SOMEWHERE DENSE ORBIT OF ABELIAN SUBGROUP OF DIFFEOMORPHISMS MAPS ACTING ON \mathbb{C}^n

YAHYA N'DAO AND ADLENE AYADI

ABSTRACT. In this paper, we give a characterization for any abelian subgroup G of a lie group of diffeomorphisms maps of \mathbb{C}^n , having a somewhere dense orbit $G(x), x \in \mathbb{C}^n$: G(x) is somewhere dense in \mathbb{C}^n if and only if there are $f_1, \ldots, f_{2n+1} \in exp^{-1}(G)$ such that $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ and $\mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x)$ is dense in \mathbb{C}^n , where $vect(f_1, \ldots, f_{2n})$ is the vector space over \mathbb{R} generated by f_1, \ldots, f_{2n} .

1. Introduction

Denote by $Diff^{r}(\mathbb{C}^{n}), r \geq 1$ the group of all C^{r} -diffemorphisms of \mathbb{C}^{n} . Let Γ be a lie subgroup of $Diff^{r}(\mathbb{C}^{n}), r \geq 1$ and G be an abelian subgroup of Γ , such that $Fix(G) \neq \emptyset$, where $Fix(G) = \{x \in \mathbb{C}^{n} : f(x) = x, \forall f \in G\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$. $(f, x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^{n}$, denote by $G(x) = \{f(x), f \in G\} \subset \mathbb{C}^{n}$ the orbit of G through x. A subset $E \subset \mathbb{C}^{n}$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a

union of orbits. Denote by \overline{E} (resp. $\overset{\circ}{E}$) the closure (resp. interior) of E.

Recall that $E \subset \mathbb{C}^n$ is somewhere dense in \mathbb{C}^n if the closure \overline{E} has nonempty interior in \mathbb{C}^n . An orbit γ is called somewhere dense (or locally dense) if $\overset{\circ}{\overline{\gamma}} \neq \emptyset$. The group G is called hypercyclic if it has a dense orbit in \mathbb{C}^n . Hypercyclic is also called topologically transitive.

The purpose of this paper is to give a characterization for any subgroup G of a lie group of diffeomorphisms maps of \mathbb{C}^n , having a dense orbit. In [1], the authors present a global dynamic of every abelian subgroup of $GL(n, \mathbb{C})$ and in [2], they characterize hypercyclic abelian subgroup of $GL(n, \mathbb{C})$. Our main result is viewed as a continuation of [7] and [8].

Denote by:

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}.$

- $C^r(\mathbb{C}^n, \mathbb{C}^n)$ the set of all C^r -differentiable maps of \mathbb{C}^n .

- For a subset $E \subset \mathbb{C}^n$ (resp. $E \subset C^r(\mathbb{C}^n, \mathbb{C}^n)$), denote by vect(E) the vector subspace of \mathbb{C}^n (resp. $C^r(\mathbb{C}^n, \mathbb{C}^n)$) over \mathbb{R} generated by all elements of E.

- $exp: C^r(\mathbb{C}^n, \mathbb{C}^n) \longrightarrow Diff^r(\mathbb{C}^n)$ the exponential map defined by $exp(f) = e^f$, $f \in C^r(\mathbb{C}^n, \mathbb{C}^n)$.

²⁰⁰⁰ Mathematics Subject Classification. 37C85, 47A16, 17B45.

 $Key\ words\ and\ phrases.$ diffeomorphisms commute, action group, abelian group, somewhere dense, locally dense orbit...

This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-15.

- *H* the lie algebra associated to Γ .

- $exp: H \longrightarrow \Gamma$ be the exponential map.

- $H_x = \{f(x), B \in H\}$, it is a vector subspace of \mathbb{C}^n over \mathbb{R} .

- $g = exp^{-1}(G)$, it is an additive group because G is abelian.

- $g_x = \{f(x), B \in g\}$, it is an additive subgroup of \mathbb{C}^n because g is an additive group.

Our principal results can be stated as follows:

Theorem 1.1. Let Γ be an abelian lie subgroup of $Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then the following assertions are equivalent: (i) $H_x = \mathbb{C}^n$. (ii) $\stackrel{\circ}{\Gamma(x)} \neq \emptyset$.

