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Abstract

In this article we describe all the continuous group morphisms from the group of orientation
preserving homeomorphisms of the circle to the group of homeomorphisms of the annulus or of the
torus.

1 Introduction

For a compact manifold M, we denote by Homeo(M) the group of homeomorphisms of M and by
Homeog (M) the connected component of the identity of this group (for the compact-open topology). By
a theorem by Fischer (see [6] and [3]), the group Homeoy (M) is simple: the study of this group cannot be
reduced to the study of other groups. One natural way to have a better understanding of this group is to
look at its automorphism group. In this direction, Whittaker proved the following theorem.

Theorem. (Whittaker [14]) Given two compact manifolds M and N and for any group isomorphism
¢ : Homeog (M) — Homeog(N), there exists a homeomorphism h : M — N such that the morphism ¢ is
the map f+ ho foh™!.

This theorem was generalized by Filipkiewicz (see [5]) to groups of diffeomorphisms by using a pow-
erful theorem by Montgomery and Zippin which characterizes Lie groups among locally compact groups.
The idea of the proof of Whittaker’s theorem is the following: we see the manifold M algebraically by
considering the subgroup G, of the group of homeomorphism of M consisting of homeomorphisms which
fix the point « in M. One proves that, for any point x in M, there exists a unique point y, in N such
that ¢(G,,) is the group of homeomorphisms of N which fix the point y,. Let us define h by h(z) = ys.
Then we check that h is a homeomorphism and that the homeomorphism A satisfies the conclusion of
the theorem. However, Whittaker’s proof uses crucially the fact that we have a group isomorphism and
cannot be generalized easily a priori to the cases of group morphisms. Here is a conjecture in this case.

Conjecture 1.1. For a compact manifold M, every group morphism Homeog (M) — Homeog (M) is either
trivial or induced by a conjugacy by a homeomorphism.

This conjecture is solved in [11] in the case of the circle. It is proved also in [8] in the case of groups of
diffeomorphisms of the circle. We can also be interested in morphisms from the group Homeoy (M) to the
group of homeomorphisms of another manifold Homeog(N). This kind of questions is adressed in [8] for
diffeomorphisms in the case where N is a circle or the real line. The following conjecture looks attainable.

Conjecture 1.2. Denote by S—D a closed surface S with one open disc removed. Denote by Homeog (S —
D) the identity component of the group of homeomorphisms S — D with support included in the interior

of this surface. Every group morphism from Homeoo(S — D) to Homeog(S) is induced by an inclusion of
S—DinS.
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In this article, we investigate the case of continuous group morphisms from the group Homeog(S')
of orientation-preserving homeomorphisms of the circle to the group Homeo(S) of homeomorphisms of
a compact orientable surface S. By simplicity of the group Homeog(S!), such a morphism ¢ is either
one-to-one or trivial. Moreover, as the quotient group Homeo(S)/Homeog(S) is countable, any morphism
Homeog(S!) — Homeo(S)/Homeog(S) is trivial. Hence, the image of the morphism ¢ is included in the
group Homeog(S). If the surface S is different from the sphere, the torus, the closed disc or the closed
annulus, then any compact subgroup of the group Homeog(S) is trivial by a theorem by Kerekjarto (see
[2]). Therefore, the group Homeog(S) does not contain a subgroup isomorphic to SO(2) whereas the group
Homeop(S!) does and the morphism ¢ is necessarily trivial. We study in what follows the remaining cases.

In the second section, we state our classification theorem of continuous actions of the group Homeog (S*')
on the torus and on the annulus. Any action will be obtained by gluing actions which preserve a lamination
by circles and actions which are transitive on open annuli. In the third section, we describe the continuous
actions of the group of compactly-supported homeomorphisms of the real line on the real line or on the
circle: this description is useful for the classification theorem and interesting in itself. The fourth and
fifth sections are devoted respectively to the proof of the classification theorem in the case of the closed
annulus and in the case of the torus. Finally, we discuss the case of the sphere and of the closed disc in
the last section.

2 Description of the actions

All the actions of the group Homeog(S!) will be obtained by gluing elementary actions of this group
on the closed annulus. In this section, we will first describe these elementary actions before describing
some model actions to which any continuous action will be conjugate.

The easiest action of the group Homeog(S') on the closed annulus A = [0, 1] x S preserves of a foliation

by circles of this annulus:
Homeo(A)

((r,0) = (r, £(0))) ~

p: Homeop(S!) —

f -

The second elementary action we want to describe is a little more complex. Let 7: R — R/Z = St be

the projection. For a point § on the circle S' = R/Z, we denote by 6 a lift of 0, i.e. a point of the real

line which projects on 6. For a homeomorphism f of the circle, we denote by f a lift of f, i.e. an element

of the group Homeoz(RR) of homeomorphisms of the real line which commute to integral translations such
that mo f = f om. A second elementary action is given by:
a_: Homeog(S') — Homeo(A)

Foe ((r0) = (fO) = @ —1),10)

Notice that the number f(0) — f (67 — r) does not depend on the lifts 6 and f chosen and belongs to the
interval [0,1]. An action analogous to this last one is given by:

ay: Homeop(S') — Homeo(A)

fom (0 = (fO+7) — F(8),19))

Notice that the actions a4 and a_ are conjugate via the homeomorphism of A given by (r,0) — (1 —7,0),
which is orientation-reversing, and via the orientation-preserving homeomorphism of A given by (r,6) —
(r,0+7r). We now describe another way to see the action a_ (and a4 ). We see the torus T? as the product
St x St. Let

a2 : Homeog(S') — Homeo(T?)

fom= ((y) = (f(2), f(Y)

It is easily checked that this defines a morphism. This action leaves the diagonal {(z, x),x € Sl} invariant.
The action obtained by cutting along the diagonal is conjugate to a_. More precisely, let us define

h: A — T2
(r,0) — (6,0—1)"



Then, for any element f in the group Homeog(S*'):

hoa_(f) = ars(f) o h.

Let Gy, be the group of homeomorphisms of the circle which fix a neighbourhood of the point 6y. For
a point 6y of the circle, the image by the morphism a_ of the group Gy, leaves the sets {(r,6p),r € [0,1]}
and {(r,00 + r),r € [0,1]} globally invariant. On each of the connected components of the complement of
the union of these two sets with the boundary of the annulus, the action of Gy, is transitive (this is more
easily seen by using the action arz).

Let us describe now the model actions on the closed annulus which are obtained by gluing the above
actions. Take a non-empty compact subset K C [0,1] which contains the points 0 and 1 and a map
A:[0,1) = K — {—1,+1} which is constant on each connected component of [0,1] — K. Let us define now
an action @k y of the group Homeog(S!) on the closed annulus. To a homeomorphism f in Homeog(S!),
we associate a homeomorphism ¢g x(f) which is defined as follows. If r € K, we associate to a point
(r,0) € A the point (r, £(6)). If r belongs to a connected component (r1,72) of the complement of the
compact set K and if A((r1,72)) = {—1}, we associate to the point (r,0) € A the point

This last map is obtained by conjugating the homeomorphism a_ (f) with the map (r,8) — (¢(r), §) where
¢ is the unique linear increasing homeomorphism [0, 1] — [r1,72]. If  belongs to a connected component
(r1,72) of the complement of the compact set K and if A\((r1,72)) = {+1}, we associate to the point
(r,0) € A the point

~ T — rl ~

((r2 =r)(f(0 + =) = f(0)) + 71, £(0)))-

This last map is also obtained after renormalizing a4 (f) on the interval (r1,72). This defines a continuous
morphism ¢  : Homeog(S') — Homeo(A). To construct an action on the torus, it suffices to identify

To —

the point (0,0) of the closed annulus with the point (1,6). We denote by 901;(2, » the continuous action on
the torus obtained this way. By shrinking one of the boundary components (respectively both boundary
components) of the annulus to a point (respectively to points), one obtains an action on the closed disc
(respectively on the sphere) that we denote by ng}?’ y (respectively gpi NE

The main theorem of this article is the following:

Theorem 2.1. Any non-trivial continuous action of the group Homeog(S') on the closed annulus is
conjugate to one of the actions @i x. Any non-trivial continuous action of the group Homeog(S') on the

. . . TZ
torus is conjugate to one of the actions gy .

