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In this paper, we give a characterization for any abelian subgroup G of a lie group of diffeomorphisms maps of C n , having a somewhere dense orbit G(x), x ∈ C n : G(x) is somewhere dense in C n if and only if there are

, where vect(f 1 , . . . , f 2n ) is the vector space over R generated by f 1 , . . . , f 2n .

Introduction

Denote by Dif f r (C n ), r ≥ 1 the group of all C r -diffemorphisms of C n . Let Γ be a lie subgroup of Dif f r (C n ), r ≥ 1 and G be an abelian subgroup of Γ, such that F ix(G) = ∅, where F ix(G) = {x ∈ C n : f (x) = x, ∀f ∈ G} be the global fixed point set of G. There is a natural action

G × C n -→ C n . (f, x) -→ f (x). For a point x ∈ C n , denote by G(x) = {f (x), f ∈ G} ⊂ C n the orbit of G through x. A subset E ⊂ C n is called G-invariant if f (E) ⊂ E for any f ∈ G;
that is E is a union of orbits. Denote by E (resp.

• E ) the closure (resp. interior) of E.

Recall that E ⊂ C n is somewhere dense in C n if the closure E has nonempty interior in C n . An orbit γ is called somewhere dense (or locally dense) if

• γ = ∅.
The group G is called hypercyclic if it has a dense orbit in C n . Hypercyclic is also called topologically transitive.

The purpose of this paper is to give a characterization for any subgroup G of a lie group of diffeomorphisms maps of C n , having a dense orbit. In [START_REF] Ayadi | Dynamic of abelian subgroups of GL(n, C): a structure Theorem[END_REF], the authors present a global dynamic of every abelian subgroup of GL(n, C) and in [START_REF] Ayadi | Dense orbits for abelian subgroups of GL(n, C)[END_REF], they characterize hypercyclic abelian subgroup of GL(n, C). Our main result is viewed as a continuation of [START_REF] Ayadi | Chaoticity and regular action of diffeomorphisms group of K n[END_REF] and [START_REF] Ayadi | The dynamic of abelian subgroup of dif f r (K n ), fixing a point (K=R or C)[END_REF]. Denote by: -C * = C\{0} and N * = N\{0}.

-C r (C n , C n ) the set of all C r -differentiable maps of C n . -For a subset E ⊂ C n (resp. E ⊂ C r (C n , C n )), denote by vect(E) the vector subspace of C n (resp. C r (C n , C n )) over R generated by all elements of E. -exp : C r (C n , C n ) -→ Dif f r (C n ) the exponential map defined by exp(f ) = e f , f ∈ C r (C n , C n ).
-H the lie algebra associated to Γ.

exp : H -→ Γ be the exponential map.

-H x = {f (x), B ∈ H}, it is a vector subspace of C n over R.

-g = exp -1 (G), it is an additive group because G is abelian.

-g x = {f (x), B ∈ g}, it is an additive subgroup of C n because g is an additive group.

Our principal results can be stated as follows:

Theorem 1.1. Let Γ be an abelian lie subgroup of Dif f r (C n ) and x ∈ C n \{0}. Then the following assertions are equivalent:

(i) H x = C n . (ii) • Γ(x) = ∅.
In general, the Lie algebra g is not explicitly defined, so we give an explicitly test to the existence of somewhere dense orbit by the following theorem:

Theorem 1.2. Let G be an abelian subgroup of a lie group Γ ⊂ Dif f r (C n ) and x ∈ C n \{0}. Then • G(x) = ∅ if and only if there exist f 1 , . . . , f 2n+1 ∈ exp -1 ( G) such that f 2n+1 ∈ vect(f 1 , . . . , f 2n ) and Zf 1 (x)+ • • • + Zf 2n+1 (x) is a dense additive subgroup of C n .
Let's introduce the arithmetic property: We say that f

1 , . . . , f 2n+1 ∈ C r (C n , C n ) satisfy property D(x) for some x ∈ C n if f 1 , . . . , f 2n are linearly independent, f 2n+1 ∈ vect(f 1 , . . . , f 2n ) and for every (s 1 , . . . , s 2n+1 ) ∈ Z 2n+1 \{0}: rank   Re(f 1 (x)) . . . Re(f 2n+1 (x)) Im(f 1 (x)) . . . Im(f 2n+1 (x)) s 1 . . . s 2n+1   = 2n + 1.
For a vector v ∈ C n , we write v = Re(v) + iIm(v) where Re(v) and Im(v) ∈ R n .

