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1 Abstract

With the growing complexity of industrial softwaegplications, industrials are looking for
efficient and practical methods to validate thetvsafe. This paper develops a Model-Based
Statistical Testing (MBST) approach that automdtiagenerates online and offline test cases
for embedded software. It discusses an integratedework that combines solutions for three
major software testing research questions: 1) fegetect test inputs; 2) how to predict the
expected results of a test; and 3) when to stam¢esoftware. The automatic selection of test
inputs is based on a stochastic test model thauads for the main particularity of embedded
software: time sensitivity. Software test practigos may design one or more test models
when they generate random, user-oriented, or Gaidtited test inputs. A formal framework
integrating existing and appropriate specificatiechniques was developed for the design of
automated test oracles (executable software spatifns) and the formal measurement of
functional coverage. The decision to stop testiafjware is based on both test coverage
objectives and cost constraints. This approachtested on two representative case studies
from the automotive industry. The experiment wasfggmed at unit testing level in a
simulated environment on a host PC (automatic ®stcution). The two software
functionalities tested had previously been unite@sand validated using the test design
approach conventionally used in industry. Applyithg proposed MBST approach to these
two case studies, significant improvements in perfog functional unit testing in a real and
complex industrial context were obtained: more bwegse detected earlier and in a shorter
time.

Keywords: software testing, model-based, statistical testgomation, embedded software,
automotive.

2 Industrial context and problem

2.1 Growing complexity of automotive software

Nowadays, car electronics represent more than 30%heftotal cost of a car [1]. As
architectures for car electronics become more antemomplex, carmakers outsource the
design of some electronic modules to automotivetedaics suppliers. The design of a
module typically represents 24 months of developnasit involves around 25 management
and technical engineers with a range of hardwaiyare and mechanical competencies. The
software testing activity takes up to 50% of thalttime spent in management and technical
activities and the software components of such duteoaccounts for more than 80% of the
total number of defects detected on the module.

In the automotive industry, the engineering proesss software development are performed
according to the standard V-model of the softwadustry [1]. However, an iterative and
incremental design process is also initiated betvike carmakers and their suppliers in order
to take the carmaker’s constraints and priorit@atf requirements into account. The number
of increments (deliveries) is defined based ondhmplexity of the project and adjusted in
accordance with the carmaker’s inputs and projecstaints. In a fairly complex project, ten
is the typical number of increments [2]. After eaddlivery, despite the verification and
validation (V&V) activities of the supplier, the waaker still detects a number of software
nonconformities (in this article, the term “bug” isised instead of “software
nonconformities”). This number depends on the §izéerms of lines of code), complexity,
and maturity of the delivered software. Moreovergean electronics module is launched on
the market (i.e., integrated into a vehicle), arrage of one bug per year is detected by end-
users [2], which may lead to significant finanai@nsequences for the electronics supplier.
Therefore, finding bugs earlier in the product bfecle, specifically in the development phase
(thus reducing the number of bugs detected by deersaand end-users) is a priority for
suppliers of automotive embedded software.



2.2 Automotive software V&V techniques

In the automotive industry, both static and dynamaftware V&V techniques [3] are

practiced in order to ensure that the resultingtivsoe product meets the customer’s
expectations. Testing activities represent up to 39%he time spent in the V&V of an

automotive software product. Unit tests act on aifipecomponent of the system, while
validation tests act on the system as a whole. Mangmotive industrials have invested in
automating test execution; however, test desigtilisa manual activity, completely based on
the practitioner’s experience.

The main purpose when unit testing a software compions to cover 100% of the
component’s source code (100% of the structurald)owhis activity, illustrated in Figure 1,
is performed by the individuals who develop the ponent. These developers analyze the
structure of the software component being testetit@Box approach) and select a test
input. Afterwards, by analyzing the source codehef component, they predict the expected
outputs to be checked against the actual outpaaEgDevelopers do not check the behavior
of all the output signals that correspond to east input of the software, but rather only
those that correspond to the performed operatiothel designed test step (test inputs and
expected outputs) covers all of the source codegldpers stop designing test steps. If not,
developers thoroughly analyze the non-covered askasde with the goal of designing one
or more test steps that address these areas.
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Figure 1 — Conventional unit test design approachmithe automotive industry

At present, the unit test is not responsible faueimg that a software component is compliant
with the carmaker requirements. Instead, once afsahit-tested components are integrated,
test practitioners must ensure that the whole so#tvproduct is compliant with the carmaker

requirements. As illustrated in Figure 2, they gp@lone or more software requirements
(Black-Box testing) and select a test input. Afterds, by analyzing the carmaker

requirements, they predict the expected values tthbeked against the actual output signals.
As with the design of a test case (set of testsjtéy the unit test, test practitioners check
only some output signals. They check that the benadi the output signals matches their

understanding of the carmaker requirements. Ifdésigned test steps cover the carmaker
requirements concerned, test practitioners stomuieg test steps. If not, they thoroughly

analyze the requirements under consideration \wihgbal of designing one or more test steps
that completely cover them.
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Figure 2 — Conventional validation test design apmrach in the automotive industry

Sometimes, for time and budget reasons, managersiecade to stop testing software even if
100% structural (code) and/or functional (spectfar® coverage are not reached. However,
the carmaker must be notified of the parts thahatecovered.

As software products become more and more comfléecomes impossible to be able to
check that they respond correctly to all possibk tnputs. Seroussi and Bshouty [4] show
that the design of an optimal exhaustive test éassoftware is an NP-complete problem. In
the automotive industry, a software product is gbveested against predefined objectives
such as structural (code) and functional (spediboq coverage. While structural coverage
can be formally measured using computer toolsf[#jctional coverage is more difficult to
measure formally, especially when specificatioresexpressed in an informal language. From
an analysis of 10 software specification documémis different carmakers [2], the authors
find that natural languages are still often usedméggecifying software functionality in the
automotive industry.

2.3 Industrial needs and expectations

Facing this growing complexity, carmakers and auttive electronics suppliers are looking
for efficient methods to validate software. As thegomotive market becomes more and more
competitive, decreasing the development time of@mwiced parts and decreasing the number
of problems detected downstream in the processnbead major importance to carmakers
and, consequently, become major indicators in #lection of automotive suppliers; the
carmakers’ process for assigning new projects pplgers is mainly based on feedback from
previous projects. In consequence, suppliers warkeducing the development time of their
products and detecting the maximum number of begsaay as possible in the development
process.

A report from the National Institute of Standardsl & echnology [6] shows that the majority
of bugs is introduced during the first part of 8adtware development phase (around 90% in
requirements analysis, design, and implementatativies) and detected in the latter part
(around 80% during unit testing, validation, andiaeproduction). It also illustrates the
growing cost of bug correction once detected domgash in the software life cycle. Two
complementary approaches may lead to delivery gfflee software:

* Lower the number of bugs introduced in the softwprevention approach)

» Detect and handle all the bugs that have been untextlin the software as early as

possible (detection and handling approach).



While sophisticated bug-prevention methods andst@wk widely used in industry [7], a
report from the National Institute of Standards drethnology [6] points out the lack of
methodologies, tools, and knowledge in bug-detactexhniques, and, more particularly, in
testing techniques. In this paper, an integrateddd#8ased Statistical Testing (MBST)
approach to improve the performance of the tes dasign process for automotive embedded
software is proposed. Test cases can be genertiieg and later executed, or they can be
generated and executed online. This approach wasiaged using two typical automotive
case studies. Each case study consists of aut@ihatgenerating test cases (offline) for the
functional unit test of a software functionalitya¢h functionality has already been developed
and validated (unit and conformance testing) inghst with the V&V techniques currently
used in the automotive industry. The generated ¢ases were executed in a simulated
environment (host PC). The performance of the pregpoframework regarding the
conventional one was quantitatively measured usingmetrics: the number of bugs detected
earlier in the software development phase anditie ¢pent in testing the software.

After a characterization of the software design emment in the automotive industry, a
literature review on the MBT approach is discusgedsection 3. An overview of the
integrated model-based statistical approach for rg¢ing test cases is provided in section 4.
The test oracle, test input selection, and stajingesriteria of this approach are developed in
sections 5, 6, and 7, respectively. The performarfidhe proposed MBST approach through
two industrial, practical case studies with histafidata is assessed in section 8. The validity
threats of the experimental results are outlinedalfy, future aims for this research are
discussed in section 9.

3 Literature review on model-based testing

Studies show that testing a variety of applicatiossag MBT has been successful. For a
sample of such studies, the works of Agrawal andttaker [8], Bauer et al. [9], and Bernard
et al. [10] on testing embedded controller softwarre considered; Rosaria and Robinson
[11] on testing graphical user interfaces; and #&ern and Larson [12] and Dalal et al. [13] on
testing phone systems. These works indicate thal MBtailored for small applications,
embedded systems, user interfaces, and stateystdnss with fairly complex data. Recently,
Siegl et al. [14] present an approach to formatize requirements specification by test
models. These models serve as basis for the testtigities, including the automated
derivation of executable test cases from it. Tases can be derived statistically, randomly on
the basis of operational profiles, and determicadly in order to perform different testing
strategies. They have applied their approach witharge German OEM in different
development stages of active safety and energy geament functionalities. A variant of
MBT is Model-Based Statistical Testing (MBST), aaBk-Box technique that enables the
generation of tests that are representative opéngpective of the tester or the user. It has also
been used for testing a wide range of applicatidhese applications vary from sophisticated
software engineering environments to databasesaage industrial software systems. MBST
has also been used in projects involving embedga@rss, such as medical devices [15] and
automotive modules [16]. Bohr [17] proposes an msiten to MBST which deals with the
notion of time and concurrency while maintainingthke advantages of MBST. This is done
by using an advanced kind of Petri nets as test métiealso shows that it is possible to
generate executable test cases (including oraaenattion) from the Petri nets. Throughout
this paper, the utility of a Model-Based testing rapgh within the embedded software
industry is emphasized.

Ozekici [18] discusses some interesting statistisalies that arise in usage testing of
software. Wohlin and Runeson [19] also discussetffiect of usage modeling in software
certification. A stochastic model of software usawlving Markov chains is employed in

Whittaker and Poore [20] and Whittaker and Thomd&ah In their approach, the sequence
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of “inputs” provided by the user is modeled as arlda chain. This results in a model
involving all possible values of input variablehi€lr model is similar to the proposed one in
the sense that they model the sequence of “infoytsi’ Markov chain. However, in contrast to
the approach proposed in this paper, there is mdiameof testing the characteristics that are
specific to embedded systems. Embedded systemgegyeoften real-time systems, and an
adequate testing approach must consider the prep@articular to these systems, especially
their time sensitivity. Hessel et al. [22] preseninciples and techniques for model-based
Black-Box conformance testing of real-time systersg the UPPAAL model-checking tool
suite. In the proposed approach, real-time comggaare taken into account (specification
language and test model) in order to ensure ptegéng of timing requirements.

Significant effort has already been invested in @lomatic generation of test cases from
models of the system being tested. BZ-TESTING-TOQRY is a toolset for automated test
case generation from B, Z, and Statechart (Stagnsgecifications. Another approach is
developed in the AGEDIS project [24] that uses A&@EDIS modeling language as input.
The test generation engine used in this projectboo@s the principles of TGV [25] and
GOTCHA [26]. Lugato et al. [27] describe the AGATH#&oIset, which overcomes the
combinatorial explosion problem in software testilmgthe proposed approach, test inputs are
automatically generated from a test model relyingh@enMonte Carlo simulation technique.

Many researchers [28] [29] focus on reducing timgtle and number of generated test cases.
These test case reduction techniques (also refeéaeas test case minimization in the
literature) seek to reduce the number of test caedule retaining a high percentage of the
original suite’s fault detection effectiveness. Mapproaches to this problem are based on
eliminating test cases that are redundant in sontkedf coverage criteria. These approaches
are similar to the proposed one, since structurdlfanctional coverage are used as criteria in
deciding to reduce the length of test cases astbiptesting software.

Finally, there are few industrial papers dealinghwthe full software testing process (test
input selection, test oracle, stop testing critesiad test execution). Most of the research on
test case generation treats simple examples thabdreflect the real complexity of modern
industrial applications. In this research, the psmub MBST approach was tested on two
typical automotive industrial case studies. Accogdio Johnson Controls software experts,
one of them (fuel gauge functionality) is considete be one of the most complicated
functionalities in a modern car.

