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Visual quality assessment of synthesized views
in the context of 3DTV

Emilie Bosc, Patrick Le Callet, Luce Morin, Muriel Pressigout

Abstract DIBR is fundamental to 3DTV applications because generation of
new viewpoints is recurrent. As any tool, DIBR nuath are subject to evaluations
thanks to the assessment of the visual qualityhefresulting generated views.
This assessment task is peculiar because DIBR eamséd for different 3DTV
applications: either in a 2D context (free viewpoiiteo), or in a 3D context (3D
displays reproducing stereoscopic vision). Depandin the context, the factors
affecting the visual experience may differ. Thigter concerns the case of use of
DIBR in the 2D context. It addresses two particdases of use, in FTV: visuali-
zation of still images and visualization of videegsences, in the 2D context.
Through these two cases, the main issues of DIBRp@sented, in terms of visu-
al quality assessment. Two experiments are propasechse studies addressing
the problematic of this chapter: the first one @ns the assessment of still im-
ages and the second one concerns the video seguasgEssment. The two expe-
riments question the reliability of subjective aoidjective usual tools when as-
sessing the visual quality of synthesized view &Dacontext.

1.1. Introduction

3DTV technology has brought out new challenge$ sscthe question of syn-
thesized views evaluation. Indeed, the succest@ftiwo main applications re-
ferred to as "3D Video"- namely 3D Television (3D)t#iat provides depth to the
scene, and Free Viewpoint Video (FVV) that enabtésractive navigation inside
the scene ([1]) - relies on their ability to progidn added value (depth, or immer-
sion) coupled with high-quality visual content. Btepmage-Based-Rendering al-
gorithms are used for virtual view generation, viahis required in both applica-
tions. This process induces new types of artifatmsequently it impacts on the
quality, which has to be identified considering ivas contexts of use. While
many efforts have been dedicated to visual qualityessment in the last twenty
years, some issues still remain unsolved in théesorof 3DTV. Actually, DIBR
opens new challenges because it mainly deals veittmgtric distortions, which
have been barely addressed so far.

Virtual views synthesized either from decoded aistbdted data or from origi-
nal data, need to be assessed. The best asse¢spoiasmains the human judg-
ment as long as the right protocol is used. Subjecfuality assessment is still de-



licate while addressing new type of conditions liseaone has to define the op-
timal way to get reliable data. Tests are time-comag and consequently one
should draw big lines on how to conduct such expeni to save time and ob-
servers. Since DIBR introduces new conditions, right protocol to assess the
visual quality with observers is still an unansveegestion. The adequate as-
sessment protocol might vary according to the ebgueanswer that researchers
investigate (impact of compression, DIBR technigesiparison ...).

Objective metrics are meant to predict human judgraed their reliability is
based on their correlation to subjective assessmesntts. As, the way to conduct
the subjective quality assessment protocols iadirguestionable, the correlation
between objective quality metrics, that is to dairtreliability, in a DIBR context
is also questionable.

Yet, trustworthy working groups base partially thieiture specifications, con-
cerning new strategies for 3D video, on the outcofebjective metrics. Consi-
dering the test conditions may rely on usual subjecand objective protocols
(because of their availability), the outcome of mgachoices could result to a poor
quality of experience for users. Then, new testaishbe carried on to determine
the reliability of subjective and objective qualagsessment tools in order to ex-
ploit their results for the best.

This chapter is organized as follows: first, Settio? refers to the new chal-
lenges related to DIBR process. Section 1.3 givesvarview of two experiments
we propose to evaluate the suitability of usuajextive assessment methods and
the reliability of the usual objective metrics. 8@e 1.4 presents the results of the
first experiment, concerning the evaluation of gtilages. Section 1.5 presents the
results of the first experiment, concerning theleation of video sequences. Sec-
tion 1.6 addresses the new trends regarding tlesssent of synthesized views.
Finally, Section 1.7 concludes the chapter.

1.2. New challenges in the DIBR context in terms of gyassessment
1.2.1.Sources of distortions

The major issue in DIBR consists in filling in tlkiésoccluded regions of the
novel viewpoint: when generating a novel viewpoiagions that were not visible
in the former viewpoint, become visible in the noviewpoint [2]. However, the
appropriate color information related to these alisred regions is often un-
known. Inpainting methods that are either extrajmtaor interpolation tech-
nigues, are meant to fill the disoccluded regidtswever, distortions from in-
painting are specific and dependant on a given-fititg technique, as observed
in [3].



Another noticeable problem refers to the roundihgirel positions when pro-
jecting the color information in the target viewpb{(3D warping process): the
pixels mapped in the target viewpoint may not lecatan integer position. In this
case the position is either rounded to the neartegier or interpolated.

Finally, another source of distortion relies on trepth map uncertainties. Er-
rors in depth maps estimation cause visual distoiiti the synthesized views be-
cause the color pixels are not correctly mappedwaHs, the problem is similar
when depth maps suffer important quantization fommpression methods [4].

1.2.2.Examples of distortions

In this section, typical DIBR artifacts are desedb As explained above, the
sources of distortions are various and their vigdffdct on the synthesized views
are perceptible as in the spatial domain as inehgoral domain. In most of the
cases, these artifacts are located around largth ditgcontinuities, but they are
more noticeable in case of high texture contrastvéen background and fore-
ground.

Object shifting a region may be slightly translated or resizeshehding on the
chosen extrapolation method (if the method chotsessign the background val-
ues to the missing areas, object may be resizedpnothe encoding method
(blocking artifacts in depth data result in objetiifting in synthesis). Figure
1Erreur ! Source du renvoi introuvable. depicts this type of artifact.

Figure 1: Shifting/Resizing artifacts. The shape of tt
leaves, in this figure, is slightly modified (thiemor bigger
The vase is also moved to the right.



Blurry regions This may be due to the inpainting method usefilltthe dis-
occcluded areas. It is obvious around the backghboreground transitions.
These remarks are confirmed on Figure 2 aroundiduecluded areas.

b

Figure 2: Blurring artifacts ( Book Arriv-
al). a: original frame. b: synthesized frame.

Incorrect rendering of textured areaspainting methods can fail in filling
complex textured areas. To overcome these limitati@ hole filling approach
based on patch-based texture synthesis is propo$gd

Flickering: when errors occur randomly in depth data alomgsuence, pix-
els are wrongly projected: some pixels suffer sligiianges of depth, which ap-
pears as flickers in the resulting synthesizedIpixeo avoid this methods such as
[6] propose to acquire background knowledge aldregggequence and to conse-
guently improve the synthesis process.

Tiny distortions in synthesized sequences, a large number ofgagmetric
distortions and illumination differences are tengllgr constant and perceptually
invisible. Due to the rounding decimal point prahlenentioned in Section 1.2.1
and to depth inaccuracy, slight errors may occuewaffecting a color value to a
pixel in the target viewpoint. This leads to titiymination errors that may not be
perceptible to human. However, pixel-based metmey penalize these distorted
zones.



When encoding either depth data or color sequénefese performing the syn-
thesis, compression-related artifacts are combimitd synthesis artifacts. Arti-
facts from data compression are generally spresltinMhe whole image, while
artifacts inherent to the synthesis process arenlyndocated around the disoc-
cluded areas. The combination of both type of diisto, depending on the com-
pression method, relatively affects the synthesided. Indeed, most of the used
compression methods are 2D video codecs inspimedi,age thus optimized for
human perception of color. As a result, artifaatsusring especially in depth data
induce severe distortions in the synthesized viéwshe following, a few exam-
ples of such distortions are presented.