As an immediate consequence of Theorem 1.2, we have:

Corollary 1.3.
Let G be an abelian subgroup of a lie group Γ ⊂ Dif f r (C n ) and

x ∈ C n \{0}. Then

• G(x) = ∅ if and only if there exist f 1 , . . . , f 2n+1 ∈ exp -1 (G) and satisfying property D(x).

As an important consequence of the Theorem 1.2, we give the following Corollary which simplifies the test given by Theorem 1.3 proved in [START_REF] Ayadi | Dense orbits for abelian subgroups of GL(n, C)[END_REF] for the abelian subgroup of GL(n, C):

Corollary 1.4. Let G be an abelian subgroup of GL(n, C) and x ∈ C n \{0}. Then G(x) = C n if and only if there exist B 1 , . . . , B 2n+1 ∈ exp -1 (G) such that ZB 1 x + • • • + ZB 2n+1 x is dense in C n .
This paper is organized as follows: In Section 2 we prove Theorem 1.1. Section3 is devoted to prove Theorem 1.2 and Corollaries 1.3, 1.4.

Proof of Theorem 1.1

We will cite the definition of the exponential map given in [START_REF] Kirillov | Introduction to Lie Groups and Lie Algebras[END_REF].

2.1. Exponential map. In this section, we illustrate the theory developed of the group Dif f (C n ) of diffeomorphisms of C n . For simplicity, throughout this section we only consider the case of C = R; however, all results also hold for complexes case. The group Dif f (R n ) is not a Lie group (it is infinite-dimensional), but in many way it is similar to Lie groups. For example, it easy to define what a smooth map from some Lie group G to Dif f (R n ) is: it is the same as an action of G on R n by diffeomorphisms. Ignoring the technical problem with infinite-dimensionality for now, let us try to see what is the natural analog of the Lie algebra g for the group G. It should be the tangent space at the identity; thus, its elements are derivatives of one-parameter families of diffeomorphisms. Let ϕ t : G -→ G be one-parameter family of diffeomorphisms. Then, for every point a ∈ G, ϕ t (a) is a curve in G and thus ∂ ∂t ϕ t (a) /t=0 = ξ(a) ∈ T a G is a tangent vector to G at m. In other words, ∂ ∂t ϕ t is a vector field on G.

The exponential map exp : g -→ G is defined by exp(x) = γ x (1) where γ x (t) is the one-parameter subgroup with tangent vector at 1 equal to x.

If ξ ∈ g is a vectorfield, then exp(tξ) should be one-parameter family of diffeomorphisms whose derivative is vector field ξ. So this is the solution of differential equation

∂ ∂t ϕ t (a) /t=0 = ξ(a).
In other words, ϕ t is the time t flow of the vector field. Thus, it is natural to define the Lie algebra of G to be the space g of all smooth vector ξ fields on R n such that exp(tξ) ∈ G for every t ∈ R.

We will use the definition of Whitney topology given in [START_REF] Melo | Differential Topology notes, course[END_REF].

Whitney Topology on C

0 (C n , C n ). For each open subset U ⊂ C n × C n let U ⊂ C 0 (C n , C n ) be the set of continuous functions g, whose graphs {(x, g(x)) ∈ C n × C n , x ∈ C n } is contained in U . We want to construct a neighborhood basis of each function f ∈ C 0 (C n , C n ). Let K j = {x ∈ C n , x
≤ j} be a countable family of compact sets (closed balls with center 0) covering C n such that K j is contained in the interior of K j+1 . Consider then the compact subsets

L j = K j \ • K j-1
, which are compact sets, too. Let ǫ = (ε j ) j be a sequence of positive numbers and then define