4 An integrated model-based statistical approach for generating
functional test cases

4.1 Overview

In this section, an integrated approach to autarallyi generating functional test cases for
automotive embedded software is presented. Tessozen be generated offline and later
executed, or they can be generated and executedeorilhe purposes of the proposed
approach are 1) ensuring conformance to speciicat?) ensuring code coverage and 3)
avoiding recurrent bugs. Through this approach,ftitlewing three software testing topics

[30] were simultaneously addressed, while taking itidustrial automotive context into

account:

Research topic Ifest oracle

In the automotive industry, semi-formal and fornrma¢thods are used more and more to
specify software functional requirements. Howeteere is no standardized formalism shared
between carmakers and suppliers; for each prdjeetsupplier has to adapt its processes to
the specification language used by the carmakegrefbre, a formal framework integrating
existing and appropriate description techniques wlaseloped. This allows deriving




automated test oracles (executable software spaftiifns) from any formalism of software
specifications.

Research topic ZFest input selection

A probabilistic test model based on Markov Chairs weveloped. The whole set of states of
a Markov Chain represents all regarded inputs lier software being tested. Transitions
between states in the Markov Chain represent ordersuccession of two inputs. Each

transition is associated with a number that remtssthe probability that one input succeeds
the other and a time interval that models the wiaiie between two inputs that are in

succession. For practical reasons, the test medglaiphically represented through a matrix
called transition matrix. A Monte Carlo simulatigmocess is used to select inputs from a
transition matrix.

Research topic 3top testing criteria

An objective function based on formal measuremerthefstructural and functional coverage
was developed. A constraint function in order tketéest duration and cost constraints into
account was also developed. An optimization algorimonitors the generation of each test
case in order to reach the test practitioner'saibjes (in terms of coverage) and constraints
(in terms of planning and cost). The generatioradest case is completed when the test
objectives are fulfilled or the test constraint® alisregarded. Indeed, the objective and
constraint functions are calculated during the tem$e generation (after each test step
generation). If structural coverage criteria areluded in the test objectives, online test
execution shall be chosen.

The proposed approach presents a workflow for geingrtest cases that is different from an
investigated conventional approach in the automeatiustry. The new workflow illustrated
in Figure 3 is based on eight activities that aenuoal, semi-automatic, or automatic and that
might be managed by different individuals (requieemn and test practitioners). These
activities are:
1. Design an automated test oracle (executable satwspecification) of the
functionality being tested.
2. Verify (correct implementation) and validate (inteddpurpose) the test oracle.
3. Define some behavioral characteristics of a driveen using the functionality being
tested.
4. Perform a statistical analysis on test cases dpedlo(in the past) for similar
functionalities.
Perform a statistical analysis on bugs detectethérpast) in similar functionalities.
Generate one or more transition matrices.
Generate executable test cases.
Monitor the generation of each test case using ¢eserage objectives and cost
constraints.

© N oo

The interface between the test generation and erecpiatforms depends on the technology
of the test execution platform (computer languagg environment) and on the test coverage
tool used to measure the structural coverage dddftevare under test.



correction

!

database

stored bugs

§6

stored test cases

Semi-automatic

Activity 5

constraints

objectives

— —— . Activity 7
Activity 1 Activity 2 validated test oracle
carmaker software >
specifications design of an test oracle| Verification and
» automated test » validation of the
5 | | test case test cases test case
3 oracle test oracle ACTVIV E ; :
5 3 Ctivity generation execution
o o5 . .
c = 5 Manual 85  Semi-automatic . -
o £ D 0 generation of transition
£%5%3 .| transition matrices >
Y— o) .
8 % E matrices 86  Automatic
% o8 86 Automatic s
E 29 _ LI - reached ©
s © Activity 3 constraints on the - decision to stop functional coverage 5 &
S definiti £ dri inout sianal v generating tests . 9
2 - efinition of driver put signals oo & constraints @ =
> profiles b g g
] L.
§6 Manual ! ' Activity 8 %
o ) N [ monitoring of the test case |, o
related to similar functionalities ! generation < reached
. |
developed in the past ' 87 Semi-automatic
. structural coverage
1 1
stored test cases Activity 4 ' E T T
S isti i '
statistical analysis of
test case N ysisot- : E cost test coverage
|
|
1
1
|
|
|
1
1

>
bug

statistical analysis of

A 4

database

—: ~ A
Flgure s — All

§6

stored bugs
Semi-automatic

ntegrated model-based statistical gpoach for.generati

ng functional test

design of transition matrices

Legend:

§ 5: Research topic 1: test oracle
§ 6: Research topic 2: test input selection
§ 7: Research topic 3: stop testing criteria



4.2 Human intervention

Nowadays, more and more testing techniques reljusnan intervention in order to ensure
their applicability in an industrial context. A cpnomise must be found between the
relevance of the test cases (requiring signifieaxpert intervention) and automation. The
proposed approach addresses this issue in seekirggantomation, with human intervention
restricted to activities requiring insight. In Frgu3, human intervention throughout the
proposed MBST approach is clearly identified (maraumal semi-automatic). The three main
manual or semi-automatic activities are:

» Design, verification and validation of test orackgstivities 1 and 2): in current
industrial practice, the software testing oracleften a human being. In the proposed
approach, practitioners must manually derive aoraated test oracle from software
specifications. Consistency in the designed testles is ensured by the semi-
automatic verification and validation of the teside.

* Preparation of data for the generation of transiti@irices (Activities 3, 4 and 5): this
semi-automatic activity uses human expertise tosgescific situations that can not be
targeted by a systematic model coverage approamheXxample, it relies mainly on
test practitioner experience in order to estal#isti-user profiles or select stored bugs
or stored test cases that may be used in the demggw transition matrices.

* Monitoring of the test case generation (Activity: 8ie decision to stop testing
software is completely automated with an optim@atialgorithm. This algorithm
accounts for the fulfillment of the test objectiwekile respecting the cost constraints.
The definition of these objectives and constraimistill manual since it is often based
on informal customer and project expectations.

A technical report [31] developed roles and ski#iquired of the practitioner for each of these
manual or semi-automatic activities. Trainings,otials, and best practices could be

developed to assist practitioners in designingvesle test oracles and transition matrices.
Such an approach would be beneficial in an autaotiontext, as more than 50% of

functionalities performed by software products @enmon to any series of cars. Test oracles
and transition matrices could be easily reusedmapdoved from one project to another.

5 Research topic 1: Test oracle
5.1 Literature review

Deciding whether a test outcome is acceptable isdhealled test oracle problem. Although it
is obvious that a test execution for which a teattioner is not able to distinguish between
success and failure is a useless test, and althdisghssion of the criticality of this problem
is a long existing topic in the literature [32]ethracle problem has received little attention in
research, and, in practice, few alternative solstiexist to human “eyeballing”. Nardi et al.
[33] highlighted the heightened interest on redeaetated to test oracles in the last 10 years,
notably after 2001.

The research literature on test oracles applicbtynamical systems comprises a relatively
small part of the research literature on softwasting. Analyses proposed in earlier research
are based either on the availability of pre-comgutgut/output pairs [34] or on a previous
version of the same program that is presumed todoeect [35]. Weyuker [36] presented
some of the basic problems and argues that trulyergéized test oracles are often
unobtainable. A survey of oracle solutions is pded by Baresi et al. [37] and Nardi et al.
[33]. The survey proposes approaches to automatgdotacles that are generalized in the
sense that they require neither pre-computed iapydiit pairs nor a previous version of the
system being tested. The authors group oraclemgsbased on implementation approaches
(i.,e. embedded assertions, execution log analyzerd)on the kinds of specifications they
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accept (i.e. interface specifications, design nmdéllodel-Based specifications). Four
categories of oracles have been identified: smatibn-based, metamorphic relations, n-
version and neural network. There are publicatminspecification-based oracles since 1991
and they represent up to 70% of the total numbgsublication. Examples of specification
languages are: Z, Object Z, OCL, Eiffel, VDM, JMidtate machine, SDL and Mitl. Kanstren
[38] cited the lack of empirical studies on the w$estate machines. The specification of a
system provides a source of information about treect behavior of the implementation and
thus it is a valuable source for test oracles [38f specification can be used to describe the
expected behavior of a system at different abstradevels [40].

In current industry software testing practice, tracle is often a human being. While the
human “eyeball oracle” has advantages over mofeieal means of interpreting incomplete,
natural-language specifications, humans are mooeepto error when assessing complex
behaviors or detailed, precise specifications, gmedaccuracy of the “eyeball oracle” drops
with an increase in the number of test cases. Intiaddthe “eyeball oracle” becomes a
limiting factor when other parts of testing arecamated. Given that a test engineer can make
a mistake while calculating an expected output #mel large number of outputs to be
compared during the test phase illustrate the olsvilmierest in creating automated oracles.

5.2 A framework for deriving automated test oracles nfrosoftware
specifications

A previous paper [2] performed a study on the evatubf languages used by carmakers to
specify software functional requirements. Througls tstudy, an increased use of formal
languages and a decreased use of informal and feema languages were highlighted.
However, within the formal languages, there is mandard formalism shared between
carmakers and suppliers. Rather, for each prajeetsupplier must adapt its processes to the
specification language used by the carmaker. Masgarchers [41] [42] state that there are
no software specification languages today thaalfiintents and purposes. For each context,
decisions must be made as to what language (@catiolh of languages) is most suitable. No
large-scale studies have been made to confirmldmas regarding any particular language.

Nardi et al. [33] and Baresi et al. [37] surveyethage of frameworks for the derivation of
automated test oracles from specific software $paton methodologies. The main
challenge posed by using a specification languagbat effective procedures for evaluating
the predicates or carrying out the computationg tiescribe are not generally a concern in the
design of these languages. Since there is no sthrfdemalism for the specification of
software behavior in the automotive industry, aneavork to manually derive automated test
oracles (executable software specifications) framy software specification language was
developed. In order to avoid the propagation ofdleme specification error in the test oracle
and implementation, test oracles shall be designedfied and validated by another team
than the one who performs the implementation. Tiopgsed framework is general in the
sense that the same designed oracle can be usadyfarbitrary execution, i.e., the oracle is
independent from test case selection or generafpatt from automating the test oracle, the
motivations behind transcribing carmaker softwagpectications into executable software
specifications are 1) to avoid ambiguities, incetesicies and misunderstandings of the
carmaker requirements, 2) to explicit the behawbithe system when invalid entries are
given and 3) to be able to formally measure the @gee of the software specification
(coverage of the test oracle).

Practitioners have to manually derive an automégstioracle based on the specification of
the functionality being tested. This manual taskthe most time-consuming task in the
proposed MBST approach. In section 8.2.1, the wpent in designing the automated test
oracles for two sets of industrial software speations is dicussed. Specifications that are
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already expressed in a formal or semi-formal lagguare more obvious to interpret into the
design of an automated test oracle.

5.2.1 Appropriate specification techniques
5.2.1.1 Typology of software functional requirements in@uabtive industry

In the automotive industry, a software functiornaig composed of features that are described
by requirements. In this study, non-functional reguients were not taken into account; the
focus was on specifying software functional requieats. A software functionality has a set
of configuration(Config), input (l), output(O) and intermediatéint) signals with discrete
domains. Configuration signals allow for the parterigation of the software functionality
(for instance, by activating or deactivating onatdee). Input signals might be switches,
sensors, or car environment variables (for instaneleicle speed). Output signals might come
from actuators or any type of command (for instarthe wiper motor command). Finally,
intermediate signals make it possible to manageshace data between two or more features.
These signals interconnect the features (F) ofuhetionality, and each feature is based on
one or more requirements of the same type. Twostyfesoftware functional requirements
were identified:

« Combinatorial (see Figure 4): when the values ef ridquirement output signals at

instantt (O_Reg depend only on the values of the requirement isgrtals at instant

t (I_Req).