In general, the Lie algebra \tilde{g} is not explicitly defined, so we give an explicitly test to the existence of somewhere dense orbit by the following theorem:

Theorem 1.2. Let G be an abelian subgroup of a lie group $\Gamma \subset Diff^{r}(\mathbb{C}^{n})$ and $x \in \mathbb{C}^{n} \setminus \{0\}$. Then $\overline{G(x)} \neq \emptyset$ if and only if there exist $f_{1}, \ldots, f_{2n+1} \in exp^{-1}(\widetilde{G})$ such that $f_{2n+1} \in vect(f_{1}, \ldots, f_{2n})$ and $\mathbb{Z}f_{1}(x) + \cdots + \mathbb{Z}f_{2n+1}(x)$ is a dense additive subgroup of \mathbb{C}^{n} .

Let's introduce the arithmetic property: We say that $f_1, \ldots, f_{2n+1} \in C^r(\mathbb{C}^n, \mathbb{C}^n)$ satisfy property $\mathcal{D}(x)$ for some $x \in \mathbb{C}^n$ if f_1, \ldots, f_{2n} are linearly independent, $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ and for every $(s_1, \ldots, s_{2n+1}) \in \mathbb{Z}^{2n+1} \setminus \{0\}$:

rank $\begin{bmatrix} \operatorname{Re}(f_1(x)) & \dots & \operatorname{Re}(f_{2n+1}(x)) \\ \operatorname{Im}(f_1(x)) & \dots & \operatorname{Im}(f_{2n+1}(x)) \\ s_1 & \dots & s_{2n+1} \end{bmatrix} = 2n+1.$

For a vector $v \in \mathbb{C}^n$, we write $v = \operatorname{Re}(v) + i\operatorname{Im}(v)$ where $\operatorname{Re}(v)$ and $\operatorname{Im}(v) \in \mathbb{R}^n$.

As an immediate consequence of Theorem 1.2, we have:

Corollary 1.3. Let G be an abelian subgroup of a lie group $\Gamma \subset Diff^{r}(\mathbb{C}^{n})$ and $x \in \mathbb{C}^{n} \setminus \{0\}$. Then $\overline{G(x)} \neq \emptyset$ if and only if there exist $f_{1}, \ldots, f_{2n+1} \in exp^{-1}(G)$ and satisfying property $\mathcal{D}(x)$.

As an important consequence of the Theorem 1.2, we give the following Corollary which simplifies the test given by Theorem 1.3 proved in [2] for the abelian subgroup of $GL(n, \mathbb{C})$:

Corollary 1.4. Let G be an abelian subgroup of $GL(n, \mathbb{C})$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then $\overline{G(x)} = \mathbb{C}^n$ if and only if there exist $B_1, \ldots, B_{2n+1} \in exp^{-1}(G)$ such that $\mathbb{Z}B_1x + \cdots + \mathbb{Z}B_{2n+1}x$ is dense in \mathbb{C}^n .

This paper is organized as follows: In Section 2 we prove Theorem 1.1. Section3 is devoted to prove Theorem 1.2 and Corollaries 1.3, 1.4.

 $\mathbf{2}$

SOMEWHERE DENSE ORBIT OF ABELIAN SUBGROUP OF DIFFEOMORPHISMS MAPS ACTING ON C3

2. Proof of Theorem 1.1

We will cite the definition of the exponential map given in [3].

2.1. Exponential map. In this section, we illustrate the theory developed of the group $Diff(\mathbb{C}^n)$ of diffeomorphisms of \mathbb{C}^n . For simplicity, throughout this section we only consider the case of $\mathbb{C} = \mathbb{R}$; however, all results also hold for complexes case. The group $Diff(\mathbb{R}^n)$ is not a Lie group (it is infinite-dimensional), but in many way it is similar to Lie groups. For example, it easy to define what a smooth map from some Lie group G to $Diff(\mathbb{R}^n)$ is: it is the same as an action of G on \mathbb{R}^n by diffeomorphisms. Ignoring the technical problem with infinite-dimensionality for now, let us try to see what is the natural analog of the Lie algebra g for the group G. It should be the tangent space at the identity; thus, its elements are derivatives of one-parameter families of diffeomorphisms.

Let $\varphi^t : G \longrightarrow G$ be one-parameter family of diffeomorphisms. Then, for every point $a \in G$, $\varphi^t(a)$ is a curve in G and thus $\frac{\partial}{\partial t}\varphi^t(a)_{t=0} = \xi(a) \in T_aG$ is a tangent vector to G at m. In other words, $\frac{\partial}{\partial t}\varphi^t$ is a vector field on G.

The exponential map $exp : g \longrightarrow G$ is defined by $exp(x) = \gamma_x(1)$ where $\gamma_x(t)$ is the one-parameter subgroup with tangent vector at 1 equal to x.

