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ABSTRACT 

Large complex systems, such as power plants, ships and 
aircraft, are composed of multiple systems, subsystems and 
components. When they are considered as embedded in 
operating systems such as a fleet, mission readiness and 
maintenance management issues are raised. PHM 
(Prognostics and Health Management) plays a key role in 
controlling the performance level of such systems, at least 
on the basis of adapted PHM strategies and system 
developments. Moreover considering a fleet implies to 
provide managers and engineers a relevant synthesis of 
information and to keep this information updated in terms 
of the global health of the fleet as well as the current status 
of their maintenance efforts. In order to achieve PHM at a 
fleet level, it is thus necessary to manage relevant 
knowledge arising from both modeling and monitoring of 
the fleet. In that way, this paper presents a knowledge 
structuring scheme based on ontologies for fleet PHM 
management applied to marine domain, with emphasis on 
prognostics modeling. 

1. INTRODUCTION 

Nowadays, due to the high competitiveness, industrial 
enterprises need to aim at higher performances, i.e. higher 
quality of products/services, lower costs, sustainability, etc.  
(Kleindorfer et al., 2005). In that way, the importance of 
maintenance has increased due to its key role on improving 
system availability, performance efficiency, products 
quality, etc. (Alsyouf, 2007). These requirements promote 
the evolution of maintenance strategies from a “fail and fix” 
to “predict and prevent” approach. This new vision is 
supported by condition-based/Prognostics and Health 
Management (PHM) maintenance. Despite this proactive 
approach, failures still occur. This could be explained since 

prognostics involved the prediction of the future which is 
uncertain (Provan, 2003). Furthermore the whole 
acquisition and treatment algorithms could fail leading 
sometimes to some errors such as false alarms or non-
detections (Barros et al., 2006). 

Implementing a proactive approach at a system level 
requires the consideration of failure rates of different 
equipment built on different technologies (mechanical, 
electrical, electronic or software natures) (Verma et al., 
2010) whose behaviour can vary all along the different 
phases of their lifecycle (Bonissone and Varma, 2005). 
However to improve PHM processes for large and complex 
systems such as power plants, ships and aircrafts, one 
possible approach is to take advantage of the fleet 
dimension. This dimension can provide knowledge and data 
to improve diagnostic and prognostics models.   

A fleet shall be viewed as a set of systems, sub-systems and 
equipment. In this paper, the naval domain is addressed. 
Hence, in the following an unit of a fleet will be considered 
as a system (e.g. ship), a sub-system (e.g. propulsion or 
electric power generation) or equipment (e.g. diesel engine, 
shaft...) depending on the nature of the study. To be in 
accordance with the need of improving PHM at the fleet 
level, an original methodology is proposed in this paper 
wherein individual knowledge (of each unit) is capitalized 
for reuse purpose in order to improve PHM activities such 
as prognostics. To take advantage of the individual 
knowledge at the fleet level, a semantic model is proposed 
for the PHM activities in the naval domain. Such a semantic 
model enables to reuse particular data, such as maintenance 
history, reliability analysis, failure analysis, data analysis at 
a fleet level in order to provide knowledge. As data become 
available, prognostics models could benefit from more 
contextual information.  
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2. PHM AT EQUIPMENT AND SYSTEM LEVEL  

PHM activities can give warning about failure events before 
they occur, reduce the life cycle cost of a product by 
decreasing inspection costs, downtime and inventory (Pecht, 
2008), (Vichare and Pecht, 2006). 

The prognostics process consists on treating, via algorithms, 
a set of input information to produce a future estimation. 
Mathematical models are used for the extrapolation of value 
of the degradation indicator. These mathematical models 
need as an input (Voisin et al., 2010): 

• Past data: feedback about past failures on the system, as 
well as historic data about the evolution of degradation 
indicators under different circumstances (mission, 
environment, etc.). This data allows to identify the 
characteristics and parameters of the prognostics 
model.  

• Current data: on-line data in order to provide the values 
in real-time of the monitored indicators (variables). 
This data is captured and must be treated and analyzed. 
This data warn maintenance engineers about the current 
state of the unit and it should be used to feed/adjust the 
current prognostics model. 