Blocking artifacts:this occurs when the compression method induaeskislg ar-
tifacts in depth data. In the synthesized viewsplertblocks of color image seem
to be translated. Figure 3 illustrates the disborti

Figure 3: Blocking artifacts from depth data compression result in distorted syn-
thesized views (Breakdancers). a: Original depth ime (up) and color original
frame (bottom). b: Distorted depth frame (up), synhesized view (bottom]



Ringing artifacts:when ringing artifacts occur in depth data arosindng discon-
tinuities, objects’ edges appear distorted in thetesized view. Figure 4 depicts
this artifact.

a

Figure 4. Ringing artifacts in depth data lead to distortions in the synthesized views. a: Origin
depth frame (up) and original color frame (bottom). b: Distorted depth frame (up) and synthsizec
frame (bottom).

1.2.3.The peculiar task of assessing the synthesized view

The evaluation of DIBR systems is a difficult tas&cause depending on the
application (FTV or 3DTV), the type of evaluatioifférs. Not the same factors
are involved in the two applications. The main eliéince between the two appli-
cations is the stereopsis phenomenon (fusion bate right views in human vis-
ual system). This is used by 3DTV and this repredudgsion in relief. This in-
cludes psycho physiological mechanisms whose utadeli®ig is not complete so
far. A FTV application does not have to be used BD context. FTV can be ap-
plied in a 2D context. Consequently, the qualityessments protocols differ and
address the quality of the synthesized view in diffierent contexts. It is obvious
that stereoscopic impairments (such as cardbodattefcrosstalk, etc. as de-
scribed in [7] and [8]), which occur in stereos@ponditions, are not assessed in
2D conditions. As well, distortions detected in 2@nditions may not be percepti-
ble in a 3D context.



Finally, artifacts, in DIBR, are mainly geometritstrtions. These distortions
are different from those commonly encountered ithewi compression, and as-
sessed by usual evaluation methods: most videangaogtandards rely on DCT,
and the resulting artifacts are specific (somehefit are described in [9]). These
artifacts are often scattered in the whole imadfapagh DIBR related artifacts
are mostly located around the disoccluded regid¥ies. most of the usual objec-
tive quality metrics were initially created to adds usual specific distortions and
may be unsuitable to the problem of DIBR evaluatidhis will be discussed in
Section 1.3.

Another aspect concerns the need for non-refergnality metrics. In particu-
lar cases of use, like FTV, references are unahailbecause the generated view-
point is virtual. In other words, there is no grduruth allowing a full comparison
with the distorted view.

The next section addresses two case studies thatig the validity of subjec-
tive and objective quality assessment methodsHerevaluation of synthesized
view in 2D conditions.

1.3. Two case studies to question the evaluation ofr®gited view

In this section, we first present the aim of thedsts, and the experimental
material. Then we present the two subjective assessmethods whose suitabili-
ty has been questioned in our experiments. Wejaddify the choice of these two
methods. Finally we present a selection of the mostmonly used metrics that
also were included in our experiments.

1.3.1.Goal of the studies

We conducted two different studies. The first oddrasses the evaluation of
still images. An obviously important scenario tosiler is the case in which the
user switches the video to the “pause” mode. Thgeshould be treated because
it is likely to occur and may be subject to metitd observation. The second
study addresses the evaluation of video sequences.

The two studies question the reliability of subjeetand objective assessment
methods when evaluating the quality of the syn#tebiview. Most of the pro-
posed metrics for assessing 3D media are inspiced 2D quality metrics. Previ-
ous studies ([10], [11]) already considered thébdity of usual objective met-
rics. However, often, experimental protocols inehdepth and/or color
compression, different 3D displays, and differem Bepresentations (2D+Z,
stereoscopic video, MVD, etc...). In these cades,quality scores obtained from
subjective assessments are compared to the gsetitgs obtained through objec-
tive measurements, in order to find a correlatind @alidate the objective metric.
The experimental protocols often assess at the sameeboth compression distor-
tion and synthesis distortion, without distinctidiis is problematic because there



may be a combination of artifacts from various sear(compression and synthe-
sis) whose effects are not clearly specified arsgssed. The studies presented in
this chapter concerns only synthesized views, osein 2D conditions.

The rest of this section present the experimenttiral, the subjective me-
thodologies and the objective quality metrics usetthe studies.

1.3.2.Experimental material

Three different multiview plus depth (MVD) sequescare used in the two
studies. The sequences &eok Arrival (1024x768, 16 cameras with 6.5cm spac-
ing), Lovebirdl (1024x768, 12 cameras with 3.5 cm spacing) hledvspaper
(1024x768, 9 cameras with 5 cm spacing).

Seven DIBR algorithms processed the three sequenagemerate, for each se-
guence, four different viewpoints.

These seven DIBR algorithms are labeled from AA7o

- Al: based on Fehn [12], where the depth map ipppeessed by a low-
pass filter. Borders are cropped, and then angotation is processed to
reach the original size.

- A2: based on Fehn [12]. Borders are inpainted lymiethod proposed by

Telea [13].

- A3: Tanimoto et al. [14], it is the recently adaptesference software for

the experiments in the 3D Video group of MPEG.

- A4: Miller et al. [15], proposed a hole filling nmetd aided by depth in-

formation.

- A5: Ndjiki-Nya et al. [5], the hole filling methotb a patch-based texture

synthesis.

- A6: Kbppel et al. [6], uses depth temporal inforimatto improve the syn-

thesis in the disoccluded areas.

- A7: corresponds to the unfilled sequences (i.eh Witles).

The test was conducted in an ITU conforming tesirenment.For the subjec-
tive assessments, the stimuli were displayed oWlkogic LVM401W, and ac-
cording to ITU-T BT.500 [16]. In the following, th&ubjective methodologies are
first presented, and then the objective metricsaddressed.



Objective measurements were obtained by using MetiX Visual Quality

{

Assessment Package [17].

Original image Original depth Warped depth map

Figure 5: Synthesized frames (Lovebirdl" sequence)
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1.3.3.Subjective assessment methodologies

Subjective tests are used to measure image oo jdelity. The International
Telecommunications Union (ITU) [18] is in charge the recommendations of
the most commonly used subjective assessment neetls@veral methods exist
but there is no 3D-dedicated protocol. The avadamiotocols both have their
drawbacks and advantages and they are usually ctazsmrding to the desired
task. This depends on the distortion and on the tfpevaluation [19]. They dif-
fer according to the type of pattern presentatgingle-stimulus, double-stimulus,
multi-stimulus), the type of voting (quality, impaient, or preference), the voting
scale (discrete or continuous), the number of gagioints or categorie&rreur !
Source du renvoi introuvable. depicts the proposed classification of subjective
methods in [19]. The abbreviations of the methddssified inErreur ! Source
du renvoi introuvable. are referenced in Table 1.