V (f ;ǫ) = {f ∈ C 0 (C n , C n ) : f (x) -g(x) < ε j , for any x ∈ L j , ∀j}.
We claim this is a neighborhood system of the function

f in C 0 (C n , C n ). Since L i is compact, the set U = {(x, y) ∈ C n × C n : f (x) -g(x) < ε j , if x ∈ L j } is open. Thus, V (f ;ǫ) = U is an open neighborhood of f . On the other hand, if O is an open subset of C n × C n
which contains the graph of f , then since L j is compact, it follows that there exists ε j > 0 such that if x ∈ L j and yf (x) < ε j , then (x; y) ∈ O. Thus, taking ǫ = (ε j ) j we have V (f ; ǫ) ⊂ O, so we have obtained the family V (f ;ǫ) is a neighborhood system of f . Moreover, for each given ǫ = (ε j ) j , we can find a C ∞ -function ǫ : C n -→ R + , such that ǫ(x) < ε j for any x ∈ L j . It follows that the family

V (f ;ǫ) = {(x, y) ∈ C n × C n : f (x) -g(x) < ǫ(x)} is also a neighborhood system. Denote by: -G = G ∩ Dif f r (C n ), where G is the closure of G in C r (C n , C n )
for the withney topology defined above. So G is an abelian lie subgroup of Γ.

-A( G) the algebra generated by G. See that

G ⊂ A( G). -Φ x : A( G) -→ C n the linear map given by Φ x (f ) = f (x), f ∈ A( G). -E(x) = Φ x (A(G)). Lemma 2.1. The linear map Φ x : A( G) -→ E(x) is continuous.
Proof. Firstly, we take the restriction of the Whitney topology to A( G). Secondly, let f ∈ A( G) and ε > 0. Then for ǫ = (ε j ) j with ε j = ε and for V (f ;ǫ) be a neighborhood system of f , we obtain: for every g ∈ V (f ;ǫ) ∩ A( G) and for every y ∈ L j , f (y)g(y) < ε, ∀j. In particular for j = j 0 in which x ∈ L j0 , we have Here h x = Ker(Φ x ) since Ker(Φ x ) ⊂ g. Write:

f (x) -g(x) < ε, so Φ x (f ) -Φ x (g) < ε. It follows that Φ x is continuous. 2.3. Proof of Theorem 1.1.
-L the vector subspace of g supplement to Ker(Φ x ), (i.e. L ⊕ Ker(Φ

x ) = g). It is clear that dim( L) = cod(Ker(Φ x )) ≤ n, then L is closed. -exp : L ⊕ Ker(Φ x ) -→ G the exponential map. Since G is abelian, so is g, then exp(f + h) = exp(f ) • exp(h) for every f ∈ L and h ∈ Ker(Φ x ).
-G x the stabilizer of G on the point u. So it is a lie subgroup of G with lie algebra Ker(Φ x ).

As a directly consequence of Proposition 5.13, given in [START_REF] Sagle | Introduction to Lie groups and Lie algebras[END_REF], applied to Γ, we have the following Lemma: 

Proof. It is clear that G(x) ⊂ G(x) ⊂ G(x). Let v ∈ G(x), so v = lim m→+∞ f m (x)
for some sequence (f m ) m∈N in G. Then for every m ∈ N, there exists a sequence (f m,k ) k∈N in G such that lim k→+∞ f m,k = f m , so by continuity of Φ x (Lemma 2.1), we have lim k→+∞ f m,k (x) = f m (x), thus for every ε > 0, there exists M > 0 and for every m ≥ M , there exists k m > 0, such that f m (x)v < ε 2 and for every