• Future data: information and/or hypothesis about the 
future usage of the unit should be provided such as the 
missions, the operational context, future maintenance 
interventions, etc. As mentioned in (Peysson et al., 
2009) the prognostics of a complex systems (S) is 
described by three levels (1):  

 ΡΕΜ= ,,S  (1) 

M is the mission that defines the use of the system 
during a time period; E is the environment that 
represents the area where the mission is accomplished 
and where the process evolves and P is the process that 
gives the necessary means to accomplish the mission. 
The process is decomposed according to different 
resources that are monitored. 
This set of information/data allows to refine  the 
evolution of degradation indicators in different 
situations and simulations.  

While analyzing these inputs, different sources of 
uncertainty will appear such as measurement and sensor 
errors, future load and usage uncertainty, prediction under 
conditions that are different from training data and so on. 
However uncertainty could be reduced when more data 
becomes available (Pecht, 2008). In these cases the notion 
of fleet becomes very interesting. It can provide more 
capitalized data and information coming from other 
members of the fleet. for the improvement/development of 
the prognostics models  

The following section presents a review about the use of the 
fleet notion in the PHM domain. 

3. PHM VS. FLEET-WIDE APPROACH 

3.1. Fleet integrated PHM review 

A fleet generally refers to a gathering of group of ships and 
the term is extended also to any kind of vehicle (e.g. trains, 
aircrafts, or cars). For industrial systems, the term fleet 
designs a set of assets or production lines. In general, a fleet 
refers to the whole assets of an owner’s systems. Hence, the 
fleet here is only an abstract point of view to consider a set 
of objects for a specific purpose (e.g. a unit maintenance 
planning), for a given time (e.g. before the end of the 
current mission). Indeed, the fleet can be viewed as a 
population consisting of a finite set of objects (individuals) 
on which a study is ongoing. In this context, a fleet is 
generally a subset of the real fleet under consideration, i.e. a 
sub fleet related to the aim of the study. Individuals making 
up the fleet/sub fleet may be, as needed, systems themselves 
(Bonissone and Varma, 2005), (Patrick et al., 2010), 
subsystems or equipment (Umiliacchi et al., 2011). In the 
following, systems, sub-systems or equipment constituting 
the fleet, according to the study purpose, will be referred to 
as units.  

In fact, fleet’s units must share some characteristics that 
enable to group them together according to a specific 
purpose. These common characteristics may be of technical, 
operational or contextual nature (Monnin et al. 2011a). 
They allow to put data or information related to all the fleet 
units on the same benchmark in order to bring out pertinent 
results for monitoring, diagnostics, prognostics or 
maintenance decision making. Common characteristics 
among units allow to define three types of fleet 
composition: identical, similar or heterogeneous fleets.  

Based on these three types of fleet, some relevant works are 
reviewed below: 

• Fleet composed of identical units: When considering 
maintenance operator’s point of view, fleet 
management aims at making decisions that affect asset 
life extension and performance, operational costs and 
future planning  (Wheeler et al., 2009), (Bonissone and 
Varma, 2005),(Williams et al., 2008). In (Patrick et al., 
2010), the authors notice that thresholds indicative of 
condition indicators limits could be derived from 
statistical studies of fleet wide behaviors and known 
cases of faults. (Reymonet et al., 2009) propose to 
apply to the failed system the technical solution 
corresponding to a similar incident already solved with 
a comparable asset. (Wang et al., 2008) present a 
similarity-based approach for estimating the Remaining 
Useful Life (RUL) in prognostics using data from a 
fleet composed by the same type of units. Nevertheless, 
knowledge derived from the fleet arises from the same 
kind of units. In a domain where customized units are 
common, these approaches may give poor results. 
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• Fleet composed of similar units: the fact of comparing 
similar units has rarely been addressed as a whole in the 
literature. In that sense, (Umiliacchi et al., 2011) show 
the importance of having a standard format for the 
diagnostic data in order to facilitate their understanding 
across several subsystems and trains within a railway 
fleet.  