In particular, any continuous action of the group Homeog(S!) on the torus admits an invariant circle.
By analogy with this theorem, one can be tempted to formulate the following conjecture:

Conjecture 2.2. Any non-trivial continuous action of the group Homeog(S') on the sphere (respectively
on the closed disc) is conjugate to one of the actions wi)\ (respectively to one of the actions ‘P]]}]()Z,A)-

Notice that this theorem does not give directly a description of the conjugacy classes of such actions
as two actions g » and ¢/ may be conjugate even though K # K’ or A # X. Now, let K C [0,1]
and K’ C [0, 1] be two compact sets which contain the finite set {0,1}. Let A: [0,1] — K — {—1,+1} and
N :[0,1]— K’ — {—1,+1} be two maps which are constant on each connected component of their domain
of definition. The following theorem characterizes when the actions @i » and @k » are conjugate.

Proposition 2.3. The following statements are equivalent:

— the actions g x and @i x are conjugate;

— either there exists an increasing homeomorphism h : [0,1] — [0,1] such that h(K) = K' and such
that X o h = X except on a finite number of connected component of [0,1] — K or there exists a
decreasing homeomorphism h : [0,1] — [0, 1] such that h(K) = K’ and such that X' o h = —\ except
on a finite number of connected component of [0,1] — K.



Proof. Let us begin by proving that the second statement implies the first one.

If there exists an increasing homeomorphism h which sends the compact subset K C [0,1] to the
compact subset K’ C [0, 1], then the actions ¢ x and @k yop-1 are conjugate. Indeed, denote by h the
homeomorphism [0,1] — [0, 1] which coincides with h on K and which, on each connected component
(r1,72) of the complement of K, is the unique increasing linear homeomorphism (r1,72) — h((r1,r2)).
Then the actions @x » and Qg+ yop-1 are conjugate via the homeomorphism

A — AA
(r,0) = (h(r),0)

Similarly, suppose that h is an orientation-reversing homeomorphism of the compact interval [0, 1] which
sends the compact subset K C [0, 1] to the compact subset K’ C [0,1]. As above, we denote by h the
homeomorphism obtained from A by sending linearly each connected component of the complement of
K to each connected component of the complement of K’. Then the actions px x and @/ _rop-1 are
conjugate via the homeomorphism

A — A

(r,0) = (h(r),6)

It suffices then to use the following lemma to complete the proof of the converse in the proposition.

Lemma 2.4. Let K C [0,1] be a compact subset which contains the points 0 and 1. If X : [0,1] —
K — {-1,41} and X : [0,1] — K — {—=1,41} are continuous maps which are equal except on one
connected component (r1,r2) of the complement of K where they differ, then the actions ¢ x and @ x
are conjugate.

Proof. This lemma comes from the fact that the actions a4 and a_ are conjugate via the homeomorphism
of the annulus (r,6) — (r,0 + r). More precisely, suppose that A((r1,72)) = {+1}. Then the actions
vr,x and @i » are conjugate via the homeomorphism h defined as follows. The homeomorphism A is
equal to the identity on the Cartesian product of the complement of (r1,r2) with the circle and is equal
to (r,0) — (r,6 + ==21) on the open set (r1,72) x S'. O

r—
T2—"1

Let us establish now the other implication. Suppose that there exists a homeomorphism g which
conjugates the actions gk  and @i+ » . Now, for any angle «, if we denote by R, the rotation of angle a:

go ‘PK,A(Ra) = YK’ N (Ra)og.

The homeomorphism ¢ x(Rq) is the rotation of angle « of the annulus. This means that, for any point
(r,0) of the closed annulus and any angle o € S*:

9((r,0 +a)) = g((r,0)) + (0, ).

In particular, the homeomorphism g permutes the leaves of the foliation of the annulus by circles whose
leaves are of the form {r} x S'. Fix now a point 6y on the circle. The homeomorphism g sends the set
K x {6} of fixed points of px 1(Gy,) (the points which are fixed by every element of this group) to the set
K' x {0y} of fixed points of pr x (Gg,). From this and what is above, we deduce that for any r € K and
any angle 6, g(r,0) = (h(r),0), where h : K — K’ is a homeomorphism. Moreover, if the homeomorphism
g is orientation-preserving, then the homeomorphism h is increasing and, if the homeomorphism g is
orientation-reversing, then the homeomorphism h is decreasing. We can extend the homeomorphism h
to a homeomorphism of [0, 1] which sends K to K’. Notice that, for a connected component (r1,rs) of
the complement of K in [0, 1], the homeomorphism g sends the open set (r1,72) x S! onto the open set
(71, 75) x S, where (rq,75) = h((r1,72)) is a connected component of the complement of K’ in [0, 1].

It suffices now to establish that the condition on the maps A and ) is satisfied for the homeomorphism
h. Suppose, to simplify the proof, that the homeomorphism g is orientation-preserving and hence the
homeomorphism A is increasing: the case where the homeomorphism g is orientation reversing can be
treated similarly. Suppose by contradiction that there exists a sequence ((71,n,72,5))nen of connected
components of the open set [0,1] — K such that:



- A((7’1,71;7’2,71)) = +15

XNt )) = —1, where (7 7,0) = A((r s 720);

— the sequence (1., )nen is monotonous and converges to a real number 7.
We will prove then that either the curve {(r,0y),r > ro} (if the sequence (r1,)nen is decreasing) or
the curve {(r,0p),r < roo} (if the sequence (r1,)nen is increasing) is sent by the homeomorphism g to a
curve which accumulates on {7} x S, which is not possible. The hypothesis A((r1 5,72.,)) = —1 and
A((r] ps75,,)) = +1 for any n would lead to the same contradiction.

To achieve this, it suffices to prove that, for any positive integer n, the homeomorphism g sends the

T— Tl'n.

curve {(r,00),m1,n <7 <7r2,} onto the curve {(r 0o + - )T <1< T n} Fix a positive inte-
i

ger n. Observe that the restriction of the group of homeomorphlsms 0 (Goy) t0 (r1n,72.,) x S has

T—T1,n

—hn) <7 < rz,n} on which

two invariant simple curves {(r,6p), 71, <7 <72} and {(r 6o —
the action is transitive. The action of this group is transitive on the two connected components of
the complement of these two curves, which are open sets. Likewise, the restriction of the group of

homeomorphisms rc, »(Gy,) to (rf,,,7%,) has two invariant simple curves {(r,0),71, <r <75, }

and {(r o + -
is transitive on the two connected components of the complement of these two curves, which are
open sets. Therefore, the homeomorphism g sends the curve {(r,6y),71, <7 <rs,} to one of the

r— Tln

= )T <7< T n} on which the action is transitive and the action of this group

T— Tl'n.

