SOMEWHERE DENSE ORBIT OF ABELIAN SUBGROUP OF DIFFEOMORPHISMS MAPS ACTING ON \mathbb{C}^n

YAHYA N'DAO AND ADLENE AYADI

ABSTRACT. In this paper, we give a characterization for any abelian subgroup G of a lie group of diffeomorphisms maps of \mathbb{C}^n , having a somewhere dense orbit G(x), $x \in \mathbb{C}^n$: G(x) is somewhere dense in \mathbb{C}^n if and only if there are $f_1, \ldots, f_{2n+1} \in exp^{-1}(G)$ such that $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ and $\mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x)$ is dense in \mathbb{C}^n , where $vect(f_1, \ldots, f_{2n})$ is the vector space over \mathbb{R} generated by f_1, \ldots, f_{2n} .

1. Introduction

Denote by $Diff^r(\mathbb{C}^n)$, $r \geq 1$ the group of all C^r -diffemorphisms of \mathbb{C}^n . Let Γ be a lie subgroup of $Diff^r(\mathbb{C}^n)$, $r \geq 1$ and G be an abelian subgroup of Γ , such that $Fix(G) \neq \emptyset$, where $Fix(G) = \{x \in \mathbb{C}^n : f(x) = x, \forall f \in G\}$ be the global fixed point set of G. There is a natural action $G \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$. $(f,x) \longmapsto f(x)$. For a point $x \in \mathbb{C}^n$, denote by $G(x) = \{f(x), f \in G\} \subset \mathbb{C}^n$ the orbit of G through X. A subset $E \subset \mathbb{C}^n$ is called G-invariant if $f(E) \subset E$ for any $f \in G$; that is E is a union of orbits. Denote by \overline{E} (resp. E) the closure (resp. interior) of E.

Recall that $E \subset \mathbb{C}^n$ is somewhere dense in \mathbb{C}^n if the closure \overline{E} has nonempty interior in \mathbb{C}^n . An orbit γ is called somewhere dense (or locally dense) if $\mathring{\overline{\gamma}} \neq \emptyset$. The group G is called hypercyclic if it has a dense orbit in \mathbb{C}^n . Hypercyclic is also called topologically transitive.

The purpose of this paper is to give a characterization for any subgroup G of a lie group of diffeomorphisms maps of \mathbb{C}^n , having a dense orbit. In [3], the authors present a global dynamic of every abelian subgroup of $GL(n,\mathbb{C})$ and in [4], they characterize hypercyclic abelian subgroup of $GL(n,\mathbb{C})$. Our main result is viewed as a continuation of [1] and [2].

Denote by:

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.
- $C^r(\mathbb{C}^n, \mathbb{C}^n)$ the set of all C^r -differentiable maps of \mathbb{C}^n .
- For a subset $E \subset \mathbb{C}^n$ (resp. $E \subset C^r(\mathbb{C}^n, \mathbb{C}^n)$), denote by vect(E) the vector subspace of \mathbb{C}^n (resp. $C^r(\mathbb{C}^n, \mathbb{C}^n)$) over \mathbb{R} generated by all elements of E.
- $exp: C^r(\mathbb{C}^n, \mathbb{C}^n) \longrightarrow Diff^r(\mathbb{C}^n)$ the exponential map defined by $exp(f) = e^f$, $f \in C^r(\mathbb{C}^n, \mathbb{C}^n)$.

1

 $^{2000\} Mathematics\ Subject\ Classification.\ 37C85,\ 47A16,\ 17B45.$

 $Key\ words\ and\ phrases.$ hypercyclic,, diffeomorphisms commute, action group, abelian group, somewhere dense, locally dense orbit...

This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-15.

- H the lie algebra associated to Γ .
- $exp: H \longrightarrow \Gamma$ be the exponential map.
- $H_x = \{f(x), B \in H\}$, it is a vector subspace of \mathbb{C}^n over \mathbb{R} .
- $g = exp^{-1}(G)$, it is an additive group because G is abelian.
- $g_x = \{f(x), B \in g\}$, it is an additive subgroup of \mathbb{C}^n because g is an additive group.

Our principal results can be stated as follows:

Theorem 1.1. Let Γ be an abelian lie subgroup of $Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then the following assertions are equivalent:

(i)
$$H_x = \mathbb{C}^n$$
.

(ii)
$$\overline{\Gamma(x)} \neq \emptyset$$
.

In general, the Lie algebra \tilde{g} is not explicitly defined, so we give an explicitly test to the existence of somewhere dense orbit by the following theorem:

Theorem 1.2. Let G be an abelian subgroup of a lie group $\Gamma \subset Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then $G(x) \neq \emptyset$ if and only if there exist $f_1, \ldots, f_{2n+1} \in exp^{-1}(\widetilde{G})$ such that $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ and $\mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x)$ is a dense additive subgroup of \mathbb{C}^n .