• Fleet composed of heterogeneous units: to fully exploit 
the knowledge issue of the fleet dimension, we propose 
in this paper to consider the heterogeneous units that 
compose the fleet level for decision making (e.g. 
prognostics, maintenance purposes). Situations (i.e. 
prognostics results, signal evolution) issued from an 
historical data of a fleet of heterogeneous units are 
searched based on some similar characteristics to the 
units in study (e.g. current situation under 
investigation) (Monnin et al., 2011a), (Monnin et al., 
2011b). The originality of the proposed method is to 
enlarge the search to heterogeneous units (and not 
identical ones) where the similarity will be defined on-
line by the user, according to the results of the search, 
in order to find relevant information to be reused. 

3.2. But how could be used the fleet dimension to 
improve PHM processes? 

One of the industrial realities is the lack of capitalization of 
knowledge and model reuse which represents high costs and 
efforts for the enterprises (Weber et al., 2011) (Medina-
Oliva et al., 2012). In some fields such as the naval one, 
units are very customized leading to heterogeneous units. 
These facts limits mainly:  

• Historical data exploitation for identical units. Due to 
the exposition of industrials systems to different and 
uncertain missions and environmental conditions.  

• Knowledge capitalization about the evolution of the 
degradation trajectory of an unit under an identical 
context (identical mission and environment).  

To tackle this issue the fleet dimension could provide 
enough information and data about diagnostic and 
prognostic models. In that sense, when searching non-
identical units but similar ones a higher volume of data 
becomes available to reduce diagnostic/prognostics models 
uncertainty. This data could be obtained through the 
identification of “similar contexts” or “similar individuals”. 
For example, in the naval field, a technical similarity for 
diesel engines, which are critical equipment for propulsion 
and power generation, could be the membership to “4-
strokes engines” or “high speed engines” features.  

The objective of our proposition is to create an iterative 
investigation process that will allow to define a sub-fleet. 
The sub-fleet is defined by grouping a set of units (i.e. 
systems, sub-systems or equipment) based on “similar 
characteristics”. Figure 1 presents the main steps of this 

process. When prognostics models are implemented on a 
new unit or when the unit is merged in new operational 
conditions, the prognostics must be first characterized. 
Characterization consists on the description of the unit to be 
prognosticated (e.g. type, age, usage, operating 
environment) as well as data on which an analysis will be 
carried out (Figure 1-A). To guide this process, the fleet-
wide application proposes different criteria based on the 
technical features of units as well as on the mission and on 
the environment description. According to this, a targeted 
population is defined within the whole fleet (Figure 1-B). 
Within the targeted population, the potential similar 
prognostics models and data concerning the evolution of the 
degradation indicators are investigated in order to complete 
current knowledge for prognostics (Figure 1-C). In an 
iterative process of steps B and C, the targeted population 
can be refined if results (i.e. potential similar degradation 
indicator data) are too far from the current situation or 
conversely if targeted fleet points out too many similar 
situations. Then, the prognosticated unit benefits from the 
past analysis results (Figure 1-D) for building the 
corresponding prognostics model. Using this original 
approach could bring several benefits as presented in 
(Monnin et al., 2011a), (Monnin et al., 2011b), (Peysson et 
al., 2012). 

Toward this goal, the knowledge corresponding to the fleet 
domain must be well formalized and structured in order to 
facilitate the manipulation of the multidimensional aspects 
of the fleet and the heterogeneous data among all fleet units’ 
databases 
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Figure 1. Main steps for fleet case re-use 

3.3. Sub-fleet characterization 

Nowadays, fleet managers/engineers query separately ship 
databases for identical units to obtain data/information. 
However, units (e.g. diesel engine) in the naval domain are 
very specific and customized. This fact leads to dispose of 
few identical units. For this reason the proposed 
methodology leads to search non-identical units but similar 
ones. Furthermore, another issue emerges. At a fleet level, 
engineers must treat different databases of different units. 



Annual Conference of Prognostics and Health Management Society 2012 
 

4 

These databases might be heterogeneous, in the sense that 
the database structure might be different, they might have 
different names for the primary keys and foreign keys, etc.   

To tackle these issues, a common semantic becomes 
necessary (Figure 2). A semantic model provides a high 
level definition of terms that is common to all databases 
allowing to query them. It allows to define characteristics of 
similarities among units and contexts. For instance, to 
define common characteristics in the technical, operational 
and contextual domains. 

In the following sections a semantic model specifying the 
similar characteristics necessary to obtain data/information 
to perform prognostics is presented. The semantic model is 
specified by means of ontologies. 