curves {(r,00),71, <7 <7h,} or {(r 0o + - e )T <7 < r2n}. Let us find now which of them

is the image of the curve {(r,6p),m1,n <T < rgn} We fix the orientation of the circle induced by
the orientation of the real line R and the covering map R — S! = R/Z. This orientation gives
rise to an order on S! — {6p}. Take a homeomorphism f in Gy, different from the identity such
that, for any = # 6y, f(x) > x. Then, for any r € (rin,7r2n), 1 © @xA(f)(r,0p) > r, where
p1 : A = [0,1] x S* — [0,1] is the projection, and the restriction of the homeomorphism ¢x (f)
to the curve {(r,00),71n <7 <7y} is different from the identity. Likewise, for any r € (ry,,,75.,),

p1 o pr v (f)(r,00) < rand py o a(f)(r, 00 + > r and the restrictions of the homeomor-

T— Tln)
T

”’
phism ¢\ (f) to {(r,60), 7}, <r <rh,} and to { r, 00 + 72— o =) T < T < T n} are different from
the identity. Moreover, the map

(7’11”,7"2771) - (Tl nar2 n)

L og(r o)

is strictly increasing as the homeomorphism g was supposed to be orientation-preserving. This implies
what we wanted to prove. [l

3 Continuous actions of Homeo.(R) on the line

Let us denote by Homeo.(R) the group of compactly supported homeomorphisms of the real line R.
In this section, a proof of the following theorem is provided.

Theorem 3.1. Let ¢ : Homeo.(R) — Homeo(R) be a continuous group morphism whose image has no
fized point. Then there exists a homeomorphism h of R such that, for any compactly supported homeo-
morphism f of the real line:

G(f)=hofoh.

Remark: This theorem is true without continuity hypothesis. However, as the proof in this case is
more technical and as we just need the above theorem in this article, the theorem without continuity
assumption will be proved in another article.

Remark: This theorem also holds in the case of groups of diffeomorphisms, i.e. any continuous action
of the group of compactly-supported C" diffeomorphisms on the real line is topologically conjugate to the
inclusion. The proof in this case is the same.



This theorem enables us to describe any continuous action of the group Homeo,.(R) on the real line as
it suffices to consider the action on each connected component of the complement of the fixed point set of
the action.

Proof. We fix a morphism v as in the statement of the theorem. During this proof, for a subset A C R, we
will denote by G 4 the group of compactly supported homeomorphisms which pointwise fix a neighbourhood
of A and by F4 C R the closed set of fixed points of /(G 4) (the set of points which are fixed by every
element of this group). Let us begin by giving a sketch of the proof of this theorem. We will first prove
that, for a compact interval I with non-empty interior, the set F; is compact and non-empty. As a
consequence, for any real number x, the closed set F, is non-empty. Then we will prove that the sets F,
are single-point sets. Let {h(z)} = F,. Then the map h is a homeomorphism and satisfies the relation
required by the theorem. Let us give details.

Notice that, as the group Homeo.(R) is simple (see [6]), the image of v is included in the group of
increasing homeomorphisms of R (otherwise there would exist a nontrivial group morphism Homeo.(R) —
7,/27) and the morphism v is a one-to-one map.

Lemma 3.2. For a compact interval I C R with non-empty interior, the closed set Fr is non-empty.

Proof. Fix a compact interval I with non-empty interior. Take a non-zero vector field X : R — R
supported in I. The flow of this vector field defines a morphism

R — Homeo.(R)
t o= ot '

Let us assume for the moment that the set F of fixed points of the subgroup {¢(¢?),t € R} of Homeo(R)
is non-empty. Notice that this set is not R as the morphism 1) is one-to-one. As each homeomorphism ¢?
commutes with any element in G, we obtain that, for any element g in ¥(Gy), g(F) = F. Moreover, as
any element of the group G can be joined to the identity by a continuous path which is included in Gy
and as the morphism v is continuous, any connected component C' of F is invariant under ¢¥(G). The
upper bounds and the lower bounds of these intervals which lie in R are then fixed points of the group
1 (Gy). This proves the lemma.

It remains to prove that the set F' is non-empty. Suppose by contradiction that it is empty. Then, for
any real number z, the map

R —- R

t = P (@)
is a homeomorphism. Indeed, if it was not onto, the supremum or the infimum of the image would provide
a fixed point for (¢(p?))ier. If it was not one-to-one, there would exist to # 0 such that (o) (z) = z.

Then, for any positive integer n, ¥(p%/?")(x) = z and, by continuity of v, for any real number t,
(') (x) = 2 and the point z would be fixed by (1(¢"))ier-

Fix a real number zy. Let Ty, : G — R be the map defined by

V(f)(@o) = Y0 (o).

The map Ty, is a group morphism as, for any homeomorphisms f and g in Gy,
(T U (o) = ¥(fg)(x0)
D(f)e ("0 9)) (o)

P(p

Plp

xo(g)) (f) (o)
xo(g)JrTxo(f)( 0).

However, the group Gj, which is isomorphic to the group Homeo.(R) x Homeo.(R), is a perfect group:
any element of this group can be written as a product of commutators. Therefore, the morphism T, is
trivial. As the point zq is any point in R, we deduce that the restriction of 1 to Gy is trivial, which is not
possible as the morphism 1 is one-to-one. ([l



Remark: if ¢(Homeo.(R)) € Homeo.(R), this lemma can be proved without continuity hypothesis.
Indeed, consider an element f in Homeo.(R) supported in I. One of the connected components of the set
of fixed points of ¢(f) is of the form (—oo, a] for some @ in R. This interval is necessarily invariant by the
group % (G) which commutes with f. Hence, the point a is a fixed point for the group ¢¥(Gy).

During the proof, we will often use the following elementary result:

Lemma 3.3. Let I and J be disjoint compact non-empty intervals. For any homeomorphism g in
Homeo.(R), there exist homeomorphisms g1 € Gr, g2 € G; and g3 € Gy such that:

g = g19293-

Proof. Let g be a homeomorphism in Homeo.(R). Let hy be a homeomorphism in G; which sends the
interval g(I) to an interval which is in the same connected component of R — J as the interval I. Let
ho be a homeomorphism in Gy which is equal to g=! o h1_1 on a neighbourhood of the interval hq o g(I).
Then, the homeomorphism hy o Ay o g belongs to Gy. It suffices then to take g3 = hl_l, gs = h;l and
gs = hg o h1 o g to conclude the proof of the lemma. |

Before stating the next lemma, observe that, for compact intervals I with non-empty interiors, the
sets F7 are pairwise homeomorphic by an increasing homeomorphism. Indeed, let I and J be two such
intervals. Then there exists a homeomorphism A in Homeo,(R) such that A\(I) = J. Then A\GiA™! = G.
Taking the image by 1, we obtain that (A (Gr)¥(N\) ™1 = ¢(G;) and therefore (\)(Fy) = F;.

Lemma 3.4. For a compact interval I C R with non-empty interior, the closed set Fr is compact.

Proof. Fix a compact interval I with non-empty interior. Suppose by contradiction that there exists a
sequence (ag)gen of real numbers in F; which tends to 4+o00 (if we suppose that it tends to —oo, we obtain
of course an analogous contradiction). Let us choose a compact interval J which is disjoint from I. By
the remark just before the lemma, there exists a sequence (by)ren of elements in F); which tends to +oo.
Take positive integers n1, ne and ns such that a,, < b,, < an,. Fix 2o < a,,. We notice then that for
any homeomorphisms g1 € Gy, g2 € Gy and g3 € Gy, the following inequality is satisfied:

Y(91)¥(92)1(93)(w0) < any.