I_Req | | O_Req

Req
O_Req;=f(l_Reqy
Figure 4 — Combinatorial functional requirement

e Sequential (see Figure 5): when the values ofd¢ljgirement output signals at instant
t (O_Reg@ not only depend on the values of the requiremmmtti signals at instant
(I_Req) but also on the values of the requirement outjguads at instant-1 (O_Reg

1)-

I_Req Req O_Req
O_Req,=f(I_Req,, O_Req,;)
Figure 5 — Sequential functional requirement

5.2.1.2 Two types of specification techniques

It is potentially advantageous to use existing gpation techniques, rather than inventing
new ones for the sole purpose of creating testlegadifter considering a variety of
techniques in the literature [42], it was decidedpecify the two sets of automotive software
functional requirements with the following two sgmation techniques:

» Decision Table (DT): DT technique is used to speaifeature that is based on one or
more combinatorial functional requirements (sta®ldescription). A DT is a table
that presents a set of exclusive input signal ¢emdi (C;) and the corresponding set
of output signal actionfA;). Each set of condition&C,) represents a requirement in
DT.

« Finite State Machine (FSM): FSM technique is usedpecify a feature that is based
on one or more sequential functional requiremesttstéful description). In this paper,
in order to address the patrticularities of embedsiativare, each FSM may have a
timing signal(FSMTempopand a set of internal signglsSMint,). The timing signal
specifies timing requirements, and the internahaig characterize the states of an
FSM. The internal signals are identified by analgzithe sequential functional
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requirements. They are required, when more tharstaie of the FSM are activated in

the same time for a specific set of inputs valdesFSM is composed of:

- An initial state(S) and a finite number of subsequent stq@ks with a set of
actions(A) defining the FSM output, internal, and timing signd he FSM timing
signal is set to 0 each time the state of the F&&hges. The FSM timing signal
computes the time spent in each state.

- A set of transitiongT;) from a start statéS) to an end stat€S), and for each
transition(T;), a set of exclusive FSM input, internal, and timaogditions(C;,q).
Each set of condition€j;,q) represents a requirement in FSM.

A detailed description of the conditions (Cq), ant (Aqg), states (Si) and transitions (Tij)
characteristics is provided in a technical repdif] [

In Figure 6, a graphical illustration of an autoethttest oracle manually derived from
software specifications is provided. The softwarenctionality (“Auto_Light”) has 3
configuration signals, 5 input signals, 2 outpghsis, 2 intermediate signals, and 3 features.
The detailed description of the design of this teatle is provided in a technical report [31].

«Auto_Light»

Configl=Auto_Light_Config |

Config2=Follow_Me_home_Config_ Feature 3
Config3=Follow_Me_home_Calib | FSM 1
I1=Reset_ Ol=Head Lamp
12=Luminosity_Sensor, Feature 1 |int1=Lu inosity_Level
bT1 0O2=Tail_Lamp
13=Car_Locked_ .
> Feature 2 |Int2=Follgw_Me_Home_Activgte
14=Ignition DT 2

15=Light_Combi_Switch

Figure 6 — Graphical illustration of an automated est oracle

5.2.2 Automation of test oracles

The expected outputs of a test are automaticaflglipred through an automatic run of the test
oracle. This run is synchronously executed withaayclic logic going from input to output
signals of the test oracle. The run order of tlfeues must be defined when designing the
test oracle (Feature 1 then Feature 2 then Fe&ur@he behavior of the test oracle is
synchronized with a “clock” signal that alternabetween zero and one, back and forth, at a
specific pace (cycle time). The value of the cyotee depends on timing characteristics of the
software functionality. It is defined by test piiohers when analyzing and designing the test
oracle. At each cycle time, all the features arefallowing the predefined order. Running a
feature consists of predicting its output signalsoading to its input signals.

In the case of a feature modeled using Decision Tiabtechnique all conditions(C,) are
checked. There is no specific checking order feséhconditions since only one condition can
be satisfied at a time. DT output signal valuesupr@ated according to the action associated
with the satisfied condition. Note that, in somees none of the conditio(S,) are satisfied
and therefore no DT output signal actiqAg) are carried out. In fact, the DT conditions do
not always consider all possible combinations eftthlues of the DT input signals.
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In the case of a feature modeled using Finite Statdachine technique one state is always
activated. When running an FSM, all conditions Bfthe transitions that start from the
activated state are checked. There is no spedtiécking order for transitions and conditions
since they are exclusive and only one condition oly one transition) can be satisfied
(made) at a time. Therefore, after having run é&&kl, a maximum of one transition is made.
The start state of the transition is deactivatbd, destination state is activated, and output
values are updated. However, in some cases, norbeofransitions that start from the
activated state are satisfied, the activated stateins unchanged as a result, and no FSM
output signal actions are carried out. The cond#iof all the transitions that start from the
same state do not always consider all possible gmatibns of the values of the FSM input,
internal, and timing signals.

A more descriptive explanation of how DT and FSM exrecuted to determine the expected
results is provided in a technical report [31].

5.2.3 Test oracle correctness

It is often too costly and time-consuming to estbthat a test oracle is absolutely valid over
its full domain of intended applicability. Thereégr a contextual and semi-automatic
framework to help practitioners assess confidemca iest oracle and decide in this way
whether or not it is possible to stop verifying avalidating it was developed. Tests and
evaluations are conducted until there is sufficienhfidence that a test oracle can be
considered valid for its intended application. ®aitg[43] proposes a simplified way of

designing and validating a test oracle. The Probiartity is the system (real or proposed),
idea, situation, policy, or phenomena to be modeldw Conceptual Model is the

mathematical/logical/verbal representation of tmebem Entity, developed for a particular
study; and the Computerized Model is the Concepiladlel implemented on a computer.

The Conceptual Model is developed through an aizalgsxd modeling phase, the

Computerized Model is developed through a compptegramming and implementation

phase, and inferences about the Problem Entity oéteained by conducting computer

experiments on the Computerized Model in the expeni phase.

The main three model verification and validatioagsls proposed by Sargent are:

1. Conceptual Model Validity (i.e. clarification of e&h carmaker's needs and
requirements), ensuring that 1) the underlying tiesoand assumptions of the
Conceptual Model are correct, and 2) the modelesaprtation of the Problem Entity
and the model's structure, logic, and mathemateradl causal relationships are
“reasonable” for the intended purpose of the model.

2. Computerized Model Verification (i.e. check of tmeodel programming rules),
ensuring that the computer programming and impleatiemt of the Conceptual Model
are correct.

3. Operational Validity (i.e. check of the model a@my), concerned with determining
that the model’s output behavior has the accuraqguired for the model’'s intended
purpose over its intended domain of applicabilltgis is where most of the validation
and evaluation techniques take place.

More than 77 verification and validation techniqdessimulation models are identified and
classified by Balci [44]. Most of these techniquesme from the software engineering
discipline, and the others are specific to the riingeand simulation field. Unfortunately, no
algorithms or procedures exist to decide which neglres to use. In the next three sections,
techniques, rules, and scenarios to help modelersalidating the Conceptual Model,
verifying the Computerized Model, and finally chauk the Operational Validity of a test
oracle are presented. The proposals take both @& gecommendations and the industrial
context of this research into account.
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5.2.3.1 Conceptual Model validity

A Conceptual Model of the test oracle is developewugh analysis and modeling of a
software specification as it was delivered by theraker. For each software functionality and
based on the carmaker software specifications, lacddraw a sketch of the test oracle by:
1. identifying the input and output signals and tlteimains;
2. grouping the functional requirements according heirt types (combinatorial or
sequential);
3. identifying the features (DT and FSM) and the imtediate signals and their domains;
4. and finally, specifying each feature: for a DT, ntdfying the conditions and their
associated actions; for an FSM, identifying theestaand their associated actions, the
transitions and their associated conditions, ahdeeded, the internal and timing
signals.

Once the Conceptual Model of the test oracle isgdesl, each feature and the test oracle
must be manually evaluated to determine if theyrassonable, correct, and complete in
terms of the carmaker’s requirements. The Facelitsaland Turing tests [44] may be used in
order to clarify the carmaker’s needs and requirdmand validate the conceptual model;
expert knowledge is the main basis for this valaatindividuals knowledgeable about the
system being tested are asked to judge the testeoemainst the carmaker’s software
specification and to give their level of confidemeehe test oracle and/or its behavior.

5.2.3.2 Computerized Model verification

The Computerized Model of the test oracle is dgwediothrough computer programming and
implementation of its Conceptual Model. A high-levgraphical language [31] to help
modelers computerize their Conceptual Models dof eescles was developed in a technical
report. The use of a graphical language generaBylts in fewer errors, and programming
time is usually reduced significantly. Moreover,arder to detect all the programming errors
and ensure that a valid computer model of a testl@iis obtained, a set of integrity rules [31]
to be checked automatically against this computadtehwas developed.

5.2.3.3 Checking Operational Validity

Computerized Model verification ensures that migsgakave not been made in the computer
implementation of the test oracle. It does not emn$ioe compliance of the test oracle with the
(original) carmaker requirements. The Operationalidity stage aims to ensure that the test
oracle behavior is compliant with the carmakerguieements and has the accuracy required
by the carmaker. To do this, computer experimenistrbe conducted on the Computerized
Model of the test oracle. This is where most ofrtialel deficiencies are detected. There may
be errors in the Conceptual Model of the test eracl programming errors in its
computerization. Three possible actions [31] tophedodelers validate the Computerized
Model of a test oracle against its original requiemts were identified. These actions are
semi-automatic and can be carried out concurrénthen all the input data are available) or
separately:
1. First action: have experts (in the software funwidy under test) run the
Computerized Model
2. Second action: execute the test cases deliverddebgarmaker on the Computerized
Model
3. Third action: execute a set of test cases on thaateer's software specification (in
case of executable specification) and the CommaeérModel in order to compare the
two.
The principles, grammar, and validity of the pragmb$est oracle model are discussed in detalil
in a technical report [31].
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6 Research topic 2: Test input selection
6.1 Literature review

Selection of the most suitable test inputs to beceted in the software being tested is a
complex problem that has inspired much researatguse selection of the test cases greatly
influences test efficacy. Many researchers haveqgsed criteria for picking out a “good”
sample of potential test cases. A comprehensiweguwf the research on this topic was done
by Zhu et al. [45]. An important point is that aoagl” test case is not universally “good” but
rather depends on the testing context (time anoures constraints, etc.), the software being
tested (criticality, etc.), and the testing goal Q%0 structural and/or functional coverage,
increase in confidence, etc.). The most commonpngation for “good” would be “able to
detect a high number of bugs”. Basili [46] and Wddd] experimentally observe that
different test selection techniques could ensufierént test purposes. Therefore and while
having more than one test purpose, it may be @elerto apply a combination of diverse
techniques, rather than focusing on just one.

It is difficult to find a system for classificatioof all test selection techniques. The one
proposed in Bertolino et al. [48] may be seen asrapromise. It is based on how tests are
generated from test practitioners’ intuition andpexence, the specifications, the code
structure, the faults to be discovered, and, findtie nature of the application.

Paradoxically, test input selection seems to be ltheest priority problem for test
practitioners in automotive industry. A demonstratiof this low priority is the paucity of
commercial tools that aid test input selection [38]comparison with the large quantity of
support tools that handle test execution, regrassiad documentation. Much progress has
been made in test input selection techniques dwerldst twenty years, but this progress
remains almost unknown in the automotive indusifite most-practiced test selection
technique is still dependence on the expertisaetdster.

6.2 A test model based on Markov Chains

The proposed test model (transition matrix) does model dynamic probabilities. The
probabilities in a transition matrix are static gé-defined (before testing). In this research,
the same assumption as Bauer et al. [9] was mduy. Ose Markov Chains to model a car’s
operational software system and assume that futymets only depend on current, and not
past, inputs. In some cases, this assumption progesrect. For instance, if a gearbox is in
4™ gear, the probability of a shift t&"Sjear will depend on what gear it was in befonedht
into 4" (it's more likely to go %->4"->5" than to go $->4™->5™). To overcome this problem,
the state space should be expanded. This lead®othea problem: having to estimate many
more transition probabilities. An exhaustive testestion approach should consider the
probabilities associated with a given sequenceaoheair of N possible inputs, where N is
the total number of possible inputs of the functlipabeing tested. In this paper, test
practitioners have the option of designing additi@maastraints on a transition matrix in order
to give weight to a sequence of more than 2 ingaksng into account the dynamic nature of
software behavior. This sequence might be mordylikeom past experience) to contain a
bug, or simply a sequence often performed by theused of the product.

