) ∩W ) ∩ V ) ⊂ Φx ◦ exp−1(Φ−1
x (G̃(x) ∩W ) ∩ V ) (by (3))

⊂ Φx ◦ exp−1(G̃ ∩ V ), (by Lemma 2.5)

⊂ Φx ◦ exp−1(G̃ ∩ V )

⊂ Φx(g̃ ∩ U) (by (1))

⊂ g̃x

Since
◦

G(x)∩W is a non empty open subset ofCn then Φx◦exp−1(Φ−1
x (

◦

G(x)∩W )∩V )
is an open subset of Cn. It follows that g̃x = Cn. The proof is completed �.

3. Proof of Theorem 1.2 and Corollaries 1.3, 1.4

Under the notation of Lemma 2.3, recall that there exists an open subset U of

A(G̃) such that exp : U −→ exp(U) is a diffeomorphism. Now, by using the

restricton of the withney topology to A(G̃), denote by:

- B(0,r) = {f ∈ A(G̃) : ‖f‖ < r}, the open ball with center 0 and radius r > 0 .
- rG = sup{r ∈]0, 1[: B(0,r) ⊂ U}, it is dependent of G since is U .

Theorem 3.1. Let G be a subgroup of Diff r(Cn) and x ∈ Cn. If there ex-

ist f1, . . . , f2n ∈ exp−1(G̃) with ‖fk‖ < rG̃, for every k = 1, . . . , 2n such that

(f1(x), . . . , f2n(x)) is a basis of Cn over R, then
◦

G(x) 6= ∅.

Proof. We have fk ∈ exp−1(G̃) with ‖fk‖ < rG̃ for every k = 1, . . . , 2n, then

f1, . . . , f2n ∈ U and so efk ∈ G̃ ∩ V . By Lemma 2.3, G̃ ∩ V = exp(U ∩ g̃), hence
fk ∈ g̃, for every k = 1, . . . , 2n. As (f1(x), . . . , f2n(x)) is a basis of Cn over R then

g̃x = Cn. It follows by Theorem 1.1 that
◦

G(x) 6= ∅. �

Lemma 3.2. Let H be a vector space with dimension 2n over R and x1, . . . , x2n+1 ∈
H, such that Zx1 + · · · + Zx2n+1 is dense in H. Then for every 1 ≤ k ≤ 2n+ 1,
(x1, . . . , xk−1, xk+1, . . . , x2n+1) is a basis of H over R.
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Proof. We have H is isomorphic to Cn. Let 1 ≤ k ≤ 2n+ 1 be a fixed integer and
take

K = vect(x1, . . . , xk−1, xk+1, . . . , x2n+1).

Suppose that dim(K) = p < 2n. Let (xk1
, . . . , xkp

) be a basis of K. Then Zx1 +
· · ·+ Zx2n+1 ⊂ K + Zxk which cannot be dense in H , a contradiction. �

Recall that L̃ is the vector subspace of g̃ supplement to Ker(Φx), (i.e. L̃ ⊕
Ker(Φx) = g̃). Denote by:

- px : L̃⊕Ker(Φx) −→ L̃ given by px(f + h) = f , f ∈ L̃ and h ∈ Ker(Φx).

Lemma 3.3. Under above notations, we have:

(i) The linear map Φx : L̃ −→ E(x) defined by Φx(f) = f(x), is an isomor-
phism.

(ii) for every f ∈ g̃ one has Φ−1
x (f(x)) = px(f).

Proof. (i) By construction Φx is surjective and restreint to L̃ it became injective.
By Lemma 2.1 Φx is continuous and bijective. Hence it is an isomorphism because
it is linear.
(ii) Let f ∈ g̃. Write f = f1 + f0 with f1 = px(f) ∈ L̃ and f0 ∈ Ker(Φx)). Since
f0(x) = 0, so f(x) = f1(x). By (i), Φx is an isomorphism, then Φ−1

x (f(x)) =
Φ−1

x (f1(x)) = f1 = px(f). This completes the proof. �

Let f1, . . . , f2n+1 ∈ g̃ and suppose that (px(f1), . . . , px(f2n)) is a basis of L̃ over

R and fn+1 ∈ vect(f1, . . . , f2n). Denote by Ψ : L̃ −→ g̃ the linear map given by

Ψ

(
2n∑

k=1

αkpx(fk)

)
=

2n∑

k=1

αkfk.

Lemma 3.4. Under above notations, we have:

(i) If Zf1(x) + · · ·+ Zf2n+1(x) = C
n then Zpx(f1) + · · ·+ Zpx(f2n+1) = L̃.

(ii) Ψ(Zpx(f1) + · · ·+ Zpx(f2n+1)) = Zf1 + · · ·+ Zf2n+1.

Proof. (i) Here E(x) = Cn. By Lemma 3.3,(i), Φx : L̃ −→ Cn is an isomorphism
and by Lemma 3.3,(ii), we have Φ−1

x (fk(x)) = px(fk)(x) for every k = 1, . . . , 2n+1,
so

Φ−1
x (Zf1(x) + · · ·+ Zf2n+1(x)) = Zpx(f1) + · · ·+ Zpx(f2n+1).