Let's introduce the arithmetic property: We say that $f_1, \ldots, f_{2n+1} \in C^r(\mathbb{C}^n, \mathbb{C}^n)$ satisfy property $\mathcal{D}(x)$ for some $x \in \mathbb{C}^n$ if f_1, \ldots, f_{2n} are linearly independent, $f_{2n+1} \in vect(f_1, \ldots, f_{2n})$ and for every $(s_1, \ldots, s_{2n+1}) \in \mathbb{Z}^{2n+1} \setminus \{0\}$:

rank
$$\begin{bmatrix} \operatorname{Re}(f_1(x)) & \dots & \operatorname{Re}(f_{2n+1}(x)) \\ \operatorname{Im}(f_1(x)) & \dots & \operatorname{Im}(f_{2n+1}(x)) \\ s_1 & \dots & s_{2n+1} \end{bmatrix} = 2n+1.$$

For a vector $v \in \mathbb{C}^n$, we write v = Re(v) + i Im(v) where Re(v) and $\text{Im}(v) \in \mathbb{R}^n$.

As an immediate consequence of Theorem 1.2, we have:

Corollary 1.3. Let G be an abelian subgroup of a lie group $\Gamma \subset Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then $G(x) \neq \emptyset$ if and only if there exist $f_1, \ldots, f_{2n+1} \in exp^{-1}(G)$ and satisfying property $\mathcal{D}(x)$.

Theorem 1.4. Let G be an abelian subgroup of a lie group $\Gamma \subset Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n \setminus \{0\}$. If there exist $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $g \in exp^{-1}(G)$ and $f_1, \ldots, f_{2n} \in G$ such that $\alpha g \in exp^{-1}(G)$ and $(f_1 \circ g \circ f_1^{-1}(x), \ldots, f_{2n} \circ g \circ f_{2n}^{-1}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} , then $\overline{G(x)} \neq \emptyset$.

As an important consequence of the Theorem 1.2, we give the following Corollary which simplifies the test given by Theorem 1.3 proved in [4] for the abelian subgroup of $GL(n,\mathbb{C})$:

Corollary 1.5. Let G be an abelian subgroup of $GL(n,\mathbb{C})$ and $x \in \mathbb{C}^n \setminus \{0\}$. Then $\overline{G(x)} = \mathbb{C}^n$ if and only if there exist $B_1, \ldots, B_{2n+1} \in exp^{-1}(G)$ such that $\mathbb{Z}B_1x + \cdots + \mathbb{Z}B_{2n+1}x$ is dense in \mathbb{C}^n .

This paper is organized as follows: In Section 2 we prove Theorem 1.1. Section 3 is devoted to prove Theorems 1.2, 1.4 and Corollaries 1.3, 1.5.

2. Proof of Theorem 1.1

2.1. **Exponential map.** In this section, we illustrate the theory developed of the group $Diff(\mathbb{C}^n)$ of diffeomorphisms of \mathbb{C}^n . For simplicity, throughout this section we only consider the case of $\mathbb{C} = \mathbb{R}$; however, all results also hold for complexes case. The group $Diff(\mathbb{R}^n)$ is not a Lie group (it is infinite-dimensional), but in many way it is similar to Lie groups. For example, it easy to define what a smooth map from some Lie group G to $Diff(\mathbb{R}^n)$ is: it is the same as an action of G on \mathbb{R}^n by diffeomorphisms. Ignoring the technical problem with infinite-dimensionality for now, let us try to see what is the natural analog of the Lie algebra G for the group G. It should be the tangent space at the identity; thus, its elements are derivatives of one-parameter families of diffeomorphisms.

Let $\varphi^t: G \longrightarrow G$ be one-parameter family of diffeomorphisms. Then, for every point $a \in G$, $\varphi^t(a)$ is a curve in G and thus $\frac{\partial}{\partial t}\varphi^t(a)_{/t=0} = \xi(a) \in T_aG$ is a tangent vector to G at m. In other words, $\frac{\partial}{\partial t}\varphi^t$ is a vector field on G.

The exponential map $exp : g \longrightarrow G$ is defined by $exp(x) = \gamma_x(1)$ where $\gamma_x(t)$ is the one-parameter subgroup with tangent vector at 1 equal to x.

If $\xi \in g$ is a vector field, then $exp(t\xi)$ should be one-parameter family of diffeomorphisms whose derivative is vector field ξ . So this is the solution of differential equation

$$\frac{\partial}{\partial t}\varphi^t(a)_{/t=0} = \xi(a).$$

In other words, φ^t is the time t flow of the vector field. Thus, it is natural to define the Lie algebra of G to be the space g of all smooth vector ξ fields on \mathbb{R}^n such that $exp(t\xi) \in G$ for every $t \in \mathbb{R}$.

We will use the definition of Whitney topology given in [16].