k ≥ k m , f m,k (x) -f m (x) < ε 2 . Then, for every m > M , f m,km (x) -v ≤ f m,km (x) -f m (x) + f m (x) -v < ε, therefore lim m→+∞ f m,km (x) = v. Hence v ∈ G(x). It follows that G(x) ⊂ G(x) ⊂ G(x). Lemma 2.5. Let W = Φ x (V ). Then Φ -1 x ( G(x) ∩ W ) ∩ V = G ∩ V . Proof. Since W = x (V ), it is obvious that G ∩ V ⊂ Φ -1 x ( G(x) ∩ W ) ∩ V . Let f ∈ Φ -1 x ( G(x) ∩ W ). Then there exists g ∈ G ∩ V such that f (x) = g(x). So g -1 • f (x) = x. Hence g -1 • f ∈ H x , where H x be the lie group generated by {h ∈ Dif f r (C n ) : h(x) = x} ∩ A( G). So H x is contained in the stabilizer of Dif f r (C n ) on x. Set L x be the lie algebra of H x , so L x ⊂ {h ∈ Dif f r (C n ) : h(x) = 0}∩A( G). Therefore L x ⊂ Ker(Φ x ) ⊂ g. Hence H x ⊂ G. It follows that g -1 • f ∈ G, so f ∈ G ∩ V . This completes he proof. Proof of Theorem 1.1. Since G is a locally closed sub-manifold of Dif f r (C n ). By Proposition 2.2.(ii), G(x) is an immersed submanifold of C n with dimension r = dim( g) -dim(Ker(Φ x )). We have Im(Φ x ) = g x . Then dim( g x ) = dim( g)-dim(Ker(Φ x )). It follows from Propo- sition 2.2,(ii) that dim( G(x)) = dim( g x ) (2)
. Proof of (i) =⇒ (iii) : The proof results directly from (2), and the fact that

dim( G(x)) = n if and only if G(x) is a non empty open set. Proof of (iii) =⇒ (ii) : Since G(x) ∩ W is a non empty open set then the proof follows directly from Lemma 2.4.(ii), because G(x) ∩ W ⊂ G(x) ∩ W = G(x) ∩ W . Proof of (ii) =⇒ (i) : Since • G(x) ⊂ Im(Φ x ) ⊂ C n then the linear map Φ x : A( G) -→ C n is surjective, so it
is an open map. By Lemma 2.3 there exists two open subsets U and V = exp(U ) respectively of H and Γ such that the exponential map exp : U -→ V is a diffeomorphism and satisfying exp(

g ∩ U ) = G ∩ V . So exp -1 ( G ∩ V ) = g ∩ U.
(

) 1 
Recall that W = Φ x (V ). Since Φ x is an open map and by Lemma 2.4.(i),

• G(x) = • G(x), so Φ -1 x ( • G(x) ∩ W ) = Φ -1 x ( • G(x) ∩ W ) ⊂ Φ -1 x ( G(x) ∩ W ) ⊂ Φ -1 x ( G(x) ∩ W ) (3) 
We have

Φ x • exp -1 (Φ -1 x ( • G(x) ∩ W ) ∩ V ) ⊂ Φ x • exp -1 (Φ -1 x ( G(x) ∩ W ) ∩ V ) (by (3)) ⊂ Φ x • exp -1 ( G ∩ V ),
(by Lemma 2.5)

⊂ Φ x • exp -1 ( G ∩ V ) ⊂ Φ x ( g ∩ U ) (by (1)) ⊂ g x Since • G(x)∩W is a non empty open subset of C n then Φ x •exp -1 (Φ -1 x ( • G(x)∩W )∩V ) is an open subset of C n . It follows that g x = C n . The proof is completed .
3. Proof of Theorem 1.2 and Corollaries 1.3, 1.4

Under the notation of Lemma 2.3, recall that there exists an open subset U of A( G) such that exp : U -→ exp(U ) is a diffeomorphism. Now, by using the restricton of the withney topology to A( G), denote by: -B (0,r) = {f ∈ A( G) : f < r}, the open ball with center 0 and radius r > 0 .

-

r G = sup{r ∈]0, 1[: B (0,r) ⊂ U }, it is dependent of G since is U . Theorem 3.1. Let G be a subgroup of Dif f r (C n ) and x ∈ C n . If there ex- ist f 1 , . . . , f 2n ∈ exp -1 ( G) with f k < r G , for every k = 1, . . . , 2n such that (f 1 (x), . . . , f 2n (x)) is a basis of C n over R, then • G(x) = ∅. Proof. We have f k ∈ exp -1 ( G) with f k < r G for every k = 1, . . . , 2n, then f 1 , . . . , f 2n ∈ U and so e f k ∈ G ∩ V . By Lemma 2.3, G ∩ V = exp(U ∩ g), hence f k ∈ g, for every k = 1, . . . , 2n. As (f 1 (x), . . . , f 2n (x)) is a basis of C n over R then g x = C n . It follows by Theorem 1.1 that • G(x) = ∅.
Lemma 3.2. Let H be a vector space with dimension 2n over R and x 1 , . . . , x 2n+1 ∈ H, such that Zx 1 + • • • + Zx 2n+1 is dense in H. Then for every 1 ≤ k ≤ 2n + 1, (x 1 , . . . , x k-1 , x k+1 , . . . , x 2n+1 ) is a basis of H over R.