Then

L̃ = Φ−1
x (Cn)

= Φ−1
x (Zf1(x) + · · ·+ Zf2n+1(x))

= ZΦ−1
x (f1(x)) + · · ·+ ZΦ−1

x (f2n+1(x)))

= Zpx(f1) + · · ·+ Zpx(f2n+1)
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(ii) Let k1, . . . , k2n+1 ∈ Z and f = k1px(f1) + · · ·+ k2n+1px(f2n+1). Write f2n+1 =
2n∑
k=1

αkfk, α1, . . . , α2n ∈ R, then

f = (k1 + α1k2n+1)px(f1) + · · ·+ (k2n + α2nk2n+1)px(f2n),

so

Ψ(f) = Ψ ((k1 + α1k2n+1)px(f1) + · · ·+ (k2n + α2nk2n+1)px(f2n))

= (k1 + α1k2n+1)f1 + · · ·+ (k2n + α2nk2n+1)f2n

= k1f1 + · · ·+ k2n+1f2n+1

Then Ψ (Zpx(f1) + · · ·+ Zpx(f2n+1)) ⊂ Zf1+ · · ·+Zf2n+1. The same proof is used
for the converse, by replacing Ψ by Ψ−1. �

Proposition 3.5. ([5], Proposition 4.3). Let H = Zx1 + · · ·+ Zxp with xk ∈ Rn.
Then H is dense in Rn if and only if for every (s1, . . . , sp) ∈ Zp\{0} :

rank

[
x1 . . . . . . xp

s1 . . . . . . sp

]
= n+ 1.

Proof of Theorem 1.2. Write Hx = Zf1(x) + · · · + Zf2n+1(x). Since Hx = Cn,
by Lemma 3.2, (f1(x), . . . , f2n(x)) is a basis of Cn, so f1, . . . , f2n are linearly

independent over R. Denote by E = vect(f1, . . . , f2n), then E = Ψ(L̃) and it

has a dimension equal to 2n over R, so Ψ : L̃ −→ E is an isomorphism. Since

f2n+1 ∈ vect(f1, . . . , f2n) then by Lemma 3.4,(i), Zpx(f1) + · · ·+ Zpx(f2n+1) = L̃.
Therefore:

E = Ψ(L̃)

= Ψ(Zpx(f1) + · · ·+ Zpx(f2n+1))

= Zf(px(f1)) + · · ·+ Zf(px(f2n+1))

= Zf1 + · · ·+ Zf2n+1 (1)

Let 1 ≤ k ≤ 2n and tk ∈ R∗ such that |tk| <
r
G̃

‖fk‖
.

• First, let’s prove that etkfk ∈ G

Since tkfk ∈ E, then by (1), tkfk ∈ Zf1 + · · ·+ Zf2n+1. Thus there exists a
sequence (gj)j∈N ⊂ Zf1 + · · ·+Zf2n+1 such that lim

j→+∞
gj = tkfk. By continuity of

the exponential map we have lim
j→+∞

egj = etkfk . Since Zf1+· · ·+Zf2n+1 ⊂ exp−1(G̃)

then gj ∈ exp−1(G̃), so etkfk ∈ G̃, since G̃ is closed in Diff r(Cn).

• Second, as |tk| <
rG
‖fk‖

, then ‖tkfk‖ < rG̃. Since |tk| 6= 0 and (f1(x), . . . , f2n(x))

is a basis of Cn, so is (t1f1(x), . . . , t2nf2n(x)). By the first step we conclude that
etkBk ∈ G for every k = 1, . . . , 2n. The proof follows then from Theorem 3.1. �

The complex form of Proposition 3.5 is given in the following:
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Proposition 3.6. ([5], page 35). Let H = Zz1 + · · · + Zzp with zk ∈ Cn and
zk = Re(zk)+ iIm(zk), k = 1, . . . , p. Then H is dense in Cn if and only if for every
(s1, . . . , sp) ∈ Zp\{0} :

rank




Re(z1) . . . . . . Re(zp)
Im(z1) . . . . . . Im(zp)
s1 . . . . . . sp


 = 2n+ 1.

Proof of Corollary 1.3. The proof results directly, from Theorem 1.2 and Proposi-
tion 3.6. �

Lemma 3.7. ([1], Corollary 1.3). Let G be an abelian subgroup of GL(n,C). If G
has a locally dense orbit γ in Cn then γ is dense in Cn.

Proof of Corollary 1.4. Since the matrices Bj , 1 ≤ j ≤ 2n+1 commute then ZB1+
· · · + ZB2n+1 ⊂ exp−1(G). Hence the proof of Corollary 1.4 results directly from
Corollary 1.3 and Lemma 3.7. �

Question1: How can we characterize explicitly g = exp−1(G) for any finitely gen-
erated abelian subgroup G of a lie group Γ ⊂ Diff r(Cn)?

Question2: A somewhere dense orbit of a non abelian subgroup of Diff r(Cn)
can always be dense in Cn?
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