Common Semantic level

Heterogeneous data-
bases of units

 
Figure 2. Semantic level to query heterogeneous databases 

4. PROPOSITION OF ONTOLOGY FOR FLEET-WIDE 
SEMANTIC 

4.1.  Ontology for providing semantic  

An ontology explicits formal specifications of knowledge in 
a domain by defining the terms (vocabulary) and relations 
among them (Gruber, 2009). To represent knowledge and to 
explicit semantic (vocabulary and relations), the ontology is 
coded in Web Ontology Language (OWL) supported by 
Protégé * ontology editor.  OWL is composed of classes, 
properties of the classes and instances. These elements are 
explained as follow: 

• Classes describe concepts in the domain. In PHM 
domain, an example of classes could be “equipments” 
or “degradation indicator”.   

• Properties of the classes describe the attributes of the 
concepts. For example, the class equipment has a 
property “is monitored by” the class degradation 
indicator. The property “is monitored by” link the class 
“equipment” with the class “degradation indicator”.  

• Subclasses represent concepts that are more specific 
than the superclass (mother class). When a superclass 
has a subclass, it means that they are linked by a 

                                                           
* http://protege.stanford.edu/ 

subsumption relation, i.e. “is a” relation, allowing a 
taxonomy to be defined. Hence, a hierarchy of classes 
is established, from general classes to specific ones.  

• Instances are the set of specific individuals of classes. 
For example, the engine Baudouin 12M26.2P2-002 is a 
specific individual that is part of the class “equipment”. 

OWL allows to establish taxonomies. This capability  is a 
useful for example to represent systems, subsystems and 
equipments. Moreover, OWL provides inference 
capabilities with plugged reasoners. Inference is based on 
open-world reasoning. Explicit and manually constructed 
classes that belong to taxonomy constitute an asserted 
hierarchy. But thanks to OWL reasoners, an inferred 
hierarchy is automatically computed allowing to emerge 
new knowledge. For example if an engine has an internal 
electrical degradation, the ontology could induce that it is an 
electrical engine. Moreover, OWL reasoners shall 
performed consistency checking. Hence, one shall guarantee 
that the ontology has been built correctly in the sense that 
no syntactic and inconsistency remain in the ontology. For 
example, if a fuel-engine is associated to an electrical 
degradation, an inconsistency will be point out by the 
reasoner. 

Ontologies seem to be a suitable modeling method to 
provide common semantic and to query heterogeneous 
databases.  Some of the capabilities provided consist on: 
sharing common understanding of the structure of 
information among people or software agents, making 
domain assumptions explicit, defining concepts and 
knowledge (i.e. a high speed engine 1000rpm, subjectivity 
is limited) and making domain inferences to obtain non-
explicit knowledge (Noy and McGuinness, 2001). 

 
Figure 3: Typical architecture of Fleet-wide PHM system, 

(Monnin, 2011a) 

The proposed approach based on PHM ontology is not a 
goal itself. This ontology is a support for PHM software 
applications through the KASEM software platform (Leger, 
2004), (Monnin, 2011c) Figure 3. 
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In the next section, the formalization of an ontology to 
support prognostics activities in the naval domain is 
proposed. 

4.2. Ontology-based PHM assessment 

Ontology-based fleet-wide PHM  

In the section 2.1. key elements to perform prognostics were 
identified. These elements are technical characteristics of 
the system/sub-system/equipment, degradation modes, 
degradation indicators, the mission and the environment. 

A semantic model to these elements will be provided in 
order to obtain formalized knowledge that allows the 
definition of “similarities” among these units. Based on 
(Monnin, 2011a) different contexts are defined: a technical 
context (e.g. characteristics of the system/sub-
system/equipment), a dysfunctional context (e.g. 
degradation modes), an operational context (e.g. mission 
and environment), a service context (e.g. usage of units) and 
an application context (e.g. degradation indicators). For a 
graphical representation of the ontology for these contexts, 
classes are represented as ovals and relations are 
represented as links between the classes. Once the ontology 
model is formalized comparisons of heterogeneous units 
shall be performed on the basis of context similarity.  