Lemma 3.3 implies then that

{1/}(9)(1'0), g€ HomeoC(R)} - (70070’713]'

The greatest element of the left-hand set is a fixed point of the image of v: this is not possible as this
image was supposed to have no fixed point. ([l

Lemma 3.5. The closed sets F,, where x is a point of the real line, are non-empty, compact, pairwise
disjoint and have an empty interior.

Proof. Notice that, if an interval J is included in an interval I, then G; C G; and the same inclusion is
true if we take the images of these subsets of Homeo.(R) under the morphism . That is why F; C FJ.
Now, for any finite family of intervals (I,,),, whose intersection has non-empty interior, the intersection of
the closed sets Fy, which contains the non-empty closed set F, j, , is not empty. Fix now a point z in R.

Notice that
Fm = ﬂ FI;
I

where the intersection is taken over the compact intervals I whose interior contains the point x. By
compactness, this set is not empty and it is compact.

Take two points « # y in R et let us prove now that the sets F, and F, are disjoint. If they were not
disjoint, the group generated by ¢(G,) and 1(G,) would have a fixed point p. However, by Lemma 3.3,
the groups G, and G, generate the group Homeo.(R). Then, the point p would be a fixed point of the
group ¥ (Homeo.(R)), a contradiction.



Now, let us prove that the sets F, have an empty interior. Of course, given two points x and y of the real
line, if h is a homeomorphism in Homeo,(R) which sends the point  to the point y, then ¢(h)(Fy) = Fy,.
Therefore, the sets F, are pairwise homeomorphic. If the sets F, had a non-empty interior, there would
exist uncountably many pairwise disjoint open intervals of the real line, which is false. O

Lemma 3.6. For any point xo of the real line, any connected component C of the complement of Fy,
meets one of the sets F,, with y # x.

Proof. Let us fix a point xg in R. Let (a1,a2) be a connected component of the complement of F . It is
possible that either a; = —oc0 or as = +00.

Let us prove by contradiction that there exists yg # xo such that Fy, N (a1, az2) # 0. Suppose that, for
any point y # xo, Fy N (a1,a2) = 0. For any couple of real numbers (z1, z2), choose a homeomorphism
hz 2, in Homeo(R) such that h,, .,(21) = z2. We claim that the open sets ©(hg, ) ((a1,a2)), for y € R,
are pairwise disjoint, which is not possible as there would be uncountably many pairwise disjoint open
intervals in R. Indeed, if this was not the case, suppose that ¥ (hg, 4, )((@1,a2)) N Y(hay.y)((a1,a2)) # 0
for y1 # y2. As the union of the closed sets Fj is invariant under the action %, then, for ¢ = 1,2,
when a; is finite, ¥(hag,y1 ) 7! © Y(hag,ys)(ai) & (a1,a2), and Y(heg.ys) " 0 Y(hay .y )(a;) € (a1, a2) so that
(P y1 ) (ai) = Y (hag,ys )(ai). But this last equality cannot hold as the point on the left-hand side belongs
to Fy, and the point on the right-hand side belongs to F, and we observed that these two closed sets
were disjoint. O

Lemma 3.7. Fach set F,, contains only one point.

Proof. Suppose that there exists a real number z such that the set F} contains two points p; < ps. By
Lemma 3.6, there exists a real number y different from 2 such that the set F}, has a common point with
the open interval (p1,p2). Take a point » < p;. Then, for any homeomorphisms g1 in G, g2 in G, and
g3 in Gy,

¥(g1) ©(g2) 0 ¥(g3)(r) < pa.

By Lemma 3.3, this implies that the following inclusion holds:

{¢(9)(r), g € Homeoc(R)} C (00, pal.

The supremum of the left-hand set provides a fixed point for the action v, a contradiction. O

Take a homeomorphism f in Homeo.(R) and a point 2 in R. Then the homeomorphism v (f) sends
the only point h(x) in I, to the only point h(f(x)) in Fy(,). This implies that ¢ (f)oh = ho f. Thus, it
suffices to use Lemma 3.8 below to complete the proof of Theorem 3.1. ([l

Lemma 3.8. Let us denote by h(x) the only point in the set F,. Then the map h is a homeomorphism.

Proof. By Lemma 3.5, the map h is one-to-one.

Fix x, € R and let us prove that the map h is continuous at zy. Take a compactly supported C! vector
field R — R which does not vanish on a neighbourhood of xy and denote by (¢!):cr the flow of this vector
field. Then, for any time ¢, k(% (z0)) = ¥ (¢*)(h(z0)), which proves that the map h is continuous at z.

Finally, let us prove that the map h is onto. Notice that the interval A(R) is invariant under the action
1. Hence, if sup(h(R)) < +oo (respectively inf(h(R)) > —o0), then the point sup(h(R)) (respectively
inf(h(R))) would be a fixed point of the action 1, a contradiction. O

Proposition 3.9. Any action of the group Homeo.(R) on the circle has a fized point.

Hence, the description of the actions of the group Homeo.(R) on the circle is given by an action of the
group Homeo.(R) on the real line which is homeomorphic to the circle minus one point.



Proof. As HZ (Homeo,(R),Z) = {0} (see [10]), the Euler class of this action necessarily vanishes so that this
action admits a fixed point (see [7] about the Euler class of an action on the circle and its properties). O

Finally, let us recall a result which is proved in [11].

Proposition 3.10. Any non-trivial action of the group Homeoy(S*) on the circle is a conjugacy by a
homeomorphism of the circle.

4 Actions on the annulus

This section is devoted to the proof of Theorem 2.1 in the case of morphisms with values in the group
of homeomorphisms of the annulus. Fix a continuous morphism ¢ : Homeog(S!) — Homeo(A).

First, as the group Homeog (S?) is simple (see [6]), such a group morphism is either trivial or one-to-one.
We assume in the rest of this section that this group morphism is one-to-one. Recall that the induced
group morphism Homeog(S') — Homeo(A)/Homeog(A) is not one-to-one as the source is uncountable
and the target is countable. Therefore, it is trivial and the image of the morphism ¢ is included in the
group Homeog (A).

Now, the subgroup of rotations of the circle is continuously isomorphic to the topological group S*. The
image of this subgroup under the morphism ¢ is a compact subgroup of the group of homeomorphisms of
the closed annulus which is continuously isomorphic to S'. It is known that such a subgroup is conjugate
to the rotation subgroup {(r, 0)— (r,0+a),ac Sl} of the group of homeomorphisms of the annulus (see
[2]). This is the only place in this proof where we really need the continuity hypothesis. After possibly
conjugating ¢, we may suppose from now on that, for any angle «, the morphism ¢ sends the rotation of
angle a of the circle to the rotation of angle o of the annulus.

4.1 An invariant lamination

Fix a point 0y on the circle. Recall that the group Gy, is the group of homeomorphisms of the circle
which fix a neighbourhood of the point 6. Let us denote by Fy, C A the closed subset of fixed points
of ¢(Gy,) (i.e. points which are fixed under every homeomorphism in this group). The action ¢ induces
actions on the two boundary components of the annulus which are circles. The action of ¢(Gy,) on each of
these boundary components admits a fixed point by Proposition 3.10. Therefore, the set Fp, is non-empty.
For any angle 0, let o = 6 — 6. Then Gy = R,Gy, R; ', where R, denotes the rotation of the circle of
angle a. Therefore, o(Gy) = Rap(Gy, )RS, where R, denotes here by abuse the rotation of angle « of
the annulus, and Fy = R, (Fy,). Let

B=|J Fo= | Ra(Fp,).
0est aest
This set is of the form B = K xS!, where K is the image of Fy, under the projection A = [0,1]xS* — [0, 1].
The set K is compact and contains the points 0 and 1. Let F be the foliation of the set B whose leaves
are the circles of the form {r} x S!, where the real number r belongs to the compact set K.