If $\xi \in g$ is a vector field, then $exp(t\xi)$ should be one-parameter family of diffeomorphisms whose derivative is vector field ξ . So this is the solution of differential equation

$$\frac{\partial}{\partial t}\varphi^t(a)_{/t=0} = \xi(a).$$

In other words, φ^t is the time t flow of the vector field. Thus, it is natural to define the Lie algebra of G to be the space g of all smooth vector ξ fields on \mathbb{R}^n such that $exp(t\xi) \in G$ for every $t \in \mathbb{R}$.

We will use the definition of Whitney topology given in [6].

2.2. Whitney Topology on $C^0(\mathbb{C}^n, \mathbb{C}^n)$. For each open subset $U \subset \mathbb{C}^n \times \mathbb{C}^n$ let $\widetilde{U} \subset \mathcal{C}^0(\mathbb{C}^n, \mathbb{C}^n)$ be the set of continuous functions g, whose graphs $\{(x, g(x)) \in \mathbb{C}^n \times \mathbb{C}^n, x \in \mathbb{C}^n\}$ is contained in U. We want to construct a neighborhood basis of each function $f \in \mathcal{C}^0(\mathbb{C}^n, \mathbb{C}^n)$. Let $K_j = \{x \in \mathbb{C}^n, ||x|| \leq j\}$ be a countable family of compact sets (closed balls with center 0) covering \mathbb{C}^n such that K_j is contained

in the interior of K_{j+1} . Consider then the compact subsets $L_j = K_j \setminus K_{j-1}$, which are compact sets, too. Let $\epsilon = (\varepsilon_j)_j$ be a sequence of positive numbers and then define

$$V_{(f;\epsilon)} = \{ f \in \mathcal{C}^0(\mathbb{C}^n, \mathbb{C}^n) : \| f(x) - g(x) \| < \varepsilon_j, \text{ for any } x \in L_j, \forall j \}.$$

We claim this is a neighborhood system of the function f in $\mathcal{C}^0(\mathbb{C}^n, \mathbb{C}^n)$. Since L_i is compact, the set $U = \{(x, y) \in \mathbb{C}^n \times \mathbb{C}^n : ||f(x) - g(x)|| < \varepsilon_j, \text{ if } x \in L_j\}$ is open. Thus, $V_{(f;\epsilon)} = \widetilde{U}$ is an open neighborhood of f. On the other hand, if O is an open subset of $\mathbb{C}^n \times \mathbb{C}^n$ which contains the graph of f, then since L_j is compact, it follows that there exists $\varepsilon_j > 0$ such that if $x \in L_j$ and $||y - f(x)|| < \varepsilon_j$, then $(x; y) \in O$. Thus, taking $\widetilde{\epsilon} = (\varepsilon_j)_j$ we have $V_{(f;\widetilde{\epsilon})} \subset \widetilde{O}$, so we have obtained the family $V_{(f;\epsilon)}$ is a neighborhood system of f. Moreover, for each given $\epsilon = (\varepsilon_j)_j$, we can find a C^{∞} -function $\epsilon : \mathbb{C}^n \longrightarrow \mathbb{R}_+$, such that $\epsilon(x) < \varepsilon_j$ for any $x \in L_j$. It follows that the family $V_{(f;\epsilon)} = \{(x,y) \in \mathbb{C}^n \times \mathbb{C}^n : ||f(x) - g(x)|| < \epsilon(x)\}$ is also a neighborhood system.

Denote by:

- $\widetilde{G} = \overline{G} \cap Diff^r(\mathbb{C}^n)$, where \overline{G} is the closure of G in $C^r(\mathbb{C}^n, \mathbb{C}^n)$ for the withney topology defined above. So \widetilde{G} is an abelian lie subgroup of Γ .

- $\mathcal{A}(G)$ the algebra generated by G. See that $G \subset \mathcal{A}(\widetilde{G})$.
- $\Phi_x : \mathcal{A}(\widetilde{G}) \longrightarrow \mathbb{C}^n$ the linear map given by $\Phi_x(f) = f(x), f \in \mathcal{A}(\widetilde{G}).$ - $E(x) = \Phi_x(\mathcal{A}(G)).$

Lemma 2.1. The linear map $\Phi_x : \mathcal{A}(\widetilde{G}) \longrightarrow E(x)$ is continuous.