Impairment of

Expected accurac)_p’ngh

Only test sequence is displayed

Ref+Test: Both sequences displayed simultaneous

! SDSC
: Ref+Test cC

A

Very high
PC

video
L High Type of presentation:
ACR(-HRR) || Test Onl tes ¢
Test 5q/5i ef/Test: Firstreference, then test sequence
Test&Ref: Test and reference in random order

High Test/Test: Two test seauences compared to each ¢

SSNCS
Test  11g/11i High
Rt

efftes

SSCQE il

Test cc High
DSIS
Ref/test c
Medium
SAMVIQ
ReflTest/Test/.. C

High High

SDSC DSCQS
Ref+Test CC Test&Ref c

Test/Test

7D

Type of voting:

5q: 5-grade quality scale

5i: 5-grade impairmentscale

7D: 7-grade difference scale

C: Continuous scale, single vote

CC: Continuous scale, continuous vote,

>

Time/sample'

Figure 6: Commonly used subjective test methods, agpicted in [19]
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Table 1: Overview of subjective test methods

Abbrev. Full meaning Ref.
DSIS Double Stimulus Impairment Scale [16
DSQS Double Stimulus Quality Scale [16]
SSNCS Single Stimulus Numerical Categorical Scale ] [16
SSCQE Single Stimulus Continuous Quality Evaluation [16]
SDSCE Simultaneous Double Stimulus for Continuouduzgian [16]
ACR Absolute Category Rating [18]
ACR-HR Absolute Category Rating with Hidden Referenceaal [18]
DCR Degradation Category Rating [18
PC Pair Comparison [18]
SAMVIQ Subjective assessment Methodology for Vidaality [18]

In the absence of any better 3D-adapted subjeqtirdity assessment metho-
dologies, the evaluation of synthesized views isthgabtained through 2D vali-
dated assessment protocols. The aim of our tworewpats is to question the sui-
tability of a selection of subjective quality assment methods. This selection is
based on the comparisons of methods in the literatConsidering the aim of the
two experiments that we proposed, the choice aflgestive quality assessment
method should relies on consideration of reliapilitccuracy, efficiency and easi-
ness of implementation of the available methods.

Brothertonet al [20] investigated the suitability of ACR and SAMY me-
thods when assessing 2D media. The study showA@Rtmethod allowed more
test sequences (at least twice) to be presentedskessment compared to the
SAMVIQ method. ACR method also proved to be rekainl the test conditions.
Rouseet al. also studied the tradeoff of these two method®1j,[in the context
of high definition still images and video sequencd®y concluded that the suita-
bility of the two methods may depend on specifiplagations.

A study was conducted by Huynh-Tktial. in [22], and proposed to compare
different methods according to their different wgtiscales (5-point discrete, 9-
point discrete, 5-point continuous, 11-point contins scales). The tests were car-
ried in the context of high-definition video. Thesults shown that ACR method
produced reliable subjective results, even acrdferent scales.

Considering the classification of the methods, wieded the single-stimulus
pattern presentation, ACR-HR (with 5 quality cateées) and the double-stimulus
pattern presentation PC for its accuracy. Theyaseribed and commented in the
following.

Absolute categorical rating with Hidden Reference Bmoval (ACR-HR)
methodology consists in presenting test objects {images or sequences) to ob-
servers one at a time. The objects are rated imdigpély on category scale. The
reference version of each object must be includetthé test procedure and rated
as any other stimulus. This explains the used tdrthidden reference”. From the
scores obtained, a differential score (DMOS forf@dntial Mean Opinion Score)
is computed between the mean opinion scores (M@8ach test object and its
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associated hidden reference. ITU recommends teed-tjuality scale depicted in
Table 2.

Table 2 ACR-HR quality scale

5 Excellent
4 Good

3 Fair

2 Poor

1 Bad

ACR-HR requires many observers to minimize the extoal effects (previ-
ously presented stimuli influence the observer iopini.e. presentation order in-
fluences opinion ratings). Accuracy increases Withnumber of participants.

Paired comparisons (PC)methodology is an assessment protocol in which
stimuli are presented by pairs to the observeis:atdouble-stimulus method. The
latter select the one out of the pair that bessfsed the specified judgment crite-
rion, i.e. image quality.

The results of a paired comparisons test are redoirda matrix: each element
corresponds to the frequencies a stimulus is pedeyver another stimulus. These
data are then converted to scale values using TdmésvViosteller's or Bradley-
Terry's model [23]. It leads to a hypothetical pgtual continuum.

The presented experiments follow Thurstone-Mostsllenodel where naive
observers were asked to choose the preferred item éne pair. Although the
method is known to be highly accurate, it is tirn@suming.

The differences between ACR-HR and PC are of diffetypes. First, with
ACR-HR, even though they may be included in thensli, the reference se-
guences are not identified as such by the obser@rservers provide an absolute
vote without any reference. In PC, observers oplgdnto indicate their preference
out of a pair of stimuli. Then the requested tas#tifferent: while observers assess
the quality of the stimuli in ACR-HR, they just pide their preferences in PC.

The quality scale is another issue. ACR-HR scoresige knowledge on the
perceived quality level of the stimuli. However thating scale is coarse, and be-
cause of the single stimulus presentation, obsereannot remember previous
stimuli and precisely evaluate small impairments. $eores (i.e. “preference ma-
trices”) are scaled to a hypothetical perceptuatiooum. However, it does not
provide knowledge on the quality level of the stiinbut on the stimuli order of
preferences. Moreover, PC is very well suited foak impairments, thanks to the
fact that only two conditions are compared to eaitter. For these reasons, PC
tests are often coupled with ACR-HR tests.
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Another aspect concerns the complexity and theitfdias of the test: PC is
simple because observers only need to provide nerafe in each double stimulus.
However, when the number of stimuli increase, &st becomes hardly feasible as

the number of comparisons grows%%vz_—l) with N, the number of stimuli. In the

case of video sequences assessment, a doubletstinmdthod such as PC in-
volves the use of either one split-screen enviraringer two full screens), with
the risk of distracting the observer (as explaimed24]), or one screen but se-
quences are displayed one after the other, whicteases the length of the test.
On the other hand, the simplicity of ACR-HR alloth&e assessment of a larger
number of stimuli. However, the results of thisemssnent are reliable as long as
the group of participants is large enough.

1.3.4.0bjective quality metrics

The experiments that are proposed in this chaptguire the use of objective
quality metrics. The choice of the objective metricsed in these experiments is
motivated by their availability. This section pratean overview of the objective
metrics used in these experiments. Still-images\addo sequences metrics are
presented.

Objective metrics are meant to predict human peimemf quality of images
and thus avoid spending time in subjective qualggessment tests. They are then
supposed to be highly correlated with human opininrthe absence of approved
metrics for assessing synthesized views, mostefthdies rely on the use of 2D
validated metrics, or on adaptations of such. Theeedifferent types of objective
metrics, depending on their requirement for refeeeimages. The objective me-
trics can be classified in three different categ@iccording to the availability of
the reference image: full reference methods (FBjluced reference methods
(RR), no-reference methods (NR). FR methatpiire references images. Most of
the existing metrics rely on FR methods. RR methredsiire only elements of the
reference images. NR methods do not require referémages. NR methods
mostly rely on Human Visual System models to predieman opinion of the
quality. Also, a prior knowledge on the expectetifaats highly improves the de-
sign of such methods.

As proposed in [25], we use a classification redyon tools used in the me-
thods. Table 1Table 3 lists a selection of commardgd objective metrics and
Figure 7 depicts the proposed classification.