Proof. We have H is isomorphic to C n . Let 1 ≤ k ≤ 2n + 1 be a fixed integer and take K = vect(x 1 , . . . , x k-1 , x k+1 , . . . , x 2n+1 ).

Suppose that dim(K) = p < 2n. Let (x k1 , . . . , x kp ) be a basis of K.

Then Zx 1 + • • • + Zx 2n+1 ⊂ K + Zx k which cannot be dense in H, a contradiction.
Recall that L is the vector subspace of g supplement to Ker(Φ x ), (i.e. L ⊕ Ker(Φ x ) = g). Denote by: p x : L ⊕ Ker(Φ x ) -→ L given by p x (f + h) = f , f ∈ L and h ∈ Ker(Φ x ). Lemma 3.3. Under above notations, we have:

(i) The linear map Φ x : L -→ E(x) defined by Φ x (f ) = f (x), is an isomorphism. (ii) for every f ∈ g one has Φ -1

x (f (x)) = p x (f ).

Proof. (i) By construction Φ x is surjective and restreint to L it became injective. By Lemma 2.1 Φ x is continuous and bijective. Hence it is an isomorphism because it is linear.

(ii) Let f ∈ g. Write f = f 1 + f 0 with f 1 = p x (f ) ∈ L and f 0 ∈ Ker(Φ x )). Since f 0 (x) = 0, so f (x) = f 1 (x). By (i), Φ x is an isomorphism, then Φ -1 x (f (x)) = Φ -1 x (f 1 (x)) = f 1 = p x (f )
. This completes the proof.

Let f 1 , . . . , f 2n+1 ∈ g and suppose that (p x (f 1 ), . . . , p x (f 2n )) is a basis of L over R and f n+1 ∈ vect(f 1 , . . . , f 2n ). Denote by Ψ : L -→ g the linear map given by

Ψ 2n k=1 α k p x (f k ) = 2n k=1 α k f k .
Lemma 3.4. Under above notations, we have: 

(i) If Zf 1 (x) + • • • + Zf 2n+1 (x) = C n then Zp x (f 1 ) + • • • + Zp x (f 2n+1 ) = L. (ii) Ψ (Zp x (f 1 ) + • • • + Zp x (f 2n+1 )) = Zf 1 + • • • + Zf 2n+1 . Proof. (i) Here E(x) = C n . By Lemma 3.3,(i), Φ x : L -→ C n is an isomorphism and by Lemma 3.3,(ii), we have Φ -1 x (f k (x)) = p x (f k )(x) for every k = 1, . . . , 2n + 1, so Φ -1 x (Zf 1 (x) + • • • + Zf 2n+1 (x)) = Zp x (f 1 ) + • • • + Zp x (f 2n+1 ). Then L = Φ -1 x (C n ) = Φ -1 x (Zf 1 (x) + • • • + Zf 2n+1 (x)) = ZΦ -1 x (f 1 (x)) + • • • + ZΦ -1 x (f 2n+1 (x))) = Zp x (f 1 ) + • • • + Zp x (f 2n+1 ) (ii) Let k 1 , . . . , k 2n+1 ∈ Z and f = k 1 p x (f 1 ) + • • • + k 2n+1 p x (f 2n+1 ). Write f 2n+1 = 2n k=1 α k f k , α 1 , . . . , α 2n ∈ R, then f = (k 1 + α 1 k 2n+1 )p x (f 1 ) + • • • + (k 2n + α 2n k 2n+1 )p x (f 2n ), so Ψ(f ) = Ψ ((k 1 + α 1 k 2n+1 )p x (f 1 ) + • • • + (k 2n + α 2n k 2n+1 )p x (f 2n )) = (k 1 + α 1 k 2n+1 )f 1 + • • • + (k 2n + α 2n k 2n+1 )f 2n = k 1 f 1 + • • • + k 2n+1 f 2n+1 Then Ψ (Zp x (f 1 ) + • • • + Zp x (f 2n+1 )) ⊂ Zf 1 + • • •+ Zf 2n+1 .
. Since Zf 1 +• • •+Zf 2n+1 ⊂ exp -1 ( G) then g j ∈ exp -1 ( G), so e t k f k ∈ G, since G is closed in Dif f r (C n ).
• Second, as |t k | < rG f k , then t k f k < r G . Since |t k | = 0 and (f 1 (x), . . . , f 2n (x)) is a basis of C n , so is (t 1 f 1 (x), . . . , t 2n f 2n (x)). By the first step we conclude that e t k B k ∈ G for every k = 1, . . . , 2n. The proof follows then from Theorem 3.1.

