
HAL Id: hal-00748710
https://hal.science/hal-00748710v1

Submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A practical model-based statistical approach for
generating functional test cases: application in the

automotive industry
Roy Awédikian, Bernard Yannou

To cite this version:
Roy Awédikian, Bernard Yannou. A practical model-based statistical approach for generating func-
tional test cases: application in the automotive industry. Journal of Software Testing, Verification
and Reliability, 2012, 24 (2), pp.85-123. �10.1002/stvr.1479�. �hal-00748710�

https://hal.science/hal-00748710v1
https://hal.archives-ouvertes.fr

1

Paper title: A practical model-based statistical approach for
generating functional test cases: application in the automotive
industry

Authors:
Roy AWEDIKIAN (Corresponding Author)

Affiliation 1 : (Permanent address)

Ecole Centrale Paris

Laboratoire Genie Industriel

F-92295 Châtenay Malabry Cedex

France

Affiliation 2 :

Johnson Controls Automotive Electronics

Electronics Division Europe

Parc Saint Christophe

95892 Cergy Pontoise Cedex

France

Mobile : +33 6 80 02 75 92

Fax : +33 1 41 13 12 72

Email : roy.awedikian@graduates.centraliens.net

Bernard YANNOU
Affiliation :

Ecole Centrale Paris

Laboratoire Genie Industriel

F-92295 Châtenay Malabry Cedex

France

Tel : +33 1 41 13 15 21

Fax : +33 1 41 13 12 72

Mobile : +33 6 64 25 96 59

Email : bernard.yannou@ecp.fr

2

1 Abstract

With the growing complexity of industrial software applications, industrials are looking for
efficient and practical methods to validate the software. This paper develops a Model-Based
Statistical Testing (MBST) approach that automatically generates online and offline test cases
for embedded software. It discusses an integrated framework that combines solutions for three
major software testing research questions: 1) how to select test inputs; 2) how to predict the
expected results of a test; and 3) when to stop testing software. The automatic selection of test
inputs is based on a stochastic test model that accounts for the main particularity of embedded
software: time sensitivity. Software test practitioners may design one or more test models
when they generate random, user-oriented, or fault-oriented test inputs. A formal framework
integrating existing and appropriate specification techniques was developed for the design of
automated test oracles (executable software specifications) and the formal measurement of
functional coverage. The decision to stop testing software is based on both test coverage
objectives and cost constraints. This approach was tested on two representative case studies
from the automotive industry. The experiment was performed at unit testing level in a
simulated environment on a host PC (automatic test execution). The two software
functionalities tested had previously been unit tested and validated using the test design
approach conventionally used in industry. Applying the proposed MBST approach to these
two case studies, significant improvements in performing functional unit testing in a real and
complex industrial context were obtained: more bugs were detected earlier and in a shorter
time.

Keywords: software testing, model-based, statistical testing, automation, embedded software,
automotive.

2 Industrial context and problem

2.1 Growing complexity of automotive software

Nowadays, car electronics represent more than 30% of the total cost of a car [1]. As
architectures for car electronics become more and more complex, carmakers outsource the
design of some electronic modules to automotive electronics suppliers. The design of a
module typically represents 24 months of development and involves around 25 management
and technical engineers with a range of hardware, software and mechanical competencies. The
software testing activity takes up to 50% of the total time spent in management and technical
activities and the software components of such a module accounts for more than 80% of the
total number of defects detected on the module.

In the automotive industry, the engineering processes of software development are performed
according to the standard V-model of the software industry [1]. However, an iterative and
incremental design process is also initiated between the carmakers and their suppliers in order
to take the carmaker’s constraints and prioritization of requirements into account. The number
of increments (deliveries) is defined based on the complexity of the project and adjusted in
accordance with the carmaker’s inputs and project constraints. In a fairly complex project, ten
is the typical number of increments [2]. After each delivery, despite the verification and
validation (V&V) activities of the supplier, the carmaker still detects a number of software
nonconformities (in this article, the term “bug” is used instead of “software
nonconformities”). This number depends on the size (in terms of lines of code), complexity,
and maturity of the delivered software. Moreover, once an electronics module is launched on
the market (i.e., integrated into a vehicle), an average of one bug per year is detected by end-
users [2], which may lead to significant financial consequences for the electronics supplier.
Therefore, finding bugs earlier in the product life cycle, specifically in the development phase
(thus reducing the number of bugs detected by carmakers and end-users) is a priority for
suppliers of automotive embedded software.

3

2.2 Automotive software V&V techniques

In the automotive industry, both static and dynamic software V&V techniques [3] are
practiced in order to ensure that the resulting software product meets the customer’s
expectations. Testing activities represent up to 90% of the time spent in the V&V of an
automotive software product. Unit tests act on a specific component of the system, while
validation tests act on the system as a whole. Many automotive industrials have invested in
automating test execution; however, test design is still a manual activity, completely based on
the practitioner’s experience.

The main purpose when unit testing a software component is to cover 100% of the
component’s source code (100% of the structural flows). This activity, illustrated in Figure 1,
is performed by the individuals who develop the component. These developers analyze the
structure of the software component being tested (White-Box approach) and select a test
input. Afterwards, by analyzing the source code of the component, they predict the expected
outputs to be checked against the actual output signals. Developers do not check the behavior
of all the output signals that correspond to each test input of the software, but rather only
those that correspond to the performed operation. If the designed test step (test inputs and
expected outputs) covers all of the source code, developers stop designing test steps. If not,
developers thoroughly analyze the non-covered areas of code with the goal of designing one
or more test steps that address these areas.

Figure 1 – Conventional unit test design approach in the automotive industry

At present, the unit test is not responsible for ensuring that a software component is compliant
with the carmaker requirements. Instead, once a set of unit-tested components are integrated,
test practitioners must ensure that the whole software product is compliant with the carmaker
requirements. As illustrated in Figure 2, they analyze one or more software requirements
(Black-Box testing) and select a test input. Afterwards, by analyzing the carmaker
requirements, they predict the expected values to be checked against the actual output signals.
As with the design of a test case (set of test steps) for the unit test, test practitioners check
only some output signals. They check that the behavior of the output signals matches their
understanding of the carmaker requirements. If the designed test steps cover the carmaker
requirements concerned, test practitioners stop designing test steps. If not, they thoroughly
analyze the requirements under consideration with the goal of designing one or more test steps
that completely cover them.

����������

	��ABCD�EAB����FAC�DB

�����B�DBA��B

�D�CD�����B

�����C�DF�

����B�A�EFAE���BF�������B

	C��B�D�B�E���A

�A���CD�B

F�CA��C� ��

���

	��AB ���

����������

!E��DB

��E�F�BF���B

�D��"�C�

��������	�

��#�FAC��$ ����B����B�%B

A��BF����D�DA��B��E�F�B

F���

&��AB���BA��B����FA��B

�EA�EA�BA�B��BF��F'��B(

AB��C��D�

E	��	��

����������

!E��DB

��E�F�BF���B

�D��"�C�

&�CF�B�C�F��B�%BF���B���B

D�ABF������B(

Test Step No Test Act ions Expected Results

… … …

96
Test # 96
Wait 500 ms

Output_1 = 0
Output_2 = 0
Output_3 = 0

97
Test # 97
Input_1 = 1
Wait 200 ms

Output_1 = 7
Output_2 = 3

… … …

)D�EA

��������	

A�BC�D�D�	

EDF��	����	

�EA�EA

)D�EA

��������	

A�BC�D�D�	

EDF��	����	

�EA�EA

4

Figure 2 – Conventional validation test design approach in the automotive industry

Sometimes, for time and budget reasons, managers may decide to stop testing software even if
100% structural (code) and/or functional (specification) coverage are not reached. However,
the carmaker must be notified of the parts that are not covered.

As software products become more and more complex, it becomes impossible to be able to
check that they respond correctly to all possible test inputs. Seroussi and Bshouty [4] show
that the design of an optimal exhaustive test case for software is an NP-complete problem. In
the automotive industry, a software product is always tested against predefined objectives
such as structural (code) and functional (specification) coverage. While structural coverage
can be formally measured using computer tools [5], functional coverage is more difficult to
measure formally, especially when specifications are expressed in an informal language. From
an analysis of 10 software specification documents from different carmakers [2], the authors
find that natural languages are still often used when specifying software functionality in the
automotive industry.

2.3 Industrial needs and expectations

Facing this growing complexity, carmakers and automotive electronics suppliers are looking
for efficient methods to validate software. As the automotive market becomes more and more
competitive, decreasing the development time of outsourced parts and decreasing the number
of problems detected downstream in the process become of major importance to carmakers
and, consequently, become major indicators in the selection of automotive suppliers; the
carmakers’ process for assigning new projects to suppliers is mainly based on feedback from
previous projects. In consequence, suppliers work on reducing the development time of their
products and detecting the maximum number of bugs as early as possible in the development
process.

A report from the National Institute of Standards and Technology [6] shows that the majority
of bugs is introduced during the first part of the software development phase (around 90% in
requirements analysis, design, and implementation activities) and detected in the latter part
(around 80% during unit testing, validation, and serial production). It also illustrates the
growing cost of bug correction once detected downstream in the software life cycle. Two
complementary approaches may lead to delivery of bug-free software:

• Lower the number of bugs introduced in the software (prevention approach)
• Detect and handle all the bugs that have been introduced in the software as early as

possible (detection and handling approach).

	��AB

�D�CD����

	��ABCD�EAB����FAC�DB

�����B�DBA��BA��AB

�D�CD�����B

�����C�DF�

�A���CD�B

F�CA��C� ��

���

	��AB ���

	��AB

�D�CD����

!E��DB�D��"�C�B

�%BA��BF����'��B

��%A*���B

��+EC����DA�

��������	�

��#�FAC��$ ����B����B�%BB

�D�B��B����BF����'��B

��%A*���B��+EC����DA�

&��AB���BA��B����FA��B

�EA�EA�BA�B��BF��F'��B(

AB��C��D�

E	��	��

	��AB

�D�CD����

!E��DB�D��"�C�B

�%BA��BF����'��B

��%A*���B

��+EC����DA�

&�CF�B�C�F��B�%BA��BF�D�C�����B

��+EC����DA�B���BD�ABF������B(

Test Step No Test Act ions Expected Results

… … …

96
Test # 96
Wait 500 ms

Output_1 = 0
Output_2 = 0

Output_3 = 0

97
Test # 97
Input_1 = 1

Wait 200 ms

Output_1 = 7
Output_2 = 3

… … …

���B����	

��������	

���E���B�D��

����B%EDFAC�D��BF�������B

	C��B�D�B�E���A

5

While sophisticated bug-prevention methods and tools are widely used in industry [7], a
report from the National Institute of Standards and Technology [6] points out the lack of
methodologies, tools, and knowledge in bug-detection techniques, and, more particularly, in
testing techniques. In this paper, an integrated Model-Based Statistical Testing (MBST)
approach to improve the performance of the test case design process for automotive embedded
software is proposed. Test cases can be generated offline and later executed, or they can be
generated and executed online. This approach was evaluated using two typical automotive
case studies. Each case study consists of automatically generating test cases (offline) for the
functional unit test of a software functionality. Each functionality has already been developed
and validated (unit and conformance testing) in the past with the V&V techniques currently
used in the automotive industry. The generated test cases were executed in a simulated
environment (host PC). The performance of the proposed framework regarding the
conventional one was quantitatively measured using two metrics: the number of bugs detected
earlier in the software development phase and the time spent in testing the software.

After a characterization of the software design environment in the automotive industry, a
literature review on the MBT approach is discussed in section 3. An overview of the
integrated model-based statistical approach for generating test cases is provided in section 4.
The test oracle, test input selection, and stop testing criteria of this approach are developed in
sections 5, 6, and 7, respectively. The performance of the proposed MBST approach through
two industrial, practical case studies with historical data is assessed in section 8. The validity
threats of the experimental results are outlined. Finally, future aims for this research are
discussed in section 9.

3 Literature review on model-based testing

Studies show that testing a variety of applications using MBT has been successful. For a
sample of such studies, the works of Agrawal and Whittaker [8], Bauer et al. [9], and Bernard
et al. [10] on testing embedded controller software were considered; Rosaria and Robinson
[11] on testing graphical user interfaces; and Avritzer and Larson [12] and Dalal et al. [13] on
testing phone systems. These works indicate that MBT is tailored for small applications,
embedded systems, user interfaces, and state-rich systems with fairly complex data. Recently,
Siegl et al. [14] present an approach to formalize the requirements specification by test
models. These models serve as basis for the testing activities, including the automated
derivation of executable test cases from it. Test cases can be derived statistically, randomly on
the basis of operational profiles, and deterministically in order to perform different testing
strategies. They have applied their approach with a large German OEM in different
development stages of active safety and energy management functionalities. A variant of
MBT is Model-Based Statistical Testing (MBST), a Black-Box technique that enables the
generation of tests that are representative of the perspective of the tester or the user. It has also
been used for testing a wide range of applications. These applications vary from sophisticated
software engineering environments to databases and large industrial software systems. MBST
has also been used in projects involving embedded systems, such as medical devices [15] and
automotive modules [16]. Bohr [17] proposes an extension to MBST which deals with the
notion of time and concurrency while maintaining all the advantages of MBST. This is done
by using an advanced kind of Petri nets as test model. He also shows that it is possible to
generate executable test cases (including oracle information) from the Petri nets. Throughout
this paper, the utility of a Model-Based testing approach within the embedded software
industry is emphasized.

Ozekici [18] discusses some interesting statistical issues that arise in usage testing of
software. Wohlin and Runeson [19] also discuss the effect of usage modeling in software
certification. A stochastic model of software usage involving Markov chains is employed in
Whittaker and Poore [20] and Whittaker and Thomason [21]. In their approach, the sequence

6

of “inputs” provided by the user is modeled as a Markov chain. This results in a model
involving all possible values of input variables. Their model is similar to the proposed one in
the sense that they model the sequence of “inputs” by a Markov chain. However, in contrast to
the approach proposed in this paper, there is no mention of testing the characteristics that are
specific to embedded systems. Embedded systems are very often real-time systems, and an
adequate testing approach must consider the properties particular to these systems, especially
their time sensitivity. Hessel et al. [22] present principles and techniques for model-based
Black-Box conformance testing of real-time systems using the UPPAAL model-checking tool
suite. In the proposed approach, real-time constraints are taken into account (specification
language and test model) in order to ensure proper testing of timing requirements.