Proof. Firstly, we take the restriction of the Whitney topology to $\mathcal{A}(\widetilde{G})$. Secondly, let $f \in \mathcal{A}(\widetilde{G})$ and $\varepsilon > 0$. Then for $\epsilon = (\varepsilon_j)_j$ with $\varepsilon_j = \varepsilon$ and for $V_{(f;\epsilon)}$ be a neighborhood system of f, we obtain: for every $g \in V_{(f;\epsilon)} \cap \mathcal{A}(\widetilde{G})$ and for every $y \in L_j$, $||f(y) - g(y)|| < \varepsilon$, $\forall j$. In particular for $j = j_0$ in which $x \in L_{j_0}$, we have $||f(x) - g(x)|| < \varepsilon$, so $||\Phi_x(f) - \Phi_x(g)|| < \varepsilon$. It follows that Φ_x is continuous. \Box

2.3. Proof of Theorem 1.1.

Proposition 2.2. ([3], Theorem 3.29) Let G be a Lie group acting on \mathbb{C}^n with lie algebra \tilde{g} and let $u \in \mathbb{C}^n$.

(i) The stabilizer $G_x = \{B \in G : Bu = u\}$ is a closed Lie subgroup in G, with Lie algebra $\mathfrak{h}_x = \{B \in \widetilde{g} : Bu = 0\}.$

(ii) The map $G_{/G_x} \longrightarrow \mathbb{C}^n$ given by $B.G_x \longmapsto Bu$ is an immersion. Thus, the orbit G(x) is an immersed submanifold in \mathbb{C}^n . In particular $\dim(G(x)) = \dim(\tilde{g}) - \dim(\mathfrak{h}_x)$.

Here $\mathfrak{h}_x = Ker(\Phi_x)$ since $Ker(\Phi_x) \subset \tilde{g}$. Write:

- \widetilde{L} the vector subspace of \widetilde{g} supplement to $Ker(\Phi_x)$, (i.e. $\widetilde{L} \oplus Ker(\Phi_x) = \widetilde{g}$). It is clear that $\dim(\widetilde{L}) = cod(Ker(\Phi_x)) \leq n$, then \widetilde{L} is closed.

- $exp: \widetilde{L} \oplus Ker(\Phi_x) \longrightarrow \widetilde{G}$ the exponential map. Since \widetilde{G} is abelian, so is \widetilde{g} , then $exp(f+h) = exp(f) \circ exp(h)$ for every $f \in \widetilde{L}$ and $h \in Ker(\Phi_x)$.

- \widetilde{G}_x the stabilizer of \widetilde{G} on the point u. So it is a lie subgroup of \widetilde{G} with lie algebra $Ker(\Phi_x)$.

As a directly consequence of Proposition 5.13, given in [4], applied to Γ , we have the following Lemma:

Lemma 2.3. ([4], Proposition 5.13) Let G be an abelian subgroup of a lie group Γ . There exists an open neighborhood U of 0 in H such that $exp: U \longrightarrow exp(U)$ is a diffeomorphism and $exp(U \cap \tilde{g}) = exp(U) \cap \tilde{G}$.

Denote by V = exp(U), where U is the open set defined in Lemma 2.3.

Lemma 2.4. We have $\overline{G(x)} = \widetilde{G}(x)$.

Proof. It is clear that $\overline{G(x)} \subset \overline{\widetilde{G}(x)} \subset \overline{\overline{G}(x)}$. Let $v \in \overline{\overline{G}(x)}$, so $v = \lim_{m \to +\infty} f_m(x)$ for some sequence $(f_m)_{m \in \mathbb{N}}$ in \overline{G} . Then for every $m \in \mathbb{N}$, there exists a sequence $(f_{m,k})_{k \in \mathbb{N}}$ in G such that $\lim_{k \to +\infty} f_{m,k} = f_m$, so by continuity of Φ_x (Lemma 2.1), we have $\lim_{k \to +\infty} f_{m,k}(x) = f_m(x)$, thus for every $\varepsilon > 0$, there exists M > 0 and for every $m \ge M$, there exists $k_m > 0$, such that $||f_m(x) - v|| < \frac{\varepsilon}{2}$ and for every $k \ge k_m$, $||f_{m,k}(x) - f_m(x)|| < \frac{\varepsilon}{2}$. Then, for every m > M,

$$||f_{m,k_m}(x) - v|| \le ||f_{m,k_m}(x) - f_m(x)|| + ||f_m(x) - v|| < \varepsilon,$$

therefore $\lim_{m \to +\infty} f_{m,k_m}(x) = v$. Hence $v \in \overline{G(x)}$. It follows that $\overline{\widetilde{G}(x)} \subset \overline{\overline{G}(x)} \subset \overline{\overline{G}(x)}$.