6.2.1 Characteristics and illustration

A specific class of Markov chains, discrete-parameffinite-state, time-homogenous,

irreducible Markov chains, has often been usedddehthe usage of software. These Markov
chains are structurally similar to finite state maes and can be thought of as probabilistic
automata. The body of literature on Markov chamsaftware testing is substantial. Work

done on testing particular systems is detailed \ayt2er and Larson [12].
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A Markov chain is described as follows: consideringet of stateS = {S, S, ..., $. The
process starts in one of these states and movesssinely from one state to another. Each
move is called a transition. The controlling faciar a Markov chain is the transition
probability p;, a conditional probability that the system will gma particular new stat®,
given the current stat8i of the system. The system can remain in the dtagein, and this
occurs with probabilityp;i. In the context of this research, each state sepits a possible
input and each transition is associated with a gdvdiby associated with a particular sequence
of two inputs (linked states). Of those includedtie reviewed literature, none of the
researchers integrates the wait time between twaotsninto the software usage model.
However, in many embedded software systems, taissition time between two inputs plays
a major role in detecting bugs relating to realdimonstraints. As a consequence, each
transition of the transition matrix is associatathva time interval from which transition time
are selected. Moreover, all the sequences of inthas can occur from an electronic
(hardware) point of view could be taken into acdpwaven if they are illogical from the
software behavior point of view, as a malfunctionaiglectronics (sensors, etc.) could cause
an unexpected sequence of test inputs.

In this paper, a Markov chain is represented aguare matrix (called a transition matrix)
with the states as indices and the transition gniibas as entries, to which a time interval
was also added. Considering a software functignaling tested with 3 input signald:,
Domain = {0, 1} 12, Domain = {1, 2, 3} 13, Domain = {0, 1} The template of the transition
matrix for this functionality is illustrated in Rige 7. It is a 7-by-7 matrix where 7 is the
number of all possible values of the functionaiitgut signalg11, 12 and 13) For each entry
in the matrix, two pieces of information are reqdir
1. The transition probability, i.e. the probabilityatithe two inputs are in sequence. The
total of the probabilities in a row must be equallt After selecting an inpytow:
I13=1), test practitioners may either select the sameaga(column: I3=1)or select
another on¢column: 11=0, 11=1, 12=1, 12=2, 12=3, 13=0)
2. The transition time between the two inputs, modegdn interval of possible values
[Tmin; Tmaxd With a uniform probability of being selected fiwe test.

gttt 11 12 13 _
signals - ' A Inputs possible subsequently
Domains QF:’ 011]1/2/3|0/1 ) ___ __ _________
11419 11. Transition probability !
L 1 - —: 2. Transition time I
1
1 : Time interval 1
12 2 I | Probability |
B 1
3 | Z(Transition probabilities) = 1 : 5 Transition time 1
| 0 |
0 1 |
I3 1 | t E » Time :
\ ) : Tmin ’ Tmax 1
_______________ |

Previously possible inputs
Figure 7 — An example to illustrate the transitionmatrix

For each software functionality being tested, teictitioners may design one or more
transition matrices that illustrate the dynamicdebr of the functionality in different usage
circumstances.
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6.2.2 How to design a transition matrix?

One major question is: how can a practitioner deaitransition matrix? The basic solution is
to manually fill in each entry of the matrix withtensition probability and a time interval.
However, a functionality can have more than 20 ingignals and 100 possible values for
these signals. Consequently, a transition matrix easily reach 10000 entries, which
becomes inconceivable to fill in manually!

Whittaker [49] discusses manually building finitate models in a hierarchical fashion. El-
Far [50] describes a framework for automaticallylding finite state models from an
informal specification of the system being testdthere are also some works [51] on
automating the generation of probabilities for Markains. In this paper, a semi-automatic
process to design transition matrices for softwaretionalities is developed. The designed
models may be based on random assumptions, onntheser's behavior, or on the test
practitioner’s experience from previous or simitlvelopment. The design of a transition
matrix does not require much human interventiorsdeation 8.2.2, the time spent in designing
a set of transition matrices for two typical indigdtcase studies is discussed.

The first step involves a manual analysis to classify the inpaftghe functionality being
tested into subpopulations. Classification is basethput type:

» Configuration and calibration: parameters of thecfiomality

» User: user inputs, actuators

» System environment: internal variables

* Sensor: sensor inputs

The second stepconsists in manually selecting a sample of infnais the continuous input
domains (i.e. temperature, speed). Many existinthawmlogies [52] focus on the sampling
problem by using heuristics to determine which inpaiues to consider. In many of these
methodologies, no real attempt is made to meashethsr usage of the software that falls
outside the sample will succeed. A notable excepsiarategory and partition testing [53], in
which inputs are partitioned into equivalence @asshose points are equally characteristic of
the functionality being tested, and it is therefstéficient to test one representative input
from each class. In this study, the partitionin@gtstgy is concurrently based on the software
specification, the code structure, and experts’ kadge:

* A specification-based partition might divide the ubglomain into inputs required to
invoke one or several software features.

A code-based partition might consider inputs that at do not force use of a
potentially bugged data structure (i.e., using lauy values, or using at least one
even and one odd value as inputs, etc.).

* An expert-based partition might consider inputst thave a high probability of
occurring from a usage point of view. For instareleen sampling the “vehicle speed”
variable, it is judicious to select more values a0, 90 and 130 km/h since these
values are the most used in France (French spadd)li

Having classified and selected a sample of the smpiitthe functionality being tested, the
third and last step consists in automatically generating one or mmaesition matrices with

all possible inputs (all inputs after partition) golumns and in rows. The entries (transition
probabilities and time intervals) of these matrigge based on one of the assumptions
discussed shortly below and derived from the wdrBertolino et al. [48]. As highlighted in
Figure 20, these assumptions are complementarp@sthgle type of transition matrix would
be able to detect all the bugs.

A detailed description of how each transition mats populated is provided in a technical
report [31]. It discusses basic software routiries attribute probabilities and time intervals
between successive test inputs, taking into accassumptions and constraints.
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6.2.2.1 Random assumptions

The aim of a transition matrix based on random ragsions is to test the software against

unrealistic input sequences. The two types of tti@nsmatrix presented in this section are

unrealistic from a usage point of view (many of thensitions are not possible). However,

through these matrices, completely random inputesecgs could be generated and therefore
test the robustness of the software against abridr@havior in the inputs.

One solution is to consider that all the sequemtesput signals values to the functionality
being tested are possible and have the same plibpalbioccurrence. This is what is called
the Nominal 1 transition matrix. Another similar siwdn is to consider that all the sequences
of input signals values are possible and thathalibput signals have the same probability of
undergoing a change. This is what is called the idah® transition matrix. Since the aim of
these two transition matrices is to test the bedravi the software against abnormal inputs, it
Is judicious to choose a practical time intervall @iminate any malfunctioning that may be
caused by transition time.

6.2.2.2 End-user profile

There is no better way to test a product thangbiten the way that it will be used. The main
work in this field is that of Musa [54]. He presgrm case for using the operational profile in
software reliability engineering. In this paperframework in order to generate test cases that
simulate the behavior of the end-user of the fuometity is developed. Four types of
constraints were defined. These constraints camdiantiate by test practitioners as many
times as they choose on one or more input signélshe functionality being tested
(operational profile). The four types of constraiate:

» Logical constraintThis constraint prohibits an input signal from ®king between
values that are illogical from a usage point ofwie

e Conditional constraintThis constraint characterizes the correlation betwtwo or
more input signals that do not have any successiowitions on the inputs of these
signals. In other words, when one or more inputssfgaspecific conditions, the
domain of other inputs is adapted (reduced) autcaibt

» Succession constrainkn practical use of an electronic product, twonwore inputs
may have a high probability to chronologically @l one another (and sometimes
necessarily do follow one another). Through thigetyf constraint, such sequential
inputs are modeled.

« Time constraint:Johnson Controls software experts agree that ithe tnterval
between inputs plays a major role in bug detectifither two specific inputs can be
executed within a specific time interval or a senglpecific input can be executed
during a specific time interval. Through this typeconstraint, such specific timing
behavior is modeled.

These constraints are static and independent. @lmeyat reducing the number of possible
combinations of input signals and more rigorousiyppinting the combinations that are
frequently seen once the product is launched omthgket. Once identified and manually
designed by test practitioners, they are autonibticaplemented into a transition matrix
called End-user Profile transition matrix. In othewords, the entries (transition probabilities
and time intervals) of this matrix are automatigalefined based on the constraints that the
test practitioners have already set on each ingaak An End-user Profile transition matrix
makes it possible to generate test cases wherdacdlogfrom the end-users’ viewpoint)
sequences of inputs are eliminated and typical segseof inputs are favored.
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6.2.2.3 Management of stored bugs

In the proposed approach, stored bugs are resumdén to generate test cases that prove the
non-existence of recurrent bugs. When testing a tifumality in a new project, test
practitioners may go to a database and selectigf betected in this functionality in previous
projects. Each bug is automatically translated mttvansition matrix called Bug transition
matrix, where sequences of inputs that reveal ébarrent bugs are favored. This proposal is
mainly based on the assumption that a standardatem (see Figure 8) is used to describe
the initial conditions and the sequential inputst lead to detection of a bug. In Figure 8, an
illustration on how the “problem description” altte of a bug should be described is given.
In Step 7 of this problem description, the obsereetiput values are different from the
expected values (this is a symptom of the bug)lo&gary of the input signal names used in
the previous and current projects is also necesddrg test cases generated from Bug
transition matrices make it possible to check f@ bugs that were detected in the past, in
order to see if they are present or not in theerunproduct.

Problem description

Initial inputs values | 11=1;12=1;13=0
Step 1
Test input #1 11=0
Transition time (ms) 50
Expected outputs values 01=0; 02=0
Observed outputs values 01=0; 02=0
Step 2
Test input #2 11=1
Transition time (ms) 200
Expected outputs values 01=0; 02=0
Observed outputs values 01=0; 02=0
Step 7
Test input #7 13=0
Transition time (ms) 150
Expected outputs values 01=1; 02=0
Observed outputs values 01=1; 02=1

Figure 8 — Problem description of a stored bug

6.2.2.4 Reuse of stored test cases

Using stored test cases seems to be beneficibkiautomotive context, since more than 50%
of functionalities performed by software producte aommon to any series of cars. In the
proposed approach, test cases developed in the gpastutomatically analyzed and a
transition matrix called Test Case transition nxatis automatically generated for each
functionality. This matrix attributes high probatis to the succession of inputs regularly
executed in the stored test cases. It also contlanset of time intervals applied between each
pair of inputs. Consequently, when generating ¢astes from these matrices, test scenarios
will be based on the experts' experiences. Thegs@pto reuse existing test cases from
previous projects is based on the assumption thatigue test case format is used. This
format is independent from the test execution ptatf and is defined in a technical report
[31]. The proposed approach uses also this fororathe generated test cases. A glossary of
the input signal names used in the previous aneuprojects is also necessary.

6.3 A test generation algorithm

Automatically generating a test case from a trasinatrix requires generating a set of test

steps until a stop criterion is reached. Test caaasbe generated offline and later executed,
or they can be generated and executed online. ©gkmeration of tests means that the test
generation tool is directly connected to the sofemander test and tests it dynamically (see
Figure 3). Each generated test step is directlycuteel on the software under test. This

assumes that the interface between the test gemeaaid execution platforms is setup.
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In what follows, a detailed description of how attstep is designed is given. Designing a test
step requires the selection of an input and tramsitime, and the prediction of expected
results that will be checked against the outpubalgy of the software being tested. In the
proposed approach, two automated activities aressacy to generate a test step; they are
discussed hereafter and illustrated through an pleaim Figure 9.