Lemma 4.1. FEach leaf of the lamination F is preserved by the action .

Proof. Fix an angle 6. Let us prove that, for any point x in Fy the orbit of the point x under the
action ¢ is contained in {Ra(ac), o c Sl} C A. First, for any orientation-preserving homeomorphism f of
the circle which fixes the point 6, the homeomorphism ¢(f) pointwise fixes the set Fy. Indeed, such a
homeomorphism of the circle is the uniform limit of homeomorphisms which pointwise fix a neighbourhood
of 6 and the claim results from the continuity of the action . Any orientation-preserving homeomorphism
of the circle g can be written g = Rgf, where f is a homeomorphism which fixes the point §. Now, any
point z in Fy is fixed under (f) and and sent to a point in {Ra(:n),a € Sl} C A under the rotation
Rs = ¢(Rg), which proves the lemma. O



Lemma 4.2. Fach closed set Fy intersects each leaf of the lamination F in exactly one point. Moreover,
the map h which, to any point (r,0) of K x S' C A, associates the only point of Fy on the leaf {r} xS! is a
homeomorphism of K x S'. This homeomorphism conjugates the restriction of the action o x to K x S!
to the restriction of the action ¢ to K x St for any continuous map X : [0,1] — K — {—1,+1}. Moreover,
this homeomorphism is of the form (r,0) — (r,n(r) + 0) where n: K — S* is a continuous function.

Proof. By Lemma 4.1, the action ¢ preserves each set of the form {r} x S! and induces on each of these
set an action on a circle. By Proposition 3.10, such actions are well-understood and the restriction of
this action to a subgroup of the form Gy admits exactly one fixed point (this action is non-trivial as the
rotation subgroup acts non-trivially). This implies the first statement of the lemma.

Take a sequence (r,)nen of elements in K which converges to a real number r in K. Then, as the
point h(ry,,0) belongs to {r,} x S! and to Fy,, the accumulation points of the sequence (h(ry,00))n
belong to {r} x S! and to Fy,: there is only one accumulation point which is the point h(r,6). For
any angle 6, we have h(r,0) = Rg_g, o h(r,6p). This implies that the map h is continuous. This map
is one-to-one: if h(r,0) = h(r’,0’), this last point belongs to {r} x S! = {r'} x S! so that r = 7’ and
Rg_g, o h(r,00) = Rg:_g, o h(r,0p) so that § = . This map is onto by definition of the set B = K x St
which is the union of the Fy. As this map is defined on a compact set, it is a homeomorphism.

Take any orientation-preserving homeomorphism f of the circle with f(6) = #’. Notice that Gy =
fGof~t. Therefore p(Gy') = o(f)e(Go)p(f)~t and p(f)(Fp) = Fyr. So, for any (r,0) € K x S!, as the
action ¢ preserves each leaf of the lamination F, the homeomorphism ¢(f) sends the point h(r, 6), which
is the unique point in the intersection Fy N {r} x S!, to the unique point in the intersection Fy: N {r} x St,
which is h(r,6"). This implies that

SD(f) © h(?‘, 9) =ho (PK,/\(f)(Tv 9)

Now, denote by 7n(r) the second projection of h(r,0). As the set Fy is the image by the rotation of angle
0 of the set Fy, we have h(r,0) = h(r,0) + (0,60) and h(r,0) = (r,n(r) + 0). O

4.2 Action outside the lamination

In this section, we study the action ¢ on each connected component of A— K x S!. Let A = [r1, 9] x St
be the closure of such a component. By the last subsection, such a set is invariant under the action .
This subsection is dedicated to the proof of the following proposition.

Proposition 4.3. The restriction p? of the action ¢ to A is conjugate to ay (or equivalently to a_) via
an orientation preserving homeomorphism.

Proof. Notice that, for any point 6 of the circle, the action 90\%'9 admits no fixed point in the interior of A
by definition of K x S!: we will often use this fact.

Let us begin by sketching the proof of this proposition. We prove that, for any point 6 of the circle,
the morphism ‘PI%(; can be lifted to a morphism ;' from the group Gy to the group Homeog([r1, 2] x R)
of homeomorphisms of the closed band which commute to the translations (r,z) — (r,x 4+ n), where n is
an integer. Moreover, this group morphism can be chosen so that it has a bounded orbit. We will then
find a continuum Gy with empty interior which touches both boundary components of the band and is
invariant under the action $2'. Then we prove that the sets Gy = m(Gy), where 7 : [r1,72] x R — A is
the projection, are pairwise disjoint and are simple paths which join the two boundary components of the
annulus A. We see that the group o(Go N Gy/), for § # 6, admits a unique fixed point a(6,60’) on Gy.
This last map a turns out to be continuous and allows us to build a conjugacy between ¢ and a,..

The following lemma is necessary to build the invariant sets Gy:
For a homeomorphism g in Homeog(A), we denote by g the lift of g to Homeog([r, 2] x R) (this means

that m o g = g o7) with g((r1,0)) € [r1,72] x [=1/2,1/2). Let us denote by D C R? the fundamental
domain [r1,72] x [—1/2,1/2] for the action of Z on [ri, 2] x R.
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Lemma 4.4. The map Homeog(S!) — Ry, which associates, to any homeomorphism f in Homeog(S'),

the diameter of the image under o(f) (or equivalently under any lift of o(f)) of the fundamental domain
D, is bounded.

Remark: the continuity hypothesis on the morphism ¢ is not used in the proof of this lemma.

Proof. For a group G generated by a finite set S and for an element ¢ in G, we denote by ls(g) the word
length of g with respect to S, which is the minimal number of factors necessary to write g as a product of
elements of S U S~!, where S~! is the set of inverses of elements in S. In order to prove the lemma, we
need the following result which can be easily deduced from Lemma 4.4 in [13], which is inspired from [1].

Lemma 4.5. There exist constants C > 0 and C' € R such that, for any sequence (fn)nen of elements
of the group Homeoo(S'), there exists a finite set S C Homeog(S') such that:

— for any integer n, the element f, belongs to the group generated by S;

- VYneN, ls(frn) < Clog(n) + C".

Let us prove now Lemma 4.4 by contradiction. Suppose that there exists a sequence (f,,)nen of elements
of the group Homeog(S*) such that, for any integer n:

—_~—

diam(¢(fn)(D)) = n.

We apply then the above lemma to this sequence to obtain a finite subset S included in Homeog(S!) such
that the conclusion of the lemma holds. Let f, = $1.,52.n - - . Sw,,n, Where w,, < Clog(n) + C’ and the

si;’s are elements of S U S~!. We prove now that this implies that the diameter of ¢(f,)(D) grows at
most at a logarithmic speed, which is a contradiction with the hypothesis we made on the sequence (fy, ).

, where s varies over S U S™! and the

Let us denote by M the maximum of the quantities H(pf(;) (x) —x

point x varies over R? (or equivalently over the compact set D) and where ||.|| denotes the euclidean norm.
Take now two points x and y in D. Then for any integer n

—~

P(51,)¢(52,0) - P(S.1) @) = @(51,0)0(52,0) - P30 n) W)

e~ ——~— —

Ps1)0(52.0) - (500 ) (@) = ]|+ ||@(s1.)052.) - @51 ) ) ]| + 1 =yl

—_—~

IA

But for any point z in D, we have:

—_—~

#(58m) -+ P(30n)(2) = P(h510) -+ (50 2]

—~— wnp—1 —

lelsrm)elszn) - plsunm)z) =2 < 5

< (l;u:nlf )M
Hence
diam((51.0)(52.0) - @(5u,.0)(D)) = diam(p(fu)(D)) < 2(wn ~ )M + diam(D),
which is in contradiction with the hypothesis we made on the sequence (fy,)n- ([l

Let 6y be a point of the circle.