2.2. Whitney Topology on $C^0(\mathbb{C}^n, \mathbb{C}^n)$. For each open subset $U \subset \mathbb{C}^n \times \mathbb{C}^n$ let $\widetilde{U} \subset C^0(\mathbb{C}^n, \mathbb{C}^n)$ be the set of continuous functions g, whose graphs $\{(x, g(x)) \in \mathbb{C}^n \times \mathbb{C}^n, x \in \mathbb{C}^n\}$ is contained in U. We want to construct a neighborhood basis of each function $f \in C^0(\mathbb{C}^n, \mathbb{C}^n)$. Let $K_j = \{x \in \mathbb{C}^n, ||x|| \leq j\}$ be a countable family of compact sets (closed balls with center 0) covering \mathbb{C}^n such that K_j is contained

in the interior of K_{j+1} . Consider then the compact subsets $L_j = K_j \setminus \widetilde{K_{j-1}}$, which are compact sets, too. Let $\epsilon = (\varepsilon_j)_j$ be a sequence of positive numbers and then define

$$V_{(f;\epsilon)} = \{ f \in \mathcal{C}^0(\mathbb{C}^n, \mathbb{C}^n) : ||f(x) - g(x)|| < \varepsilon_j, \text{ for any } x \in L_j, \ \forall j \}.$$

We claim this is a neighborhood system of the function f in $C^0(\mathbb{C}^n, \mathbb{C}^n)$. Since L_i is compact, the set $U = \{(x,y) \in \mathbb{C}^n \times \mathbb{C}^n : ||f(x) - g(x)|| < \varepsilon_j, if \ x \in L_j\}$ is open. Thus, $V_{(f;\epsilon)} = \widetilde{U}$ is an open neighborhood of f. On the other hand, if O is an open subset of $\mathbb{C}^n \times \mathbb{C}^n$ which contains the graph of f, then since L_j is compact, it follows that there exists $\varepsilon_j > 0$ such that if $x \in L_j$ and $||y - f(x)|| < \varepsilon_j$, then

 $(x;y) \in O$. Thus, taking $\widetilde{\epsilon} = (\varepsilon_j)_j$ we have $V_{(f;\widetilde{\epsilon})} \subset \widetilde{O}$, so we have obtained the family $V_{(f;\epsilon)}$ is a neighborhood system of f. Moreover, for each given $\epsilon = (\varepsilon_j)_j$, we can find a C^{∞} -function $\epsilon : \mathbb{C}^n \longrightarrow \mathbb{R}_+$, such that $\epsilon(x) < \varepsilon_j$ for any $x \in L_j$. It follows that the family $V_{(f;\epsilon)} = \{(x,y) \in \mathbb{C}^n \times \mathbb{C}^n : ||f(x) - g(x)|| < \epsilon(x)\}$ is also a neighborhood system.

Denote by:

- $\widetilde{G} = \overline{G} \cap Diff^r(\mathbb{C}^n)$, where \overline{G} is the closure of G in $C^r(\mathbb{C}^n, \mathbb{C}^n)$ for the withney topology defined above. So \widetilde{G} is an abelian lie subgroup of Γ .
- $\mathcal{A}(\widetilde{G})$ the algebra generated by G. See that $G \subset \mathcal{A}(\widetilde{G})$.
- $\Phi_x: \mathcal{A}(\widetilde{G}) \longrightarrow \mathbb{C}^n$ the linear map given by $\Phi_x(f) = f(x), f \in \mathcal{A}(\widetilde{G}).$
- $E(x) = \Phi_x(\mathcal{A}(G)).$

Lemma 2.1. The linear map $\Phi_x : \mathcal{A}(\widetilde{G}) \longrightarrow E(x)$ is continuous.

Proof. Firstly, we take the restriction of the Whitney topology to $\mathcal{A}(\widetilde{G})$. Secondly, let $f \in \mathcal{A}(\widetilde{G})$ and $\varepsilon > 0$. Then for $\epsilon = (\varepsilon_j)_j$ with $\varepsilon_j = \varepsilon$ and for $V_{(f;\epsilon)}$ be a neighborhood system of f, we obtain: for every $g \in V_{(f;\epsilon)} \cap \mathcal{A}(\widetilde{G})$ and for every $g \in L_j$, $||f(y) - g(y)|| < \varepsilon$, $\forall j$. In particular for $j = j_0$ in which $x \in L_{j_0}$, we have $||f(x) - g(x)|| < \varepsilon$, so $||\Phi_x(f) - \Phi_x(g)|| < \varepsilon$. It follows that Φ_x is continuous. \square

2.3. Proof of Theorem 1.1.

Proposition 2.2. ([9], Theorem 3.29) Let G be a Lie group acting on \mathbb{C}^n with lie algebra \widetilde{g} and let $u \in \mathbb{C}^n$.

- (i) The stabilizer $G_x = \{B \in G : Bu = u\}$ is a closed Lie subgroup in G, with Lie algebra $\mathfrak{h}_x = \{B \in \widetilde{g} : Bu = 0\}$.
- (ii) The map $G_{/G_x} \longrightarrow \mathbb{C}^n$ given by $B.G_x \longmapsto Bu$ is an immersion. Thus, the orbit G(x) is an immersed submanifold in \mathbb{C}^n . In particular $\dim(G(x)) = \dim(\widetilde{\mathfrak{g}}) \dim(\mathfrak{h}_x)$.