Table 3 Overview of commonly used objective metrics

Objective metric Abbrev.
Signal-based Peak Signal to Noise Ratio PSNR
Perceptual-like | Universal Quality Index uQl
Information Fidelity Criterion IFC
Video Quality Metric VQM
Perceptual Video Quality Measure PVQM
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Structural-baseq Single-scale Structural SIMilarity SSIM
Multi-scale SSIM MSSIM
Video Structural Similarity Measure V-SSIM
Motion-based Video Integrity Evaluation MOVIE
HVS-based PSNR- Human Visual System PSNR-HVS
PSNR-Human Visual System Masking model PSNR-HVEM
Visual Signal to Noise Ratio VSNR
Weighted Signal to Noise Ratio WSNR
Visual Information Fidelity VIF
Moving Pictures Quality Metric MPQM

Perceptual-like

methods

Signal-based
methods

R—— .. HVS-based
VSR .methods
’ WSNR

PSNR HVS
PSNR HVSM

“J.Structural-based
“.methods

STILL-IMAGE QUALITY METRIC
VIDEO QUALITY METRIC

Figure 7: Overview of quality metrics

Signal-Based methods:

PSNR is a widely used method because of its siitypliPSNR belongs

to the signal-based methods category. It measheesignal fidelity of a distorted

image compared to a reference. It is based on tesune of the Mean Squared
Error (MSE). Because of the pixel-based approactuch a method, the amount
of distorted pixels is depicted, but the perceptyality is not: PSNR does not
take into account the visual masking phenomenonis;Thven if an error is not

perceptible, it contributes to the decrease of ghality score. Indeed, studies
(such as [26]) showed that in the case of synthdsizews, PSNR is not reliable,
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especially when comparing two images with low PS&¢Rres. PSNR cannot be
used in very different scenario as explained irj.[27

Perceptual-like methods:

Considering that signal-based methods are unaltertectly predict the
perceptual quality, perceptual-like metrics haverbatroduced. They make use
of perceptual criterion such as luminance or catisstortion.

UQI [28] is a perceptual-like metric. The qualigose is the product of the corre-
lation between the original and the degraded imaderm defining the luminance
distortion, a term defining the contrast distortidie quality score is computed
within a sliding window and the final score is defil as the average of all local
scores.

IFC [29] uses a distortion model to evaluate tHerimation shared between the
reference image and the degraded image. IFC irdidhe image fidelity rather
than the distortion. IFC is based on the hypothibsi given a source channel and
a distortion channel, an image is made of multipdependently distorted sub-
bands. The quality score is the sum of the munfakination between the source
and the distorted for all the subbands.

VQM was proposed by Pinson and Wolf in [30]. ItasFR video metric that
measures perceptual effects of numerous videortiete. It includes a calibra-
tion step (to correct spatial/temporal shift, castr and brightness according to
the reference video sequence), an analysis of peefeatures. VQM score
combines all the perceptual calculated parame¥&pdM method is complex but
the correlation to subjective scores is good adngrtb [31]. The method is vali-
dated in typical video processing conditions.

Perceptual Video Quality Measure (PVQM) [32] is met detect perceptible
distortions in video sequences. Different indicatare used. First, an edge-based
indicator allows the detection of distorted edgeshe images. Second, a motion-
based indicator analyses two successive framesd,Tdicolor-based indicator de-
tects non-saturated colors. Each indicator is mbséparately across the video and
incorporated in a weighting function to obtain flmal score. This method was not
available so it was not tested in our experiments.

Structural-based methods:

Structural-based methods are also included in énegptual-like metrics.
They are based on the assumption that human penedptbased on the extrac-
tion of structural information. Thus, they meastire structural information deg-
radation. SSIM [33] was the first method of thidegmry. It is considered as an
extension of UQI. It combines image structural infation: mean, variance, co-
variance of pixels, for a single local patch. Thecksize depends on the viewer
distance to the screen. However, a low variatiothefSSIM measure, can lead to
an important error of MOS prediction.
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Then, many improvements to SSIM were proposed,aaiaptations to video as-
sessment were introduced. MSSIM is the average SSiddes of all patches of
the image. V-SSIM [34] is a FR video quality metwhich uses structural distor-
tion as an estimate of perceived visual distortiinthe patch level, SSIM score is
a weighted function of SSIM of the different compahof the image (i.e. lumin-
ance, and chromas). At the frame level, SSIM si®ra weighted function of
patches’ SSIM scores (based on the darkness q@fated). Finally at the sequence
level, VSSIM score is a weighted function of fram8SIM scores (based on the
motion). The choice of the weights relies on theuagption that dark regions are
less salient. However, this is questionable becthesdarkness may depend on the
used screen.

MOVIE [35] is a FR video metric that uses sevetalps before computing the
quality score. It includes the decomposition oftbference and distorted video
by using a multi-scale spatio-temporal Gabor filtank. A SSIM-like method is
used for the spatial quality analysis. An optidalf calculation is used for the
motion analysis. Spatial and temporal quality iattics determine the final score.

Human-Visual-System (HVS)-based methods:

HVS-based methods rely on human visual system rioddlom psy-
chophysics experiments. Due to the complexity ef hluman vision, studies are
still in progress. HVS-based models are the resfultadeoffs between computa-
tional feasibility and accuracy of the model. HW&sed models can be classified
into two categories: neurobiological models and et®dbased on psychophysical
properties of human vision.

The models based on neurobiology estimate the ldotudevel process in human
visual system including the eye and optical neHewever, these models are not
widely used, because of their complexity [36].

Psychophysical HVS-based models are implemented daquential process that
includes luminance masking, color perception angyfsequency selection, con-
trast sensitivity implementation (based on the @sttsensitivity function CSF
[37]) and modeling of masking and facilitation effe[38].

PSNR-HVS [39], based on PSNR and UQI, takes intmawct the Human Visual
System (HVS) properties such as its sensitivitgdotrast change and to low fre-
guency distortions. In [39], the method proved ® dorrelated to subjective
scores, but the performances of PSNR-HVS methodeated on a variety of dis-
tortions specific to 2D image compression whichdifferent from distortions re-
lated to DIBR.

PSNR-HVSM [40] is based on PSNR but takes into aet&ontrast Sensitivity
Function (CSF) and between-coefficient contrastkimgsof DCT basis functions.
The performances of the method are validated cerisigl a set of images contain-
ing Gaussian noise or spatially correlated addi@®aissian noise, at different lo-
cations (uniformly through entire imag®apstly in regions possessing a high mask-
ing effect or, mostly in regions possessing a lovekitey effect).
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VSNR[41] is also a perceptual-like metric: it issbd on a visual detection of dis-
tortion criterion, helped by CSF. VSNR metric insiéive to geometric distortions
such as spatial shifting and rotations, transfoionatwhich are typical in DIBR
applications.

WSNR that uses a weighting function adapted to Hé¢Botes a weighted Signal
to Noise Ratio, as applied in [42] . It is an impement of PSNR that that uses a
CSF-based weighting function. However, although SblRore accurate by tak-
ing into account perceptual properties, as with RSNethod, the problem re-
mains the accumulation of degradations errors @vaeon-perceptible areas.

IFC has been improved by the introduction of a Ha&lel. The method is called
VIF[43]. VIFP is a pixel-based version of VIF. Ises wavelet decomposition and
computes the parameters of the distortion modetgctwenhance the computa-
tional complexity. In [43], five distortion typeseaused to validate the perform-
ances of the method (JPEG and JPEG 200 relatemttitiss, white and Gaussian
noise over the entire image), which are quite diffie from the DIBR related arte-
facts.

MPQM [44] uses a HVS model. In particular it take® account the masking
phenomenon and the contrast sensitivity. It hak b@mplexity and its correlation
to subjective scores is varying according to [&ihce, the method is not availa-
ble it is not tested in our experiments.

Only a few commonly used algorithms (in the 2D eatit have been described
above. Since they are all dedicated to 2D apptioatithey are optimized to detect
and penalize specific distortions of 2D image aide® compression. As ex-
plained in 1.2, distortions related to DIBR arewadifferent from 2D known arte-
facts. There exist many other algorithms for visyzdlity assessment that are not
covered here.
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1.3.5.Experimental protocols
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Figure 8: Experimental protocols

Two experiments were conducted. The first one add®the evaluation of still
images. The second study addresses the evaludtiadem sequences. Figure 8
depicts the overview of the two experiments.