Lemma 4.6. There exists a group morphism gZagt : Gg, — Homeoz([r1,72] X R) such that:
~ for any homeomorphism f in Gg,, o@y (f) = @™ (f), where I1 : Homeog([r1, 2] xR) — Homeog(A)
1s the projection;
~ the subset {@4 (f)((r1,0)), f € G, } of the band [r1, 2] X R is bounded.

Moreover, the morphism 52510 s continuous.

Remark: The continuity hypothesis on the morphism ¢ is not necessary for the first part of this lemma.
However, we will use it to simplify the proof.

11



Proof. As the topological space Gy, is contractible and the map II : Homeogz([r1, 2] x R) — Homeog(A)
is a covering, there exists a (unique) continuous map 7 : Go, — Homeoz([r1, r2] X R) which lifts the map
@fge and sends the identity to the identity. Then the map

0

Gy, X Gy, — Homeoy([r1,7m2] X R)

(f,9) = n(fg)"'n(finlg)

is continuous and its image is contained in the discrete space of integral translations: it is constant and
the map 7 is a group morphism. Two group morphisms which lift the group morphism gp‘AGe differ by
0

a morphism Gy, — Z. However, as the group Gy, is simple (hence perfect), such a group morphism is
trivial and n = @g“o . The action gp‘AGe admits fixed points on the boundary of the annulus A. Hence, as
0

the space Gy, is path-connected and n(Id) = Id, the action 1 admits fixed points on the boundary of
[r1,72] X R and any orbit on one of these boundary components is bounded. O

Let

F=J ()i, r2] x (=00,0]).

FE€CL,

By the two above lemmas, there exists M > 0 such that F C [ry,r2] x (—oo, M]. Moreover, the closed
set F' is invariant under the action gZag‘O . Denote by U the connected component of the complement of
F U {ri;,r2} x R which contains the open subset (ri,r9) x (M,+00). By construction, the open set U
is invariant under the action <,5‘940 (the interior of a fundamental domain far on the right must be sent
in U by any homeomorphism in the image of 555940 , by the two above lemmas). Counsider the topological
space B which is the disjoint union of the band [ri,r2] X R with a point {+oo} and for which a basis
of neighbourhood of the point +o0o are given by the sets of the form [ry,r2] X (A, +00) U {4+00}. Now,
let us consider the prime end compactification of U C B (see [10] for the background on prime end
compactification). The space of prime ends of the simply connected open set U, on which there is a
natural action 1 of the group Gy, induced by the action <,5‘940 , is homeomorphic to a circle. By the
following lemma, the action %) is continuous.

Lemma 4.7. Let W be a simply connected relatively compact open subset of the plane. Let us denote by
B(W) the space of prime ends of W. The map

t : Homeo(W) — Homeo(B(W)),

which, to a homeomorphism f of W, associates the induced homeomorphism on the space of prime ends
of W, is continuous.

Proof. As the map t is a group morphism and as the space B(WW) is homeomorphic to the circle, it suffices
to prove that, for any prime end £ in B(W), the map

Homeo(W) — B(W)
fo= (1))

is continuous at the identity. Let us fix such a prime end £. Let us denote by
VioVveDd...DV,D...

a prime chain which defines the prime end &. If we denote by V,, the space of prime points of W which
divide Vj,, then the V,,’s are a basis of neighbourhoods of the point ¢ (see Section 3 in [10]). Let us fix a
natural integer n and p > n. If the uniform distance between a homeomorphism f in Homeo(W) and the
identity is lower than the distance between the frontier Fry (V;,) of V,, in W and the frontier Fry (V},) of
Vp in W, then the set f(Fry (V5,)) does not meet Fryy (V). By Lemma 4 in [10], if the homeomorphism f

is sufficiently close to the identity, then f(V},) C Vi, and t(f)(V,) C V,,. This implies that, for f in such a

neighbourhood, the point ¢(f)(§) belongs to V;,, which is what we wanted to prove. O
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Take a prime end & of U. The principal set of € is the set of points p in B, called principal points of
&, such that there exists a prime chain

VioxVeD...DV,D ...

defining ¢ such that the sequence of frontiers in U of V,, converges for the Hausdorff topology to the single-
point set {p}. This set is compact and connected. Consider the subset of prime ends of U whose principal
set contains a point of {ri,r2} X R U {+00}. This set is invariant under 1. Denote by I a connected
component of the complement of this set (the complement of this set is non empty by [10] because there
exists an arc [0, +00) — U which converges as t tends to +o0o to a point which belongs to the frontier of
U but does not belong to {r1,r2} x RU{+0o0}). By path-connectedness of the group Gy, and continuity
of the action v, the open interval I is invariant under the action . Let 9’ be the restriction of the action
1) to the interval I.

Lemma 4.8. The action 1’ has no fized point. Therefore, the interval I is open.

Proof. Suppose by contradiction that the action 1’ admits a fixed point £. Then, the principal set of the
prime end £ would provide a compact subset of the annulus (71, 72) X R which is invariant under the action
gbg‘o , a contradiction with Lemma 4.9 below.

O

Lemma 4.9. The action @’9% admits no nonempty compact connected invariant set included in (r1,72) X R.

Proof. Consider the unbounded component of the complement of this set. The action @’9% induces an
action 77 on the space of prime ends of this set, which is homeomorphic to a circle. By Proposition 3.9,
such an action n has a fixed point.

If the set of fixed points of this action has non-empty interior, as accessible prime ends are dense in
this set (see [10]), there exists an accessible prime end which is fixed under 1. Therefore, the only point
in the principal set of this prime end, which is contained in the interior of the band [r1,r2] X R, is fixed
under the action gégt .

Suppose now that this set of fixed points has an empty interior. Take a connected component of the
complement of the set of fixed points of  and an endpoint e of this interval. Take a closed interval J of
the circle whose interior contains the point . Denote by G'; the subgroup of Homeog(S!) consisting of
homeomorphisms which pointwise fix a neighbourhood of J. Then, according to Section 3 in which we
describe the continuous actions of the group Homeo,(R) on the real line, the set of fixed points of (G )
contains a closed interval J with non-empty interior which contains the point e (not necessarily in its
interior). As accessible prime ends are dense in P, this closed interval contains an accessible prime end.
Then, as the principal set of this prime end is reduced to a point p, this point p is fixed by the group
gbg‘o (Gy). As a result, the group gbg‘o (G 1) of homeomorphisms of the band [r1, 73] x R admits a non-empty
set H; of fixed points which is included in the closure C'; of the union of the principal sets of prime ends
in J, which is compact. Moreover, this set is included in the interior of the band [r1,73] x R. For any
closed interval J’ whose interior contains the point 6y and which is included in J, the set H;: of fixed
points of @é} (Gy/) which are included in C; is non empty. Moreover, if the interval J” is included in the
interval J’, then H;» C Hj; . By compactness, the intersection of those sets, which is contained in the set
of fixed point of the action gbg‘o , is non-empty. O

By the description of continuous actions of the group Homeo.(R) on the real line with no global fixed
points (see Section 3 of this article), the action ¢ is transitive on the open interval I. Hence, all the
prime ends in I are accessible, by density of accessible prime ends. Moreover, by this same description,
for any point 0 # 6, of the circle, there is a unique prime end ey € I which is fixed under 1/)‘6;90 nG, and
the interval I is the union of these prime ends. For any point 6 # 6y of the circle, let us denote by Ty the
unique point in the principal set of the prime end eg. For any homeomorphism f in Gy, which sends the
point 6 # 0y to the point ', then g (f)(Zg) = Zor, as Gor = fGof . Let Lo, = {#9,0 € S* — {60} } and
Ly, = m(Lg,).
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Lemma 4.10. The map
Sl — {90} — (7’1, 7’2) x R
0 — :i'g

is one-to-one and continuous. Moreover, the limit sets hmeaej Ty and hmeaeg Ty each contain exactly
one point of the boundary {r1,r2} X R of the band.