6.3.1 Activity 1: Perform a Monte-Carlo simulation

In order to choose an input and a transition tim&lonte Carlo simulation is automatically
performed on a transition matrix. Two steps areirequ
« Step 1:an input is chosen according to its transitionbpiulities in the transition
matrix. This technique is known as the statistieating technique and was developed
decades ago (see Marre et al. [55] for a thorougitrigiion). Before starting the
generation of a test case, the input signals ofstifevare being tested are set to
specific values (initial values). Therefore, tharshg input of the test case may be 1)
randomly chosen among these initial values or 2sehdy a test expert in order to
favor a specific sequence of inputs at the begmroh the test case. The test
practitioner may set probabilities in the transitioatrix that are intended to drive the
selection of specific inputs. In practice, this niay useful when the software being
tested requires specific conditions (engine switglun, etc.) in order to be completely
functional.
» Step 2:a transition time is randomly chosen within thadiinterval of the selected
test input. Test coverage in the transition timevieen two inputs could be ensured by
several test cases.

6.3.2 Activity 2: Run the test oracle (executable softwag specification)

The chosen inputs are set as the input signalbeotest oracle, and a run of the test oracle
(synchronized with the cycle time of the “clockysal) is performed until the transition time
has expired. The values of the output signals eftéist oracle are the expected results of the
test step being designed.
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Test Oracle

Process

& f Transition matrix
ow )
Choose the next input
TeSt Case “11=0"is the data according to the
starting input data probabilities
|
. [ 11 | 12 13
Start_mg valyes on \ll 3 1 1 V% 3 3 1
the input signals —I 0,033 0,8 0,033 0,033 0,033 0,033 0,033
| [200.400] | [200.400] | [200.400] | [200.4001] [ [200.400] | [200.400] | [200,400]
0,14 0,14 0,14 0,14 0,14 0,14 0,14
1] 1200,400] | [200.400] | [200,400] | [200.400] | [200,400] | [200.400)] | [200.400]
Test oracle 01=0 .| o1 0,14 0,14 0,14 0,14 0,14 0,14
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_ [200,400] | [200.400] | [200.400] | [200,400] | [200,400] | [200.,400] | [200,400]
so_ft_war_e %0 5| o014 0,14 0,14 0,14 0,14 0,14 0,14
specification) 1200,400] | 200 200y | Foe—=L1200 400] | [200.400] | [200.400] | [200.400]
of O 014 Probability=0.14 014
3 [603?20] [603’3201 Time interval=[200,400] (in ) [603"3201
Test Case 1] 200,400] | [200.400] | [200,400] | [200.400] [ 200,200} [ [200,400] | 200,400
Test Step No Test Actions | Expected Results
Stepl: "I1=1"is the chosen input data (high probability — 0.8)
Step2: A transition time is randomly chosen within [200,400] (250 ms)
[ 11V 12 13
0 1 2 3 0 1
V 0,033 0,8 0,033 0,033 0,033 0,033 0,033
12 I8 1200.400] | [200,400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400]
11=1 .| o014 0,14 0,14 0,14 0,14 0,14 0,14
0,1 y - [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
{ > Test oracle 01=0 Act|v|ty 1 AN 0,14 0,14 0,14 0,14 0.14 0.14
12=1 (executable — [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
{1,2,3}—>| Perform a Monte o] o1a 0,14 0,14 0,14 0,14 0,14 0,14
_ software 02=0 Carlo simulation [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
13=0 specification) > 5| 014 0,14 0,14 0,14 0,14 0,14 0,14
{01} ——>| p [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
o o1a 0,14 0,14 0,14 0,14 0,14 0,14
13 || 1600.900] | [600.900] | [600.900] | [600.900] | [600.800] | [600.900] | [600.900]
0,14 0,14 0,14 0,14 0,14 0,14 0,14
Test Case 1| (200.400] | [200.400] | [200.400] | [200.400] | [200,400] | [200.400] | [200.400]

Test Step No Test Actions Expected Results

11=1
1 .
Wait 250 ms Choose the next input data
PO according to the probabilities
11=1"is the last (generation of the next test step)
chosen input data
11 12 13
\ 0 T 1 2 3 0 1
v 0,033 0.8 0033 | 0033 || 0033 | 0033 | 0,033
n [200,400] | [200.400] | [200.,400] | [200,400¥| [200,400] | [200.400] | [200.,400]
1=1 - 0,14 0,14 0.14 0,14 0.14 0,14 0,14
01 ——=|  Testoracle 01=0 Activity 2 I B P B BT I
|2:1 (executable > Run the test Oracle [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400] | [200,400]
> 0,14 0,14 0,14 0,14 0,14 0,14 0,14
{1'2’3}|3 0 software (executable software 21 2] 1200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400] | [200.400]
= e specification 0,14 0,14 0,14 0,14 0,14 0,14 0,14
{0,1} ——> specification) P ) 3| (200,400] | [200.400] | [200,400] | [200.400] | [200.400] | [200.400] | [200.400]
0 0,14 0,14 0,14 0,14 0,14 0,14 0,14
1312 1600.900] | [600.900] | {600,900 | {600,900 | (600,900 | (600,900} | [600,900]
1 0,14 0,14 0,14 0,14 0,14 0,14 0,14
Test Case [200,400] | [200,400] | (200,400] | [200,400] | [200.400] | [200,400] | [200,400]
Test Step No TestActions Expected Results
1 11=1 01=0
Wait 250 ms 02=1

Figure 9 — An example to ill process ajenerating a test step

7 Research topic 3: Stop testing Crliteria
7.1 Literature review

Exhaustively testing software and being sure thigtlbug free remains a major problem from
a computational point of view. In other words,sitvery complex, even impossible, to test all
the inputs, combinations of inputs, and paths «fofiware. Several stopping criteria are
proposed in the software testing literature. A ptog criterion based on stochastic similarity
iIs proposed by Whittaker [56] and refined by Sajg€é]. A stopping criterion based on
estimated reliability and confidence is proposed_lifewood [58]. A cost-benefit stopping
criterion based on estimates of the errors remgimrthe product and the cost to repair them
both before and after release is proposed by 38l A more sophisticated version which
includes costs due to lost business and customssatiifaction is proposed by Chavez [60].
And finally, stopping criteria based on test cogerare presented by Offutt [61].
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Determining when to stop testing and release soéwsaan important management decision.
There is always a necessary compromise betweedettision to continue testing or to stop:
(a) if testing stops too early, many bugs remaimj ¢hus supplier incurs losses due to
customer dissatisfaction and the cost of laterfiptiigg — the cost of fixing a bug after release
is higher than the cost of fixing it while testindp) if testing continues up to the maximum
allowable time, then there is the cost of testiffgreand loss of business. In an industrial
context, software testing is often based on speagsumptions and objectives that help test
practitioners and managers to decide when to s&petsting protocol.

7.2 An aggregate stop testing criterion

In the automotive industry, structural and functibnoverage of software are major quality
indicators required by carmakers. In order to nwnihe automatic generation of each test
case:
* an objective function based on formal structural famattional coverage,;
* aconstraint function based on test execution cost;
* and an optimization algorithm which aims to fulttle test objectives while respecting
the cost constraints.

were developed. Consequently, a panel interface Rggure 16) that allows test practitioners
to set the test generation objectives and conséraiete proposed. A set of weiglfig) that
test practitioners may apply to each defined ohjeadr constraint: O (to be ignored), 1 (not
very important), 5 (important), 10 (very importamigre also defined. The panel helps test
practitioners express their objectives and congan terms of the required test coverage and
cost and therefore generate test cases fulfilliegr expectations.

The objective functionfF-opjeciive 1S defined as:
Fo = Z\StrucCovTege; —StrucCovCrrent \ X W +Z‘ FuncCovTaget — FuncCovCurent, | xw;

bjective —
L ) U J
Y Y

Structural coverage Functional coverage

where StrucCovTargetand FuncCovTarggtare the coverage goals as defined by the test
practitioners,StrucCovCurrentand FuncCovCurrentare the coverage ratios reached by the
test case under design, ang@ are weights. The structural coverage is measurddrms of
statements, procedures, conditions and decisionerage of the tested software. The
functional coverage is measured in terms of elesmddT and FSM), signals domains and
transition matrices coverage of the formal speaifan (test oracle). The structural and
functional coverage are expressed in terms of ratiaverage and are then normalized in
order to reach a value of 100%. A detailed dedomnpbf the structural and functional
coverage metrics is provided in a technical re[8i}.

The constraint functiorkconstrains 1S defined as:
F = |ConsTarget-ConsCurret, | w,
k

Constraint
where ConsTarget are the values of the constraints as defined bytéke practitioners,
ConsCurrent are the values of the constraints in the test baseg designed, anas are
weights. When generating a test case in the propapproach, test practitioners can set a
group of cost constraints to be respected:

» Constraint 1:Execution time. The time that a test practitiomdl spend in manually
executing the generated test cases on the soffwadkict. For instance, if the test
practitioner has 1 person day (pd, where 1 pd =ofkwours) to manually execute the
generated test cases, the execution time (i.g¢othkeof all the transition time) of these
test cases should not exceed 28800000 ms (8h x@la x 1000ms).

» Constraint 2Number of test steps in the generated test case.
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» Constraint 3Number of “distinct” test steps in the generatest tase. Two test steps
are distinct if they have different inputs.

In order to have a consistent aggregate constfamtdtion FEconstrain), the cost constraints
were normalized to 100%. These constraints areesspd in milliseconds (ms) and in
number of generated test steps, respectively. Ifdi@ving, the normalization process of
these constraints is illustrated through an exanteh time test practitioners decide to set a
constraintk, the normalized target of this constraBdnsTargetis immediately set to 100%.
For instance, once a test practitioner decideseimeiate a test case for which the total
execution time does not exceed 108000 tagyét_constraint_value the normalized target
of the test execution time constraint is set to 1q@¥nsTarggtarget_constraint_value¥
100%). After generating a set of test steps, thenabzed current value of this constraint
(ConsCurrend IS assessed by calculating the ratio
(current_constraint_value*100/target_constraint_valu&/hen generating a set of test steps
with a total execution time of 21600 ms cufrent_constraint_value
ConsCurrent(current_constraint_value) is assessed to be (21600*100)/108000
(ConsCurrent(current_constraint_value)20%).

Throughout the proposed approach, the automatierggon of tests (performed used a
Monte Carlo simulation process) is monitored by agtimization algorithm based on a
combination of simulated annealing and look-ahetdtegyies [62]. The aim of this
optimization algorithm is to reach the test coverajectives in the most efficient manner
possible while respecting the cost constraints ashnas possible. During a test case design
session and after each test step design, functmnadrage of the formal specification (test
oracle) is assessed. The coverage rate of thetioansatrix from which the inputs have been
selected is also considered. If the designed tegtdoes not contribute to functional coverage,
it is rejected, and a new test step is designethdncase of online test case generation, the
retained test step is executed on the softwareuptdzking tested, and the structural coverage
is updated. At the end, the objective and congtrhinctions are assessed. As the test
coverage objectives may be fulfilled in differenters, the first objective fulfilled does not
immediately stop the process. The process is stbpgen one of the following criteria is
met:

(1) The objective functiorfFopjecivd iS €qual to zero. In other words, the target cayes
are reached.

(2) The constraint functionFconstrain) iNCreases for a certain number of successive
generated test steps without any improvement inotijective function(Fopjeciivgd. In
this case, additional test cases should be gederdtee one that fulfills the test
objectives shall be selected. If none, the testrameeof the generated test cases could
be combined.