Significant effort has already been invested in the automatic generation of test cases from
models of the system being tested. BZ-TESTING-TOOLS [23] is a toolset for automated test
case generation from B, Z, and Statechart (Statemate) specifications. Another approach is
developed in the AGEDIS project [24] that uses the AGEDIS modeling language as input.
The test generation engine used in this project combines the principles of TGV [25] and
GOTCHA [26]. Lugato et al. [27] describe the AGATHA toolset, which overcomes the
combinatorial explosion problem in software testing. In the proposed approach, test inputs are
automatically generated from a test model relying on the Monte Carlo simulation technique.

Many researchers [28] [29] focus on reducing the length and number of generated test cases.
These test case reduction techniques (also referred to as test case minimization in the
literature) seek to reduce the number of test cases while retaining a high percentage of the
original suite’s fault detection effectiveness. Most approaches to this problem are based on
eliminating test cases that are redundant in some of their coverage criteria. These approaches
are similar to the proposed one, since structural and functional coverage are used as criteria in
deciding to reduce the length of test cases and to stop testing software.

Finally, there are few industrial papers dealing with the full software testing process (test
input selection, test oracle, stop testing criteria, and test execution). Most of the research on
test case generation treats simple examples that do not reflect the real complexity of modern
industrial applications. In this research, the proposed MBST approach was tested on two
typical automotive industrial case studies. According to Johnson Controls software experts,
one of them (fuel gauge functionality) is considered to be one of the most complicated
functionalities in a modern car.

4 An integrated model-based statistical approach for generating
functional test cases

4.1 Overview

In this section, an integrated approach to automatically generating functional test cases for
automotive embedded software is presented. Test cases can be generated offline and later
executed, or they can be generated and executed online. The purposes of the proposed
approach are 1) ensuring conformance to specification, 2) ensuring code coverage and 3)
avoiding recurrent bugs. Through this approach, the following three software testing topics
[30] were simultaneously addressed, while taking the industrial automotive context into
account:

Research topic 1: Test oracle

In the automotive industry, semi-formal and formal methods are used more and more to
specify software functional requirements. However, there is no standardized formalism shared
between carmakers and suppliers; for each project, the supplier has to adapt its processes to
the specification language used by the carmaker. Therefore, a formal framework integrating
existing and appropriate description techniques was developed. This allows deriving

7

automated test oracles (executable software specifications) from any formalism of software
specifications.

Research topic 2: Test input selection

A probabilistic test model based on Markov Chains was developed. The whole set of states of
a Markov Chain represents all regarded inputs for the software being tested. Transitions
between states in the Markov Chain represent orders of succession of two inputs. Each
transition is associated with a number that represents the probability that one input succeeds
the other and a time interval that models the wait time between two inputs that are in
succession. For practical reasons, the test model is graphically represented through a matrix
called transition matrix. A Monte Carlo simulation process is used to select inputs from a
transition matrix.

Research topic 3: Stop testing criteria

An objective function based on formal measurement of the structural and functional coverage
was developed. A constraint function in order to take test duration and cost constraints into
account was also developed. An optimization algorithm monitors the generation of each test
case in order to reach the test practitioner’s objectives (in terms of coverage) and constraints
(in terms of planning and cost). The generation of a test case is completed when the test
objectives are fulfilled or the test constraints are disregarded. Indeed, the objective and
constraint functions are calculated during the test case generation (after each test step
generation). If structural coverage criteria are included in the test objectives, online test
execution shall be chosen.

The proposed approach presents a workflow for generating test cases that is different from an
investigated conventional approach in the automotive industry. The new workflow illustrated
in Figure 3 is based on eight activities that are manual, semi-automatic, or automatic and that
might be managed by different individuals (requirement and test practitioners). These
activities are:

1. Design an automated test oracle (executable software specification) of the
functionality being tested.

2. Verify (correct implementation) and validate (intended purpose) the test oracle.
3. Define some behavioral characteristics of a driver when using the functionality being

tested.
4. Perform a statistical analysis on test cases developed (in the past) for similar

functionalities.
5. Perform a statistical analysis on bugs detected (in the past) in similar functionalities.
6. Generate one or more transition matrices.
7. Generate executable test cases.
8. Monitor the generation of each test case using test coverage objectives and cost

constraints.

The interface between the test generation and execution platforms depends on the technology
of the test execution platform (computer language and environment) and on the test coverage
tool used to measure the structural coverage of the software under test.

8

Figure 3 – An integrated model-based statistical approach for generating functional test cases

verification and
validation of the

test oracle

monitoring of the test case
generation

cost
constraints

test coverage
objectives

reached
functional coverage

& constraints

decision to stop
generating tests

test case
generation

stored test cases

statistical analysis of
stored test cases

constraints on the
input signals

related to similar functionalities
developed in the past

definition of driver
profiles

stored bugs

statistical analysis of
stored bugs

generation of
transition
matrices

do
m

ai
ns

 o
f t

he
 in

pu
t

si
gn

al
s

of
 th

e
fu

nc
tio

na
lit

y
be

in
g

te
st

ed
test cases

carmaker software
specifications test oracledesign of an

automated test
oracle

correction

validated test oracle

Manual

Manual

Semi-automatic

Semi-automatic

Automatic

Semi-automatic

Automatic

Semi-automatic

§ 5 § 5

§ 6

§ 6

§ 6

§ 6

§ 7

§ 6

§ 5: Research topic 1: test oracle
§ 6: Research topic 2: test input selection
§ 7: Research topic 3: stop testing criteria

Legend:

Activity 1 Activity 2

Activity 3

Activity 4

Activity 5

Activity 6

Activity 7

Activity 8

bug
database

test case
database

test case
execution

reached
structural coverage

in
 c

as
e

of
O

nl
in

e
te

st
 g

en
er

at
io

n

Test execution
platform

Test generation
platform

Semi-automatic

design of transition matrices

transition
matrices

9

4.2 Human intervention

Nowadays, more and more testing techniques rely on human intervention in order to ensure
their applicability in an industrial context. A compromise must be found between the
relevance of the test cases (requiring significant expert intervention) and automation. The
proposed approach addresses this issue in seeking more automation, with human intervention
restricted to activities requiring insight. In Figure 3, human intervention throughout the
proposed MBST approach is clearly identified (manual and semi-automatic). The three main
manual or semi-automatic activities are:

• Design, verification and validation of test oracles (Activities 1 and 2): in current
industrial practice, the software testing oracle is often a human being. In the proposed
approach, practitioners must manually derive an automated test oracle from software
specifications. Consistency in the designed test oracles is ensured by the semi-
automatic verification and validation of the test oracle.

• Preparation of data for the generation of transition matrices (Activities 3, 4 and 5): this
semi-automatic activity uses human expertise to test specific situations that can not be
targeted by a systematic model coverage approach. For example, it relies mainly on
test practitioner experience in order to establish end-user profiles or select stored bugs
or stored test cases that may be used in the design of new transition matrices.

• Monitoring of the test case generation (Activity 8): the decision to stop testing
software is completely automated with an optimization algorithm. This algorithm
accounts for the fulfillment of the test objectives while respecting the cost constraints.
The definition of these objectives and constraints is still manual since it is often based
on informal customer and project expectations.

A technical report [31] developed roles and skills required of the practitioner for each of these
manual or semi-automatic activities. Trainings, tutorials, and best practices could be
developed to assist practitioners in designing relevant test oracles and transition matrices.
Such an approach would be beneficial in an automotive context, as more than 50% of
functionalities performed by software products are common to any series of cars. Test oracles
and transition matrices could be easily reused and improved from one project to another.

5 Research topic 1: Test oracle

5.1 Literature review

Deciding whether a test outcome is acceptable is the so-called test oracle problem. Although it
is obvious that a test execution for which a test practitioner is not able to distinguish between
success and failure is a useless test, and although discussion of the criticality of this problem
is a long existing topic in the literature [32], the oracle problem has received little attention in
research, and, in practice, few alternative solutions exist to human “eyeballing”. Nardi et al.
[33] highlighted the heightened interest on research related to test oracles in the last 10 years,
notably after 2001.

The research literature on test oracles applicable to dynamical systems comprises a relatively
small part of the research literature on software testing. Analyses proposed in earlier research
are based either on the availability of pre-computed input/output pairs [34] or on a previous
version of the same program that is presumed to be correct [35]. Weyuker [36] presented
some of the basic problems and argues that truly generalized test oracles are often
unobtainable. A survey of oracle solutions is provided by Baresi et al. [37] and Nardi et al.
[33]. The survey proposes approaches to automated test oracles that are generalized in the
sense that they require neither pre-computed input/output pairs nor a previous version of the
system being tested. The authors group oracle systems based on implementation approaches
(i.e. embedded assertions, execution log analyzers) and on the kinds of specifications they

10

accept (i.e. interface specifications, design models, Model-Based specifications). Four
categories of oracles have been identified: specification-based, metamorphic relations, n-
version and neural network. There are publications of specification-based oracles since 1991
and they represent up to 70% of the total number of publication. Examples of specification
languages are: Z, Object Z, OCL, Eiffel, VDM, JML, state machine, SDL and Mitl. Kanstren
[38] cited the lack of empirical studies on the use of state machines. The specification of a
system provides a source of information about the correct behavior of the implementation and
thus it is a valuable source for test oracles [39]. The specification can be used to describe the
expected behavior of a system at different abstraction levels [40].

In current industry software testing practice, the oracle is often a human being. While the
human “eyeball oracle” has advantages over more technical means of interpreting incomplete,
natural-language specifications, humans are more prone to error when assessing complex
behaviors or detailed, precise specifications, and the accuracy of the “eyeball oracle” drops
with an increase in the number of test cases. In addition, the “eyeball oracle” becomes a
limiting factor when other parts of testing are automated. Given that a test engineer can make
a mistake while calculating an expected output and the large number of outputs to be
compared during the test phase illustrate the obvious interest in creating automated oracles.

5.2 A framework for deriving automated test oracles from software
specifications

A previous paper [2] performed a study on the evolution of languages used by carmakers to
specify software functional requirements. Through this study, an increased use of formal
languages and a decreased use of informal and semi-formal languages were highlighted.
However, within the formal languages, there is no standard formalism shared between
carmakers and suppliers. Rather, for each project, the supplier must adapt its processes to the
specification language used by the carmaker. Many researchers [41] [42] state that there are
no software specification languages today that fit all intents and purposes. For each context,
decisions must be made as to what language (or collection of languages) is most suitable. No
large-scale studies have been made to confirm the claims regarding any particular language.

Nardi et al. [33] and Baresi et al. [37] surveyed a range of frameworks for the derivation of
automated test oracles from specific software specification methodologies. The main
challenge posed by using a specification language is that effective procedures for evaluating
the predicates or carrying out the computations they describe are not generally a concern in the
design of these languages. Since there is no standard formalism for the specification of
software behavior in the automotive industry, a framework to manually derive automated test
oracles (executable software specifications) from any software specification language was
developed. In order to avoid the propagation of the same specification error in the test oracle
and implementation, test oracles shall be designed, verified and validated by another team
than the one who performs the implementation. The proposed framework is general in the
sense that the same designed oracle can be used for any arbitrary execution, i.e., the oracle is
independent from test case selection or generation. Apart from automating the test oracle, the
motivations behind transcribing carmaker software specifications into executable software
specifications are 1) to avoid ambiguities, inconsistencies and misunderstandings of the
carmaker requirements, 2) to explicit the behavior of the system when invalid entries are
given and 3) to be able to formally measure the coverage of the software specification
(coverage of the test oracle).

Practitioners have to manually derive an automated test oracle based on the specification of
the functionality being tested. This manual task is the most time-consuming task in the
proposed MBST approach. In section 8.2.1, the time spent in designing the automated test
oracles for two sets of industrial software specifications is dicussed. Specifications that are

11

already expressed in a formal or semi-formal language are more obvious to interpret into the
design of an automated test oracle.

5.2.1 Appropriate specification techniques

5.2.1.1 Typology of software functional requirements in automotive industry

In the automotive industry, a software functionality is composed of features that are described
by requirements. In this study, non-functional requirements were not taken into account; the
focus was on specifying software functional requirements. A software functionality has a set
of configuration (Config), input (I), output (O) and intermediate (Int) signals with discrete
domains. Configuration signals allow for the parameterization of the software functionality
(for instance, by activating or deactivating one feature). Input signals might be switches,
sensors, or car environment variables (for instance, vehicle speed). Output signals might come
from actuators or any type of command (for instance, the wiper motor command). Finally,
intermediate signals make it possible to manage and share data between two or more features.
These signals interconnect the features (F) of the functionality, and each feature is based on
one or more requirements of the same type. Two types of software functional requirements
were identified:

• Combinatorial (see Figure 4): when the values of the requirement output signals at
instant t (O_Reqt) depend only on the values of the requirement input signals at instant
t (I_Reqt).

Req
I_Req O_Req

O_Reqt = f(I_Reqt)
Figure 4 – Combinatorial functional requirement

• Sequential (see Figure 5): when the values of the requirement output signals at instant
t (O_Reqt) not only depend on the values of the requirement input signals at instant t
(I_Reqt) but also on the values of the requirement output signals at instant t-1 (O_Reqt-
1).

Req

O_Reqt = f(I_Reqt, O_Reqt-1)

I_Req O_Req

Figure 5 – Sequential functional requirement

5.2.1.2 Two types of specification techniques

It is potentially advantageous to use existing specification techniques, rather than inventing
new ones for the sole purpose of creating test oracles. After considering a variety of
techniques in the literature [42], it was decided to specify the two sets of automotive software
functional requirements with the following two specification techniques:

• Decision Table (DT): DT technique is used to specify a feature that is based on one or
more combinatorial functional requirements (stateless description). A DT is a table
that presents a set of exclusive input signal conditions (Cq) and the corresponding set
of output signal actions (Aq). Each set of conditions (Cq) represents a requirement in
DT.