The complex form of Proposition 3.5 is given in the following:

Proposition 2 . 2 .

 22 ([3], Theorem 3.29) Let G be a Lie group acting on C n with lie algebra g and let u ∈C n . (i) The stabilizer G x = {B ∈ G : Bu = u} is a closed Lie subgroup in G, with Lie algebra h x = {B ∈ g : Bu = 0}. (ii)The map G /Gx -→ C n given by B.G x -→ Bu is an immersion. Thus, the orbit G(x) is an immersed submanifold in C n . In particular dim(G(x)) = dim( g)dim(h x ).

Lemma 2 . 3 . 3 . 2 . 4 .

 23324 ([4], Proposition 5.13) Let G be an abelian subgroup of a lie group Γ.There exists an open neighborhood U of 0 in H such that exp :U -→ exp(U ) is a diffeomorphism and exp(U ∩ g) = exp(U ) ∩ G.Denote by V = exp(U ), where U is the open set defined in Lemma 2.Lemma We have G(x) = G(x).

  (x)) is a basis of C n , so f 1 , . . . , f 2n are linearly independent over R. Denote by E = vect(f 1 , . . . , f 2n ), then E = Ψ( L) and it has a dimension equal to 2n over R, so Ψ :L -→ E is an isomorphism. Since f 2n+1 ∈ vect(f 1 , . . . , f 2n ) then by Lemma 3.4,(i), Zp x (f 1 ) + • • • + Zp x (f 2n+1 ) = L.Therefore:E = Ψ( L) = Ψ(Zp x (f 1 ) + • • • + Zp x (f 2n+1 )) = Zf (p x (f 1 )) + • • • + Zf (p x (f 2n+1 )) = Zf 1 + • • • + Zf 2n+1 (1) Let 1 ≤ k ≤ 2n and t k ∈ R * such that |t k | < r G f k . • First, let's prove that e t k f k ∈ G Since t k f k ∈ E, then by (1), t k f k ∈ Zf 1 + • • • + Zf 2n+1 . Thus there exists a sequence (g j ) j∈N ⊂ Zf 1 + • • • + Zf 2n+1 such that lim j→+∞ g j = t k f k .By continuity of the exponential map we have lim j→+∞ e gj = e t k f k

  The same proof is used for the converse, by replacing Ψ by Ψ -1 .Proposition 3.5. ([5], Proposition 4.3). Let H = Zx 1 + • • • + Zx p with x k ∈ R n . Then H is dense in R n ifand only if for every (s 1 , . . . , s p ) ∈ Z p \{0} : rank x 1 . . . . . . x p s 1 . . . . . . s p = n + 1. Proof of Theorem 1.2. Write H x = Zf 1 (x) + • • • + Zf 2n+1 (x). Since H x = C n , by Lemma 3.2, (f 1 (x), . . . , f 2n

Question1: How can we characterize explicitly g = exp -1 (G) for any finitely generated abelian subgroup G of a lie group Γ ⊂ Dif f r (C n )?

Question2: A somewhere dense orbit of a non abelian subgroup of Dif f r (C n ) can always be dense in C n ?