Lemma 2.5. Let $W = \Phi_x(V)$. Then $\Phi_x^{-1}(\widetilde{G}(x) \cap W) \cap V = \widetilde{G} \cap V$.

Proof. Since $W = \Phi_x(V)$, it is obvious that $\widetilde{G} \cap V \subset \Phi_x^{-1}(\widetilde{G}(x) \cap W) \cap V$. Let $f \in \Phi_x^{-1}(\widetilde{G}(x) \cap W)$. Then there exists $g \in \widetilde{G} \cap V$ such that f(x) = g(x). So $g^{-1} \circ f(x) = x$. Hence $g^{-1} \circ f \in H_x$, where H_x be the lie group generated by $\{h \in Diff^r(\mathbb{C}^n) : h(x) = x\} \cap \mathcal{A}(\widetilde{G})$. So H_x is contained in the stabilizer of $Diff^r(\mathbb{C}^n)$ on x. Set L_x be the lie algebra of H_x , so $L_x \subset \{h \in Diff^r(\mathbb{C}^n) : h(x) = 0\} \cap \mathcal{A}(\widetilde{G})$. Therefore $L_x \subset Ker(\Phi_x) \subset \widetilde{g}$. Hence $H_x \subset \widetilde{G}$. It follows that $g^{-1} \circ f \in \widetilde{G}$, so $f \in \widetilde{G} \cap V$. This completes he proof.

Proof of Theorem 1.1.

Since \tilde{G} is a locally closed sub-manifold of $Diff^r(\mathbb{C}^n)$. By Proposition 2.2.(ii), $\tilde{G}(x)$ is an immersed submanifold of \mathbb{C}^n with dimension $r = \dim(\tilde{g}) - \dim(Ker(\Phi_x))$. We have $\operatorname{Im}(\Phi_x) = \tilde{g}_x$. Then $\dim(\tilde{g}_x) = \dim(\tilde{g}) - \dim(Ker(\Phi_x))$. It follows from Proposition 2.2,(ii) that

$$\dim(G(x)) = \dim(\widetilde{g}_x) \quad (2)$$

Proof of $(i) \implies (iii)$: The proof results directly from (2), and the fact that $\dim(\widetilde{G}(x)) = n$ if and only if $\widetilde{G}(x)$ is a non empty open set.

Proof of $(iii) \Longrightarrow (ii)$: Since $G(x) \cap W$ is a non empty open set then the proof follows directly from Lemma 2.4.(ii), because $\widetilde{G}(x) \cap W \subset \overline{\widetilde{G}(x)} \cap W = \overline{G(x)} \cap W$. Proof of $(ii) \Longrightarrow (i)$: Since $\overset{\circ}{\overline{G(x)}} \subset Im(\Phi_x) \subset \mathbb{C}^n$ then the linear map Φ_x : $\mathcal{A}(\widetilde{G}) \longrightarrow \mathbb{C}^n$ is surjective, so it is an open map. By Lemma 2.3 there exists two open subsets U and V = exp(U) respectively of H and Γ such that the exponential map $exp: U \longrightarrow V$ is a diffeomorphism and satisfying $exp(\widetilde{g} \cap U) = \widetilde{G} \cap V$. So

$$exp^{-1}(\widetilde{G} \cap V) = \widetilde{g} \cap U.$$
(1)

Recall that $W = \Phi_x(V)$. Since Φ_x is an open map and by Lemma 2.4.(i), $\overline{G(x)} = \frac{\circ}{\widetilde{G}(x)}$, so

$$\Phi_x^{-1}(\overline{\widehat{G(x)}} \cap W) = \Phi_x^{-1}(\overline{\widetilde{G(x)}} \cap W)$$
$$\subset \Phi_x^{-1}(\overline{\widetilde{G(x)}} \cap W)$$
$$\subset \overline{\Phi_x^{-1}(\widetilde{G(x)} \cap W)} \qquad (3)$$

We have

$$\Phi_{x} \circ exp^{-1}(\Phi_{x}^{-1}(\overline{\widehat{G(x)}} \cap W) \cap V) \subset \Phi_{x} \circ exp^{-1}(\overline{\Phi_{x}^{-1}(\widetilde{G}(x) \cap W) \cap V}) \quad (by (3))$$

$$\subset \Phi_{x} \circ exp^{-1}(\overline{\widetilde{G}} \cap V), \qquad (by \text{ Lemma 2.5})$$

$$\subset \Phi_{x} \circ exp^{-1}(\overline{\widetilde{G}} \cap V)$$

$$\subset \Phi_{x}(\overline{\widetilde{g}} \cap U) \qquad (by (1))$$

$$\subset \widetilde{g}_{x}$$

Since $\overline{G(x)} \cap W$ is a non empty open subset of \mathbb{C}^n then $\Phi_x \circ exp^{-1}(\Phi_x^{-1}(\overline{G(x)} \cap W) \cap V)$ is an open subset of \mathbb{C}^n . It follows that $\widetilde{g}_x = \mathbb{C}^n$. The proof is completed \Box .