• Finite State Machine (FSM): FSM technique is used to specify a feature that is based
on one or more sequential functional requirements (stateful description). In this paper,
in order to address the particularities of embedded software, each FSM may have a
timing signal (FSMTempo) and a set of internal signals (FSMIntm). The timing signal
specifies timing requirements, and the internal signals characterize the states of an
FSM. The internal signals are identified by analyzing the sequential functional

12

requirements. They are required, when more than one state of the FSM are activated in
the same time for a specific set of inputs values. An FSM is composed of:
- An initial state (S0) and a finite number of subsequent states (Si) with a set of

actions (Ai) defining the FSM output, internal, and timing signals. The FSM timing
signal is set to 0 each time the state of the FSM changes. The FSM timing signal
computes the time spent in each state.

- A set of transitions (Tij) from a start state (Si) to an end state (Sj), and for each
transition (Tij), a set of exclusive FSM input, internal, and timing conditions (Cij,q).
Each set of conditions (Cij,q) represents a requirement in FSM.

A detailed description of the conditions (Cq), actions (Aq), states (Si) and transitions (Tij)
characteristics is provided in a technical report [31].

In Figure 6, a graphical illustration of an automated test oracle manually derived from
software specifications is provided. The software functionality (“Auto_Light”) has 3
configuration signals, 5 input signals, 2 output signals, 2 intermediate signals, and 3 features.
The detailed description of the design of this test oracle is provided in a technical report [31].

« Auto_Light »

I2=Luminosity_Sensor

I3=Car_Locked

I4=Ignition

I5=Light_Combi_Switch

Config3=Follow_Me_home_Calib

Config2=Follow_Me_home_Config

Config1=Auto_Light_Config

Int1=Luminosity_Level

Int2=Follow_Me_Home_Activate

O1=Head_Lamp

O2=Tail_Lamp

Feature 2
DT 2

Feature 3
FSM 1

Feature 1
DT 1

I1=Reset

Figure 6 – Graphical illustration of an automated test oracle

5.2.2 Automation of test oracles

The expected outputs of a test are automatically predicted through an automatic run of the test
oracle. This run is synchronously executed with an acyclic logic going from input to output
signals of the test oracle. The run order of the features must be defined when designing the
test oracle (Feature 1 then Feature 2 then Feature 3). The behavior of the test oracle is
synchronized with a “clock” signal that alternates between zero and one, back and forth, at a
specific pace (cycle time). The value of the cycle time depends on timing characteristics of the
software functionality. It is defined by test practitioners when analyzing and designing the test
oracle. At each cycle time, all the features are run following the predefined order. Running a
feature consists of predicting its output signals according to its input signals.

In the case of a feature modeled using Decision Table technique, all conditions (Cq) are
checked. There is no specific checking order for these conditions since only one condition can
be satisfied at a time. DT output signal values are updated according to the action associated
with the satisfied condition. Note that, in some cases, none of the conditions (Cq) are satisfied
and therefore no DT output signal actions (Aq) are carried out. In fact, the DT conditions do
not always consider all possible combinations of the values of the DT input signals.

13

In the case of a feature modeled using Finite State Machine technique, one state is always
activated. When running an FSM, all conditions of all the transitions that start from the
activated state are checked. There is no specific checking order for transitions and conditions
since they are exclusive and only one condition (or only one transition) can be satisfied
(made) at a time. Therefore, after having run each FSM, a maximum of one transition is made.
The start state of the transition is deactivated, the destination state is activated, and output
values are updated. However, in some cases, none of the transitions that start from the
activated state are satisfied, the activated state remains unchanged as a result, and no FSM
output signal actions are carried out. The conditions of all the transitions that start from the
same state do not always consider all possible combinations of the values of the FSM input,
internal, and timing signals.

A more descriptive explanation of how DT and FSM are executed to determine the expected
results is provided in a technical report [31].

5.2.3 Test oracle correctness

It is often too costly and time-consuming to establish that a test oracle is absolutely valid over
its full domain of intended applicability. Therefore, a contextual and semi-automatic
framework to help practitioners assess confidence in a test oracle and decide in this way
whether or not it is possible to stop verifying and validating it was developed. Tests and
evaluations are conducted until there is sufficient confidence that a test oracle can be
considered valid for its intended application. Sargent [43] proposes a simplified way of
designing and validating a test oracle. The Problem Entity is the system (real or proposed),
idea, situation, policy, or phenomena to be modeled; the Conceptual Model is the
mathematical/logical/verbal representation of the Problem Entity, developed for a particular
study; and the Computerized Model is the Conceptual Model implemented on a computer.
The Conceptual Model is developed through an analysis and modeling phase, the
Computerized Model is developed through a computer programming and implementation
phase, and inferences about the Problem Entity are obtained by conducting computer
experiments on the Computerized Model in the experiment phase.

The main three model verification and validation stages proposed by Sargent are:
1. Conceptual Model Validity (i.e. clarification of the carmaker’s needs and

requirements), ensuring that 1) the underlying theories and assumptions of the
Conceptual Model are correct, and 2) the model representation of the Problem Entity
and the model’s structure, logic, and mathematical and causal relationships are
“reasonable” for the intended purpose of the model.

2. Computerized Model Verification (i.e. check of the model programming rules),
ensuring that the computer programming and implementation of the Conceptual Model
are correct.

3. Operational Validity (i.e. check of the model accuracy), concerned with determining
that the model’s output behavior has the accuracy required for the model’s intended
purpose over its intended domain of applicability. This is where most of the validation
and evaluation techniques take place.

More than 77 verification and validation techniques for simulation models are identified and
classified by Balci [44]. Most of these techniques come from the software engineering
discipline, and the others are specific to the modeling and simulation field. Unfortunately, no
algorithms or procedures exist to decide which techniques to use. In the next three sections,
techniques, rules, and scenarios to help modelers in validating the Conceptual Model,
verifying the Computerized Model, and finally checking the Operational Validity of a test
oracle are presented. The proposals take both Sargent’s recommendations and the industrial
context of this research into account.

14

5.2.3.1 Conceptual Model validity

A Conceptual Model of the test oracle is developed through analysis and modeling of a
software specification as it was delivered by the carmaker. For each software functionality and
based on the carmaker software specifications, modelers draw a sketch of the test oracle by:

1. identifying the input and output signals and their domains;
2. grouping the functional requirements according to their types (combinatorial or

sequential);
3. identifying the features (DT and FSM) and the intermediate signals and their domains;
4. and finally, specifying each feature: for a DT, identifying the conditions and their

associated actions; for an FSM, identifying the states and their associated actions, the
transitions and their associated conditions, and, if needed, the internal and timing
signals.

Once the Conceptual Model of the test oracle is designed, each feature and the test oracle
must be manually evaluated to determine if they are reasonable, correct, and complete in
terms of the carmaker’s requirements. The Face validity and Turing tests [44] may be used in
order to clarify the carmaker’s needs and requirements and validate the conceptual model;
expert knowledge is the main basis for this validation. Individuals knowledgeable about the
system being tested are asked to judge the test oracle against the carmaker’s software
specification and to give their level of confidence in the test oracle and/or its behavior.

5.2.3.2 Computerized Model verification

The Computerized Model of the test oracle is developed through computer programming and
implementation of its Conceptual Model. A high-level graphical language [31] to help
modelers computerize their Conceptual Models of test oracles was developed in a technical
report. The use of a graphical language generally results in fewer errors, and programming
time is usually reduced significantly. Moreover, in order to detect all the programming errors
and ensure that a valid computer model of a test oracle is obtained, a set of integrity rules [31]
to be checked automatically against this computer model was developed.

5.2.3.3 Checking Operational Validity

Computerized Model verification ensures that mistakes have not been made in the computer
implementation of the test oracle. It does not ensure the compliance of the test oracle with the
(original) carmaker requirements. The Operational Validity stage aims to ensure that the test
oracle behavior is compliant with the carmaker’s requirements and has the accuracy required
by the carmaker. To do this, computer experiments must be conducted on the Computerized
Model of the test oracle. This is where most of the model deficiencies are detected. There may
be errors in the Conceptual Model of the test oracle or programming errors in its
computerization. Three possible actions [31] to help modelers validate the Computerized
Model of a test oracle against its original requirements were identified. These actions are
semi-automatic and can be carried out concurrently (when all the input data are available) or
separately:

1. First action: have experts (in the software functionality under test) run the
Computerized Model

2. Second action: execute the test cases delivered by the carmaker on the Computerized
Model

3. Third action: execute a set of test cases on the carmaker’s software specification (in
case of executable specification) and the Computerized Model in order to compare the
two.

The principles, grammar, and validity of the proposed test oracle model are discussed in detail
in a technical report [31].

15

6 Research topic 2: Test input selection

6.1 Literature review

Selection of the most suitable test inputs to be executed in the software being tested is a
complex problem that has inspired much research, because selection of the test cases greatly
influences test efficacy. Many researchers have proposed criteria for picking out a “good”
sample of potential test cases. A comprehensive survey of the research on this topic was done
by Zhu et al. [45]. An important point is that a “good” test case is not universally “good” but
rather depends on the testing context (time and resource constraints, etc.), the software being
tested (criticality, etc.), and the testing goal (100% structural and/or functional coverage,
increase in confidence, etc.). The most common interpretation for “good” would be “able to
detect a high number of bugs”. Basili [46] and Wood [47] experimentally observe that
different test selection techniques could ensure different test purposes. Therefore and while
having more than one test purpose, it may be preferable to apply a combination of diverse
techniques, rather than focusing on just one.

It is difficult to find a system for classification of all test selection techniques. The one
proposed in Bertolino et al. [48] may be seen as a compromise. It is based on how tests are
generated from test practitioners’ intuition and experience, the specifications, the code
structure, the faults to be discovered, and, finally, the nature of the application.

Paradoxically, test input selection seems to be the lowest priority problem for test
practitioners in automotive industry. A demonstration of this low priority is the paucity of
commercial tools that aid test input selection [30], in comparison with the large quantity of
support tools that handle test execution, regression, and documentation. Much progress has
been made in test input selection techniques over the last twenty years, but this progress
remains almost unknown in the automotive industry. The most-practiced test selection
technique is still dependence on the expertise of the tester.

6.2 A test model based on Markov Chains

The proposed test model (transition matrix) does not model dynamic probabilities. The
probabilities in a transition matrix are static and pre-defined (before testing). In this research,
the same assumption as Bauer et al. [9] was made. They use Markov Chains to model a car’s
operational software system and assume that future inputs only depend on current, and not
past, inputs. In some cases, this assumption proves incorrect. For instance, if a gearbox is in
4th gear, the probability of a shift to 5th gear will depend on what gear it was in before it went
into 4th (it's more likely to go 3rd->4th->5th than to go 5th->4th->5th). To overcome this problem,
the state space should be expanded. This leads to another problem: having to estimate many
more transition probabilities. An exhaustive test selection approach should consider the
probabilities associated with a given sequence of each pair of N possible inputs, where N is
the total number of possible inputs of the functionality being tested. In this paper, test
practitioners have the option of designing additional constraints on a transition matrix in order
to give weight to a sequence of more than 2 inputs, taking into account the dynamic nature of
software behavior. This sequence might be more likely (from past experience) to contain a
bug, or simply a sequence often performed by the end-user of the product.

6.2.1 Characteristics and illustration

A specific class of Markov chains, discrete-parameter, finite-state, time-homogenous,
irreducible Markov chains, has often been used to model the usage of software. These Markov
chains are structurally similar to finite state machines and can be thought of as probabilistic
automata. The body of literature on Markov chains in software testing is substantial. Work
done on testing particular systems is detailed by Avritzer and Larson [12].

16

A Markov chain is described as follows: considering a set of states S = {S1, S2, …, Sr}. The
process starts in one of these states and moves successively from one state to another. Each
move is called a transition. The controlling factor in a Markov chain is the transition
probability pij, a conditional probability that the system will go to a particular new state Sj,
given the current state Si of the system. The system can remain in the state it is in, and this
occurs with probability pii. In the context of this research, each state represents a possible
input and each transition is associated with a probability associated with a particular sequence
of two inputs (linked states). Of those included in the reviewed literature, none of the
researchers integrates the wait time between two inputs into the software usage model.
However, in many embedded software systems, this transition time between two inputs plays
a major role in detecting bugs relating to real-time constraints. As a consequence, each
transition of the transition matrix is associated with a time interval from which transition time
are selected. Moreover, all the sequences of inputs that can occur from an electronic
(hardware) point of view could be taken into account, even if they are illogical from the
software behavior point of view, as a malfunctioning of electronics (sensors, etc.) could cause
an unexpected sequence of test inputs.

In this paper, a Markov chain is represented as a square matrix (called a transition matrix)
with the states as indices and the transition probabilities as entries, to which a time interval
was also added. Considering a software functionality being tested with 3 input signals: I1,
Domain = {0, 1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}. The template of the transition
matrix for this functionality is illustrated in Figure 7. It is a 7-by-7 matrix where 7 is the
number of all possible values of the functionality input signals (I1, I2 and I3). For each entry
in the matrix, two pieces of information are required:

1. The transition probability, i.e. the probability that the two inputs are in sequence. The
total of the probabilities in a row must be equal to 1. After selecting an input (row:
I3=1), test practitioners may either select the same one again (column: I3=1) or select
another one (column: I1=0, I1=1, I2=1, I2=2, I2=3, I3=0).

2. The transition time between the two inputs, modeled as an interval of possible values
[Tmin; Tmax] with a uniform probability of being selected for the test.

Figure 7 – An example to illustrate the transition matrix

For each software functionality being tested, test practitioners may design one or more
transition matrices that illustrate the dynamic behavior of the functionality in different usage
circumstances.

Input
signals

0I1

I2

I3

I1 I2 I3

1
1
2
3
0

0 1 1 2 3 0 1

1

1. Transition probability
2. Transition time

Time interval

Time

Tmin Tmax

Domains

Σ(Transition probabilities) = 1 Transition time

Probability

Previously possible inputs

Inputs possible subsequently

Input
signals
Input

signals

0I1

I2

I3

I1 I2 I3

1
1
2
3
0

0 1 1 2 3 0 1

1

0I1

I2

I3

I1 I2 I3

1
1
2
3
0

0 1 1 2 3 0 1
0I1

I2

I3

I1 I2 I3

1
1
2
3
0

0 1 1 2 3 0 1

1

1. Transition probability
2. Transition time

Time interval

Time

Tmin Tmax

DomainsDomains

Σ(Transition probabilities) = 1 Transition time

Probability

Previously possible inputs

Inputs possible subsequently

17

6.2.2 How to design a transition matrix?

One major question is: how can a practitioner design a transition matrix? The basic solution is
to manually fill in each entry of the matrix with a transition probability and a time interval.
However, a functionality can have more than 20 input signals and 100 possible values for
these signals. Consequently, a transition matrix can easily reach 10000 entries, which
becomes inconceivable to fill in manually!