8 Implementation, validation, and impact of the propsed approach in a
real industrial context

In this section, the proposed approach is assemse@al industrial data coming from an
automotive electronic supplier called Johnson GastrTwo industrial case studies with
historical data were considered. Each case studsiders one software functionality that has
already been developed and validated (unit andocor@nce testing) in the past with the
V&YV techniques currently used in the automotiveustly and developed in section 2.2. For
each delivery to the carmaker with the software tionality updated, historical data on the
time spent to validate this functionality and on theys detected by the supplier and by the
carmakers are available. The first version of the software components (corresponding to
the two functionalities) as they were delivered thoe first time by the development team to
the validation team was treated. The version otHrenaker requirements of this functionality
at the moment when the software components weneeded for the first time to the carmaker
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was also analyzed. For each functionality, at testing level, the proposed model-based
statistical approach was executed to automatiqgdiyerate functional test cases, and the
performance of this approach was assessed agham&ixisting one. The test execution was
automated in a simulated environment [2]. Sincertherface between the test generation and
execution platforms was not yet developed, tesesasere generated offline and later
executed. The performance of the proposed appnvashquantitatively measured using two
metrics often used by carmakers to assess theilistgapability: 1) the number of bugs
detected downstream in the process (after delieaycarmaker) and 2) the time spent before
delivering the software (testing and debugging Jime

8.1 Introduction

8.1.1 Selection of the two software functionalities

Selection of the software functionalities is dacaand many criteria guide this choice
(products, carmakers, management teams, developteamts, validation teams, levels of
complexity, and software specification languagéspe heart of the proposed approach is the
design of an automated test oracle based on amutakée software specification. Therefore,
one important criterion in choosing the functiohiad in the two case studies was that they
exemplify the diversity of carmaker software speaifion languages. These case studies
would prove that whatever the language used bycHrenaker to specify their software
functional requirements, the proposed approach beaysed to automatically generate test
cases. Based on this criterion, the front wipercfiomality of a body controller module and
the fuel gauge functionality of a car dashboardensrosen. A body controller module is an
electronic product that manages the entire intecimalit of a car (door lock, lights, electrical
windows, etc.), and a car dashboard is a contmélgacated under the windshield of the car.
These two products were developed for the sameatambut not for the same car platform,
and therefore the carmaker’s integration teams wetethe same. The software functional
requirements of the front wiper were specified foranal language (Statechart) while those of
the fuel gauge were specified in an informal antunma language (textual language). An
excerpt from the software functional requiremeritshe front wiper is given in Figure 10
(Input/Output variable list) and Figure 11 (Expektbehavior specified using a state
machine).
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Figure 10 — Input/Output variable list of the front wiper functionality (this figure is
voluntarily fuzzyfied for confidentiality reasons)
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Figure 11 — An extract from the expected behaviorfahe front wiper functionality as
illustrated by the carmaker (this figure is voluntarily fuzzyfied for confidentiality
reasons)

The respective sizes of the software componentdajese for these two functionalities were
1229 and 1500 Lines of Code (LOC). These functitiralwere validated in 2005 and 2006,
respectively, by two different teams of the autametelectronics supplier in two different
locations (countries).

8.1.2 Historical data for the conventional approach

8.1.2.1 Bug detection

The distribution of bugs detected in the two fuoicélities using the conventional approach is
illustrated in Figure 12. These bugs are relatatieéanternal behavior of these functionalities.
Between the first and last deliveries to the carmakelusive, 22 bugs were detected in the
front wiper software functionality, and 23 bugstirat of the fuel gauge. These bugs were
detected in the two functionalities before (by digrpgesting) and after (by carmaker testing)
the deliveries to the carmaker. Considering thatfreiper example in Figure 12; 17 bugs
were detected in the supplier testing phases abhdgS by the carmaker after intermediate
delivery. It must be noted that, after developihg tront wiper software functionality for the
first time, only 12 bugs were detected during thst ftesting phase. Therefore, a delivery
ensued, and the carmaker immediately detected 2 fmogs. In the meantime, before the
second delivery, test practitioners tried to imgrdiveir existing test cases and design new test
cases. Consequently, they were able to detect awre bug; after the second intermediate
delivery, no new bug was detected by the carmdkar.the fourth intermediate delivery, no
new test cases were developed. The complete sceoftug detection through the last
delivery to the carmaker for the two functionabtis summarized in the histograms in Figure
12.
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Figure 12 — Distribution of bugs detected throughotthe deliveries to the carmaker —
conventional approach (manual test design)

Among the bugs detected in the two functionalitE’, areCoding and typographicad5%
are Control flow and sequencin@5% areData definition, access and handliagd 25% are
Processing Moreover, some are considered to be more crititcah others. Severity and
occurrence are two attributes of most bug model$. [B8verity refers to the severity of a
resulting or potential failure on the behavior ok tentire product, whereas occurrence
describes the probability that a failure appearssef of definitions for each of these two
attributes was proposed by Johnson Controls softegperts (see Table 1).

Severity Occurrence (probability)

Secondary— cosmetic failure, not customer| Once (< 1%) — low probability, unlikely
relevant failure

Very Rare (> 1% and < 5%) — low

Minor — cosmetic failure, customer relevant - .
probability, few failures

Rare (> 5% and < 10%}) moderate

Major — workaround exists . ) .
probability, occasional failures

Often (> 10% and < 100%) — high

Critical — no workaround exists probability, repeated failures

Catastrophic — system crash of the vehicle

. . Systematic(= 100%) — failure unavoidable
system (risk of person injury)

Table 1 — Severity and occurrence attributes as dieed by Johnson Controls software
experts

According to these experts, despite these defigtiahe attribution of a severity and
occurrence for a bug detected internally remaisslgective question. Most test practitioners
do not have a global view of the system that allthvesn to assess the impact of the detected
bug on the end-user. However, the severity androsoece of bugs detected by the carmakers
are closer to reality since the carmaker is the whe sets the specifications. On the other
hand, the carmaker tends to overstate the criycah the bugs in order to have a faster
response from the supplier. For the front wipercfiomality, about 76% of the total bugs are
(Minor, Systematic), and for the fuel gauge funaélity, about 72% of the bugs are (Major,
Systematic). These results could be explained byfdht that the functionality of managing
the fuel level in a car is more critical than tlekhtmanaging the wipers. As a consequence,
bugs in the fuel gauge functionality are considdretde more critical than those in the front
wiper functionality.
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8.1.2.2 Testing time

In Figure 13, the time spent by the two differenidation teams in order to test the software
components (developed by two different developnteamns) of the two functionalities using
conventional testing techniques is depicted. Thmmetivities are:

* Analyze the carmaker requirements

» Design the test cases

» Execute the test cases and analyze the results

* Address the bugs detected internally (before defite the carmaker) and by the

carmaker

50% (29.5 and 27 pd) and 10% (6.75 and 7 pd) ofdted testing time were spent manually
designing the test cases and managing the bugstetktey the carmaker, respectively. Using
the current testing practices of the automotiveusty, approximately 54 pd were spent
testing the front wiper and 50 pd testing the fysige (see Figure 13).

0O 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Eight-Hour days Eight-Hour days

501

53,751
1
1

Fuel gauge functionality

Front wiper functionality
1

— Time to analyze carmaker requirements
=~ Time to design testcases
“ Time to execute and analyze the results of test cases

II'Time to manage bugs detected by the supplierand by the
carmakerlaterin the process

Figure 13 — Total time spent in testing the two fuationalities — conventional approach
(manual test design)

8.2 Experiment

For each of the two case studies, four stages wecessary to automatically generate test
cases using the proposed MBST approach. Test cases generated offline and later
executed. Thdirst stage consisted of designing automated test oraclesc(gable software
specifications) for each of the software functiamed being tested. Theecond stage
consisted of designing one or more transition roagrifor each of the software functionalities
being tested. Théhird stage focused on tuning the automatic generation of ¢ases. The
fourth and last stage consisted of generating test cases and then émgciitem on the
corresponding software components.

In the text that follows, the results of completitigese four stages for each of the two
functionalities described above are detailed. Teéamt performing the experiment was
composed of two individuals: an automotive testcptianer and an inexperienced engineer.
During the experiment, advice from other Johnsontf@ds automotive experts was taken into
account.
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8.2.1 Stage 1:Design automated test oracles (executable softwaspecifications)

Four steps were necessary for designing an autdntegé oracle for each functionality. The
first consisted of analyzing and understandingstbfévare specifications. A loop process was
initiated with software experts internal to John&ntrols in order to understand and clarify
the specification. The second step consisted dtkkey the test oracle “on paper”. The input,
output, and intermediate signals and the featiesi§ion Tables and Finite State Machines)
for each functionality were identified. Then, edehture was developed by identifying all the
states, transitions, and conditions. The third step the computerization and verification of
the test oracle via a software routine specified tachnical report [31]. The final step was the
validation of the test oracle. During the verifioat and validation steps, a total of 15 and 50
anomalies were found in the test oracle of thetfmeiper and fuel gauge functionalities,
respectively. The time spent in completing eachtlese designing steps for the two
functionalities was accounted for and is summarin€thble 2.

. Front wiper Fuel gauge
TS e (o) functionality functionality
Analyze the software specification 3 3
Sketch the test oracle “on paper” (manua 5 7
verification)
Computerize the test oracle (automatic 12 6
verification)
Validate the test oracle 5 20
TOTAL 25 36

Table 2 — Time spent in designing, verifying and Jalating the automated test oracles
for the two functionalities

Theverificationand validation steps are very time consuming wirttgan expert evaluate the
correctnessgainst his domain knowledge. For the front wiged fuel gauge functionalities,
they accounted for 22 pd (5 + 12 + 5) and 33 pd 67+ 20), respectively.

The automated test oracle designed for the fropemfunctionality is provided in Figure 14.
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Figure 14 —Automated test oracle designed for thednt wiper functionality (this figure i

Decision Table

Intermediate signals

Input Signals

Dutput Signals

AUTO_WIFE_RELIABLE

R_W_INT_BT_DRIVER

STAMDARD_INT TIME

Finite State Machine

Sreset

=0.00 =8.00
=0.00 =4.00
=0.00 =1.00
=0.00 =14.00

RAIN_SENSOR_FAILURE_DTC

WASHINGCOMMAND

FRONTWIPINGREQUEST

ENGINESTATUS

VEHICLESPEED

TEMPERATURE

WIPINGCOMMAND

T

Output signals
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8.2.2 Stage 2:Design transition matrices

There were 9604 entries (98x98, where 98 is thebeuraf possible functionality inputs) in a
transition matrix for the front wiper functionalitgnd 7921 (89x89) for the fuel gauge
functionality. Entering them manually would haveebentractable.

According to Johnson Controls software expertstirggtassigning random test inputs
(Nominal transition matrices) to the fuel gauge tiorality does not make real sense. Thus,
the two Nominal transition matrices for the frontpar functionality were automatically
generated using a software routine specified chrtical report [31]. Based on assumptions
from the Johnson Controls software experts, onadsta time interval ([100; 400] was
defined, the mean time interval between two openaticarried out on an automotive
electronics product, in milliseconds), and was &gabto all sequential inputs. Based on these
matrices, “quasi” random sequences of inputs weregated.

However, as stated in section 6.2.2.2, there iseal o test the input sequences recurrently
executed by end-users. Therefore, a group of Joh@satrols software experts were asked to
set some of the constraints developed in sectio2.@.®n the input signals of each of the two
functionalities. Based on these constraints, an-uSsd Profile transition matrix was
automatically generated for each functionality,ngsia software routine specified in a
technical report [31].

A study on the bugs detected in the past on funalites similar to the ones being tested in
these case studies was also performed. The frgarviiinctionality had been developed in 4
different projects since 1997, in which a total5&f bugs were detected. Unfortunately, the
behavior and concept of the fuel gauge functiopaltd thoroughly changed in recent projects
and it was therefore irrelevant to reuse storedsbagd test cases. One difficult task
concerning the front wiper functionality was reeisng the “problem description” of the 55
identified bugs using the format illustrated in tiig 8. Based on advice from the Johnson
Controls software experts, the 10 most critical omgth enough information to formulate
their “problem descriptions” were only considerédterwards, the 10 corresponding Bug
transition matrices for the front wiper functiotgliwere automatically generated using a
software routine specified in a technical repor{[31

Finally, the test cases already developed in thet fma functionalities similar to the ones
being tested were gathered. As stated beforecéssts on the fuel gauge functionality could
not be reused, and therefore the efforts were &mtus the front wiper functionality. In the
past, test practitioners have designed many testsc@about 2000 test steps) in order to test
this functionality. Using these test cases, ond Tase transition matrix for the front wiper
functionality was automatically generated usingofivgare routine specified in a technical
report [31].

A summary of the number of “transition matricessdmed for the two functionalities is
presented in Table 3. The time spent in desigriiegéd transition matrices was measured and
is also summarized in Table 3. Just identifying anebaring the stored bugs and test cases
took about 1.5 pd.

Front wiper functionality | Fuel gauge functionality
03 ca Nominal 2 0
o @ .
S 550 End-user Profile 1 1
Sn 2%
g é E g Bug 10 0
= Test Case 1 0
Time sper_1t_ in deS|gr_1|ng these 2 pd 0.5 pd
transitions matrices

30




Table 3 — Transition matrices designed for the twounctionalities

An illustration of two Nominal transition matrices provided in Figure 15. These are the
Nominal 1 and 2 transition matrices of the examisstrated in Figure 6. lllustrating the

transition matrices of the front wiper or fuel gaugnctionalities could be illegible due their
thousands of entries.
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Figure 15 — An illustration of two Nominal transition matrices

8.2.3 Stage 3:Tune the generation of test cases

Three questions were raised at this stage of therarent:
1. From which transition matrix do we start generatiesgf cases?