 Technical context 
One might think that the definition of every model of 
equipment could be enough to take advantage of the fleet 
dimension. But this modeling choice narrows the 
manageability to strictly identical units. For this reason, a 
technical context is proposed. The technical context 
integrates the technical features and characteristics of the 
system/sub-system/equipment. This model allows the 
comparison of heterogeneous units for instance when 
seeking relevant characteristics such as “4-strokes engines” 
or “direct injection engines”.  

DieselEngine GasEngine

Engine Pump

Component

Propeller

Controllable
PitchPropeller

Azimuth
Thruster   

Figure 4: Part of the equipment taxonomy 

DieselEngine
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consumptionMaximum fuel 

consumption

Operating 
pressure

Compression
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Output
Power

Torque

Piston 
speed

Type of 
fuel

Rotational
speed

Number of 
cylinders

Configuration

Cooling system

Type of injection
system

Aspiration
system

 
Figure 5: Part of the equipment properties 

To model the technical context, “Equipment” (Figure 4) 
classes are specified as well as “Properties” classes (Figure 
5) which define all their features. Hence, units with similar 
technical properties could be clustered according to their 
technical properties such as the power output, the rotation 
speed, the number of cylinders, etc. (Figure 5) in order to 
retrieve data/information. 

Dysfunctional context 
The dysfunctional context takes into account the 
information about the degradation modes on the units. It 
considers the generic degradation modes. Generic 
degradation modes are taken from the standard (IEC 60812, 
2006). Classes include electrical degradation modes, 
mechanical degradation modes, hydraulic degradation 
modes, etc. Degradation modes are linked to units (Figure 
6).  

Furthermore, in this context, it is considered that one 
degradation mode could be caused by another degradation 
mode. In that sense, this context allows to describe 
information about the causality chain of degradation modes 
that produced an undesirable event. This knowledge is very 
valuable to retrieve information/data for troubleshooting 
and corrective maintenance issues. This modeling choice 
allows to explore the main causes of similar degradation 
modes. For example to explore common causes of pumps 
failures regardless of the use of the pumps.  

Degradation 
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Mechanical 
degradation 

modes

Vibration

Component 
broke

Galling

Component 
blocking

Electromechanical 
degradation modes

Hydraulic/Pneumatic 
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Circuit

Faulty input 
signal

Opened 
circuit
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output signal
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circuit

Leak
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Cause/isCausedby

 
Figure 6: Part of the dysfunctional analysis on units  
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Figure 7: Part of the operational context 

 Operational context 
Even if units are identical, the operational conditions lead to 
different units’ behaviors. For this reason, one could need to 
cluster information/data according the operational and 
service contexts.  
The operational context integrates the operational 
conditions to which the units are exposed to. As explained 
in section 2, for prognostics the mission (M) and the 
environment (E) are considered. The operational conditions 
are given by the mission to be performed for units as well as 
the environment that surround them (Figure 7). In the naval 
domain, the mission is a sequence of dated tasks in a 
geographical area (e.g. Port of call mission) (Peysson et al., 
2009). Hence, similar missions on similar units could be 
compared (Figure 7). On the other side, the environment 
takes into account the weather conditions, the chemical 
composition of water (pH, salinity…), the pressure, water 
turbulence, etc. (Figure 7) which might impact degradation 
mechanisms and units’ functioning behavior. 

The mission and the environment could affect equipment, 
sub-system and system performances. For this reason the 
mission was formalized at different abstraction levels 
(system, sub-system, equipment). 

Service context 
The service context deals with the usage of units. Even 
when units are similar they are exposed to different usages 
according to the corresponding mission tasks. Hence a 
service context is formalized in order to differentiate 
behaviors of the evolution of degradation indicators. In that 
sense, usage could be divided according to the operating 
steps, operating phases and the configuration of units 
(Figure 8).  

In order words, degradation behavior can be analyzed 
according to different abstraction levels.  

Operation 
modes

Operating 
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Stop

TransitionalStart

Stabilized

Operating phases

Stop MaintenanceOperation
Non-

Stabilized

Scheduled
Non-

Scheduled
Preventive

Maintenance
Corrective

Maintenance

Configuration
of units

Spare unit
Leading 

unit

 
Figure 8: Part of the service context  

Application context 
The application context is related to the needs of PHM 
optimization. Within the application context, the 
optimization aims the capitalization of knowledge to 
perform health assessment. Health assessment deals with 
the definition of indicators such as functional, dysfunctional 
and environmental indicators at different levels as well as 
the treatment (processing) of these indicators, etc (Figure 9). 
This context enables data/model retrieval of the monitored 
unit with its corresponding context defined in the ontology.   