Whittaker [49] discusses manually building finite state models in a hierarchical fashion. El-
Far [50] describes a framework for automatically building finite state models from an
informal specification of the system being tested. There are also some works [51] on
automating the generation of probabilities for Markov chains. In this paper, a semi-automatic
process to design transition matrices for software functionalities is developed. The designed
models may be based on random assumptions, on the end-user’s behavior, or on the test
practitioner’s experience from previous or similar development. The design of a transition
matrix does not require much human intervention. In section 8.2.2, the time spent in designing
a set of transition matrices for two typical industrial case studies is discussed.

The first step involves a manual analysis to classify the inputs of the functionality being
tested into subpopulations. Classification is based on input type:

• Configuration and calibration: parameters of the functionality
• User: user inputs, actuators
• System environment: internal variables
• Sensor: sensor inputs

The second step consists in manually selecting a sample of inputs from the continuous input
domains (i.e. temperature, speed). Many existing methodologies [52] focus on the sampling
problem by using heuristics to determine which input values to consider. In many of these
methodologies, no real attempt is made to measure whether usage of the software that falls
outside the sample will succeed. A notable exception is category and partition testing [53], in
which inputs are partitioned into equivalence classes whose points are equally characteristic of
the functionality being tested, and it is therefore sufficient to test one representative input
from each class. In this study, the partitioning strategy is concurrently based on the software
specification, the code structure, and experts’ knowledge:

• A specification-based partition might divide the input domain into inputs required to
invoke one or several software features.

• A code-based partition might consider inputs that do or do not force use of a
potentially bugged data structure (i.e., using boundary values, or using at least one
even and one odd value as inputs, etc.).

• An expert-based partition might consider inputs that have a high probability of
occurring from a usage point of view. For instance, when sampling the “vehicle speed”
variable, it is judicious to select more values around 50, 90 and 130 km/h since these
values are the most used in France (French speed limits).

Having classified and selected a sample of the inputs of the functionality being tested, the
third and last step consists in automatically generating one or more transition matrices with
all possible inputs (all inputs after partition) in columns and in rows. The entries (transition
probabilities and time intervals) of these matrices are based on one of the assumptions
discussed shortly below and derived from the work of Bertolino et al. [48]. As highlighted in
Figure 20, these assumptions are complementary and no single type of transition matrix would
be able to detect all the bugs.

A detailed description of how each transition matrix is populated is provided in a technical
report [31]. It discusses basic software routines that attribute probabilities and time intervals
between successive test inputs, taking into account assumptions and constraints.

18

6.2.2.1 Random assumptions

The aim of a transition matrix based on random assumptions is to test the software against
unrealistic input sequences. The two types of transition matrix presented in this section are
unrealistic from a usage point of view (many of the transitions are not possible). However,
through these matrices, completely random input sequences could be generated and therefore
test the robustness of the software against abnormal behavior in the inputs.

One solution is to consider that all the sequences of input signals values to the functionality
being tested are possible and have the same probability of occurrence. This is what is called
the Nominal 1 transition matrix. Another similar solution is to consider that all the sequences
of input signals values are possible and that all the input signals have the same probability of
undergoing a change. This is what is called the Nominal 2 transition matrix. Since the aim of
these two transition matrices is to test the behavior of the software against abnormal inputs, it
is judicious to choose a practical time interval and eliminate any malfunctioning that may be
caused by transition time.

6.2.2.2 End-user profile

There is no better way to test a product than to test it in the way that it will be used. The main
work in this field is that of Musa [54]. He presents a case for using the operational profile in
software reliability engineering. In this paper, a framework in order to generate test cases that
simulate the behavior of the end-user of the functionality is developed. Four types of
constraints were defined. These constraints can be instantiate by test practitioners as many
times as they choose on one or more input signals of the functionality being tested
(operational profile). The four types of constraints are:

• Logical constraint: This constraint prohibits an input signal from switching between
values that are illogical from a usage point of view.

• Conditional constraint: This constraint characterizes the correlation between two or
more input signals that do not have any succession conditions on the inputs of these
signals. In other words, when one or more inputs satisfy specific conditions, the
domain of other inputs is adapted (reduced) automatically.

• Succession constraint: In practical use of an electronic product, two or more inputs
may have a high probability to chronologically follow one another (and sometimes
necessarily do follow one another). Through this type of constraint, such sequential
inputs are modeled.

• Time constraint: Johnson Controls software experts agree that the time interval
between inputs plays a major role in bug detection. Either two specific inputs can be
executed within a specific time interval or a single specific input can be executed
during a specific time interval. Through this type of constraint, such specific timing
behavior is modeled.

These constraints are static and independent. They aim at reducing the number of possible
combinations of input signals and more rigorously pinpointing the combinations that are
frequently seen once the product is launched on the market. Once identified and manually
designed by test practitioners, they are automatically implemented into a transition matrix
called End-user Profile transition matrix. In other words, the entries (transition probabilities
and time intervals) of this matrix are automatically defined based on the constraints that the
test practitioners have already set on each input signal. An End-user Profile transition matrix
makes it possible to generate test cases where illogical (from the end-users’ viewpoint)
sequences of inputs are eliminated and typical sequences of inputs are favored.

19

6.2.2.3 Management of stored bugs

In the proposed approach, stored bugs are resued in order to generate test cases that prove the
non-existence of recurrent bugs. When testing a functionality in a new project, test
practitioners may go to a database and select all bugs detected in this functionality in previous
projects. Each bug is automatically translated into a transition matrix called Bug transition
matrix, where sequences of inputs that reveal the recurrent bugs are favored. This proposal is
mainly based on the assumption that a standard formalism (see Figure 8) is used to describe
the initial conditions and the sequential inputs that lead to detection of a bug. In Figure 8, an
illustration on how the “problem description” attribute of a bug should be described is given.
In Step 7 of this problem description, the observed output values are different from the
expected values (this is a symptom of the bug). A glossary of the input signal names used in
the previous and current projects is also necessary. The test cases generated from Bug
transition matrices make it possible to check for the bugs that were detected in the past, in
order to see if they are present or not in the current product.

Figure 8 – Problem description of a stored bug

6.2.2.4 Reuse of stored test cases

Using stored test cases seems to be beneficial in the automotive context, since more than 50%
of functionalities performed by software products are common to any series of cars. In the
proposed approach, test cases developed in the past are automatically analyzed and a
transition matrix called Test Case transition matrix is automatically generated for each
functionality. This matrix attributes high probabilities to the succession of inputs regularly
executed in the stored test cases. It also contains the set of time intervals applied between each
pair of inputs. Consequently, when generating test cases from these matrices, test scenarios
will be based on the experts' experiences. The proposal to reuse existing test cases from
previous projects is based on the assumption that a unique test case format is used. This
format is independent from the test execution platform and is defined in a technical report
[31]. The proposed approach uses also this format for the generated test cases. A glossary of
the input signal names used in the previous and current projects is also necessary.

6.3 A test generation algorithm

Automatically generating a test case from a transition matrix requires generating a set of test
steps until a stop criterion is reached. Test cases can be generated offline and later executed,
or they can be generated and executed online. Online generation of tests means that the test
generation tool is directly connected to the software under test and tests it dynamically (see
Figure 3). Each generated test step is directly executed on the software under test. This
assumes that the interface between the test generation and execution platforms is setup.

Test input #7 I3=0
Transition time (ms) 150
Expected outputs values O1=1; O2=0
Observed outputs values O1=1; O2=1

Step 7

Initial inputs values I1=1; I2=1; I3=0

Test input #1 I1=0
Transition time (ms) 50
Expected outputs values O1=0; O2=0
Observed outputs values O1=0; O2=0

Test input #2 I1=1
Transition time (ms) 200
Expected outputs values O1=0; O2=0
Observed outputs values O1=0; O2=0

Step 1

Problem description

Step 2

…

20

In what follows, a detailed description of how a test step is designed is given. Designing a test
step requires the selection of an input and transition time, and the prediction of expected
results that will be checked against the output signals of the software being tested. In the
proposed approach, two automated activities are necessary to generate a test step; they are
discussed hereafter and illustrated through an example in Figure 9.

6.3.1 Activity 1: Perform a Monte-Carlo simulation

In order to choose an input and a transition time, a Monte Carlo simulation is automatically
performed on a transition matrix. Two steps are required:

• Step 1: an input is chosen according to its transition probabilities in the transition
matrix. This technique is known as the statistical testing technique and was developed
decades ago (see Marre et al. [55] for a thorough description). Before starting the
generation of a test case, the input signals of the software being tested are set to
specific values (initial values). Therefore, the starting input of the test case may be 1)
randomly chosen among these initial values or 2) chosen by a test expert in order to
favor a specific sequence of inputs at the beginning of the test case. The test
practitioner may set probabilities in the transition matrix that are intended to drive the
selection of specific inputs. In practice, this may be useful when the software being
tested requires specific conditions (engine switching on, etc.) in order to be completely
functional.

• Step 2: a transition time is randomly chosen within the time interval of the selected
test input. Test coverage in the transition time between two inputs could be ensured by
several test cases.

6.3.2 Activity 2: Run the test oracle (executable software specification)

The chosen inputs are set as the input signals of the test oracle, and a run of the test oracle
(synchronized with the cycle time of the “clock” signal) is performed until the transition time
has expired. The values of the output signals of the test oracle are the expected results of the
test step being designed.

21

Figure 9 – An example to illustrate the process of generating a test step

7 Research topic 3: Stop testing criteria

7.1 Literature review

Exhaustively testing software and being sure that it is bug free remains a major problem from
a computational point of view. In other words, it is very complex, even impossible, to test all
the inputs, combinations of inputs, and paths of a software. Several stopping criteria are
proposed in the software testing literature. A stopping criterion based on stochastic similarity
is proposed by Whittaker [56] and refined by Sayre [57]. A stopping criterion based on
estimated reliability and confidence is proposed by Littlewood [58]. A cost-benefit stopping
criterion based on estimates of the errors remaining in the product and the cost to repair them
both before and after release is proposed by Dalal [59]. A more sophisticated version which
includes costs due to lost business and customer dissatisfaction is proposed by Chavez [60].
And finally, stopping criteria based on test coverage are presented by Offutt [61].

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

I1 I2 I3

I3

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,033
[200,400]

 0,8
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

I1
0

1

I2

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

 0,14
[200,400]

I2

I3

I1
0

0,033
[200,400]

1
 0,14

[200,400]

I1 I2 I3

0,8
[200,400]

0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

Start

Activity 1
Perform a Monte
Carlo simulation

Activity 2
Run the test oracle

(executable software
specification)

“I1=0“ is the
starting input data

Step1: "I1=1" is the chosen input data (high probability – 0.8)
Step2: A transition time is randomly chosen within [200,400] (250 ms)

Probability=0.14
Time interval=[200,400] (in millisecond)

Choose the next input
data according to the

probabilities

Test Case
Test Step No Test Actions Expected Results

1
I1 = 1
Wait 250 ms

Test Case
Test Step No Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1=0
O2=1

Test oracle
(executable

software
specification)

I1=0

I2=1
O1=0

O2=0

{0,1}

{1,2,3}

I3=0
{0,1}

Test oracle
(executable

software
specification)

I1=1

I2=1
O1=0

O2=0

{0,1}

{1,2,3}

I3=0
{0,1}

Starting values on
the input signals

End

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

I2

I1 I2 I3

 0,033
[200,400]

 0,8
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

I1
0

1
 0,14

[200,400]
 0,14

[200,400]

I3

“I1=1“ is the last
chosen input data

Choose the next input data
according to the probabilities

(generation of the next test step)

Test oracle
(executable

software
specification)

I1=1

I2=1
O1=0

O2=1

{0,1}

{1,2,3}

I3=0
{0,1}

Test Case
Test Step No Test Actions Expected Results

Process Process
flowflow

Transition matrixTransition matrix
Test OracleTest Oracle

&&
Test CaseTest Case

22

Determining when to stop testing and release software is an important management decision.
There is always a necessary compromise between the decision to continue testing or to stop:
(a) if testing stops too early, many bugs remain, and thus supplier incurs losses due to
customer dissatisfaction and the cost of later bug-fixing – the cost of fixing a bug after release
is higher than the cost of fixing it while testing; (b) if testing continues up to the maximum
allowable time, then there is the cost of testing effort and loss of business. In an industrial
context, software testing is often based on specific assumptions and objectives that help test
practitioners and managers to decide when to stop the testing protocol.

7.2 An aggregate stop testing criterion

In the automotive industry, structural and functional coverage of software are major quality
indicators required by carmakers. In order to monitor the automatic generation of each test
case:

• an objective function based on formal structural and functional coverage;
• a constraint function based on test execution cost;
• and an optimization algorithm which aims to fulfill the test objectives while respecting

the cost constraints.

were developed. Consequently, a panel interface (see Figure 16) that allows test practitioners
to set the test generation objectives and constraints were proposed. A set of weights (wi) that
test practitioners may apply to each defined objective or constraint: 0 (to be ignored), 1 (not
very important), 5 (important), 10 (very important) were also defined. The panel helps test
practitioners express their objectives and constraints in terms of the required test coverage and
cost and therefore generate test cases fulfilling their expectations.

The objective function, FObjective, is defined as:

where StrucCovTargeti and FuncCovTargetj are the coverage goals as defined by the test
practitioners, StrucCovCurrenti and FuncCovCurrentj are the coverage ratios reached by the
test case under design, and wis are weights. The structural coverage is measured in terms of
statements, procedures, conditions and decisions coverage of the tested software. The
functional coverage is measured in terms of elements (DT and FSM), signals domains and
transition matrices coverage of the formal specification (test oracle). The structural and
functional coverage are expressed in terms of ratios of coverage and are then normalized in
order to reach a value of 100%. A detailed description of the structural and functional
coverage metrics is provided in a technical report [31].