3. Proof of Theorem 1.2 and Corollaries 1.3, 1.4

Under the notation of Lemma 2.3, recall that there exists an open subset U of $\mathcal{A}(\widetilde{G})$ such that $exp: U \longrightarrow exp(U)$ is a diffeomorphism. Now, by using the restricton of the withney topology to $\mathcal{A}(\widetilde{G})$, denote by:

 $\begin{array}{l} -B_{(0,r)}=\{f\in \mathcal{A}(G): \ \|f\|< r\}, \mbox{ the open ball with center } 0 \mbox{ and radius } r>0 \ .\\ -r_G=\sup\{r\in]0,1[: \ B_{(0,r)}\subset U\}, \mbox{ it is dependent of } G \mbox{ since is } U. \end{array}$

Theorem 3.1. Let G be a subgroup of $Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n$. If there exist $f_1, \ldots, f_{2n} \in exp^{-1}(\widetilde{G})$ with $||f_k|| < r_{\widetilde{G}}$, for every $k = 1, \ldots, 2n$ such that $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} , then $\overline{G(x)} \neq \emptyset$.

Proof. We have $f_k \in exp^{-1}(\widetilde{G})$ with $||f_k|| < r_{\widetilde{G}}$ for every k = 1, ..., 2n, then $f_1, \ldots, f_{2n} \in U$ and so $e^{f_k} \in \widetilde{G} \cap V$. By Lemma 2.3, $\widetilde{G} \cap V = exp(U \cap \widetilde{g})$, hence $f_k \in \widetilde{g}$, for every $k = 1, \ldots, 2n$. As $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} then $\widetilde{g_x} = \mathbb{C}^n$. It follows by Theorem 1.1 that $\overline{G(x)} \neq \emptyset$.

Lemma 3.2. Let H be a vector space with dimension 2n over \mathbb{R} and $x_1, \ldots, x_{2n+1} \in H$, such that $\mathbb{Z}x_1 + \cdots + \mathbb{Z}x_{2n+1}$ is dense in H. Then for every $1 \le k \le 2n+1$, $(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{2n+1})$ is a basis of H over \mathbb{R} .

Proof. We have H is isomorphic to \mathbb{C}^n . Let $1 \le k \le 2n + 1$ be a fixed integer and take

$$K = vect(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{2n+1})$$

Suppose that dim(K) = p < 2n. Let $(x_{k_1}, \ldots, x_{k_p})$ be a basis of K. Then $\mathbb{Z}x_1 + \cdots + \mathbb{Z}x_{2n+1} \subset K + \mathbb{Z}x_k$ which cannot be dense in H, a contradiction. \Box

Recall that \widetilde{L} is the vector subspace of \widetilde{g} supplement to $Ker(\Phi_x)$, (i.e. $\widetilde{L} \oplus Ker(\Phi_x) = \widetilde{g}$). Denote by:

$$p_x: L \oplus Ker(\Phi_x) \longrightarrow L$$
 given by $p_x(f+h) = f, f \in L$ and $h \in Ker(\Phi_x)$.

Lemma 3.3. Under above notations, we have:

- (i) The linear map $\Phi_x : \widetilde{L} \longrightarrow E(x)$ defined by $\Phi_x(f) = f(x)$, is an isomorphism.
- (ii) for every $f \in \tilde{g}$ one has $\Phi_x^{-1}(f(x)) = p_x(f)$.

Proof. (i) By construction Φ_x is surjective and restreint to \widetilde{L} it became injective. By Lemma 2.1 Φ_x is continuous and bijective. Hence it is an isomorphism because it is linear.

(ii) Let $f \in \tilde{g}$. Write $f = f_1 + f_0$ with $f_1 = p_x(f) \in \tilde{L}$ and $f_0 \in Ker(\Phi_x)$). Since $f_0(x) = 0$, so $f(x) = f_1(x)$. By (i), Φ_x is an isomorphism, then $\Phi_x^{-1}(f(x)) = \Phi_x^{-1}(f_1(x)) = f_1 = p_x(f)$. This completes the proof.