Here $\mathfrak{h}_x = Ker(\Phi_x)$ since $Ker(\Phi_x) \subset \widetilde{\mathfrak{g}}$. Write:

- \widetilde{L} the vector subspace of \widetilde{g} supplement to $Ker(\Phi_x)$, (i.e. $\widetilde{L} \oplus Ker(\Phi_x) = \widetilde{g}$). It is clear that $\dim(\widetilde{L}) = cod(Ker(\Phi_x)) \leq n$, then \widetilde{L} is closed.
- $exp: \widetilde{L} \oplus Ker(\Phi_x) \longrightarrow \widetilde{G}$ the exponential map. Since \widetilde{G} is abelian, so is \widetilde{g} , then $exp(f+h) = exp(f) \circ exp(h)$ for every $f \in \widetilde{L}$ and $h \in Ker(\Phi_x)$.
- G_x the stabilizer of G on the point u. So it is a lie subgroup of G with lie algebra $Ker(\Phi_x)$.

As a directly consequence of Proposition 5.13, given in [17], applied to Γ , we have the following Lemma:

Lemma 2.3. ([17], Proposition 5.13) Let G be an abelian subgroup of a lie group Γ . There exists an open neighborhood U of 0 in H such that $exp: U \longrightarrow exp(U)$ is a diffeomorphism and $exp(U \cap \widetilde{g}) = exp(U) \cap \widetilde{G}$.

Denote by V = exp(U), where U is the open set defined in Lemma 2.3.

Lemma 2.4. We have $\overline{G(x)} = \overline{\widetilde{G}(x)}$.

Proof. It is clear that $\overline{G(x)}\subset \overline{\widetilde{G}(x)}\subset \overline{\overline{G}(x)}$. Let $v\in \overline{\overline{G}(x)}$, so $v=\lim_{m\to +\infty}f_m(x)$ for some sequence $(f_m)_{m\in\mathbb{N}}$ in \overline{G} . Then for every $m\in\mathbb{N}$, there exists a sequence $(f_{m,k})_{k\in\mathbb{N}}$ in G such that $\lim_{k\to +\infty}f_{m,k}=f_m$, so by continuity of Φ_x (Lemma 2.1), we have $\lim_{k\to +\infty}f_{m,k}(x)=f_m(x)$, thus for every $\varepsilon>0$, there exists M>0 and for every $m\geq M$, there exists $k_m>0$, such that $\|f_m(x)-v\|<\frac{\varepsilon}{2}$ and for every $k\geq k_m$, $\|f_{m,k}(x)-f_m(x)\|<\frac{\varepsilon}{2}$. Then, for every m>M,

$$||f_{m,k_m}(x) - v|| \le ||f_{m,k_m}(x) - f_m(x)|| + ||f_m(x) - v|| < \varepsilon,$$

therefore $\lim_{m\to +\infty} f_{m,k_m}(x) = v$. Hence $v\in \overline{G(x)}$. It follows that $\overline{\widetilde{G}(x)}\subset \overline{\overline{G}(x)}\subset \overline{G(x)}$.

Lemma 2.5. Let $W = \Phi_x(V)$. Then $\Phi_x^{-1}(\widetilde{G}(x) \cap W) = \widetilde{G} \cap V$.

Proof. Since $W = \Phi_x(V)$, it is obvious that $\widetilde{G} \cap V \subset \Phi_x^{-1}(\widetilde{G}(x) \cap W)$. Let $f \in \Phi_x^{-1}(\widetilde{G}(x) \cap W)$. Then there exists $g \in \widetilde{G} \cap V$ such that f(x) = g(x). So $g^{-1} \circ f(x) = x$. Hence $g^{-1} \circ f \in H_x$, where H_x be the lie group generated by $\{h \in Diff^r(\mathbb{C}^n) : h(x) = x\} \cap \widetilde{A}(\widetilde{G})$. So H_x is contained in the stabilizer of $Diff^r(\mathbb{C}^n)$ on x. Set L_x be the lie algebra of H_x , so $L_x \subset \{h \in Diff^r(\mathbb{C}^n) : h(x) = 0\} \cap A(\widetilde{G})$. Therefore $L_x \subset Ker(\Phi_x) \subset \widetilde{g}$. Hence $H_x \subset \widetilde{G}$. It follows that $g^{-1} \circ f \in \widetilde{G}$, so $f \in \widetilde{G} \cap V$. This completes he proof.

Proof of Theorem 1.1.