It was planned to generate test cases from thetimmmatrices in the following order: first,
from the Bug transition matrices in order to enghi the software is free from bugs similar
to the ones already detected in the past; second thhe Test Case transition matrices, which
are suitable for bug detection, since they aredasea test practitioner’'s experience; third,
from the End-user Profile transition matrix, whigims to check that the software fulfills the
end-user (driver) expectations; and finally, frone tNominal transition matrices, in which
improbable successions of test inputs are genemtedder to check the robustness of the
software. These test generation principles wereudsed by Frankl et al. [64]. The authors
highlight the two main goals in testing softwarg:td achieve adequate quality by detecting
the maximum number of bugs possible (debug testByp, Test Case, and Nominal
transition matrices), 2) to assess existing qualitgl increase confidence in the software
reliability (operational testing: End-user Profitansition matrix).

In section 8.2.2, it is noted that only End-usesfiy “transition matrix” was designed for the
second case study. Therefore, for this case stadiycases are only generated from the End-
user Profile transition matrix.

2. How do we tune the test coverage objectives anddleconstraints?
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Before generating test cases from a transitionirydtre objectives and constraints shall be
defined. According to the type of transition matruidelines for defining the test coverage
objectives and the cost constraints were propcsael Table 4). The problem of when exactly
to stop testing depends on the adequacy of theitiansnatrix, coverage objectives and

constraints.

Type of transition
matrix

Objectives guidelines

Constraints guidelines

Bug and Test Case

100% coverage of the transition matrix

The number of test step

End-user Profile

100% coverage of the input sigdalsains

and the execution time ¢

Nominal

100% coverage of the transition matrix a
of the whole test oracle

the generated test cas
nddepend on the context
(budget, planning,

Df

D

~+

resources) of the projeq

Table 4 — Guidelines for defining the objectives ahconstraints of test case generation

For instance and in case of generating test cases dn End-user Profile transition matrix
(see Figure 16), an objective of 100% coveragehefimput signals domains should be set.
The constraints should be set based on the propetext: a budget of 1 hour (3600000 ms)
of manual test execution has been scheduled.

Objectives

Constraints

/

5
| Weights
Functional Coverage Objectives

— Elements coverage ﬂl
DT Condition Coverage % ID ID
F5Sh State Coverage % ID ID
F5M Transition Coverage 4 |D |D
FSM Condition Coverage % ID ID
DT Critical Condition Coverage k4 |D |D
F5SM Critical State Coverage % ID ID
FSk Critical Transition Cowverage % |D |D
F5M Critical Condition Coverage % |D |D

— Signals domains coverage
Inputs domains Coverage & I‘IDD |1 1]
Outputs domaing Coverage x |D |D
Intermediates domaing Coverage % ID ID
Inputs boundaries Coverage 4 ID IU
Outputs boundaries Coverage % |D |D

\al

<

N—

Intermediates boundaries Coverage 4 |D

— Operation matrix coverage

Successive 2-Operations Coverage % |D

Critical successive 2-Operations Coverage 5 ID

Structural [Code] Coverage Objectives

Code statements Coverage b4 ID

Code procedures Coverage b4 ID

Code conditions Coverage & IU

Code decisions Coverage % |g

Tests Cost Constraints

Test Case simulation Time [x1] ms

|3500000

Test Step Mumber ID

Distinct Test Step Number |g

Figure 16 — An illustration of the objectives and onstraints when generating test cases
from an End-user Profile transition matrix
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Since test cases are generated offline and lagguéad, objectives are set only in terms of
functional coverage. The same weigh(1, 5 or 10) were also considered for all the cage
goals. The objective function of section Fpjeciive IS therefore defined as:

Fobjective = Z‘ FuncCovTaget — FuncCovCurent,|xw
J

Finally and since test cases are automaticallywgrecin a simulated environment (host PC),
no constraints were set in terms of number ofdesis or execution time of the generated test
cases. The constraint function of section F@nstains 1S therefore defined as:

F =0

Constraint

3. How do we tune the parameters of the optimizatigordhm?

After defining objectives and constraints, the wtiation algorithm of the test case
generation was tuned. In this paper, these parasnetre tuned based on the traditional try-
and-test protocol. The purpose is to better fuliild respect the test coverage objectives and
the cost constraints. 1 pd was spent in adjuskiage parameters for the two case studies.

8.2.4 Stage 4:Generate and execute the test cases

The generation of test cases was carried out atitwatip and offline using a software routine
specified in a technical report [31].

For the front wiper functionality, the followingsli of test cases was generated:

e 10 test cases (one test case from each Bug t@ansitatrix). Each test case is about 10
test steps. For each test case, objectives wdiéetliat 100%.

e 6 test cases from the Test Case transition mdiach test case was about 400 test
steps and none of them fulfills at 100% the tegéalves. After combining the test
coverage of these test cases, objectives werdddlat 99%.

e 6 test cases from the End-user Profile transitiatrimn Each test case was about 1000
test steps and none of them fulfills at 100% tls¢ tdbjectives. After combining the
test coverage of these test cases, objectivesfuléhied at 70%.

* 6 test cases from the Nominal 2 transition matgxch test case was about 10000 test
steps and none of them fulfills at 100% the tegéailves. After combining the test
coverage of these test cases, objectives werdddlat 90%.

For the fuel gauge functionality, only 6 test cagese generated from the End-user Profile
transition matrix. Each test case was about 300steps and none of them fulfills at 100%
the test objectives. After combining the test cager of these test cases, objectives were
fulfilled at 90%.

An extract from a test case generated for the fnopér functionality is provided in Figure 17.
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One test case was generated based on each Bugjarangtrix. A test case of about 10 test
steps was enough to fulfill the objectives and t@ansts defined in Table 4 in the case of a
Bug transition matrix. For each Test Case, End-&sefile, and Nominal transition matrix,
more than one test case were generated since iewaslifficult to generate one test case that
fulfills the defined objectives 100%. The lengthaofest case (number of test steps) depends
on the level of difficulty in reaching the definaxbjectives. Even with a test case with
thousands of test steps (Cf. Nominal 2 transiti@trix), it was difficult to fulfill most of the
objectives using a test generation algorithm baseda Monte Carlo simulation on the
transition matrix. As a consequence, 6 test cagees generated from each transition matrix
(with the same objectives and constraints). Thisuets the repeatability of the results in
terms of objective fulfillment since the 6 test @aseached the predefined objectives with a
small standard deviation of 10%. In future workse(section 9), it is planned to develop a
new and complementary test generation algorithmftdzases on fulfilling the test objectives
(i.e. covering non-covered zones of the softwaeei§igation).

The generated test cases were executed on thednsbn of the two software components
corresponding to the two software functionalitiesnly tested. All the generated test cases
were feasible (i.e. executable). The test cases awetomatically transcribed into a unit test
language (computer-readable) by using a Visual Basacro [2] and then automatically
executed on a unit test execution platform. In,fatk the dependencies and connections
between the software components are simulated orputer in order to isolate the tested
component from the whole product. The abstract ihofithe unit test execution platform is
illustrated in Figure 18.

Output F(A, Z)

Software component

under test
(internal state z)

InputA

Figure 18 — Abstract model of the unit test executn platform [2]
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The unit test uses the inputs and outputs of thevacd component under test. Test cases
should know expected output F when input A is agapliThe presently produced output has to
be compared with the expectation. If they do notcimaan error should be generated in the
test report.

It is important to note that the time to generatd axecute test cases was trivial from an
automotive industry point of view. It is estimatéal be 500 test steps per minute. This
estimation is given for reference only becauseejiathds on many factors (CEUransition
times of the test steps, parameters of the optiroizalgorithm, and so forth).

Each time an anomaly was detected, it was analyzedder to identify its origin among the
following possibilities:
* A bug in the test oracle.
* A known bug in the software component, which thstitg phases of the supplier or
the carmaker had already detected (respectivalyd(] in Figure 20).
* An unknown bug in the software component, which hatlyet been detected by the
testing phases of the supplier or by the carmakean Figure 20).

Two instances of test execution were performed ralfed

1. The first followed the test generation order reasbm section 8.2.2. Whatever the
origin of the detected anomalies, the bug was ctede before continuing the
execution of the remaining test cases.

2. The second did not follow any predefined order @nsition matrices; before
executing the test cases associated with eachttoanshatrix, the first version of the
software components being tested was considerednWkecuting the test cases of a
transition matrix, whatever the origin of the dé¢ecanomalies, the bug was corrected
before restarting the execution of the remainingf ases of the same transition
matrix. This highlights the need of each type ahgition matrix.

The correction of anomalies was instantaneous asdnaed to be perfect. Since the test
generation and execution were automated, theydatideguire any human intervention (0 pd).

Ten pd were spent in analyzing the execution resflthe first case study, and two pd were
spent in doing the same for the second case stinily.time is proportional to the number of

executed test steps (front wiper: 68500 test stapsgauge: 900 test steps).

In section 8.3, the experimental results (in teohdug detection and time spent on testing
activities) of the two instances of test execut@me analyzed and discussed. They are
compared to results obtained with the conventiaparoach (see section 8.1.2).

8.3 Analysis of experimental results

8.3.1 Increase the number of bugs detected earlier in theoftware life cycle

On the one hand all the generated test cases (in the order dkfinesection 8.2.2) were
executed on the first version of the software coneptg of the two functionalities. A total of
29 anomalies were detected in the first case stindy35 anomalies in the second one. About
17% (5 out of 29) of the anomalies detected inftbat wiper functionality were related to
bugs in the test oracle, as were about 49% (16f085) of the anomalies detected in the fuel
gauge functionality. This may be explained by thet fthat the test oracle could not be
exhaustively validated, especially the case whegecarmaker requirements were expressed in
informal language. An in-depth analysis of the rammg anomalies ((29-5) and (35-17)) leads
to the following three main conclusions (see FigL@§

1. Firstly, 86% (19 out of 22) of the bugs alreadyedétd by the conventional testing

phases in the first case study were detected. 18%\t of 23) in the second one. The

! Central Processing Unit

35



remaining 8 bugs ((22-19)+(23-18)) detected bydbeventional testing phases and
not by the proposed approach were classified bystmh Controls software experts
according to their typology, severity and occuresriz of them were (Control flow and
sequencing, Minor; Systematic), Ddta definition, access and handlinilinor;
Systematic), 1 Hrocessing Major; Often), 1 (Processing, Major; Systemati2),
(Control flow and sequencing, Major; Systematic) an@ata definition, access and
handling Major; Systematic). These bugs are located in-cawered zones of the
software specification. All of these bugs couldde¢ected by the proposed approach if
the coverage objectives defined in Table 4 aralldf at 100% (which was not the
case in this experiment). These non-detected bugsredated to specific states,
transitions, and conditions of the software speatfon that were not covered by the
generated test cases; when test cases were genfeoatea Nominal transition matrix,
the test generation algorithm based on a MonteoCsirhulation on the transition
matrix did not succeed in reaching 100% functiaw@terage, but reached only 90%.
To overcome this shortcoming (see section 9), pl&éned to develop a new and
complementary test generation algorithm that fosuse covering the non-covered
zones of the software specification.

. Secondly, 5 new “minor” bugs (“minor” from the Jamm Controls software experts’
point of view) were detected in the front wiper dtinnality. They were not detected
neither by the conventional testing phases of tigpker nor by the carmaker test.
According to these experts, these bugs have nodimpa the end-user (driver). It
represents 19% (5 out of (19+3+5)) of the total hamof bugs in the functionality
(19+3+5).