The constraint function, FConstraint, is defined as:

where ConsTargetk are the values of the constraints as defined by the test practitioners,
ConsCurrentk are the values of the constraints in the test case being designed, and wks are
weights. When generating a test case in the proposed approach, test practitioners can set a
group of cost constraints to be respected:

• Constraint 1: Execution time. The time that a test practitioner will spend in manually
executing the generated test cases on the software product. For instance, if the test
practitioner has 1 person day (pd, where 1 pd = 8 work hours) to manually execute the
generated test cases, the execution time (i.e. the total of all the transition time) of these
test cases should not exceed 28800000 ms (8h x 60m x 60s x 1000ms).

• Constraint 2: Number of test steps in the generated test case.

� ×−=
k

kkkConstraint wtConsCurrenConsTargetF

Structural coverage Functional coverage

j
j

jji
i

iiObjective wrentFuncCovCurgetFuncCovTarwrrentStrucCovCurgetStrucCovTaF ×−+×−= ��

23

• Constraint 3: Number of “distinct” test steps in the generated test case. Two test steps
are distinct if they have different inputs.

In order to have a consistent aggregate constraint function (FConstraint), the cost constraints
were normalized to 100%. These constraints are expressed in milliseconds (ms) and in
number of generated test steps, respectively. In the following, the normalization process of
these constraints is illustrated through an example. Each time test practitioners decide to set a
constraint k, the normalized target of this constraint ConsTargetk is immediately set to 100%.
For instance, once a test practitioner decides to generate a test case for which the total
execution time does not exceed 108000 ms (target_constraint_value), the normalized target
of the test execution time constraint is set to 100% (ConsTarget(target_constraint_value) =
100%). After generating a set of test steps, the normalized current value of this constraint
(ConsCurrentk) is assessed by calculating the ratio
(current_constraint_value*100/target_constraint_value). When generating a set of test steps
with a total execution time of 21600 ms (current_constraint_value),
ConsCurrent(current_constraint_value) is assessed to be (21600*100)/108000
(ConsCurrent(current_constraint_value) = 20%).

Throughout the proposed approach, the automatic generation of tests (performed used a
Monte Carlo simulation process) is monitored by an optimization algorithm based on a
combination of simulated annealing and look-ahead strategies [62]. The aim of this
optimization algorithm is to reach the test coverage objectives in the most efficient manner
possible while respecting the cost constraints as much as possible. During a test case design
session and after each test step design, functional coverage of the formal specification (test
oracle) is assessed. The coverage rate of the transition matrix from which the inputs have been
selected is also considered. If the designed test step does not contribute to functional coverage,
it is rejected, and a new test step is designed. In the case of online test case generation, the
retained test step is executed on the software product being tested, and the structural coverage
is updated. At the end, the objective and constraint functions are assessed. As the test
coverage objectives may be fulfilled in different orders, the first objective fulfilled does not
immediately stop the process. The process is stopped when one of the following criteria is
met:

(1) The objective function (FObjective) is equal to zero. In other words, the target coverages
are reached.

(2) The constraint function (FConstraint) increases for a certain number of successive
generated test steps without any improvement in the objective function (FObjective). In
this case, additional test cases should be generated. The one that fulfills the test
objectives shall be selected. If none, the test coverage of the generated test cases could
be combined.

8 Implementation, validation, and impact of the proposed approach in a
real industrial context

In this section, the proposed approach is assessed on real industrial data coming from an
automotive electronic supplier called Johnson Controls. Two industrial case studies with
historical data were considered. Each case study considers one software functionality that has
already been developed and validated (unit and conformance testing) in the past with the
V&V techniques currently used in the automotive industry and developed in section 2.2. For
each delivery to the carmaker with the software functionality updated, historical data on the
time spent to validate this functionality and on the bugs detected by the supplier and by the
carmakers are available. The first version of the two software components (corresponding to
the two functionalities) as they were delivered for the first time by the development team to
the validation team was treated. The version of the carmaker requirements of this functionality
at the moment when the software components were delivered for the first time to the carmaker

24

was also analyzed. For each functionality, at unit testing level, the proposed model-based
statistical approach was executed to automatically generate functional test cases, and the
performance of this approach was assessed against the existing one. The test execution was
automated in a simulated environment [2]. Since the interface between the test generation and
execution platforms was not yet developed, test cases were generated offline and later
executed. The performance of the proposed approach was quantitatively measured using two
metrics often used by carmakers to assess their suppliers’ capability: 1) the number of bugs
detected downstream in the process (after delivery to a carmaker) and 2) the time spent before
delivering the software (testing and debugging time).

8.1 Introduction

8.1.1 Selection of the two software functionalities

Selection of the software functionalities is delicate, and many criteria guide this choice
(products, carmakers, management teams, development teams, validation teams, levels of
complexity, and software specification languages). The heart of the proposed approach is the
design of an automated test oracle based on an executable software specification. Therefore,
one important criterion in choosing the functionalities in the two case studies was that they
exemplify the diversity of carmaker software specification languages. These case studies
would prove that whatever the language used by the carmaker to specify their software
functional requirements, the proposed approach may be used to automatically generate test
cases. Based on this criterion, the front wiper functionality of a body controller module and
the fuel gauge functionality of a car dashboard were chosen. A body controller module is an
electronic product that manages the entire internal circuit of a car (door lock, lights, electrical
windows, etc.), and a car dashboard is a control panel located under the windshield of the car.
These two products were developed for the same carmaker but not for the same car platform,
and therefore the carmaker’s integration teams were not the same. The software functional
requirements of the front wiper were specified in a formal language (Statechart) while those of
the fuel gauge were specified in an informal and natural language (textual language). An
excerpt from the software functional requirements of the front wiper is given in Figure 10
(Input/Output variable list) and Figure 11 (Expected behavior specified using a state
machine).

25

Figure 10 – Input/Output variable list of the front wiper functionality (this figure is
voluntarily fuzzyfied for confidentiality reasons)

Figure 11 – An extract from the expected behavior of the front wiper functionality as

illustrated by the carmaker (this figure is voluntarily fuzzyfied for confidentiality
reasons)

The respective sizes of the software components developed for these two functionalities were
1229 and 1500 Lines of Code (LOC). These functionalities were validated in 2005 and 2006,
respectively, by two different teams of the automotive electronics supplier in two different
locations (countries).

8.1.2 Historical data for the conventional approach

8.1.2.1 Bug detection

The distribution of bugs detected in the two functionalities using the conventional approach is
illustrated in Figure 12. These bugs are related to the internal behavior of these functionalities.
Between the first and last deliveries to the carmaker, inclusive, 22 bugs were detected in the
front wiper software functionality, and 23 bugs in that of the fuel gauge. These bugs were
detected in the two functionalities before (by supplier testing) and after (by carmaker testing)
the deliveries to the carmaker. Considering the front wiper example in Figure 12; 17 bugs
were detected in the supplier testing phases and 5 bugs by the carmaker after intermediate
delivery. It must be noted that, after developing the front wiper software functionality for the
first time, only 12 bugs were detected during the first testing phase. Therefore, a delivery
ensued, and the carmaker immediately detected 2 more bugs. In the meantime, before the
second delivery, test practitioners tried to improve their existing test cases and design new test
cases. Consequently, they were able to detect one more bug; after the second intermediate
delivery, no new bug was detected by the carmaker. For the fourth intermediate delivery, no
new test cases were developed. The complete scenario of bug detection through the last
delivery to the carmaker for the two functionalities is summarized in the histograms in Figure
12.

26

12

1 1
2

1
2

3

�

,

-

.

/

��

�,

�-
N

um
be

r o
f b

ug
s

Deliveries to carmaker

Front wiper functionality

Bugs detected by the supplier
testing phases

Bugs detected by the carmaker

2

4
5 5

2

4

1

�

,

-

.

/

��

�,

�-

N
um

ve
r o

f b
ug

s

Deliveries to carmaker

Fuel gauge functionality

Figure 12 – Distribution of bugs detected throughout the deliveries to the carmaker –

conventional approach (manual test design)

Among the bugs detected in the two functionalities, 5% are Coding and typographical, 45%
are Control flow and sequencing, 25% are Data definition, access and handling and 25% are
Processing. Moreover, some are considered to be more critical than others. Severity and
occurrence are two attributes of most bug models [63]. Severity refers to the severity of a
resulting or potential failure on the behavior of the entire product, whereas occurrence
describes the probability that a failure appears. A set of definitions for each of these two
attributes was proposed by Johnson Controls software experts (see Table 1).

Severity Occurrence (probability)
Secondary – cosmetic failure, not customer
relevant

Once (< 1%) – low probability, unlikely
failure

Minor – cosmetic failure, customer relevant
Very Rare (> 1% and < 5%) – low
probability, few failures

Major – workaround exists
Rare (> 5% and < 10%) – moderate
probability, occasional failures

Critical – no workaround exists
Often (> 10% and < 100%) – high
probability, repeated failures

Catastrophic – system crash of the vehicle
system (risk of person injury)

Systematic (= 100%) – failure unavoidable

Table 1 – Severity and occurrence attributes as defined by Johnson Controls software
experts

According to these experts, despite these definitions, the attribution of a severity and
occurrence for a bug detected internally remains a subjective question. Most test practitioners
do not have a global view of the system that allows them to assess the impact of the detected
bug on the end-user. However, the severity and occurrence of bugs detected by the carmakers
are closer to reality since the carmaker is the one who sets the specifications. On the other
hand, the carmaker tends to overstate the criticality of the bugs in order to have a faster
response from the supplier. For the front wiper functionality, about 76% of the total bugs are
(Minor, Systematic), and for the fuel gauge functionality, about 72% of the bugs are (Major,
Systematic). These results could be explained by the fact that the functionality of managing
the fuel level in a car is more critical than that of managing the wipers. As a consequence,
bugs in the fuel gauge functionality are considered to be more critical than those in the front
wiper functionality.

27

8.1.2.2 Testing time

In Figure 13, the time spent by the two different validation teams in order to test the software
components (developed by two different development teams) of the two functionalities using
conventional testing techniques is depicted. The main activities are:

• Analyze the carmaker requirements
• Design the test cases
• Execute the test cases and analyze the results
• Address the bugs detected internally (before delivery to the carmaker) and by the

carmaker

50% (29.5 and 27 pd) and 10% (6.75 and 7 pd) of the total testing time were spent manually
designing the test cases and managing the bugs detected by the carmaker, respectively. Using
the current testing practices of the automotive industry, approximately 54 pd were spent
testing the front wiper and 50 pd testing the fuel gauge (see Figure 13).

11,5 29,5 6 6,75

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ro

n
t w

ip
er

 fu
nc

tio
na

lit
y

Eight-Hour days

Time to analyze carmaker requirements

Time to design test cases

Time to execute and analyze the results of test cases

Time to manage bugs detected by the supplier and by the
carmaker later in the process

53,75

10 27 6 7

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ue

l g
au

ge
 fu

nc
tio

na
lit

y

Eight-Hour days

50

Figure 13 – Total time spent in testing the two functionalities – conventional approach

(manual test design)

8.2 Experiment

For each of the two case studies, four stages were necessary to automatically generate test
cases using the proposed MBST approach. Test cases were generated offline and later
executed. The first stage consisted of designing automated test oracles (executable software
specifications) for each of the software functionalities being tested. The second stage
consisted of designing one or more transition matrices for each of the software functionalities
being tested. The third stage focused on tuning the automatic generation of test cases. The
fourth and last stage consisted of generating test cases and then executing them on the
corresponding software components.

In the text that follows, the results of completing these four stages for each of the two
functionalities described above are detailed. The team performing the experiment was
composed of two individuals: an automotive test practitioner and an inexperienced engineer.
During the experiment, advice from other Johnson Controls automotive experts was taken into
account.

28

8.2.1 Stage 1: Design automated test oracles (executable software specifications)

Four steps were necessary for designing an automated test oracle for each functionality. The
first consisted of analyzing and understanding the software specifications. A loop process was
initiated with software experts internal to Johnson Controls in order to understand and clarify
the specification. The second step consisted of sketching the test oracle “on paper”. The input,
output, and intermediate signals and the features (Decision Tables and Finite State Machines)
for each functionality were identified. Then, each feature was developed by identifying all the
states, transitions, and conditions. The third step was the computerization and verification of
the test oracle via a software routine specified in a technical report [31]. The final step was the
validation of the test oracle. During the verification and validation steps, a total of 15 and 50
anomalies were found in the test oracle of the front wiper and fuel gauge functionalities,
respectively. The time spent in completing each of these designing steps for the two
functionalities was accounted for and is summarized in Table 2.

Time spent (pd)
Front wiper
functionality

Fuel gauge
functionality

Analyze the software specification 3 3

Sketch the test oracle “on paper” (manual
verification)

5 7

Computerize the test oracle (automatic
verification)

12 6

Validate the test oracle 5 20

TOTAL 25 36

Table 2 – Time spent in designing, verifying and validating the automated test oracles
for the two functionalities

The verification and validation steps are very time consuming in having an expert evaluate the
correctness against his domain knowledge. For the front wiper and fuel gauge functionalities,
they accounted for 22 pd (5 + 12 + 5) and 33 pd (7 + 6 + 20), respectively.

The automated test oracle designed for the front wiper functionality is provided in Figure 14.