The material for both experiments comes from theesaet of synthesized
views as described in Section 1.3.2. However, inddise of the first experiments,
on still-images, the test images are “key” franfé®ys” were randomly chosen)
from the same set of synthesized views, due tactmplexity of PC tests when
number of items increases. That is to say thae&mh of the three reference se-
guences, only one frame was selected out of eatthessized view viewpoint.

In both experiments, the suitability of subjectigaality assessment methods
and the reliability of objective metrics are addeshs

Concerning the subjective tests, two sessions we@nducted. The first one ad-
dressed the assessment of the still images. Huéyg-ihaive observers participated
in this test. The second session addressed thesasset of the video sequences.
Thirty-two naive observers participated in thid.tes
In the case of video sequences, only ACR-HR testeeaducted, but both ACR-
HR and PC were carried for the still-images contBx test with video sequences
would have required either two screens, or swigliatween items. In the case of
the use of two screens, it involves the risk ofginig frames of the tested se-
guences, because one cannot watch simultaneouslgiff@rent video sequences.
In the case of the switch, it would have increasedsiderably the length of the
test.

The objective measurements were realized over ¢hey@thesized views by
the means of MetriX MuX Visual Quality Assessmeatkage [17] software ex-
cept for two metrics: VQM and VSSIM. VQM were awdile at [45]; VSSIM was
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implemented by the authors, according to [34]. Téference was the original ac-
quired image. It should be noted that still imageldy metrics used in the study
with still images, are also used to assess theliddeo sequences quality by ap-
plying these metrics on each frame separately gechging the frames scores.

Table 4 summarizes the experimental framework. Aehe sections present the
results of the first experiment assessing the tuafistill-images, and then the re-
sults of the second experiment assessing the yodhtideo sequences.

Table 4 Overview of the experiments

Experiment 1(still-images) | Experiment 2 (video
sequences)

Data Key frames of each synthe¢-Synthesized  videq
sized view sequences

Subjective | Nb. of par- | 43 32

tests ticipants

Methods ACR-HR, PC ACR-HR

Objective measures All available metrics of VQM, VSSIM, Still-

MetriX MuX image metrics

1.4. Results on still images (experiment 1)
1.4.1. Subjective tests

The seven DIBR algorithms are ranked accordingp¢oabtained ACR-HR and
PC scores, as depicted in Table 5. This table ate&cthat the rankings obtained
by both testing method are consistent. For ACR-ER, tthe first line gives the
DMOS scores obtained through the MOS scores. FoteBC the first line gives
the hypothetical MOS scores obtained through thepasisons. For both tests, the
second line gives the rankings of the algorithniisaimed through the first line.

Table 5 Rankings of algorithms according to subjeéte scores

Al A2 A3 Ad A5 A6 A7
ACR-HR 3539 3.38¢ 3.14¢ 3.4C 3.49¢ 3.32 2.27¢
Rank order 1 4 6 3 2 5 7
PC 1.03¢ 0.50¢ 0.207 0.531 0.93¢ 0.45¢ -2.05¢
Rank order 1 4 6 3 2 5 7

In Table 5, although the algorithms can be rankethfthe scaled scores, there
is no information concerning the statistical sigr@hce of the quality difference of
two stimuli (one more preferred than another ofiéien statistical analyses have
been conducted over the subjective measuremestsdant’s t-test has been per-
formed over ACR-HR scores, and over PC scores doh elgorithm. This pro-
vides knowledge on the statistical equivalencehefdlgorithms. Table 6 and Ta-
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ble 7 show the results of the statistical testsy &@&R-HR and PC values respec-
tively. In both tables, the number in parenthesekicates the minimum required
number of observers that allows statistical disiimc(VQEG recommends 24 par-
ticipants as a minimum [46], values in bold areheigthan 24 in the table).

A first analysis of these two tables indicates &t method leads to clear-cut
decisions, compared to ACR-HR method: indeed, tis#iloutions of the algo-
rithms are statistically distinguished with lesarit24 participants in 17 cases with
PC (only 11 cases with ACR-HR). In one case (betw&2 and A5), less than 24
participants are required with PC, and more thapat8cipants are required to es-
tablish the statistical difference with ACR-HR. Tlagter case can be explained by
the fact that the visual quality of the synthesizmdges (and thus, some distor-
tions) may seem very similar for non-expert obsexv&his makes the task more
delicate for observers. These results indicateitrsems more difficult to assess
the quality of synthesized views than in other et (for instance, quality as-
sessment of images distorted through compresdinaged, the results with ACR-
HR method, in Table 6, confirm this idea: in mokthe cases, more than 24 par-
ticipants (or even more than 43) are required $tirdjuish the classes (Remember
that A7 is the synthesis with holes around theatibaed areas).

However, as seen with rankings results above, rdetbgies give consistent
results: when the distinctions between algorithmes stable, they are the same
with both methodologies.

Finally, these experiments show that fewer pardiotp are required for a PC
test than for an ACR-HR test. However, as statédrbePC tests, while efficient,
are feasible only with a limited number of itemsb® compared. Another prob-
lem, pointed out by these experiments, concerngsisessment of similar items:
with both methods, 43 participants were not alwsySicient to obtain a stable
and reliable decision. Results suggest that obeehed difficulties assessing the
different types of artefacts.

Table 6 Results of Student's t-test with ACR-HR reglts Legend: 1: superior, |:
inferior, ©: statistically equivalent. Reading: Line"1" is statistically superior to column "2". Dis-
tinction is stable when "32" observers patrticipate.

Al A2 A3 A4 A5 A6 A7

Al 1(32) | 1(<24) | 1(32) | ©(>43) | 1(30) | 1(<24)
A2 1(32) 2(<24) | ©(>43) | °(>43) | °(>43) | 1(<24)
A3 U<24) | [(<24) U<24) | [(<24) | U<24) | 1(<24)
A4 1(32) | ©(>43) | 1(<24) ©(>43) | °(>43) | 1(<24)
A5 ©(>43) | °(>43) | 1(<24) | °(>43) 7(28) | 1(<24)
A6 1(30) | ©(>43) | 1(<24) | ©°(>43) | [(28) 1(<24)
A7 1(<24) 1(<24) 1(<24) 1(<24) 1(<24) 1(<24)
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Table 7 Results of Student's t-test with PC results.egend: 1: superior, |: infe-
rior, ©: statistically equivalent. Reading: Line"1" is statistically superior to column "2". Distinc-
tion is stable when "less than 24" observers partipate.

Al A2 A3 Ad A5 A6 A7

Al 1(<24) | 1(<24) | 1(<24) | 1(<24) | 1(<24) | 1(<24)
A2 1(<24) 1(28) | ©(<43) | [(<24) | ©(>43) | 1(<24)
A3 U(<24) | |(28) U<24) | [<24) | [(<24) | 1(<24)
A4 U(<24) | ©°(>43) | 1(<24) U(<24) | 1(>43) | 1(<24)
A5 U<24) | 1(<24) | 1(<24) | 1(<24) 1(<24) | 1(<24)
A6 U(<24) | ©(>43) | 1(<24) | [(>43) | [(<24) 1(<24)
A7 1(<24) 1(<24) 1(<24) 1(<24) 1(<24) 1(<24)

As a conclusion, this first analysis, involvinglistinages quality assessment,
reveals that more than 24 participants may be sacg$or these types of test.

PC gives clear-cut decisions, due to the mode s#sasnent (preference) while
algorithm’s statistical distinctions with ACR-HReaslightly less accurate. With
ACR-HR, the task is not easy for the observers lizaalthough each DIBR in-
duces specific artifacts, the impairments amongéebted images are small. Thus,
when evaluating the performances of different DI8Borithms with this metho-
dology, this aspect should be taken into account.