Proof. Take 0 # 6 and suppose by contradiction that Tg = Zg,. Take 6” # 6 in the same connected
component of St — {6, 0} as 6’ such that Zg» # Ty. Consider a homeomorphism f of the circle in Gg, NGy
which sends the point 6’ to the point #”. Then the homeomorphism gZag‘O (f) of the band fixes the point Zg
and sends the point Zy/ to the point Ty, which is not possible. The map is one-to-one.

Now, let us prove that the considered map is continuous. Take a smooth vector field of the circle which
vanishes only on a small connected neighbourhood N of 6. Let us denote by (h!)scr the one-parameter
group generated by this vector field. Fix a point §; € S' — N. For any point § € S! — N, denote by
t(#) the unique time ¢ such that h*(6;) = 6. The map 6 — t(#) is then a homeomorphism S' — N — R.
Now, the relation Zp = ¢(h'(?))(Zg,) and the continuity of the action ¢ implies that the map 6 + &y is
continuous, as the neighbourhood N can be taken arbitrarily small.

Lemma 4.9 implies that the intersection of each of the limit sets 1im0$00+ Ty and hmeaeg Ty with

the boundary {ri,m2} x R of the band is nonempty. Indeed, otherwise, these limit sets would provide a
nonempty compact connected invariant set for the action 555940 .

It remains to prove that the intersections hmeaf); ZgN{ry,ra} x R and hmeaeg TgN{ry,re} x R are
reduced to a point. Suppose for instance that the intersection lim, ot Zg N {r1} x R contains at least
two points. Recall that, by Proposition 3.10, the restriction of the action ¢ to {r;} x S! is a conjugacy
by a homeomorphism S! — {r;} x S'. Therefore, the action go‘%eo fixes a point p and is transitive on
{r1} xS'—{p}. Moreover, as any orbit of the action @, is bounded by Lemmas 4.4 and 4.6, this last action
pointwise fixes the set 7=1({p}) and is transitive on each connected component of {r;} x R — 7~ 1({p}).
Therefore, the intersection lim, ot Zg N {r1} x R, which is closed and invariant under the action @g“o ,

contains two distinct lifts p and p’ of the point p. Take a sequence (Zg, )nen of points in E;;, where 6,,
tends to 0, which converges to the point 5 and a sequence (To: Jnen of points in fo; , where 6/, tends to
93‘ , which converges to the point p’. Taking a subsequence if necessary, we may suppose that the sequences
(0n)n and (0), are monotonous and that, for any integer n, the angle ¢/, is between the angles 6,, and
Op+1. Take a homeomorphism f in Gy, which, for any n, sends the point 6, to the point #/,. Then, for any
n, the homeomorphism 555940 (f) sends the point &y, to the point Zy, . By continuity, this homeomorphism
sends the point p to the point p’. This is not possible as these points are fixed under the action <,5§‘0 . g

Note that we do not know for the moment that the points lim, ot Zg and lim, 6 Tg lie on different
boundary components of A.

For any angle 6§ # 6y, we define Ly = Rg_g,(Lg,). Notice that, for any angle 6, the set Ly is invariant
under the action @%9. Indeed Gy = Rp—g, GQURG__lQ0 which implies that ¢*(Gy) = Rg_g, 0" (GGO)RG__leo
and, as the set Ly, is invariant under the action gp‘AGe , the claim follows. Moreover, for an orientation-

0

preserving homeomorphism f of the circle which sends an angle 6 to another angle §’, the homeomorphism
©(f) sends the set Lg to the set Lg/. To prove this last fact, use that the homeomorphism f can be written
as the composition of a homeomorphism which fixes the point # with a rotation.

Lemma 4.11. The sets Ly are pairwise disjoint. Moreover, there exists a homeomorphism from the
compact interval [0,1] to the closure of Lg, which sends the interval (0,1) to the set Lg,.

Proof. By using rotations, we see that it suffices to prove that, for any angle 6 # 6y, Ly, N Lg = (). Fix
such an angle §. Remember that the restriction of the action 1’ to Gy N Gy, has one fixed point ey and
is transitive on each connected component of I — {eg}. Denote by Fy the subset of I consisting of prime
ends whose only point in the principal set belongs to 7=1(Lg). As this set is invariant under Q/J‘GGQGGO, it
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is either empty, or the one-point set {eg} or one of the connected components of I — {ep} or the closure
of one of these components or I. In the last case, we would have fo; C nY(Lg) and Ly, C Lgy. Using
homeomorphisms of the circle which fix the angle §y and send the angle 6 to another angle 6, we see that,
for any angle ', Lg, C Lg/. This is not possible as the intersection of the closure of the set Ly, with the
boundary of A is a two-point set which should be invariant under any rotation. The case where the set
Ep is a half-line (open or closed) leads to a similar contradiction by looking at one of the limit sets of Ly, .
Hence, for any angle 6 # 6y, the intersection Lg, N Ly = Lg, N Ro—g,(Lg,) contains at most one point, the
point zg = 7(Zg).

This implies that any leaf of the form {r} x S C A contains at most two points of Lg,. We claim that
if one of these leaves contains two points of Ly,, then no leaf contains exactly one point of this set.

Take a point xp, in Ly, which belongs to the leaf {r} x S'. Suppose that there exists another point of
the set Lg, on this leaf. This implies that the point x4, belongs to Lg,. Using homeomorphisms in Gy,
which send the point 61 to another point 8 # 6, of the circle, we see that, for any angle 6 # 6y the point
xp belongs to Ly. Hence, each circular leaf which meets the set Lg, contains exactly two points of this set.

If = is another point of Lg, on the leaf {r} x S, then there exists o € S! — {0} such that R, (z) = xp, €
Loto,- Therefore, o + 6y = 67 and the point z is necessarily the point Rg,—g, (xg,) = x29,—0,. Hence,
the map 6 — p1(zg), where py : [r1,72] X R — [r1,72] is the projection, is strictly monotonous (as it is
one-to-one) on (6o, 6y + %] and on [0 + %, 6o + 1). Moreover, if this map was not globally one-to-one, the
circular leaf which contains the point x4 +1 would contain only one point, which is not possible. Hence,
this map is strictly monotonous. This implies also that the sets Ly, for 8 # 6o, are disjoint from Lg,.
The monotonicity of the map 6 — pi(xp), combined with Lemma 4.10 implies the second part of the
lemma. [l

Now, we can complete the proof of the proposition. By Theorem 3.1, for any 6 € S' and any r € (0,1)
the action @f‘émcgﬂ admits a unique fixed point a(r,d) in Ly. Moreover, for any point 6 of the circle,
the map