. Finally, among the known bugs detected by the eg@pproach, some of them were
bugs already detected by the conventional suppdisting phases (but later in the
testing process) and the others by the carmakertheofront wiper, the number of
bugs detected earlier by the supplier was increbgetil% (from 17 to 24). For the
front wiper and fuel gauge functionalities, the ren of bugs detected by the
carmaker was reduced by 60% (from 5 to 2) and 88m(5 to 1), respectively.
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Front wiper functionality Fuel gauge functionality

Known bugs detected by
the conventional approach

Bugs detected by our
approach

Known bugs detected by the conventional approach (supplier)
Known bugs detected by the conventional approach (carmaker)

Unknown bugs (Not detected by the supplier conventional testing phases nor by the carmaker)

Figure 19 — Conventional approach versus proposedgaroach

On the other hand the test cases generated from each type of ti@msnatrix were
independently executed (without following the ordefined in section 8.2.2). The results of
this experiment on the front wiper functionalityeatepicted in Figure 20. The numbers and
types of bugs detected in and after the first ngsphase by each type of transition matrix
were identified. As a conclusion:

No single type of transition matrix was able toedetall the bugs, and each type of
transition matrix found at least one bug that carity be detected via this type. This
asserts the dynamic nature of software and itsegprential need for more than one
transition matrix (different transition probabié and time intervals).

The Nominal transition matrix detected the largasihber of bugs, but not all of the
bugs. The fact that it detected the largest nurabbugs may be explained by the fact
that 60000 test steps were generated from thisitram matrix and that the software
specification was covered at 90%. However, the faet not all the bugs were
detected confirms the relevance of the proposedoapp for combining diverse
testing techniques (random, user-oriented, and-taidnted).

The Test Case transition matrix detected about 8%e bugs that the End-user
Profile matrix detected. As Test Case “transitioatmees” transition matrices are
designed from reused test cases, it is possibtatibaeused test cases were designed
from an end-user point of view.
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Front wiper functionality

Bugs not detected by
our approach

r = Bugs detected via the Bug
e s E : . transition matrices

Known bugs detected by the e I - —I' il |

conventional approach (supplier) . .
.. d .« Bugs detected via the

Known bugs detected by the 1 Nominal 2 transition matrix

1
1
conventional approach 1
(carmaker) : |

Unknown bugs (Not detected by s
the supplier conventional testing

phases nor by the carmaker) : '
1
¥

. Bugs detected via the Test Case

I
I
I transition matrix
I

Bugs detected via the End-user
Profile transition matrix

Figure 20 — Numbers and types of blgs de‘téCtéd'\MCh type of transition matrix

8.3.2 Decrease the time spent in testing software

Besides detecting bugs earlier in the software ldpweent process, the time spent in testing
software was decreased. The total time spent imesdionally testing the two functionalities
is illustrated in Figure 13, based on historicald®3.75 pd for the front wiper functionality
and 50 pd for the fuel gauge functionality. Theakadime spent in testing these functionalities
using the proposed approach is presented in Figlrelhe time spent in testing the front
wiper and fuel gauge functionalities was decredsed7% (39 instead of 53.75 pd) and 17%
(41.5 instead of 50 pd), respectively. These nusbecount for the time spent in analyzing
the carmaker requirements; designing, verifying, @altating the test oracle; designing the
transition matrices; generating and executing ¢éisé ¢ases; and finally, detecting the bugs not
detected by the proposed approach. In this expatintbere were 3 known bugs left
undetected in the first case study and 5 in therscase study. Based on the assumption that
a complementary test generation algorithm woulddéeeloped (to be able to reach 100%
functional coverage), the time required to deteesé remaining bugs in the two case studies
was estimated, taking into account the time to ggaeand execute the test cases in a
simulated environment (host PC) and analyze thdtsed-or the first case study, 90% of the
software specification had already been covered,3ahugs were remaining. For the second
case study, 70% of the software specification Hagbdy been covered, and 5 bugs were
remaining. Therefore, based on the experimentaltegst was estimated that it would require
2 pd to generate and execute additional test amtshen 3 pd to analyze the test execution
results. These estimations may be explained biattteghat:
* The software specification of the first case stigdlgigger than that of the second case
study.
* Analyzing the execution results of the second cdsdy takes more time that of the
first case study, because the test oracle of tbenskecase study (natural language) is
less reliable that of the first case study.
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The task of manually designing the test cases pdaced by designing, verifying, and
validating the test oracle, which is also considerebe a difficult task. For the front wiper
and fuel gauge functionalities, the verificatiordamalidation tasks accounted for 57% (22 out
of 39 pd) and 80% (33 out of 41,5 pd) of the tatake spent in testing the two functionalities
using the proposed approach, respectively. Moreocagra consequence of automatically
generating many test steps, more effort is necgdsaanalyze the results of the test case
execution. Test practitioners have to understandyémerated test cases in order to confirm
the existence of a bug. However, as carmaker rexpants are prone to evolving throughout
the timeline of the different deliveries, it wilekeasier for test practitioners to update the test
oracle and automatically generate a new set ottesas than to manually update the design of
test cases.

8.3.3 Threats to validity

The main validity threats to the perfomed experimar¢ related to the possible non-
representativity of the selected software functibiea, inaccuracy of historical data,
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inadequate experience level of the team perforrtiiegexperiment, non-correlation between
functional and structural coverage.

* Non-representativity of the selected software fiometlities

In section 8.1.1, the selection of the two softwaractionalities for the case studies is
discussed and justified. One important criteriorthwosing the functionalities was that they
exemplify the diversity of carmaker software spieaifion languages. However, it is possible
to miss a relevant software specification langussg by the carmakers. One such instance is
the existence of many specification languages octeation of a new one. This can have an
impact on the feasibility and, if feasible, on therformance (time to design, verify and
validate the test oracle) of the proposed approach.

* Inaccuracy of historical data

Inaccurate historical data can be the result ofesfivie and unsystematic data extraction. In
this research, all the extracted data were revidwedohnson Controls automotive experts.
All discrepancies were settled by discussion to nsake that the extraction was as objective
as possible. Therefore, the remaining problem éslidity of the experts’ knowledge of
these historical data. The experts were chosendbasetheir knowledge of the software
functionalities under test. Hence, this could hameimpact on the estimated benefits of the
proposed approach.

« Inadequate experience level of the team perforrtiegexperiment

The team performing the experiment was composetivofindividuals: an automotive test
practitioner who knows the conventional approac an inexperienced engineer who is
freshly graduated. During the experiment, adviaenfrother Johnson Controls automotive
experts was also taken into account. The justiboafor the validity of this team is the
representativeness of a testing team within th@naotive industry. Indeed, this is the
minimum requirement for having a valid empiricaudt in the domain of automotive
software testing. As stated in the future work fisec9), it is planned to measure the
reproducibility of the results of the two case stisddy choosing another team.

* Non-correlation between functional and structumlerage

In the experiment, test cases were generated efflivd later executed. Therefore, objectives
were only set in terms of functional coverage. Madural coverage objectives were set. This
has been done assuming that covering the softy@afieation 100% means that the source
code was also 100% covered. This assumption cam &aegative impact, in terms of bugs’

detection, on the estimated benefits of the prapapproach.

9 Summary and perspectives

In this paper, an integrated model-based statistqgoroach to automatically generate
functional test cases for embedded software isldped. Test cases can be generated offline
and later executed, or they can be generated aeduted online. The purposes of the
proposed approach are 1) ensuring conformanceeafg@ation, 2) ensuring code coverage
and 3) avoiding recurrent bugs. The basics ofap@oach are:

* A probabilistic test model based on Markov Chainangition matrix). When testing
software, test practitioners can design one or ni@esition matrices that enable
random, user-oriented, or experience feedback-@degeneration of test inputs.

« A formal framework integrating existing and appiafe specification techniques (DT
and FSM). This allows the design of executablevwsn® specifications that play the
role of the test oracle in assessing the expeetadts of a test.

 An aggregate stop testing criterion based on testrage objectives and cost
constraints.

In other words, an integrated framework to autooadlyi generate test cases (test inputs and
expected results) from any software specificati@s Weveloped. This framework focuses on
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important and critical tests to be done. The testegation is automated and monitored by
quality and cost objectives, in that test practgigncan generate one or more test cases that
fulfill a set of objectives (in terms of functionabverage, structural coverage, and test cost).

Two typical case studies on historical data fromahtomotive industry were also carried out.
The experiments were performed at the unit teséngl in a simulated environment on a host
PC (automatic test execution). Test cases werer@eaeoffline and later executed. Potential
advantages of the proposed approach over the coonahtipproach were highlighted. In

Table 5, the results of the two case studies isnsamzed in terms of decreasing the time
spent in testing and detecting bugs earlier instifewvare life cycle (during and after the first
testing phase of the first version of the softw@mponents).

Front wiper Fuel gauge
functionality functionality
Decreasing the time spent in testing -27% (39 atbtd | -17% (41.5 instead of
53.75 pd) 50 pd)

Ir_lcreasmg_ the n_umber of bugs detecteglr88% (24 out of 27) +78% (18 out of 23
since the first testing phase

Decreasing the number of bugs detectec

| by o N
the carmaker 60% (from 5 to 2) 80% (from 5to 1)

Increasing the number of bugs detected

; l?F)éll% (from 17 to 24) +22% (from 18 to 22)
the supplier
Increasing the number of new bugs+180/0 (5 out of 27) +0% (0 out of 23)
detected

Table 5 — A summary of the results of the two castudies

Here are some perspectives of our research:

* In addition to the selection of inputs via a Mo@arlo simulation on the transition
matrix, it would be interesting to develop a nevd momplementary test generation
algorithm that focuses on covering non-coveredsacda software specification. This
will allow the deduction and creation of inputsttibaver a specific area (for instance,
a state of an FSM, a condition of a DT, etc.) eftist oracle with a minimum number
of test steps. This algorithm would not replace dme based on the Monte Carlo
simulation method. It will be used in case the Mo@arlo simulation method does not
succeed to fulfill target coverages while takingoirdccount the test constraints
(number of test steps). Similar algorithms haveay been developed in the past but
not integrated into a global test generation apgrpa@specially in model checkers,
SMT solvers, and constraint solvers.

e It would be interesting to evaluate the capabditief the proposed test oracle’s
verification and validation methods against detertihe anomalies of a test oracle.
For both the front wiper and fuel gauge functiotedi, 25% (5 out of (15 + 5) and 17
out of (50 + 17), respectively) of the test oramh®malies were not detected by these
methods. It is furthermore interesting if a corregfing fault model could be derived
from these results.

e It would be interesting to develop a new strategldlp test practitioners parameterize
the generation of test cases, as the main purpbsetest practitioner in software
testing is to detect the maximum number of bugsipéesin the minimum amount of
time possible. Therefore, the correlations betwdka optimization algorithm
parameters, the functional coverage, the exectitiom of the generated test cases, and
the numbers and types of detected bugs could betifidd. Based on these
correlations, rules and recommendations to help gesctitioners parameterize the
generation of test cases might be defined. It iso aplanned to develop
parameterization profiles that test practitionenghth adopt according to their test
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objectives. Such a parameterization profile will sish of a set of predefined
optimization parameters, test coverage objectiaed,cost constraints.

It would be interesting to adjust the proposed apgi to integration and validation
levels (all the functionalities together). In thissearch, the proposed approach was
experimented at unit testing level (a single fumaaility at a time). Indeed and when
integrating and validating the whole software pridall of the test oracles of the
single functionalities could be connected togetrat transition matrices could take all
the input signals of the product into account.Hattcase, integration and validation
test cases could be automatically generated anthtiidevel aspect of the proposed
approach confirmed.

It would be interesting to develop the interfaceasen the proposed approach and the
unit test execution platform on which the generaésti cases of the experiments have
been executed. Therefore, each generated tesivdtepe automatically transcribed
into a computer-readable language and then autcatigtiexecuted on the software
under test. After each test step, the test geweratiatform acquires the structural
coverage of the software under test. In that caggerimenting the online generation
and execution of test cases on both case studielsiWwe possible.

Finally, it would be interesting to measure the ogjpicibility of the results of the two
case studies, in order to better control praciicésdustrial software testing processes.
In the proposed MBST approach, the two main aawitdepend on the operator (i.e.,
human intervention). The first one is the desigtheftest oracle and the second is the
definition of a set of targets and weights for thst case generation. Two operators
may perform slightly differently and have slightlglifferent results; parallel
experiments of test design can therefore be comduicased on the same carmaker
requirements. Best practices may consequently theediein order to reduce subjective
areas of the modeling activity.
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