Let $f_1, \ldots, f_{2n+1} \in \widetilde{g}$ and suppose that $(p_x(f_1), \ldots, p_x(f_{2n}))$ is a basis of \widetilde{L} over \mathbb{R} and $f_{n+1} \in vect(f_1, \ldots, f_{2n})$. Denote by $\Psi : \widetilde{L} \longrightarrow \widetilde{g}$ the linear map given by

$$\Psi\left(\sum_{k=1}^{2n}\alpha_k p_x(f_k)\right) = \sum_{k=1}^{2n}\alpha_k f_k.$$

Lemma 3.4. Under above notations, we have: (i) If $\overline{\mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x)} = \mathbb{C}^n$ then $\overline{\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1})} = \widetilde{L}$. (ii) $\Psi(\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1})) = \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$.

Proof. (i) Here $E(x) = \mathbb{C}^n$. By Lemma 3.3,(i), $\Phi_x : \widetilde{L} \longrightarrow \mathbb{C}^n$ is an isomorphism and by Lemma 3.3,(ii), we have $\Phi_x^{-1}(f_k(x)) = p_x(f_k)(x)$ for every $k = 1, \ldots, 2n+1$, so

$$\Phi_x^{-1}(\mathbb{Z}f_1(x) + \dots + \mathbb{Z}f_{2n+1}(x)) = \mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1}).$$

Then

$$\widetilde{L} = \Phi_x^{-1}(\mathbb{C}^n)$$

$$= \Phi_x^{-1}(\overline{\mathbb{Z}f_1(x) + \dots + \mathbb{Z}f_{2n+1}(x)})$$

$$= \overline{\mathbb{Z}\Phi_x^{-1}(f_1(x)) + \dots + \mathbb{Z}\Phi_x^{-1}(f_{2n+1}(x)))}$$

$$= \overline{\mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1})}$$

(ii) Let $k_1, \ldots, k_{2n+1} \in \mathbb{Z}$ and $f = k_1 p_x(f_1) + \cdots + k_{2n+1} p_x(f_{2n+1})$. Write $f_{2n+1} = \sum_{k=1}^{2n} \alpha_k f_k, \alpha_1, \ldots, \alpha_{2n} \in \mathbb{R}$, then $f = (k_1 + \alpha_1 k_{2n+1}) p_x(f_1) + \cdots + (k_{2n} + \alpha_{2n} k_{2n+1}) p_x(f_{2n})$, so $\Psi(f) = \Psi((k_1 + \alpha_1 k_{2n+1}) p_x(f_1) + \cdots + (k_{2n} + \alpha_{2n} k_{2n+1}) p_x(f_{2n}))$

$$= (k_1 + \alpha_1 k_{2n+1}) f_1 + \dots + (k_{2n} + \alpha_{2n} k_{2n+1}) f_{2n}$$

= $(k_1 + \alpha_1 k_{2n+1}) f_1 + \dots + (k_{2n} + \alpha_{2n} k_{2n+1}) f_{2n}$
= $k_1 f_1 + \dots + k_{2n+1} f_{2n+1}$

Then $\Psi(\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1})) \subset \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$. The same proof is used for the converse, by replacing Ψ by Ψ^{-1} .

Proposition 3.5. ([5], Proposition 4.3). Let $H = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_p$ with $x_k \in \mathbb{R}^n$. Then H is dense in \mathbb{R}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \left[\begin{array}{ccc} x_1 & \dots & x_p \\ s_1 & \dots & \dots & s_p \end{array} \right] = n+1.$$

Proof of Theorem 1.2. Write $H_x = \mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x)$. Since $\overline{H_x} = \mathbb{C}^n$, by Lemma 3.2, $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n , so f_1, \ldots, f_{2n} are linearly independent over \mathbb{R} . Denote by $E = vect(f_1, \ldots, f_{2n})$, then $E = \Psi(\widetilde{L})$ and it has a dimension equal to 2n over \mathbb{R} , so $\Psi : \widetilde{L} \longrightarrow E$ is an isomorphism. Since $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ then by Lemma 3.4,(i), $\overline{\mathbb{Z}}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1}) = \widetilde{L}$. Therefore:

$$E = \Psi(L)$$

= $\Psi(\overline{\mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1})})$
= $\overline{\mathbb{Z}f(p_x(f_1)) + \dots + \mathbb{Z}f(p_x(f_{2n+1}))}$
= $\overline{\mathbb{Z}f_1 + \dots + \mathbb{Z}f_{2n+1}}$ (1)