The ontology-based knowledge formalization provides the 
basis to capitalize knowledge with contextual information. 
In that sense, one might define similar units, i.e. high speed 
engines with similar missions and under similar context in 
order to compare signal evolution of indicators. The next 
section illustrates the benefits of the proposed methodology 
within the PHM context.  
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Figure 9: Part of the application context 



ID Engine Ref Output 
power (kW)

Nb. of 
Cylinder

Confi-
guration

Engine 
Speed (rpm) Type of cooling system Engine cycle Tag related to the 

ontology

Eqpt1 Wärtsilä 12V38 8 700 12 V 600 Dry water cooling system Four-stroke engine Fuel engine
Eqpt2 Wärtsilä 12V38 8 700 12 V 600 Dry water cooling system Four-stroke engine Fuel engine

Eqpt3 Baudouin 6M26SRP1 331 6 L 1800 Sea water cooling Four-stroke engine Fuel engine

Eqpt4 Man V8-1200 883 8 V 2300 Desalination systems Four-stroke engine Fuel engine
Eqpt5 Man V8-1200 883 8 V 2300 Desalination systems Four-stroke engine Fuel engine
Eqpt6 Wärtsilä RT-flex50 13 960 8 L 124  Sea water cooling system Two-stroke engine Fuel engine

Eqpt7 Wärtsilä RT-
FLEX82T 40 680 9 L 80 Sea water cooling system Two-stroke engine Fuel engine

Eqpt8 Wärtsilä 12V64 23280 12  V 400 High and low temperature 
separated circuits Four-stroke engine Fuel engine

Eqpt9 ISOTTA vl1716hpcr 2750 16 V 2100 High and low temperature 
separated circuits Four-stroke engine Fuel engine

Eqpt10 Baudoin 12M26P1FR 357.94 12 V 1800 High and low temperature 
separated circuits Four-stroke engine Fuel engine

 
Table 1: Extract of engine fleet technical features stored in the data bases 

Prognostic-model retrieval from fleets composed of 
heterogeneous units  

The proposed approach could be very useful for PHM 
processes for new units. In the case of new equipment 
there’s neither degradation indicators defined nor 
historical data about their evolution. But when 
disposing of an ontology-based approach, knowledge 
and data could be gathered from heterogeneous units 
and contexts. To illustrate the proposed methodology, 

let’s consider finding a prognostics model for the 
degradation trajectory of a diesel engine within a costal 
surveillance mission in the south Atlantic for a new 
ship. In this example, we suppose the new ship is 
propelled by a diesel engine Baudouin 8M26SRP. 

For the purpose of this example, the fleet is limited to 
diesel engines. Ten engines are considered and briefly 
presented in Table 1. The table shows an extract of the 
technical features of the engines. 

To tackle the fleet dimension three possibilities are 
shown:  

1. Consideration of identical fuel engines to the 
Baudouin 8M26SRP engine 

2. Consideration of all fuel engines composing the 
fleet 

3. Consideration of the heterogeneous units 
composing the fleet using the ontology-based 
approach  

1. Consideration of identical fuel engines to 
Baudouin 8M26SRP 

The first step to capitalize data from the fleet dimension 
would be to consider identical units to Baudouin 
8M26SRP. Nevertheless, if the same kind of units is 
considered, then any unit would match to the results as 
shown in Table 1. For these reason, other approaches 
should be investigated. 
2. Consideration of all fuel engines composing the 

fleet 
Another approach to take advantage of the fleet 
dimension would be to consider all the fuel engines 
composing the fleet. This approach allows the 
capitalization of data. However, the fleet is composed 
of a wide variety of different engines. If one take a look 
to Table 1, it is possible to notice the fleet is composed 

of big size, high power, two-stroke engines such as the. 
Wärtsilä RT-FLEX82T engine and of other engines 
with lower output power and four-stroke cycles such as 
the Wärtsilä 12V38 engine. These units are very 
different and thus their degradation behavior is very 
different as well. For this reason considering all the fuel 
engines might not be appropriated to study the 
degradation behavior of the Baudouin 8M26SRP 
engine. 
3. Consideration of the heterogeneous units 