Since \widetilde{G} is a locally closed sub-manifold of $Diff^r(\mathbb{C}^n)$. By Proposition 2.2.(ii), $\widetilde{G}(x)$ is an immersed submanifold of \mathbb{C}^n with dimension $r = \dim(\widetilde{g}) - \dim(Ker(\Phi_x))$. Now, we let $\Phi'_x : \widetilde{g} \longrightarrow \widetilde{g}_x$ the restriction of Φ_x to \widetilde{g} (i.e. $\Phi'_x(f) = f(x)$, $f \in \widetilde{g}$). We have $Ker(\Phi'_x) = Ker(\Phi_x) = \{f \in \widetilde{g} : f(x) = 0\}$. Then

$$\dim(\widetilde{g}) = \dim(\operatorname{Ker}(\Phi'_x)) + \dim(\operatorname{Im}(\Phi'_x))$$
$$= \dim(\operatorname{Ker}(\Phi_x)) + \dim(\widetilde{g}_x).$$

So $\dim(\widetilde{g}_x) = \dim(\widetilde{g}) - \dim(Ker(\Phi_x))$. It follows from Proposition 2.2,(ii) that

$$\dim(\widetilde{G}(x)) = \dim(\widetilde{g}_x)$$
 (2)

Proof of $(i) \Longrightarrow (iii)$: The proof results directly from (2), and the fact that $dim(\widetilde{G}(x)) = n$ if and only if $\widetilde{G}(x)$ is a non empty open set.

Proof of (iii) \Longrightarrow (ii): Since $\widetilde{G}(x) \cap W$ is a non empty open set then the proof follows directly from Lemma 2.4.(ii), because $\widetilde{G}(x) \cap W \subset \overline{(x)} \cap W = \overline{G(x)} \cap W$.

Proof of $(ii) \Longrightarrow (i)$: Since $\overline{G(x)} \subset Im(\Phi_x) \subset \mathbb{C}^n$ then the linear map Φ_x : $\mathcal{A}(\widetilde{G}) \longrightarrow \mathbb{C}^n$ is surjective, so it is an open map. By Lemma 2.3 there exists two

open subsets U and V = exp(U) respectively of H and Γ such that the exponential map $exp: U \longrightarrow V$ is a diffeomorphism and satisfying $exp(\widetilde{g} \cap U) = \widehat{G} \cap V$. So

$$exp^{-1}(\widetilde{G} \cap V) = \widetilde{g} \cap U.$$
 (1)

Let $W = \Phi_x(V)$. Now, since Φ_x is an open map and by Lemma 2.4.(i), $\overline{G(x)} = \frac{\circ}{\widetilde{G}(x)}$, so

$$\Phi_{x}^{-1}(\overset{\circ}{\overline{G(x)}} \cap W) = \Phi_{x}^{-1}(\overset{\circ}{\overline{G(x)}} \cap W) \cap \widetilde{G} \cap V$$

$$\subset \Phi_{x}^{-1}(\overline{\widetilde{G}(x)} \cap W) \cap \widetilde{G} \cap V$$

$$\subset \overline{\Phi_{x}^{-1}(\widetilde{G}(x) \cap W)} \quad (3)$$

we have

$$\Phi_{x} \circ exp^{-1}(\Phi_{x}^{-1}(\widetilde{\widetilde{G}}(x) \cap W)) \subset \Phi_{x} \circ exp^{-1}(\overline{\Phi_{x}^{-1}(\widetilde{G}}(x) \cap W)) \qquad \text{(by (3))}$$

$$\subset \Phi_{x} \circ exp^{-1}(\overline{\Phi_{x}^{-1}(\widetilde{G}}(x) \cap W)), \qquad \text{by $Lemma 2.5, we obtain}$$

$$\subset \Phi_{x} \circ \overline{exp^{-1}(\widetilde{G} \cap V)}, \qquad \text{by (1), we have}$$

$$\subset \Phi_{x}(\overline{\widetilde{g} \cap U})$$

$$\subset \widetilde{g}_{x}$$

Since $\overline{G(x)} \cap W$ is an open subset of \mathbb{C}^n then $\Phi_x \circ exp^{-1}(\Phi_x^{-1}(\overline{G(x)} \cap W))$ is an open subset of \mathbb{C}^n . It follows that $\widetilde{g}_x = \mathbb{C}^n$. The proof is completed

3. Proof of Theorems 1.2, 1.4 and Corollaries 1.3, 1.5

Under the notation of Lemma 2.3, recall that there exists an open subset U of $\mathcal{A}(G)$ such that $exp: U \longrightarrow exp(U)$ is a diffeomorphism. Now, by using the restriction of the withney topology to $\mathcal{A}(\widetilde{G})$, denote by:

- $B_{(0,r)} = \{ f \in \mathcal{A}(\widetilde{G}) : ||f|| < r \}$, the open ball with center 0 and radius r > 0.
- $r_G = \sup\{r \in]0,1[: B_{(0,r)} \subset U\}$, it is dependent of G since is U.

Theorem 3.1. Let G be a subgroup of $Diff^r(\mathbb{C}^n)$ and $x \in \mathbb{C}^n$. If there exist $f_1, \ldots, f_{2n} \in exp^{-1}(\widetilde{G})$ with $||f_k|| < r_{\widetilde{G}}$, for every $k = 1, \ldots, 2n$ such that $(f_1(x),\ldots,f_{2n}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} , then $\overline{G(x)} \neq \emptyset$.