29

Figure 14 –Automated test oracle designed for the front wiper functionality (this figure is voluntaril y fuzzyfied for confidentiality reasons)

DT1

DT2

DT3

DT4

DT5

DT6

DT7

DT8

DT9

WIPINGSPEED
R_FR_WIPER_INT_SW_BY_DRIVER

LWI_IGN_SW
AUTO_WIPE_CF

R_AUTOWIPE_SPEED_BY_ID

RAINSENSORFAILURE R_SENSOR_FAILURE_BY_ID
AUTO_WIPE_RELIABLE

FRONTWIPERSTOPPOSITION

R_V_INT_BY_DRIVER R_RAIN_SENSITIVITY_BY_BCM_FNS

VEHICLE_RUNNING
SPEED_UNAVAILABLE_OR_INVALID

R_IGN_SW_BY_ID

ENGINESTATUS_84

ENGINESTATUS

VEHICLE_SPEED

VEHICLESPEED
T_EXT_ERROR_STATUS

T_EXT

TEMPERATURE

R_FR_WIPER_LOW_SW_BY_DRIVER
R_FR_WIPER_HIGH_SW_BY_DRIVER

WIPINGCOMMAND

R_FRONTAUTOSTOPSW

DT10

DT11

DT12

FSM2

STANDARD_INT_TIME

MOTORSTATIONARYSHUTDOWN

R_FR_WIPER_LOW_REQ_BY_AUTO_WIPE
R_FR_WIPER_HI_REQ_BY_AUTO_WIPE

R_REDUCE_WIPE_SPEED

RAINSENSITIVITY

FSM1

DT13

RAIN_SENSOR_FAILURE_DTC

DT14

FSM3

FR_WIPER_HIGH_SW
FR_WIPER_LOW_SW
FR_WIPER_INT_SW

STANDARD_INT_TIME_DECREASE

R_FR_WIPER_LOW_BY_WASHER
R_FR_WIPER_ONE_HI_BY_WASHER
WASHING_IN_PROGRESSFSM4

R_FR_WASHER_SW_BY_DRIVER
FRONT_DROP_WIPE_CF

DT15

DT16

VA

WASHINGCOMMAND

DT17 INT_TIME

FR_WIPER_INT_REQ
FSM5

R_FR_WIPER_HIGH_REQ_BY_WIPE_SW
R_FR_WIPER_LOW_REQ_BY_WIPE_SW
R_FR_WIPER_INT_REQ_BY_WIPE_SWDT18

R_FRONTWIPINGREQU
EST_BY_BCM_FNS

DT19

FRONTWIPINGREQUESTDT20
SWITCH_HILOINT_CF

Configuration signals
and

Input signals

Output signalsIntermediate signalsDecision Table Finite State Machine

30

8.2.2 Stage 2: Design transition matrices

There were 9604 entries (98x98, where 98 is the number of possible functionality inputs) in a
transition matrix for the front wiper functionality and 7921 (89x89) for the fuel gauge
functionality. Entering them manually would have been intractable.

According to Johnson Controls software experts, setting assigning random test inputs
(Nominal transition matrices) to the fuel gauge functionality does not make real sense. Thus,
the two Nominal transition matrices for the front wiper functionality were automatically
generated using a software routine specified in a technical report [31]. Based on assumptions
from the Johnson Controls software experts, one standard time interval ([100; 400] was
defined, the mean time interval between two operations carried out on an automotive
electronics product, in milliseconds), and was applied to all sequential inputs. Based on these
matrices, “quasi” random sequences of inputs were generated.

However, as stated in section 6.2.2.2, there is a need to test the input sequences recurrently
executed by end-users. Therefore, a group of Johnson Controls software experts were asked to
set some of the constraints developed in section 6.2.2.2 on the input signals of each of the two
functionalities. Based on these constraints, an End-user Profile transition matrix was
automatically generated for each functionality, using a software routine specified in a
technical report [31].

A study on the bugs detected in the past on functionalities similar to the ones being tested in
these case studies was also performed. The front wiper functionality had been developed in 4
different projects since 1997, in which a total of 55 bugs were detected. Unfortunately, the
behavior and concept of the fuel gauge functionality had thoroughly changed in recent projects
and it was therefore irrelevant to reuse stored bugs and test cases. One difficult task
concerning the front wiper functionality was representing the “problem description” of the 55
identified bugs using the format illustrated in Figure 8. Based on advice from the Johnson
Controls software experts, the 10 most critical bugs with enough information to formulate
their “problem descriptions” were only considered. Afterwards, the 10 corresponding Bug
transition matrices for the front wiper functionality were automatically generated using a
software routine specified in a technical report [31].

Finally, the test cases already developed in the past for functionalities similar to the ones
being tested were gathered. As stated before, test cases on the fuel gauge functionality could
not be reused, and therefore the efforts were focused on the front wiper functionality. In the
past, test practitioners have designed many test cases (about 2000 test steps) in order to test
this functionality. Using these test cases, one Test Case transition matrix for the front wiper
functionality was automatically generated using a software routine specified in a technical
report [31].

A summary of the number of “transition matrices” designed for the two functionalities is
presented in Table 3. The time spent in designing these transition matrices was measured and
is also summarized in Table 3. Just identifying and preparing the stored bugs and test cases
took about 1.5 pd.

 Front wiper functionality Fuel gauge functionality

of

 th
e

de
si

gn
ed

tr

an
si

tio
n

m
at

ric
es

 Nominal 2 0

End-user Profile 1 1

Bug 10 0

Test Case 1 0
Time spent in designing these

transitions matrices
2 pd 0.5 pd

31

Table 3 – Transition matrices designed for the two functionalities

An illustration of two Nominal transition matrices is provided in Figure 15. These are the
Nominal 1 and 2 transition matrices of the example illustrated in Figure 6. Illustrating the
transition matrices of the front wiper or fuel gauge functionalities could be illegible due their
thousands of entries.

Test Case generation tool

Nominal 1

Nominal 2

Figure 15 – An illustration of two Nominal transition matrices

8.2.3 Stage 3: Tune the generation of test cases

Three questions were raised at this stage of the experiment:

1. From which transition matrix do we start generating test cases?

It was planned to generate test cases from the transition matrices in the following order: first,
from the Bug transition matrices in order to ensure that the software is free from bugs similar
to the ones already detected in the past; second from the Test Case transition matrices, which
are suitable for bug detection, since they are based on a test practitioner’s experience; third,
from the End-user Profile transition matrix, which aims to check that the software fulfills the
end-user (driver) expectations; and finally, from the Nominal transition matrices, in which
improbable successions of test inputs are generated in order to check the robustness of the
software. These test generation principles were discussed by Frankl et al. [64]. The authors
highlight the two main goals in testing software: 1) to achieve adequate quality by detecting
the maximum number of bugs possible (debug testing: Bug, Test Case, and Nominal
transition matrices), 2) to assess existing quality and increase confidence in the software
reliability (operational testing: End-user Profile transition matrix).

In section 8.2.2, it is noted that only End-user Profile “transition matrix” was designed for the
second case study. Therefore, for this case study, test cases are only generated from the End-
user Profile transition matrix.

2. How do we tune the test coverage objectives and the cost constraints?

32

Before generating test cases from a transition matrix, the objectives and constraints shall be
defined. According to the type of transition matrix, guidelines for defining the test coverage
objectives and the cost constraints were proposed (see Table 4). The problem of when exactly
to stop testing depends on the adequacy of the transition matrix, coverage objectives and
constraints.

Type of transition
matrix

Objectives guidelines Constraints guidelines

Bug and Test Case 100% coverage of the transition matrix The number of test steps
and the execution time of

the generated test case
depend on the context

(budget, planning,
resources) of the project

End-user Profile 100% coverage of the input signals domains

Nominal 100% coverage of the transition matrix and
of the whole test oracle

Table 4 – Guidelines for defining the objectives and constraints of test case generation

For instance and in case of generating test cases from an End-user Profile transition matrix
(see Figure 16), an objective of 100% coverage of the input signals domains should be set.
The constraints should be set based on the project context: a budget of 1 hour (3600000 ms)
of manual test execution has been scheduled.

Figure 16 – An illustration of the objectives and constraints when generating test cases

from an End-user Profile transition matrix

Objectives

Constraints

Objectives

Constraints

Test generation objectives and constraints

33

Since test cases are generated offline and later executed, objectives are set only in terms of
functional coverage. The same weight w (1, 5 or 10) were also considered for all the coverage
goals. The objective function of section 7.2, FObjective, is therefore defined as:

Finally and since test cases are automatically executed in a simulated environment (host PC),
no constraints were set in terms of number of test steps or execution time of the generated test
cases. The constraint function of section 7.2, FConstraint, is therefore defined as:

3. How do we tune the parameters of the optimization algorithm?

After defining objectives and constraints, the optimization algorithm of the test case
generation was tuned. In this paper, these parameters were tuned based on the traditional try-
and-test protocol. The purpose is to better fulfill and respect the test coverage objectives and
the cost constraints. 1 pd was spent in adjusting these parameters for the two case studies.

8.2.4 Stage 4: Generate and execute the test cases

The generation of test cases was carried out automatically and offline using a software routine
specified in a technical report [31].

For the front wiper functionality, the following list of test cases was generated:
• 10 test cases (one test case from each Bug transition matrix). Each test case is about 10

test steps. For each test case, objectives were fulfilled at 100%.
• 6 test cases from the Test Case transition matrix. Each test case was about 400 test

steps and none of them fulfills at 100% the test objectives. After combining the test
coverage of these test cases, objectives were fulfilled at 99%.

• 6 test cases from the End-user Profile transition matrix. Each test case was about 1000
test steps and none of them fulfills at 100% the test objectives. After combining the
test coverage of these test cases, objectives were fulfilled at 70%.

• 6 test cases from the Nominal 2 transition matrix. Each test case was about 10000 test
steps and none of them fulfills at 100% the test objectives. After combining the test
coverage of these test cases, objectives were fulfilled at 90%.

For the fuel gauge functionality, only 6 test cases were generated from the End-user Profile
transition matrix. Each test case was about 300 test steps and none of them fulfills at 100%
the test objectives. After combining the test coverage of these test cases, objectives were
fulfilled at 90%.

An extract from a test case generated for the front wiper functionality is provided in Figure 17.

0=ConstraintF

wrentFuncCovCurgetFuncCovTarF
j

jjObjective ×−=�

34

Figure 17 – An extract from a test case generated for the front wiper functionality (this

figure is voluntarily fuzzyfied for confidentiality reasons)

One test case was generated based on each Bug transition matrix. A test case of about 10 test
steps was enough to fulfill the objectives and constraints defined in Table 4 in the case of a
Bug transition matrix. For each Test Case, End-user Profile, and Nominal transition matrix,
more than one test case were generated since it was very difficult to generate one test case that
fulfills the defined objectives 100%. The length of a test case (number of test steps) depends
on the level of difficulty in reaching the defined objectives. Even with a test case with
thousands of test steps (Cf. Nominal 2 transition matrix), it was difficult to fulfill most of the
objectives using a test generation algorithm based on a Monte Carlo simulation on the
transition matrix. As a consequence, 6 test cases were generated from each transition matrix
(with the same objectives and constraints). This ensured the repeatability of the results in
terms of objective fulfillment since the 6 test cases reached the predefined objectives with a
small standard deviation of 10%. In future works (see section 9), it is planned to develop a
new and complementary test generation algorithm that focuses on fulfilling the test objectives
(i.e. covering non-covered zones of the software specification).

The generated test cases were executed on the first version of the two software components
corresponding to the two software functionalities being tested. All the generated test cases
were feasible (i.e. executable). The test cases were automatically transcribed into a unit test
language (computer-readable) by using a Visual Basic macro [2] and then automatically
executed on a unit test execution platform. In fact, all the dependencies and connections
between the software components are simulated on computer in order to isolate the tested
component from the whole product. The abstract model of the unit test execution platform is
illustrated in Figure 18.

Software component
under test

(internal state z)
Test Cases

Input A

Output F(A, Z)

Figure 18 – Abstract model of the unit test execution platform [2]

Configuration signals
AUTO_WIPE_CF 0
FRONT_DROP_WIPE_CF 1
SWITCH_HILOINT_CF 1
FR_WIPER_PROLONGATION_WIPES_TP 4

T
_E

X
T

_E
R

R
O

R
_S

T
A

T
U

S

E
N

G
IN

E
S

T
A

T
U

S
_8

4

T
_E

X
T

R
_F

R
_W

A
S

H
E

R
_S

W
_B

Y
_D

R
IV

E
R

W
IP

IN
G

S
P

E
E

D

S
P

E
E

D
_U

N
A

V
A

IL
A

B
LE

_O
R

_I
N

V
A

LI
D

V
E

H
IC

LE
_S

P
E

E
D

R
A

IN
S

E
N

S
O

R
F

A
IL

U
R

E

R
_V

_I
N

T
_B

Y
_D

R
IV

E
R

R
_F

R
_W

IP
E

R
_I

N
T

_S
W

_B
Y

_D
R

IV
E

R

LW
I_

IG
N

_S
W

F
R

O
N

T
W

IP
E

R
S

T
O

P
P

O
S

IT
IO

N

R
_F

R
_W

IP
E

R
_H

IG
H

_S
W

_B
Y

_D
R

IV
E

R

V
E

H
IC

LE
_R

U
N

N
IN

G

R
_F

R
_W

IP
E

R
_L

O
W

_S
W

_B
Y

_D
R

IV
E

R

R
A

IN
_S

E
N

S
O

R
_F

A
IL

U
R

E
_D

T
C

T
E

M
P

E
R

A
T

U
R

E

W
A

S
H

IN
G

C
O

M
M

A
N

D

W
IP

IN
G

C
O

M
M

A
N

D

F
R

O
N

T
W

IP
IN

G
R

E
Q

U
E

S
T

V
E

H
IC

LE
S

P
E

E
D

R
A

IN
S

E
N

S
IT

IV
IT

Y

M
O

T
O

R
S

T
A

T
IO

N
A

R
Y

S
H

U
T

D
O

W
N

E
N

G
IN

E
S

T
A

T
U

S

1 390 0 0 -5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
2 280 0 0 -5 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
3 330 0 0 -5 0 0 0 80 0 1 1 0 1 0 0 0 0 0 0 1 0 16 0 1 0
4 200 0 0 -5 0 0 0 80 0 1 1 0 1 0 0 0 0 0 0 1 0 16 0 1 0
5 130 0 0 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 0 0 1 0 16 0 1 0
6 330 0 0 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 0 0 1 0 16 0 1 0
7 240 0 0 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 0 0 1 0 16 0 1 0
8 290 0 0 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 0 0 1 0 16 0 1 0
9 250 0 2 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 0 0 1 0 16 0 1 2
10 270 1 2 -5 0 0 0 80 0 1 1 0 1 1 0 0 0 31 0 1 0 16 0 1 2
11 260 1 2 -5 0 0 0 80 0 1 1 0 1 1 1 0 0 31 0 1 7 16 0 1 2
12 240 1 2 -5 0 0 0 80 1 1 1 0 1 1 1 0 1 31 0 1 7 16 0 1 2
13 350 1 2 -5 0 0 0 80 1 1 1 0 1 1 1 0 1 31 0 1 7 16 0 1 2
14 180 1 2 -5 0 0 0 80 1 1 1 0 1 0 1 0 1 31 0 1 6 16 0 1 2
15 220 1 3 -5 0 0 0 80 1 1 1 0 1 0 1 0 1 31 0 1 6 16 0 1 3

Output signals

T
es

t S
te

p
n°

W
ai

t (
m

s)
Input signals

35

The unit test uses the inputs and outputs of the software component under test. Test cases
should know expected output F when input A is applied. The presently produced output has to
be compared with the expectation. If they do not match, an error should be generated in the
test report.