composing the fleet using the ontology-based 
approach  

As mentioned previously, the developed application 
based on ontologies guides the definition of “similar 
characteristics” in order to define the sub-fleet of units 
to be used for prognostics purposes (Figure 1-A). To 
guide the sub-fleet definition some questions will be 
asked, automatically by the application, based on the 
relations between the different contexts defined in the 
ontology. One question concerns the application 
context, if one seeks a degradation indicator, a 
treatment or mainly a prognostics model. For this 
example, a prognostics model is searched. Then another 
question deals with the technical context. The 
application poses questions about the type of unit (i.e. 
engine, thruster, pump…), the application domain (i.e. 
marine, land, aeronautics, etc.) and the subsystem (i.e. 
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propulsion and power generation). For this example, an 
engine located on a ship (marine) for propulsion 
purposes is sought.  

In the ontology the definition and relations of 
prognostics have been established. For this reason, 
another question is asked about the mission and the 
environment of the engine (operational context). The 
mission in this example is costal surveillance mission 
(Figure 1-B). One can start searching data found in the 
sub-fleet definition (Figure 1-C).  

Afterward, the application proposes to keep finding 
other similarities criteria for example those related to 
the geographical area (Figure 1-A).  It proposes several 
choices such as the south Atlantic, north Atlantic, 
Indian, south Pacific oceans, etc. For this example the 
environment is located in the south Atlantic. The sub-
fleet evolves automatically when other criteria are 
chosen.  

The ontology embeds that hot oceans impact the 
performances of the cooling systems. For this reason, 
another question is asked about the type of cooling 
system such as high and low temperature separated 

circuits, sea water cooling, dry water cooling system or 
desalination systems (technical context). The answer, in 
this case, for the Baudouin 8M26SRP engine is a high 
and low temperature separated circuits. The sub-fleet is 
shown automatically. Three similar equipments with 
similar contexts are found: Baudouin 12M26P1FR, 
Wärtsilä 12V64 engine and ISOTTA vl1716hpcr 
(Figure 1-D).  

Figure 10 shows the updated degradation prognostics 
models of these three engines. The time horizon 
represents the mission that the engines have already 
experienced. Capitalizing this information allows to 
build a prognostics model for the Baudouin 8M26SRP 
engine (Figure 13-orange line). To build the estimated 
degradation trajectory, histograms for each monitored 
time issues from retrieved trajectories are built. Then 
the estimated trajectory is computed as the mean on 
each of the histograms. The orange line shows the 
estimate of the degradation trajectory of the Baudouin 
8M26SRP engine for the given mission. However, 
more sophisticated methods could be used to estimate 
the degradation trajectory such as proposed by (Liu et 
al., 2007) and (Wang et al., 2012). 

time

Alarm threshold Baudouin 8M26SRP engine estimated 
degradation trajectory
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Figure 10. Degradation trajectory estimation for the Baudouin 8M26SRP engine based on similar units behaviors for 

a costal surveillance mission 

5. CONCLUSION 

Fleet-wide PHM requires knowledge-based system that is 
able to handle contextual information. Prognosis and 
maintenance decision making processes are improved by 
means of semantic modeling that deals with concepts 
definition and description. In this paper, a knowledge model 
based on ontologies is proposed. Contextual information is 
structured by means of specific contexts. These contexts 
allow to consider fleet unit similarities and heterogeneities. 
Data of the monitored unit are considered within their 

context and enhance the identification of the corresponding 
health condition.  

From a prognosis point of view, the analysis of a 
degradation variable evolution could improve the 
prognostics model and precision can be improved through 
the capitalized data.  

The fleet knowledge model has been structured for a marine 
application. The resulting ontology has been integrated in 
the KASEM industrial PHM platform. Some 
experimentation has already been done however; other 
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experimentations should be tested to show the feasibility 
and the added value of this methodology. This paper arises 
some perspectives related to the manipulation of the 
uncertainty of prognosis (Petch, 2008), as well as the 
definition of the trajectory model based on retrieved models 
(Liu et al., 2007) and (Wang et al., 2012). 
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