Proof. We have $f_k \in exp^{-1}(\widetilde{G})$ with $||f_k|| < r_{\widetilde{G}}$ for every $k = 1, \ldots, 2n$, then $f_1, \ldots, f_{2n} \in U$ and so $e^{f_k} \in \widetilde{G} \cap V$. By Lemma 2.3, $\widetilde{G} \cap V = exp(U \cap \widetilde{g})$, hence

 $f_k \in \widetilde{g}$, for every $k = 1, \ldots, 2n$. As $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} then $\widetilde{g_x} = \mathbb{C}^n$. It follows by Theorem 1.1 that $\overline{G(x)} \neq \emptyset$.

Lemma 3.2. Let H be a vector space with dimension 2n over \mathbb{R} and $x_1, \ldots, x_{2n+1} \in H$, such that $\mathbb{Z}(x)_1 + \cdots + \mathbb{Z}(x)_{2n+1}$ is dense in H. Then for every $1 \leq k \leq 2n+1$, $(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{2n+1})$ is a basis of H over \mathbb{R} .

Proof. We have H is isomorphic to \mathbb{C}^n . Let $1 \leq k \leq 2n+1$ be a fixed integer and take

$$K = vect(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{2n+1}).$$

Suppose that $\dim(K) = p < 2n$. Let $(x_{k_1}, \dots, x_{k_p})$ be a basis of K. Then $\mathbb{Z}x_1 + \dots + \mathbb{Z}x_{2n+1} \subset K + \mathbb{Z}x_k$ which cannot be dense in H, a contradiction.

Recall that \widetilde{L} is the vector subspace of \widetilde{g} supplement to $Ker(\Phi_x)$, (i.e. $\widetilde{L} \oplus Ker(\Phi_x) = \widetilde{g}$). Denote by:

 $p_x: \widetilde{L} \oplus Ker(\Phi_x) \longrightarrow \widetilde{L}$ given by $p_x(f+h) = f, f \in \widetilde{L}$ and $h \in Ker(\Phi_x)$.

Lemma 3.3. Under above notations, we have:

- (i) The linear map $\Phi_x : \widetilde{L} \longrightarrow E(x)$ defined by $\Phi_x(f) = f(x)$, is an isomorphism.
- (ii) for every $f \in \widetilde{g}$ one has $\Phi_x^{-1}(f(x)) = p_x(f)$.

Proof. (i) By construction Φ_x is surjective and restreint to \widetilde{L} it became injective. By Lemma 2.1 Φ_x is continuous and bijective. Hence it is an isomorphism because it is linear.

(ii) Let $f \in \widetilde{g}$. Write $f = f_1 + f_0$ with $f_1 = p_x(f) \in \widetilde{L}$ and $f_0 \in Ker(\Phi_x)$). Since $f_0(x) = 0$, so $f(x) = f_1(x)$. By (i), Φ_x is an isomorphism, then $\Phi_x^{-1}(f(x)) = \Phi_x^{-1}(f_1(x)) = f_1 = p_x(f)$. This completes the proof.

Let $f_1, \ldots, f_{2n+1} \in \widetilde{g}$ and suppose that $(p_x(f_1), \ldots, p_x(f_{2n}))$ is a basis of \widetilde{L} over \mathbb{R} and $f_{n+1} \in vect(f_1, \ldots, f_{2n})$. Denote by $\Psi : \widetilde{L} \longrightarrow \widetilde{g}$ the linear map given by

$$\Psi\left(\sum_{k=1}^{2n}\alpha_k p_x(f_k)\right) = \sum_{k=1}^{2n}\alpha_k f_k.$$

Lemma 3.4. Under above notations, we have:

(i) If
$$\mathbb{Z}f_1(x) + \cdots + \mathbb{Z}f_{2n+1}(x) = \mathbb{C}^n$$
 then $\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1}) = \widetilde{L}$.

(ii)
$$\Psi\left(\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1})\right) = \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$$
.

Proof. (i) Here $E(x) = \mathbb{C}^n$. By Lemma 3.3,(i), $\Phi_x : \widetilde{L} \longrightarrow \mathbb{C}^n$ is an isomorphism and by Lemma 3.3,(ii), we have $\Phi_x^{-1}(f_k(x)) = p_x(f_k)(x)$ for every $k = 1, \ldots, 2n+1$, so

$$\Phi_x^{-1}(\mathbb{Z}f_1(x) + \dots + \mathbb{Z}f_{2n+1}(x)) = \mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1}).$$

Then

$$\widetilde{L} = \Phi_x^{-1}(\mathbb{C}^n)$$

$$= \Phi_x^{-1}(\overline{\mathbb{Z}f_1(x) + \dots + \mathbb{Z}f_{2n+1}(x)})$$

$$= \overline{\mathbb{Z}\Phi_x^{-1}(f_1(x)) + \dots + \mathbb{Z}\Phi_x^{-1}(f_{2n+1}(x)))}$$

$$= \overline{\mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1})}$$

(ii) Let $k_1, \ldots, k_{2n+1} \in \mathbb{Z}$ and $f = k_1 p_x(f_1) + \cdots + k_{2n+1} p_x(f_{2n+1})$. Write $f_{2n+1} = \sum_{k=1}^{2n} \alpha_k f_k$, $\alpha_1, \ldots, \alpha_{2n} \in \mathbb{R}$, then