It is important to note that the time to generate and execute test cases was trivial from an
automotive industry point of view. It is estimated to be 500 test steps per minute. This
estimation is given for reference only because it depends on many factors (CPU1, transition
times of the test steps, parameters of the optimization algorithm, and so forth).

Each time an anomaly was detected, it was analyzed in order to identify its origin among the
following possibilities:

• A bug in the test oracle.
• A known bug in the software component, which the testing phases of the supplier or

the carmaker had already detected (respectively � and � in Figure 20).
• An unknown bug in the software component, which had not yet been detected by the

testing phases of the supplier or by the carmaker (∆ in Figure 20).

Two instances of test execution were performed in parallel:

1. The first followed the test generation order reasoned in section 8.2.2. Whatever the
origin of the detected anomalies, the bug was corrected before continuing the
execution of the remaining test cases.

2. The second did not follow any predefined order of transition matrices; before
executing the test cases associated with each transition matrix, the first version of the
software components being tested was considered. When executing the test cases of a
transition matrix, whatever the origin of the detected anomalies, the bug was corrected
before restarting the execution of the remaining test cases of the same transition
matrix. This highlights the need of each type of transition matrix.

The correction of anomalies was instantaneous and assumed to be perfect. Since the test
generation and execution were automated, they did not require any human intervention (0 pd).
Ten pd were spent in analyzing the execution results of the first case study, and two pd were
spent in doing the same for the second case study. This time is proportional to the number of
executed test steps (front wiper: 68500 test steps, fuel gauge: 900 test steps).

In section 8.3, the experimental results (in terms of bug detection and time spent on testing
activities) of the two instances of test execution are analyzed and discussed. They are
compared to results obtained with the conventional approach (see section 8.1.2).

8.3 Analysis of experimental results

8.3.1 Increase the number of bugs detected earlier in the software life cycle

On the one hand, all the generated test cases (in the order defined in section 8.2.2) were
executed on the first version of the software components of the two functionalities. A total of
29 anomalies were detected in the first case study and 35 anomalies in the second one. About
17% (5 out of 29) of the anomalies detected in the front wiper functionality were related to
bugs in the test oracle, as were about 49% (17 out of 35) of the anomalies detected in the fuel
gauge functionality. This may be explained by the fact that the test oracle could not be
exhaustively validated, especially the case where the carmaker requirements were expressed in
informal language. An in-depth analysis of the remaining anomalies ((29-5) and (35-17)) leads
to the following three main conclusions (see Figure 19):

1. Firstly, 86% (19 out of 22) of the bugs already detected by the conventional testing
phases in the first case study were detected. 78% (18 out of 23) in the second one. The

1 Central Processing Unit

36

remaining 8 bugs ((22-19)+(23-18)) detected by the conventional testing phases and
not by the proposed approach were classified by Johnson Controls software experts
according to their typology, severity and occurrence: 2 of them were (Control flow and
sequencing, Minor; Systematic), 1 (Data definition, access and handling, Minor;
Systematic), 1 (Processing, Major; Often), 1 (Processing, Major; Systematic), 2
(Control flow and sequencing, Major; Systematic) and 1 (Data definition, access and
handling, Major; Systematic). These bugs are located in non-covered zones of the
software specification. All of these bugs could be detected by the proposed approach if
the coverage objectives defined in Table 4 are fulfilled at 100% (which was not the
case in this experiment). These non-detected bugs are related to specific states,
transitions, and conditions of the software specification that were not covered by the
generated test cases; when test cases were generated from a Nominal transition matrix,
the test generation algorithm based on a Monte Carlo simulation on the transition
matrix did not succeed in reaching 100% functional coverage, but reached only 90%.
To overcome this shortcoming (see section 9), it is planned to develop a new and
complementary test generation algorithm that focuses on covering the non-covered
zones of the software specification.

2. Secondly, 5 new “minor” bugs (“minor” from the Johnson Controls software experts’
point of view) were detected in the front wiper functionality. They were not detected
neither by the conventional testing phases of the supplier nor by the carmaker test.
According to these experts, these bugs have no impact on the end-user (driver). It
represents 19% (5 out of (19+3+5)) of the total number of bugs in the functionality
(19+3+5).

3. Finally, among the known bugs detected by the proposed approach, some of them were
bugs already detected by the conventional supplier testing phases (but later in the
testing process) and the others by the carmaker. For the front wiper, the number of
bugs detected earlier by the supplier was increased by 41% (from 17 to 24). For the
front wiper and fuel gauge functionalities, the number of bugs detected by the
carmaker was reduced by 60% (from 5 to 2) and 80% (from 5 to 1), respectively.

37

Figure 19 – Conventional approach versus proposed approach

On the other hand, the test cases generated from each type of transition matrix were
independently executed (without following the order defined in section 8.2.2). The results of
this experiment on the front wiper functionality are depicted in Figure 20. The numbers and
types of bugs detected in and after the first testing phase by each type of transition matrix
were identified. As a conclusion:

• No single type of transition matrix was able to detect all the bugs, and each type of
transition matrix found at least one bug that could only be detected via this type. This
asserts the dynamic nature of software and its consequential need for more than one
transition matrix (different transition probabilities and time intervals).

• The Nominal transition matrix detected the largest number of bugs, but not all of the
bugs. The fact that it detected the largest number of bugs may be explained by the fact
that 60000 test steps were generated from this transition matrix and that the software
specification was covered at 90%. However, the fact that not all the bugs were
detected confirms the relevance of the proposed approach for combining diverse
testing techniques (random, user-oriented, and fault-oriented).

• The Test Case transition matrix detected about 80% of the bugs that the End-user
Profile matrix detected. As Test Case “transition matrices” transition matrices are
designed from reused test cases, it is possible that the reused test cases were designed
from an end-user point of view.

Known bugs detected by the conventional approach (supplier)

Known bugs detected by the conventional approach (carmaker)

Unknown bugs (Not detected by the supplier conventional testing phases nor by the carmaker)

Front wiper functionality

24

19

22 23

18

Known bugs detected by
the conventional approach

Bugs detected by our
approach

Fuel gauge functionality

38

Figure 20 – Numbers and types of bugs detected via each type of transition matrix

8.3.2 Decrease the time spent in testing software

Besides detecting bugs earlier in the software development process, the time spent in testing
software was decreased. The total time spent in conventionally testing the two functionalities
is illustrated in Figure 13, based on historical data: 53.75 pd for the front wiper functionality
and 50 pd for the fuel gauge functionality. The total time spent in testing these functionalities
using the proposed approach is presented in Figure 21. The time spent in testing the front
wiper and fuel gauge functionalities was decreased by 27% (39 instead of 53.75 pd) and 17%
(41.5 instead of 50 pd), respectively. These numbers account for the time spent in analyzing
the carmaker requirements; designing, verifying, and validating the test oracle; designing the
transition matrices; generating and executing the test cases; and finally, detecting the bugs not
detected by the proposed approach. In this experiment, there were 3 known bugs left
undetected in the first case study and 5 in the second case study. Based on the assumption that
a complementary test generation algorithm would be developed (to be able to reach 100%
functional coverage), the time required to detect these remaining bugs in the two case studies
was estimated, taking into account the time to generate and execute the test cases in a
simulated environment (host PC) and analyze the results. For the first case study, 90% of the
software specification had already been covered, and 3 bugs were remaining. For the second
case study, 70% of the software specification had already been covered, and 5 bugs were
remaining. Therefore, based on the experimental results, it was estimated that it would require
2 pd to generate and execute additional test cases and then 3 pd to analyze the test execution
results. These estimations may be explained by the fact that:

• The software specification of the first case study is bigger than that of the second case
study.

• Analyzing the execution results of the second case study takes more time that of the
first case study, because the test oracle of the second case study (natural language) is
less reliable that of the first case study.

Known bugs detected by the
conventional approach (supplier)

Known bugs detected by the
conventional approach
(carmaker)

Unknown bugs (Not detected by
the supplier conventional testing
phases nor by the carmaker)

Bugs detected via the
Nominal 2 transition matrix

Bugs detected via the Bug
transition matrices

Bugs detected via the End-user
Profile transition matrix

Bugs detected via the Test Case
transition matrix

Front wiper functionality

Bugs not detected by
our approach

39

Figure 21 – Total time spent in testing the two functionalities using the proposed

approach

The task of manually designing the test cases is replaced by designing, verifying, and
validating the test oracle, which is also considered to be a difficult task. For the front wiper
and fuel gauge functionalities, the verification and validation tasks accounted for 57% (22 out
of 39 pd) and 80% (33 out of 41,5 pd) of the total time spent in testing the two functionalities
using the proposed approach, respectively. Moreover, as a consequence of automatically
generating many test steps, more effort is necessary to analyze the results of the test case
execution. Test practitioners have to understand the generated test cases in order to confirm
the existence of a bug. However, as carmaker requirements are prone to evolving throughout
the timeline of the different deliveries, it will be easier for test practitioners to update the test
oracle and automatically generate a new set of test cases than to manually update the design of
test cases.

8.3.3 Threats to validity

The main validity threats to the perfomed experiment are related to the possible non-
representativity of the selected software functionalities, inaccuracy of historical data,

3 5 12 5 2 210

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ro

nt
 w

ip
er

 fu
nc

tio
na

lit
y

Eight-Hour days

3 7 6 20 0,5 2 3

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ue

l g
au

ge
 fu

nc
tio

na
lit

y

Eight-Hour days
Time to analyze the carmaker requirements

Time to design the test oracle "on paper " (+ manual verification activity)

Time to computerize the test oracle (+ automatic verification activity)

Time to validate the test oracle

Time to design the "transition matrices"

Time to generate test cases - automated activity

Time to execute and analyze the results of test cases

Time to detect the remaining known bugs

39

41,5

3 5 12 5 2 210

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ro

nt
 w

ip
er

 fu
nc

tio
na

lit
y

Eight-Hour days

3 7 6 20 0,5 2 3

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ue

l g
au

ge
 fu

nc
tio

na
lit

y

Eight-Hour days
Time to analyze the carmaker requirements

Time to design the test oracle "on paper " (+ manual verification activity)

Time to computerize the test oracle (+ automatic verification activity)

Time to validate the test oracle

Time to design the "transition matrices"

Time to generate test cases - automated activity

Time to execute and analyze the results of test cases

Time to detect the remaining known bugs

39

41,5

40

inadequate experience level of the team performing the experiment, non-correlation between
functional and structural coverage.

• Non-representativity of the selected software functionalities

In section 8.1.1, the selection of the two software functionalities for the case studies is
discussed and justified. One important criterion in choosing the functionalities was that they
exemplify the diversity of carmaker software specification languages. However, it is possible
to miss a relevant software specification language used by the carmakers. One such instance is
the existence of many specification languages or the creation of a new one. This can have an
impact on the feasibility and, if feasible, on the performance (time to design, verify and
validate the test oracle) of the proposed approach.

• Inaccuracy of historical data

Inaccurate historical data can be the result of subjective and unsystematic data extraction. In
this research, all the extracted data were reviewed by Johnson Controls automotive experts.
All discrepancies were settled by discussion to make sure that the extraction was as objective
as possible. Therefore, the remaining problem is the validity of the experts’ knowledge of
these historical data. The experts were chosen based on their knowledge of the software
functionalities under test. Hence, this could have an impact on the estimated benefits of the
proposed approach.

• Inadequate experience level of the team performing the experiment

The team performing the experiment was composed of two individuals: an automotive test
practitioner who knows the conventional approach and an inexperienced engineer who is
freshly graduated. During the experiment, advice from other Johnson Controls automotive
experts was also taken into account. The justification for the validity of this team is the
representativeness of a testing team within the automotive industry. Indeed, this is the
minimum requirement for having a valid empirical study in the domain of automotive
software testing. As stated in the future work (section 9), it is planned to measure the
reproducibility of the results of the two case studies by choosing another team.

• Non-correlation between functional and structural coverage

In the experiment, test cases were generated offline and later executed. Therefore, objectives
were only set in terms of functional coverage. No structural coverage objectives were set. This
has been done assuming that covering the software specification 100% means that the source
code was also 100% covered. This assumption can have a negative impact, in terms of bugs’
detection, on the estimated benefits of the proposed approach.

9 Summary and perspectives

In this paper, an integrated model-based statistical approach to automatically generate
functional test cases for embedded software is developed. Test cases can be generated offline
and later executed, or they can be generated and executed online. The purposes of the
proposed approach are 1) ensuring conformance to specification, 2) ensuring code coverage
and 3) avoiding recurrent bugs. The basics of this approach are:

• A probabilistic test model based on Markov Chains (transition matrix). When testing
software, test practitioners can design one or more transition matrices that enable
random, user-oriented, or experience feedback-oriented generation of test inputs.

• A formal framework integrating existing and appropriate specification techniques (DT
and FSM). This allows the design of executable software specifications that play the
role of the test oracle in assessing the expected results of a test.

• An aggregate stop testing criterion based on test coverage objectives and cost
constraints.

In other words, an integrated framework to automatically generate test cases (test inputs and
expected results) from any software specification was developed. This framework focuses on

41

important and critical tests to be done. The test generation is automated and monitored by
quality and cost objectives, in that test practitioners can generate one or more test cases that
fulfill a set of objectives (in terms of functional coverage, structural coverage, and test cost).

Two typical case studies on historical data from the automotive industry were also carried out.
The experiments were performed at the unit testing level in a simulated environment on a host
PC (automatic test execution). Test cases were generated offline and later executed. Potential
advantages of the proposed approach over the conventional approach were highlighted. In
Table 5, the results of the two case studies is summarized in terms of decreasing the time
spent in testing and detecting bugs earlier in the software life cycle (during and after the first
testing phase of the first version of the software components).