Let $1 \le k \le 2n$ and $t_k \in \mathbb{R}^*$ such that $|t_k| < \frac{r_{\tilde{G}}}{\|f_k\|}$. • First, let's prove that $e^{t_k f_k} \in G$

Since $t_k f_k \in E$, then by (1), $t_k f_k \in \overline{\mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}}$. Thus there exists a sequence $(g_j)_{j \in \mathbb{N}} \subset \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$ such that $\lim_{j \to +\infty} g_j = t_k f_k$. By continuity of the exponential map we have $\lim_{j \to +\infty} e^{g_j} = e^{t_k f_k}$. Since $\mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1} \subset exp^{-1}(\widetilde{G})$ then $g_j \in exp^{-1}(\widetilde{G})$, so $e^{t_k f_k} \in \widetilde{G}$, since \widetilde{G} is closed in $Diff^r(\mathbb{C}^n)$.

• Second, as $|t_k| < \frac{r_G}{\|f_k\|}$, then $\|t_k f_k\| < r_{\widetilde{G}}$. Since $|t_k| \neq 0$ and $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n , so is $(t_1 f_1(x), \ldots, t_{2n} f_{2n}(x))$. By the first step we conclude that $e^{t_k B_k} \in G$ for every $k = 1, \ldots, 2n$. The proof follows then from Theorem 3.1. \Box

The complex form of Proposition 3.5 is given in the following:

Proposition 3.6. ([5], page 35). Let $H = \mathbb{Z}z_1 + \cdots + \mathbb{Z}z_p$ with $z_k \in \mathbb{C}^n$ and $z_k = \operatorname{Re}(z_k) + i\operatorname{Im}(z_k)$, $k = 1, \ldots, p$. Then H is dense in \mathbb{C}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

 $\operatorname{rank} \left[\begin{array}{cccc} \operatorname{Re}(z_1) & \dots & \dots & \operatorname{Re}(z_p) \\ \operatorname{Im}(z_1) & \dots & \dots & \operatorname{Im}(z_p) \\ s_1 & \dots & \dots & s_p \end{array} \right] = 2n+1.$

Proof of Corollary 1.3. The proof results directly, from Theorem 1.2 and Proposition 3.6. $\hfill \Box$

Lemma 3.7. ([1], Corollary 1.3). Let G be an abelian subgroup of $GL(n, \mathbb{C})$. If G has a locally dense orbit γ in \mathbb{C}^n then γ is dense in \mathbb{C}^n .

Proof of Corollary 1.4. Since the matrices B_j , $1 \le j \le 2n+1$ commute then $\mathbb{Z}B_1 + \cdots + \mathbb{Z}B_{2n+1} \subset exp^{-1}(G)$. Hence the proof of Corollary 1.4 results directly from Corollary 1.3 and Lemma 3.7.

Question1: How can we characterize explicitly $g = exp^{-1}(G)$ for any finitely generated abelian subgroup G of a lie group $\Gamma \subset Diff^r(\mathbb{C}^n)$?

Question2: A somewhere dense orbit of a non abelian subgroup of $Diff^{r}(\mathbb{C}^{n})$ can always be dense in \mathbb{C}^{n} ?

References

- A.Ayadi and H.Marzougui, Dynamic of abelian subgroups of GL(n, C): a structure Theorem, Geometria Dedicata, 116(2005)111-127.
- A.Ayadi and H.Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: 47-69. World Scientific, Hackensack, NJ, 2006.
- A.Kirillov, Introduction to Lie Groups and Lie Algebras, Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
- A.Sagle and R. Walde, Introduction to Lie groups and Lie algebras, volume 51, (1973), (Academic Press, '73).
- M.Waldschmidt, Topologie des points rationnels., Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
- 6. W.De Melo, *Differential Topology notes*, course, IMPA Instituto de Matemtica Pura e Aplicada, 2012.
- Y.N'dao and A.Ayadi, Chaoticity and regular action of diffeomorphisms group of Kⁿ, preprint ArXiv, 1208.6395-(2012).
- 8. Y.N'dao and A.Ayadi, The dynamic of abelian subgroup of $diff^r(K^n)$, fixing a point (K=R or C), preprint ArXiv, 1207.6466-(2012).

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

E-mail address: yahiandao@yahoo.fr

Adlene Ayadi, University of Gafsa, Faculty of sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com; Web page: www.linearaction.blogspot.com