$$f = (k_1 + \alpha_1 k_{2n+1}) p_x(f_1) + \dots + (k_{2n} + \alpha_{2n} k_{2n+1}) p_x(f_{2n}),$$

so

$$\Psi(A) = \Psi\left((k_1 + \alpha_1 k_{2n+1}) p_x(f_1) + \dots + (k_{2n} + \alpha_{2n} k_{2n+1}) p_x(f_{2n}) \right)$$

$$= (k_1 + \alpha_1 k_{2n+1}) f_1 + \dots + (k_{2n} + \alpha_{2n} k_{2n+1}) f_{2n}$$

$$= k_1 f_1 + \dots + k_{2n+1} f_{2n+1}$$

Then $\Psi(\mathbb{Z}p_x(f_1) + \cdots + \mathbb{Z}p_x(f_{2n+1})) \subset \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$. The same proof is used for the converse, by replacing Ψ by Ψ^{-1} .

Proposition 3.5. ([8], Proposition 4.3). Let $H = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_p$ with $x_k \in \mathbb{R}^n$. Then H is dense in \mathbb{R}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \left[\begin{array}{ccc} x_1 & \dots & x_p \\ s_1 & \dots & s_p \end{array} \right] = n+1.$$

Proof of Theorem 1.2. Write $H_x = \mathbb{Z} f_1(x) + \cdots + \mathbb{Z} f_{2n+1}(x)$. Since $\overline{H_x} = \mathbb{C}^n$, by Lemma 3.2, $(f_1(x), \dots, f_{2n}(x))$ is a basis of \mathbb{C}^n , so f_1, \dots, f_{2n} are linearly independent over \mathbb{R} . Denote by $E = vect(f_1, \dots, f_{2n})$, then $E = \Psi(\widetilde{L})$ and it has a dimension equal to 2n over \mathbb{R} , so $\Psi : \widetilde{L} \longrightarrow E$ is an isomorphism. Since $f_{2n+1} \in vect(f_1, \dots, f_{2n})$ then by Lemma 3.4,(i), $\overline{\mathbb{Z} p_x(f_1) + \cdots + \mathbb{Z} p_x(f_{2n+1})} = \widetilde{L}$. Therefore:

$$E = \Psi(\widetilde{L})$$

$$= \Psi(\overline{\mathbb{Z}p_x(f_1) + \dots + \mathbb{Z}p_x(f_{2n+1})})$$

$$= \overline{\mathbb{Z}f(p_x(f_1)) + \dots + \mathbb{Z}f(p_x(f_{2n+1}))}$$

$$= \overline{\mathbb{Z}f_1 + \dots + \mathbb{Z}f_{2n+1}} \qquad (1)$$

Let $1 \le k \le 2n$ and $t_k \in \mathbb{R}^*$ such that $|t_k| < \frac{r_{\tilde{G}}}{\|f_k\|}$.

• First, let's prove that $e^{t_k f_k} \in G$

Since $t_k f_k \in E$, then by (1), $t_k f_k \in \overline{\mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}}$. Thus there exists a sequence $(g_j)_{j \in \mathbb{N}} \subset \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1}$ such that $\lim_{j \to +\infty} g_j = t_k f_k$. By continuity of the exponential map we have $\lim_{j \to +\infty} e^{g_j} = e^{t_k f_k}$. Since $\mathbb{Z}f_1 + \cdots + \mathbb{Z}f_{2n+1} \subset exp^{-1}(\widetilde{G})$ then $g_j \in exp^{-1}(\widetilde{G})$, so $e^{t_k f_k} \in \widetilde{G}$, since \widetilde{G} is closed in $Diff^r(\mathbb{C}^n)$.

• Second, as $|t_k| < \frac{r_G}{\|f_k\|}$, then $\|t_k f_k\| < r_{\widetilde{G}}$. Since $|t_k| \neq 0$ and $(f_1(x), \ldots, f_{2n}(x))$ is a basis of \mathbb{C}^n , so is $(t_1 f_1(x), \ldots, t_{2n} f_{2n}(x))$. By the first step we conclude that $e^{t_k B_k} \in G$ for every $k = 1, \ldots, 2n$. The proof follows then from Theorem 3.1. \square

The complex form of Proposition 3.5 is given in the following:

Proposition 3.6. ([8], page 35). Let $H = \mathbb{Z}z_1 + \cdots + \mathbb{Z}z_p$ with $z_k \in \mathbb{C}^n$ and $z_k = \operatorname{Re}(z_k) + i\operatorname{Im}(z_k)$, $k = 1, \ldots, p$. Then H is dense in \mathbb{C}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \left[\begin{array}{cccc} \operatorname{Re}(z_1) & \dots & \dots & \operatorname{Re}(z_p) \\ \operatorname{Im}(z_1) & \dots & \dots & \operatorname{Im}(z_p) \\ s_1 & \dots & \dots & s_p \end{array} \right] = 2n + 1.$$

Proof of Corollary 1.3. The proof results directly, from Theorem 1.2 and Proposition 3.6. $\hfill\Box$

Lemma 3.7. ([3], Corollary 1.3). Let G be an abelian subgroup of $Diff^r(\mathbb{C}^n)$. If G has a locally dense orbit γ in \mathbb{C}^n then γ is dense in \mathbb{C}^n .