Front wiper
functionality

Fuel gauge
functionality

Decreasing the time spent in testing -27% (39 instead of
53.75 pd)

-17% (41.5 instead of
50 pd)

Increasing the number of bugs detected
since the first testing phase

+88% (24 out of 27) +78% (18 out of 23)

Decreasing the number of bugs detected by
the carmaker

-60% (from 5 to 2) -80% (from 5 to 1)

Increasing the number of bugs detected by
the supplier

+41% (from 17 to 24) +22% (from 18 to 22)

Increasing the number of new bugs
detected

+18% (5 out of 27) +0% (0 out of 23)

Table 5 – A summary of the results of the two case studies
Here are some perspectives of our research:

• In addition to the selection of inputs via a Monte Carlo simulation on the transition
matrix, it would be interesting to develop a new and complementary test generation
algorithm that focuses on covering non-covered areas of a software specification. This
will allow the deduction and creation of inputs that cover a specific area (for instance,
a state of an FSM, a condition of a DT, etc.) of the test oracle with a minimum number
of test steps. This algorithm would not replace the one based on the Monte Carlo
simulation method. It will be used in case the Monte Carlo simulation method does not
succeed to fulfill target coverages while taking into account the test constraints
(number of test steps). Similar algorithms have already been developed in the past but
not integrated into a global test generation approach; especially in model checkers,
SMT solvers, and constraint solvers.

• It would be interesting to evaluate the capabilities of the proposed test oracle’s
verification and validation methods against detecting the anomalies of a test oracle.
For both the front wiper and fuel gauge functionalities, 25% (5 out of (15 + 5) and 17
out of (50 + 17), respectively) of the test oracle anomalies were not detected by these
methods. It is furthermore interesting if a corresponding fault model could be derived
from these results.

• It would be interesting to develop a new strategy to help test practitioners parameterize
the generation of test cases, as the main purpose of a test practitioner in software
testing is to detect the maximum number of bugs possible in the minimum amount of
time possible. Therefore, the correlations between the optimization algorithm
parameters, the functional coverage, the execution time of the generated test cases, and
the numbers and types of detected bugs could be identified. Based on these
correlations, rules and recommendations to help test practitioners parameterize the
generation of test cases might be defined. It is also planned to develop
parameterization profiles that test practitioners might adopt according to their test

42

objectives. Such a parameterization profile will consist of a set of predefined
optimization parameters, test coverage objectives, and cost constraints.

• It would be interesting to adjust the proposed approach to integration and validation
levels (all the functionalities together). In this research, the proposed approach was
experimented at unit testing level (a single functionality at a time). Indeed and when
integrating and validating the whole software product, all of the test oracles of the
single functionalities could be connected together and transition matrices could take all
the input signals of the product into account. In that case, integration and validation
test cases could be automatically generated and the multilevel aspect of the proposed
approach confirmed.

• It would be interesting to develop the interface between the proposed approach and the
unit test execution platform on which the generated test cases of the experiments have
been executed. Therefore, each generated test step will be automatically transcribed
into a computer-readable language and then automatically executed on the software
under test. After each test step, the test generation platform acquires the structural
coverage of the software under test. In that case, experimenting the online generation
and execution of test cases on both case studies would be possible.

• Finally, it would be interesting to measure the reproducibility of the results of the two
case studies, in order to better control practices in industrial software testing processes.
In the proposed MBST approach, the two main activities depend on the operator (i.e.,
human intervention). The first one is the design of the test oracle and the second is the
definition of a set of targets and weights for the test case generation. Two operators
may perform slightly differently and have slightly different results; parallel
experiments of test design can therefore be conducted based on the same carmaker
requirements. Best practices may consequently be derived in order to reduce subjective
areas of the modeling activity.

10 References

[1] Sangiovanni-Vincentelli A. Electronic-System Design in the Automobile Industry.
IEEE Micro 2003; 23 (3): 8-18.

[2] Awedikian R. Quality of the design of test cases for automotive software: design
platform and testing process. PhD Disseration, Ecole Centrale Paris, February 2009.
http://tel.archives-ouvertes.fr/tel-00393847/en/ [June 6, 2012].

[3] Beizer B. Software Testing Techniques. Van Nostrand Reinhold, 2nd edition, 1990.

[4] Seroussi G, Bshouty NH. Vector sets for exhaustive testing of digital circuits, IEEE
Transactions on Information Theory 1998; 34(3): 513-522.

[5] Yang O, Jenny Li J, Weiss D. A Survey of Coverage Based Testing Tools.
International workshop on Automation of Software Test, Shanghai, China, 2006, 99-
103.

[6] National Institute of Standards and Technology. The economic impacts of inadequate
infrastructure for software testing: final report. Planning report 02-3 2002.

[7] McDonald M, Musson R, Smith R. The Practical Guide to Defect Prevention.
Microsoft Press 2007, 480.

[8] Agrawal K, Whittaker JA. Experiences in applying statistical testing to a real-time,
embedded software system. Proceedings of the Pacific Northwest Software Quality
Conference 1993.

43

[9] Bauer T, Bohr F, Landmann D, Beletski T, Eschbach R, Poore J. From Requirements
to Statistical Testing of Embedded Systems. Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems 2007, 4.

[10] Bernard E, Legeard B, Luck X, Peureux F. Generation of test sequences from formal
specifications: GSM 11-11 standard case study. International Journal of Software
Practice and Experience 2004; 34(10): 915-948.

[11] Rosaria S, Robinson H. Applying models in your testing process. Information and
Software Technology 2000; 42(12): 815-824.

[12] Avritzer A, Larson B. Load testing software using deterministic state testing.
Proceedings of the International Symposium on Software Testing and Analysis 1993,
Cambridge, MA, USA, 82-88.

[13] Dalal SR, Jain A, Karunanithi N, Leaton JM, Lott CM. Model-based testing of a
highly programmable system. Proceedings of the 1998 International Symposium on
Software Reliability Engineering 1998, 174-178, Computer Society Press, November
1998.

[14] Siegl S, Hielscher K.S, German R, Berger C. Formal specification and systematic
model-driven testing of embedded automotive systems. Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition 2011, 1-6, Genoble, France.

[15] Sarode S, Radhakrishnan S, Sampath V, Jiang Z, Pajic M, Mangharam R. Demo
Abstract: Model-Based Testing of Implantable Cardiac Devices. Proceedings of the
Third International Conference on Cyber-Physical Systems 2012, 221, Beijing, China.

[16] Carter JM, Poore J.H. Sequence-based specification of feedback control systems in
Simulink. Proceedings of the 2007 conference of the center for advanced studies on
Collaborative research 2007, Ontario, Canada, 332-345, Richmond Hill.

[17] Bohr F. Model Based Statistical Testing of Embedded Systems. Proceedings of the
Fourth International Conference on Software Testing, Verification and Validation
Workshops 2012, 18-25, Berlin, Germany.

[18] Ozekici S, Altinel IK, Angun E. A general software testing model involving
operational profiles. Probability in the Engineering and Informational Sciences 2001;
15(4): 519-533.

[19] Wohlin C, Runeson P. Certification of software components, IEEE Transactions on
Software Engineering 1994; 20(6): 494-499.

[20] Poore JH, Whittaker JA. Markov analysis of software specifications. ACM
Transactions on Software Engineering and Methodology 1993; 2(1): 93-106.

[21] Whittaker JA, Thomason MG. A Markov chain model for statistical software testing.
IEEE Transactions on Software Engineering 1994; 20(10): 812-824.

[22] Hessel A, Larsen KG, Mikucionis M, Nielsen B, Pettersson P, Skou A. Testing real-
time systems using UPPAAL. Formal methods and testing: an outcome of the
FORTEST network, Springer-Verlag, Berlin, Heidelberg, 2008.

[23] Legeard B, Peureux F. Generating of functional test sequences from B formal
specifications presention and industrial case study. Proceedings of the 16th IEEE
international conference on automated software engineering 2001, San Diego, USA
377-381.

[24] Hartman A, Nagin K. The agedis tools for model based testing. ACM SIGSOFT
Software Engineering Notes 2004; 29(4): 129-132

44

[25] Jard C, Jéron T. TGV: theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems.
International Journal on Software Tools for Technology Transfer 2005; 7(4): 297-315

[26] Farchi E., Hartman A. and Pinter S.S. Using a model-based test generator to test for
standard conformance. IBM Systems Journal 2002, 41 (1): 89-110.

[27] Lugato D, Bigot C, Valot Y, Gallois JP, Gérard S, Terrier F. Validation and automatic
test generation on UML models: the AGATHA approach. International Journal on
Software Tools for Technology Transfer 2004; 5(2): 124-139.

[28] Rothermel G, Harrold M, Ronne J, Hong C. Empirical studies of test suite reduction.
Journal of Software Testing, Verification, and Reliability 2002; 12(4): 219-249.

[29] Jeffrey D, Gupta N. Improving Fault Detection Capability by Selectively Retaining
Test Cases during Test Suite Reduction. IEEE Transactions on Software Engineering
2007; 33(2): 108-123.

[30] Bertolino A. Software Testing Research and Practice. Invited presentation at 10th
International Workshop on Abstract State Machines ASM 2003, Taormina, Italy, 1-21.

[31] Awedikian R, Yannou B. Automatic generation of relevant test cases: A practical
model-based statistical testing approach - Part 1: Models and concepts - Part 2:
Prototype implementation - Part 3: Experiments. Technical report 2009, Ecole
Centrale Paris, France. http://www.lgi.ecp.fr/uploads/PagesPerso [June 6, 2012].

[32] Weyuker EJ, Ostrand TJ. Theories of Program Testing and the Application of
Revealing Subdomains. IEEE Transactions on Software Engineering 1980; 6(3): 236-
246.

[33] Nardi PA, Delamaro ME. Test oracles associated with dynamic systems models.
Technical report 2011, Instituto de Ciencias Matematicas e de Computaçao,
Universdade de Sao Paulo, Brazil.
http://www.icmc.usp.br/~biblio/BIBLIOTECA/rel_tec/RT_362.pdf [June 6, 2012].

[34] Hamlet RG. Testing Programs with the Aid of a Compiler. IEEE Transactions on
Software Engineering 1997; 3(4): 279-290.

[35] Chapman D. A Program Testing Assistant. Communications of the ACM 1982; 25(9):
625-634.

[36] Weyuker EJ. On testing non-testable programs. Compuer Journal 1982; 25(4): 465-
470.

[37] Baresi L, Young M. Test oracles. Technical report 2001, Department of Computer and
Information Science, University of Oregon.
http://ix.cs.uoregon.edu/~michal/pubs/oracles.pdf [June 6, 2012].

[38] Kanstren T. Program comprehension for user-assisted test oracle generation. Fourth
International Conference on Software Engineering Advances 2009, 118-127.

[39] Baharom S, Shukur Z. Utilizing an abstraction relation document in grey-box testing
approach. International Conference on Electrical Engineering and Informatics 2009,
304-308.

[40] Chen J, Subramaniam Sb. Specification-based testing for gui-based applications.
Software Quality Journal 2002; 10(3): 205-224.

[41] El-Far IK, Whittaker JA. Model-Based Software Testing. Encyclopedia of Software
Engineering (edited by J. J. Marciniak). Wiley 2011.

45

[42] Davis A. A Comparison of Techniques for the Specification of External System
Behavior. Communications of the ACM 1988; 31 (9): 1098-1115.

[43] Sargent RG. Verification and validation of simulation models. Winter Simulation
Conference 2005, 130-143.

[44] Balci O. Verification, Validation and Accreditation of Simulation Models. Winter
Simulation Conference 1997, 135-141.

[45] Zhu H, Hall PAV, May JHR. Software Unit Test Coverage and Adequacy. ACM
Computing Surveys 1997; 29 (4): 366-427.

[46] Basili VR, Selby RW. Comparing the Effectiveness of Software Testing Strategies.
IEEE Transaction on Software Engineering 1987; 13(2): 1278-1296.

[47] Wood M, Roper M, Brooks A, Miller J. Comparing and Combining Software Defect
Detection Techniques: A Replicated Empirical Study. Proceedings ESEC/FSE 1997,
262-277

[48] Bertolino A, Marchetti E. Software testing. Guide to the Software Engineering Body of
Knowledge SWEBOK 2004 edition, chapter 5. IEEE Computer Society 2004.

[49] Whittaker JA. Stochastic software testing. Annals of Software Engineering 1997; 4:
115-131.

[50] El-Far IK. Automated Construction of Software Behavior Models. Master’s Thesis,
Florida Institute of Technology, May 1999.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4401 [June 6, 2012].

[51] Walton GH, Poore JH. Generating transition probabilities to support model-based
software testing. Software: Practice and Experience 2000; 30(10): 1095-1106.

[52] Duran JW, Ntafos SC. An Evaluation of Random Testing. IEEE Transactions on
Software Engineering 1984; 10(4): 438-444.

[53] Hamlet D, Taylor R. Partition testing does not inspire confidence. IEEE Transactions
on Software Engineering 1990; 16(12):1402–1411.

[54] Musa JD. Operational Profiles in Software-Reliability Engineering. IEEE Software
1993; 10 (2): 14-32.

[55] Marre B, Thévenod-Fosse P, Waeselynck H, Le Gall P, Crouzet Y. An experimental
evaluation of formal testing and statistical testing. Predictably Dependable Computing
Systems 1995, Springer, London, 273-281.

[56] Whittaker JA, Thomason MG. A Markov chain model for statistical software testing.
IEEE Transactions on Software Engineering 1994; 20(10): 812-824.

[57] Sayre KD, Poore JH. Stopping criteria for statistical testing. Information and Software
Technology 2000; 42(12): 851–857.

[58] Littlewood B, Wright D. Some Conservative Stopping Rules for the Operational
Testing of Safety-Critical Software. IEEE Transactions on Software Engineering
1997; 23(11), 673-683.

[59] Dalal SR, Mallows CL. When should one stop testing software? Journal of the
American Statistical Association 1998; 83(403): 872-879.

[60] Chávez T. A decision-analytic stopping rule for validation of commercial software
systems. IEEE Transactions on Software Engineering 2000; 26(9): 907-918.

[61] Offutt J, Liu S, Abdurazik A, Ammann P. Generating Test Data From State-based
Specifications. Software Testing, Verification and Reliability 2003; 13(1): 25-53.

46

[62] Mckendall AR, Jin S, Kuppusamy S. Simulated annealing heuristics for the dynamic
facility layout problem. Computers & operations research 2006; 33(8): 2431-2444.

[63] Freimut B. Developing and Using Defect Classification Schemes, Technical Report
2001, IESE-Report 072.01/E, Fraunhofer Institut für Experimentelles Software
Engineering.

[64] Frankl PG, Hamlet RG, Littlewood B., Strigini L. Evaluating Testing Methods by
Delivered Reliability. IEEE Transaction on Software Engineering 1998; 24(8): 586-
601.