However, ACR-HR and PC are complementary: whensagsg similar items,
like in this case study, PC can provide a rankinge ACR-HR gives the overall
perceptual quality of the items.

1.4.2.0bjective measurements

The results of this subsection concerns the meamnts conducted over the
same selected “key” frames.
The whole set of objective metrics give the saraads. Table 8 provides correla-
tion coefficients between obtained objective scolteeveals that they are highly
correlated. This table shows that the behaviotheftested metrics was the same
when assessing images containing DIBR relatedaatsif Thus, they have the
same response when assessing DIBR related artifdote the high correlation
scores between pixel-based and more perceptualditeics such as PSNR and
SSIM (83.9%).
The first step consists in comparing the objecsiveres with the subjective scores
(in section 1.4.1). The consistency between ohjectind subjective measures is
evaluated by calculating the correlation coeffitéefor the whole fitted measured
points. The coefficients are presented in Tablénthe results of our test, none of
the tested metric reaches 50% of human judgmerns fElveals that contrary to
the received opinion, the objective tested metrighpse efficiency has been
proved for the quality assessment of 2D conventiomedia, do not reliably pre-
dict human appreciation in the case of synthesikads.



22

Since it is argued in [47] that correlation is difnt from agreement (as illustrated
in Figure 9), we check the agreement of the testettics by comparing the ranks
affected to the algorithms. Table 10 presents #&mkings of the algorithms, ob-

tained from the objective scores. Rankings fromexttlve scores are mentioned
for comparison. They present a noticeable diffeeezancerning the ranking order
of Al: judged as the best algorithm out of the selvg the subjective scores, it is
ranked as the worst by the whole set of objectietrics. Another comment refers

to the assessment of A6: often judged as the bgstithm, it is judged as one of

the worst algorithms through the subjective teftse ensuing assumption is that
objective metrics detect and penalize non-annogitiéacts.

Table 8 Correlation coefficients between objectivecores in percentage

PSNR| SSIM | MSSIM | VSNR | VIF | VIFP | UQI | IFC | NQM | WSNR | PSNRHsvm | PSNR wsv

PSNR 83.9 | 79.6 87.3 77.p70.6 | 53.6| 71.6/ 95.2 | 98.2 99.2 99.0
SSIM 83.9 96.7 93.9 93.492.4 | 81.5] 92.984.9 | 83.7 83.2 83.5
MSSIM 79.6 | 96.7 89.7 88.890.2 | 86.3| 89.485.6 | 81.1 77.9 78.3
VSNR 87.3 | 939 | 89.7 87.p83.3 | 71.9| 84.085.3 | 855 86.1 85.8
VIF 77.0 | 934 | 88.8 87.9 97.5 7512 98744 | 78.1 79.4 80.2
VIFP 706 | 924 | 90.2 83.3 97(5 85.9| 99.2173.6 | 75.0 72.2 72.9
uQl 53.6 | 815 | 86.3 71.9 75(85.9 81.9 70.2 | 61.8 50.9 50.8
IFC 716 | 929 | 894 84.0 98(@9.2 | 81.9 728 | 744 73.5 74.4
NQM 95.2 | 849 | 85.6 85.3 74|43.6 | 70.2| 72.§ 97.1 92.3 91.8
WSNR 98.2 | 83.7 | 81.1 85.5 78[175.0 | 61.8] 74.497.1 97.4 97.1
PSNRHSVM|[99.2 | 83.2 | 77.9 86.1 79|42.2 | 50.9] 73.992.3 | 974 99.9
PSNRHSV [99.0 | 835 | 783 85.8 80|272.9 | 50.8| 74.491.8 | 97.1 99.9

Table 9 Correlation coefficients between objectiveand subjective scores in

percentage
PSNR | SSIM| MSSIM | VSNR| VIF[VIFP [UQI [IFC |NQM |WSNR |PSNR PSNR
HVSM | HVS
ACR- | 31.1 199 | 11.4 229 | 19]@15 | 184 21.0295 | 37.6 317 31.0
HR
PC_ |40.0 23.8 | 34.9 19.7 | 16]22.0 | 329 | 201378 | 36.9 422 41.9
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Table 10 Rankings according to measurements

Al A2 A3 A4 A5 A6 A7
ACR-HR 2.38¢ | 2.23¢ | 1.99¢ | 2.25( | 2.34% | 2.16¢ | 1.12¢
Rank order 1 4 6 3 2 5 7
PC 1.03¢ | 0.50¢ | 0.207 | 0.531 | 0.93¢ | 0.45¢ | -2.05¢
Rank order 1 4 6 3 2 5 7
PSNFR 18.7% | 24.99¢ | 23.1¢ | 26.117 | 26.17.| 26.177| 20.30"
Rank order 7 4 5 3 2 1 6
SSIM 0.63¢ | 0.84% | 0.78¢ | 0.85¢ | 0.85¢ | 0.85¢ | 0.821
Rank order 7 4 6 1 1 3 5
MSSIM 0.64¢ | 0.93Z | 0.82¢ | 0.95( | 0.94¢ | 0.94¢ | 0.88:
Rank order 7 4 6 1 2 2 5
VSNR 13.13¢| 20.53( | 18.90: | 22.00¢ | 22.24" | 22.19¢ | 21.05¢
Rank order 7 5 6 3 1 2 4
VIF 0.12¢ | 0.39¢ | 0.31< | 0.42% | 0.42% | 0.42¢ | 0.397
Rank order 7 5 6 2 2 1 4
VIFP 0.147 | 0.41€ | 0.34< | 0.44¢ | 0.44¢ | 0.44¢ | 0.42(
Rank order 7 5 6 1 1 1 4
Uol 0.237 | 0.55€¢ | 0.47< | 0.577 | 0.57¢ | 0.577 | 0.55¢
Rank order 7 5 6 1 3 1 4
IFC 0.757 | 2.42C | 1.95¢ | 2.587 | 2.58¢ | 2.59] | 2.42¢
Rank order 7 5 6 2 3 1 4
NOM 8.71: | 16.33¢ | 13.64f | 17.07¢| 17.19¢| 17.202 | 10.29:
Rank order 7 4 5 3 2 1 6
WSNR 13.817|20.59:| 18.517| 21.597 | 21.697 | 21.71¢ | 15.58¢
Rank order 7 4 5 3 2 1 6
PSNR HSVM | 13.77: | 19.95¢| 18.36: | 21.42¢ | 21.45¢ | 21.49: | 15.71«
Rank order 7 4 5 3 2 1 6
PSNR HSV | 13.53( | 19.51:| 17.95!| 20.93¢| 20.95¢ | 20.98" | 15.40°
Rank order 7 4 5 3 2 1 6

10

® Perfect correclation, low agreement o
O High agreement, zero correlation o o
8 [¢]
6l 1
[ ]
°
L}
4 [ ]
21
0 . . . .
0 2 4 6 8 10

Figure 9: Difference between correlation and agreeamt [47]
1.5. Results on video sequences (experiment 2)
1.5.1. Subjective tests

In the case of video sequences, only ACR-HR tes egmducted, as men-
tioned before.
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Table 11 shows the algorithms’ ranking from theaoi®d subjective scores. The
ranking order differs from the one obtained with REIR test in the still image
context slightly vary.