Proof of Corollary 1.5. Since the matrices B_j , $1 \le j \le 2n+1$ commute then $\mathbb{Z}B_1 + \cdots + \mathbb{Z}B_{2n+1} \subset exp^{-1}(G)$. Hence the proof of Corollary 1.5 results directly from Corollary 1.3 and Lemma 3.7.

Proof of Theorem 1.4. Firstly, see that $(\mathbb{Z} + \alpha \mathbb{Z})A \subset exp^{-1}(G)$, because A and $\alpha A \in exp^{-1}(G)$ and they commute. Since α is irrational number then $\overline{\mathbb{Z} + \alpha \mathbb{Z}} = \mathbb{R}$. As the exponential map is continuous and G is closed in $Diff^r(\mathbb{C}^n)$ then $\exp^{-1}(G)$ is closed in $M_n(\mathbb{C})$, so $\mathbb{R}A \subset exp^{-1}(G)$.

Secondly, let $1 \le k \le 2n$ be a fixed integer and $t_k \in \mathbb{R}^*$ such that $|t_k| < \frac{r_G}{\|B_k A B_k^{-1}\|}$. By above, $e^{t_k A} \in G$. Then $B_k e^{t_k A} B_k^{-1} \in G$. Therefore $t_k B_k A B_k^{-1} \in exp^{-1}(G)$. Moreover, $\|t_k B_k A B_k^{-1}\| < r_G$.

Finally, since $t_k \neq 0$ for every k = 1, ..., 2n and $(B_1AB_1^{-1}(x), ..., B_{2n}AB_{2n}^{-1}(x))$ is a basis of \mathbb{C}^n over \mathbb{R} , so is $(t_1B_1AB_1^{-1}(x), ..., t_{2n}B_{2n}AB_{2n}^{-1}(x))$. Then by above and Theorem 3.1, the proof of Theorem 1.4 follows.

Question1: How can we characterize explicitly $g = exp^{-1}(G)$ for any finitely generated abelian subgroup G of a lie group $\Gamma \subset Diff^r(\mathbb{C}^n)$?

Question2: A somewhere dense orbit of a non abelian subgroup of $Diff^r(\mathbb{C}^n)$ can always be dense in \mathbb{C}^n ?

References

- Y.N'dao and A.Ayadi, Chaoticity and regular action of diffeomorphisms group of Kⁿ, preprint ArXiv, 1208.6395-(2012).
- Y.N'dao and A.Ayadi, The dynamic of abelian subgroup of diff^r(Kⁿ), fixing a point (K=R or C), preprint ArXiv, 1207.6466-(2012).
- 3. Ayadi. A and Marzougui. H, Dynamic of abelian subgroups of GL(n, C): a structure Theorem, Geometria Dedicata, 116(2005)111-127.
- 4. Ayadi. A and Marzougui. H, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: 47-69. World Scientific, Hackensack, NJ, 2006.
- Feldman Nathan S, Hypercyclic tuples of operators and somewhere dense orbits, Journal of mathematical analysis and applications, 2008, vol. 346, no1, pp. 82-98.
- 6. C.Chevalley, Theorie of Lie groups, Princeton Univ. Press 1946.
- 7. W. Rossmann, Lie groups: an introduction through linear groups, Oxford, University Press, 2002.
- 8. Waldschmidt.M, Topologie des points rationnels., Cours de troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.
- 9. A.Kirillov, Introduction to Lie Groups and Lie Algebras, Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
- Hilgert J. und K-H Neeb, Lie-Gruppes und Lie Algebren, Viewerg, Braunschweig, 1991, (I.48, p44).
- 11. Karl-Hermann Neeb, *Lie groups*, cours, APPENDIX C. COVERING THEORY, October 12, 2010.
- 12. J. J. Duistermaat, J. A. C. Kolk, Lie groups, Springer-Verlag, Berlin, 2000.
- G. Costakis, D. Hadjiloucas, and A. Manoussos, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137 no 3, (2009) 1025–1034.
- M. Javaheri, Semigroups of matrices with dense orbits, Dynamical Systems, 26, (2011), 235-243.
- 15. H. Abels and A. Manoussos, Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices, preprint arXiv: 1008.3483v1 (2011).
- W.De Melo, Differential Topology notes, course, IMPA Instituto de Matemtica Pura e Aplicada, 2012.
- A.Sagle and R. Walde, Introduction to Lie groups and Lie algebras, volume 51, (1973), (Academic Press, '73).

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada

 $E ext{-}mail\ address: yahiandao@yahoo.fr}$

Adlene Ayadi, University of Gafsa, Faculty of Sciences, Department of Mathematics, Gafsa, Tunisia.

E-mail address: adlenesoo@yahoo.com; Web page: www.linearaction.blogspot.com