Table 11 Ranking of algorithms according to subjedte scores

Al A2 A3 Ad A5 A6 A7
ACR-HR 3.52¢ 3.23% 2.96¢ 2.86& 2.78¢ 2.95€ 2.10¢
Rank orde 1 2 3 5 6 4 7

And, still, although the values allow the rankirfgtlee algorithms, they do not di-
rectly provide knowledge on the statistical equévale of the results. Table 12 de-
picts the results of the Student’s t-test processitd the values. Compared to
ACR-HR test with still images detailed in sectiad.1, distinctions between algo-
rithms seem to be more obvious. Statistical sigaifce of the difference between
the algorithms, based on the ACR-HR scores, eaistisseems clearer in the case
of the video sequences than in the case of stdlges. This can be explained by
the exhibition time of the video sequences: watghimre whole video, observers
can refine their judgment, compared to still imadéste that the same algorithms
were not statistically differentiated: A4, A3, ABAAG.

Table 12 Results of Student's t-test with ACR-HR rsults. Legend: 1: supe-
rior, |: inferior, ©: statistically equivalent.

Al A2 A3 A4 A5 A6 A7
Al 12(7) 1(3) 1(3) 1(2) 1(3) (1)
A2 U7 1(2) 1(2) (1) 1(2) (1)
A3 13) 1) °(>32) | 1(9) °>32) | 1(1)
A4 1(3) 12 | °(>32) °>32) | °>382) | 1(1)
A5 1) 11 19) °(>32) 1(15) (1)
A6 13) 1) °(>32) | °(>382) | 1(15) (1)
A7 U1 11 11 U1 11 U1

As a conclusion, ACR-HR test with video sequendesgyclearer statistical dif-
ferences between the algorithms than ACR-HR te#t wiill images. This sug-
gests that new elements allow the observers to malexision: existence of flick-
ering, exhibition time, etc.

1.5.2.0bjective measurements

The results of this subsection concern the measmaEntonducted over the
entire synthesized sequences.

As in the case of still images studied in the prasisection, the rankings of
the objective metrics (Table 13) are consistenhwaach other: the correlation
coefficients between objective metrics are vergelérom the figures depicted in
Table 8, and so they are not presented here. Asshit images, the difference be-
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tween the subjective-test-based ranking and thiengrirom the objective scores
is noticeable. Again, the algorithm judged as tloesiv(Al) by the objective mea-
surements, is the one preferred by the observéis.cin be explained by the fact
that Al performs the synthesis on a cropped imagd,then enlarges it to reach
the original size. Consequently, signal-based eo®tgenalize it while it gives

good perceptual results.

2. Table 13 Rankings according to measurements

Al A2 A3 A4 A5 A6 A7
ACR-HR | o7¢ | 241 | 212 | 205 | 1.96 | 215 | 1.2¢
Rank order 1 2 3 5 6 4 7
PSNR 19.02| 24.99 | 23.227 25.994| 26.035| 26.04 | 20.89
Rank order 7 4 5 3 2 1 6
SSIM 0.648| 0.844 | 0.786| 0.859 0.859 0.839 0.824
Rank order 7 4 6 1 1 1 5
MSSIMM 0.664| 0.932| 0.825| 0.948 0.948 0.948 0.488
Rank order 7 4 6 1 1 1 5
VSNR 13.14| 20.41 | 18.75| 21.78621.965| 21.968| 20.73
Rank order 7 5 6 3 2 1 4
VIF 0.129| 0.393 | 0.313| 0.423 0.4283 0.424 0.396
Rank order 7 5 6 2 2 1 4
VIFP 0.153| 0.415| 0.342| 0.44 0.446 0.446 0.419
Rank order 7 5 6 1 1 1 4
uQl 0.359| 0.664| 0.58| 0.598 0.598 0.598 0.667
Rank order 7 5 6 3 3 3 1
IFC 0.779| 2.399 | 1.926| 2562 2562 2.564 2.404
Rank order 7 5 6 2 2 1 4
NQM 8.66 | 15.933 13.415| 16.635| 16.739| 16.739| 10.63
Rank order 7 4 5 3 1 1 6
WSNR 14.41| 20.85| 18.853 21.76 | 21.839 21.844| 16.46
Rank order 7 4 5 3 2 1 6
PSNR HSVM | 13.99| 19.37 | 18.361 21.278| 21.318| 21.326| 16.23
Rank order 7 4 5 3 2 1 6
PSNR HSV | 13.74| 19.52 | 17.958 20.795| 20.823| 20.833| 15.91
Rank order 7 4 5 3 2 1 6
VSSIM 0662|0879 |0.80¢ |0.89¢ |0.898 |0.893 |0.854
Rank 7 4 6 1 2 3 5
VOM 0888|0.623 | 0581 |057z |0.55€ |0557 |0.652
Rank order 7 5 4 3 1 2 6

Table 14 presents the correlation coefficients betwobjective scores and subjec-
tive scores, based on the whole set of measuradsp®ione of the tested objec-
tive metric reaches 50% of subjective scores. Th&imobtaining the higher cor-
relation coefficient is VSNR, with 47.3%. Figure $8ows the same obtained
correlation scores, with resulting ranking of testaetrics. It is easily observed
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that the top metrics are perceptual-like metritgytinclude psychophysical ap-
proaches).

Table 14 Correlation coefficients between objectivand subjective scores
in percentage

PSNR | SSIM | MSSIM | VSNR | VIF | VIFP | UQI |IFC |NQM _|WSNR | psSnR PSNR VSSIM | VQM
HVSM HVS
A,_ﬁs 34.5 45.2 27 47.3 43/946.9 20.2 45.6| 36.6 32.9 34.5 33.9 33 33.6
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Figure 10: Ranking of used metrics according to the correlation to hu-

man judgment.

To conclude, performances of objective metricshwispect to subjective

scores, are different in the case of video sequethan in the case of still images.

Correlation coefficients between objective and satdye scores were higher in
the case of video sequences, by comparing TablgittdTable 9. However, hu-

man opinion also differed in the case of video sages. In the case of video se-
guences, perceptual-like metrics were the mosetaird to subjective scores (al-
so in video conditions). However, in both condispmone of the tested metrics
reached 50% of human judgment.

1.6.Discussion and future trends

This section discusses the future directions reéggrthe quality assessment

of views synthesized with DIBR systems. The resphssented in the pre-
vious sections proved the need for new subjectivaity assessment proto-

cols and improved objective metrics. This sectiddrasses the issues related
to the conception of a new subjective quality essent method and the new
trends for the objective metrics.

1.6.1.

Subjective protocols
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ACR-HR and PC are known for their efficiency in 2bnditions, though they
showed their limitations in the two case studiesspnted in 1.3. Moreover, one
may need to assess the quality of 3D media in 3iditions. Defining a new sub-
jective video quality assessment framework is aghotask, knowing the new
complexity involved in 3D media. The difficulty &D-image quality evaluation,
compared to 2D conventional images, is now moresidened. Seuntiens [48] in-
troduced new parameters to assess in additionagaémuality, which are natural-
ness, presence and visual experience. Thus, a-dimkinsional quality indicator
may allow a reliable assessment of 3DTV media. H@aweit may be difficult to
define such terms in the context of a subjectivaliuassessment protocol, and
there is no standardized protocol considering tlesgects yet. ITU-R BT. 1438
recommendation [49] describes subjective assessofestereoscopic television
pictures and the methods are described in [16].

Chen et al. [50] revisited the question of subjectWwideo quality assessment
protocols for 3DTV. This work points out the comytg of 3D media quality as-
sessment. Cheat al. proposed to reconsider several conditions in thistext,
such as the viewing conditions (viewing distancenitor resolution), the test ma-
terial (depth rendering according to the choserd&play), viewing duration, etc.
In the following, some of the requirements propobgdChenet al. in [50] are
mentioned:

- General viewing conditions: First the luminance apdtrast ratio is con-
sidered, because of the crosstalk involves by 3B€kéens, and because
of the used glasses (as active as polarized glasgese reduction of lu-
minance). Second, the resolution of depth as taldfined. Third, the
viewing distance recommended by ITU standards niffgrdiccording to
the used 3D display. Moreover, as the authors efsthdy claim it, depth
perception should be considered as a new paranwe®raluate the Pre-
ferred Viewing Distance, such as human visual gaitpicture resolution.

- Source signals: the video format issue is mentiotigéfers to the numer-
ous 3D representations (namely “Layer Depth VidgdV), “Multi-view
Video-plus-Depth” (MVD), or “video plus depth” (2[Z%) whose recon-
struction or conversion lead to different typesudffacts.

- Test methods: as mentioned previously, new aspects to be considered
(naturalness, presence, visual experience), angvt®mfort as well. The
latter refers to the visual fatigue that shouldntEasured to help in a stan-
dardization process.

- Observers: an adapted protocol should involve teasurement of view-
ers’ stereopsis ability, first. Second, the authafr$50] mention that the
required number of participants may differ from 2Ihen further experi-
ments should define this number.

- Test duration and results analysis: the duratiotheftest is still to be de-
termined, taking into account the visual comforheTanalysis of the re-
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sults refers to the definition of a criterion faxcoherent viewer rejection
and to the analysis of the assessed parameteh(desige quality, etc.)

1.6.2. Objective quality assessment metrics

The experiments presented in this chapter showmésel for more adapted
tools to correctly assess the quality of synthesiziews. The most recent pro-
posed 3D quality metrics propose to take into aottlie new modes brought by
3D. Among the proposed metrics, numerous targetaseopic video, for in-
stance, but not views synthesized from DIBR. Theaytwill not be referred to in
this section.

Most of the proposed metrics for assessing 3D madiainspired from 2D
quality metrics. It should be noted that, oftenpenmental protocols validating
the proposed metrics, involve depth and/or colanm@ssion, different 3D dis-
plays, and different 3D representations (2D+Z,esiscopic video, MVD, etc...).
The experimental protocols often assess at the fameboth compression distor-
tion and synthesis distortion, without distinctidiis is problematic because there
may be a combination of artefacts from various sesi{compression and synthe-
sis) whose effects are not clearly specified asessed.

In the following, we present the new trends, regrdew objective metrics
for 3D media assessment, by distinguishing whettey make use of depth data
in the quality score computation or not.

2D-like metrics

Perceptual Quality Metric (PQM) [51] is proposedJmyeluroet al. Although the
authors assess the quality of decoded 3D data (p@k& metric is applied on left
and right views synthesized with a DIBR algorithnatfiely [12]). Thus, the me-
thod can be cited in this section. The quality edsra weighted function of the
contrast distortion and the luminance differencesvieen both reference and dis-
torted color view. So, the method can be classifiedHVS-based. The method is
sensitive to slight changes in image degradatiod amor quantification. In
[51]PQM method performances are validated by evi@lgaviews synthesized
from compressed data (both color and depth dateemaceded at different bit-
rates). Subjective scores are obtained by a SAMED on a 3D 42-inch Philips
multi-view auto-stereoscopic display. Note that poassion, synthesis and factors
inherent to the display are assessed at the samentithout distinction in the ex-
periments.

Zhao and Yu [52] proposed a FR metigak Signal to Perceptible Temporal
Noise Ratio The metric evaluates quality of synthesized seceg by measuring
the perceptible temporal noise within these imghgequences.
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Depth-aided methods

Ekmekciogluet al. [53] proposed a depth-based perceptual qualityiedtris a
tool that can be applied to PSNR or SSIM. The netirges a weighting function
based on depth data at the target viewpoint, aachporal consistency function to
take the motion activity into accourithe final score includes a factor that considers
non-moving background objects during view syntheEie inputs of the method are
the original depth map (uncompressed), the origoadbr view (originally acquired,
uncompressed), the synthesized view. The validaifahe performances is achieved
by synthesizing different viewpoints from distoridata: color views suffer two levels
of quantization distortion; depth data suffer fdifferent types of distortion (quantiza-
tion, low pass filtering, borders shifting, and f&atal local spot errors in certain re-
gions). The study [53] shows that the proposed nik#irthances the correlation of
PSNR and SSIM to subjective scores.

Yasakethuet al. [54] proposed an adapted VQM for measuring 3D Wide
quality. It combines 2D color information qualitphé depth information quality.
Depth quality measurement includes an analysishefdepth planes. The final
depth quality measures combines 1) the measuréstafriion of the relative dis-
tance within each depth plane, 2) the measure efctnsistency of each depth
plane and 3) the structural error of the depth. Thler quality is based on the
VQM score. In [54], the metric is evaluated throudgf and right view (rendered
from 2D+Z encoded data), and compared to subjestiveges obtained by using
an autostereoscopic display. Results show higheeletion than simple VQM.

Solhet al.[55] introduced the 3D Video Quality Measure (3VQpftedict the
quality of views synthesized from DIBR algorithniBhe method analyses the
quality of the depth map against an ideal depth.fapee different analyses lead
to three distortions measures: spatial outliensiptaral outliers, and temporal in-
consistencies. These measures are combined tadprthwe final quality score. To
validate the method, subjective tests were runiéresscopic conditions. The ste-
reoscopic pairs included views synthesized fromtldepap and colored video
compression, depth from stereo matching, depth f2@rto 3D conversion. Re-
sults shown accurate and consistent scores comfiasetdbjective assessments.
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1.7.Conclusion

This chapter proposed a reflection considering tsuthjective quality assess-
ment protocols and objective quality assessmenhaastreliability in the context
of DIBR-based media.

Typical distortions related to DIBR were introducfthey are geometric dis-
tortions and mainly located around the disoccludeshs. When compression-
related distortions and synthesis-related distostiare combined, the errors are
generally spread in the whole image, increasingaliannoyance.

Two case studies were presented answering the testigns relating, first to
the suitability of two efficient subjective protdsdin 2D), and second, to the re-
liability of commonly used objective metrics. Exjmeents considered commonly
used methods for assessing conventional imagesibgactively or objectively, to
assess DIBR-based synthesized images, from sefferedt algorithms.

Concerning the suitability of the tested subjectivetocols, the number of par-
ticipants required for establishing a statisticéfedence between the algorithms
was almost the double of the number required by 8QE4), which reinforce
Chen et al. requiremen{50]. Both methodologies agreed on the performances
ranking of the view synthesis algorithms. Experitsealso showed that the ob-
servers’ opinion was not as stable when assestihgreges as when assessing
video sequences, with ACR-HR. PC gave stable mesulh fewer participants
than ACR-HR, in the case of still images. Both roeilogies have their advan-
tages and drawbacks and they are complementaignags an absolute rating to
distortions such as synthesized views’ ones seentedgh task to observers, al-
though it provides knowledge on the perceived qualf the set. Small impaire-
ments are better evaluated with PC.

Concerning the reliability of the tested objectiwetrics, the results showed
that objective metrics did not correlate the obses\vopinion. Objective measures
did not reach 50% of human judgment and they wiktreoerelated with each oth-
er. The results suggest that tiny distortions ameapized by the objective metrics
when not perceptible by humans. Then, objectivainseinform on the existence
of distortions but not on their visible annoyantising the tested metrics is not
sufficient for assessing virtual synthesized views.

The simple experiments that have been presenttsichapter reveal that the
reliability of the tested objective metrics is urtaé when assessing intermediate
synthesized views, in the tested conditions. Yetkoned organizations plan to
base partially their future decisions, concernirgvrstrategies for 3D video, on
the outcome of such objective metrics. New stargldrave to been developed
considering the new aspects brought by DIBR: lecatind type of artifacts, de-
gree of annoyance of artifacts.
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