0,1) — A
r — a(r,0)
is one-to-one, continuous and extends to a continuous map [0,1] — A which allows us to define a(0, 0),
which is the fixed point of ¢4, on one boundary component of A, and a(1,#), which is the fixed point
IGo
of ‘PI%(; on the other boundary component of A. By Lemma 4.11, the map a is one-to-one. Moreover,
for every point « of the circle, and every point (r,6) of the closed annulus A = [0,1] x S, a(r,0 + a) =
R (a(r,0)). Indeed, the point R, (a(r,d)) is the only fixed point of (pré@+aﬁG9+a+r = Ra(pf%?eﬁGe+rR;1 in
Lgt+o = Ra(Lg). This implies that the map a is continuous: it is a homeomorphism A — A. It remains to
prove that it defines a conjugacy with a. Take a homeomorphism f, and a point (r,0) € A. Notice that

fGoNGosrf™h = Gyie) N Grgrr) = Gy N G 1 (0)+(F(O0+m)—F(0))

and that ¢ (f)(Lg) = Ly (). Therefore, (f)(a(r,0)) = a(as(f)(r,0)). The action ¢* is conjugate to
ay. As the actions a4 and a_ are conjugate both by an orientation-preserving homeomorphism and an
orientation-reversing homeomorphism, the proposition is proved. ([l

4.3 Global conjugacy

This section is devoted to the end of the proof of Theorem 2.1 in the case of actions on an annulus.

By Lemma 4.2, our action ¢, restricted to the union K x S! of the Fp, where 6 varies over the circle,
is conjugate to the restriction of px » to K x S! by a homeomorphism of the form (r,6) — (r,n(r) + 6)
for any A. Conjugating ¢ by a homeomorphism of the annulus of the form (r, ) — (r,7(r) 4+ 6), where 7
is a continuous function which is equal to n on K, we may assume from now on that the action ¢ is equal
to pK .z, for any A, on K x S'.
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Moreover, for each connected component (ré, ) x St of the complement of the closed set K x S, the
restriction of this action to [rf,r5] x St is conjugate to a4 via an orientation-preserving homeomorphism
gi :[0,1] x St — [ri,ri] x S!, by Proposition 4.3.

We now define a particular continuous function Ag : [0,1] — K — {—1,+1} such that the action ¢ is
conjugate to @ .. For any index i, let us denote by d;” the diameter of the set g;({(r,0),0 < r < 1}) and
by d; the diameter of the set g;({(r,—7),0 < r < 1}). If d} < d;, we define \¢ to be identically equal to
+1 on the interval (rf,r}). Otherwise, i.e. if d;‘ > d; , we define the map A to be identically equal to —1
on the interval (rf,r%).

Now, let us define a conjugacy between the action ¢ and the action ¢ y,. Notice that, by what is
above, for any connected component (r?,7%) x ST of the complement of K x S!, there exists an orientation-
preserving homeomorphism h; of [ri,75] x St such that, for any orientation-preserving homeomorphism f
of the circle,

hi o 0k xo (F)jri rijxst = )i ri)xst © P

Then, for any point (r,0) € [ri,ri] x S* and any angle a € S, h;(r,0 + «) = h;(r,0) + (0, ). (Recall that
we supposed at the beginning of this section that the morphism ¢ sent the rotation of the circle of angle
« on the rotation of the annulus of angle «.)

Now, let us denote by h : A — A the map which is equal to the identity on K x S' and which is equal
to h; on the connected component (r, ) x S of the complement of K x S. It is clear that the map h is
a bijection and that, for a homeomorphism f in Homeog(S!), the relation ko ¢ 5, (f) = ©(f) o h holds.
Moreover, the map h commutes with the rotations.

It remains to prove that the map h is continuous. As the map h commutes with rotations, it suffices
to prove that the map
n: [0,1] — A
r +—  h(r,0)

is continuous. Notice first that, for a connected component (ri,r%) of the complement of K, the limit
lim, _,, i+ n(r) is equal to h;(r1,0). This last point is the only point of Fy on {r;} x S! and is therefore
equal to 1(r1) = (r1,0). The map 7 is also continuous on the left at r4. It suffices now to establish that,
for any sequence ((r{,r5))nen of connected components of the complement of K such that the sequence
(r?)nen is monotonous and converges to a point 7, which belongs to the compact set K, for any sequence
(rn)nen of real numbers such that, for any integer n, r, € (r",ry), the sequence (n(ry))nen converges to

N(reo) = (reo,0). Fix now such a sequence ((r7,75))nen-

Lemma 4.12. For n sufficiently large, one of the curves h([r},r}] x {0}) and

h({(r, g — =11 ), <r < rg}) is homotopic with fized extremities in the closed annulus [r},r5] x St to

n_.n
To—T1

the curve [, r%] x {0}. We denote by ¢, this curve.

Proof. Suppose by contradiction that there exists a strictly increasing map ¢ : N — N such
—Td(n') ag(n o(n

that, for any n € N, neither h([rf("),r‘;(n)] x {0}) nor h({(r,@— ﬁ),rl( ) §r§r2( )})

are homotopic to [r,r3] x {0}. Then, one of the two curves h([rf("),r‘;(n)] x {0}) and

T;(n) _T;’(n)

o (n)
h({(r,@ — L),7’?(") <r< rg(")}), which we denote by 7,, admits a lift 7,, such that 7, N

{rf(")} xR = {(rf("),())} and 7, N {rg(n)} xR = {(rg("),kn)}, where k,, is an integer with |k,| > 2.
Taking a subsequence if necessary, we can suppose that either, for any n, k, > 2 or, for any n, k,, < —2.
To simplify notation, suppose that k, > 2 for any n.

We now need an intermediate result. Let (Z,)nen and (§n)nen be sequences of points of the band
[0,1] x R converging respectively to the points Zo, and s such that, for any n, the points Z,, and g,
belong to the curve 7, and are not endpoints of this curve. We suppose that To, # s and that the
points T and §eo are not limit points of the endpoints of 7,,. For any integer n, there exist unique real
numbers r,, and r, € (0,1) such that the point x,, = m(&,) (respectively y, = 7(§,)) is the unique fixed
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point of the group ¢(GoNG,.,) (respectively p(Go NG, )) on the curve 7,,. We claim that, for any strictly
increasing map s : N — N such that the sequences (7(,))nen and (T’S(n))neN converge respectively to R
and R’, then R # R’. Moreover, the real numbers R as R’ are different from 0 or 1.

Let us begin by proving this claim. Suppose by contradiction that there exists a map s such that
R = R'. We may suppose (by extracting a subsequence and by changing the roles of z, and y, if
necessary) that, for any n, 74,) < r;(n). Then the set of points in 7,(,) which are fixed under one of the
actions ¢|gyna,» With 1y, < r < 7)) (this is also the projection of the set of points on Ys(n) between
Ts(n) and gs(n)) defines a sequence of paths which converge to an interval included in {r,,} x S!. This
interval is the projection of the interval whose endpoints are T, and 7~: it has non-empty interior and
is necessarily pointwise fixed by p|g,ng,- Indeed, any homeomorphism f in Gp N Gg fixes the points
between 7,y and T’S(n) for n sufficiently large so that the homeomorphism ¢(f) fixes the projection of

the set of points on m between T,y and Jy(n), for n sufficiently large. Hence, it also pointwise fixes
the projection of the interval between the points . and o on the line {r,,} x R. However, there exist
no such interval with non-empty interior, as the group ¢(Go N Gr) does not pointwise fix an interval of
{reo} x S* with non-empty interior, a contradiction.

Let us establish now for instance that R # 1. The set of points in ~,(,) which are fixed by ¢|g,na,
with 74,y <7 < 1is a path which admits a lift which joins the point Z(,) to either the point (rg(s(")), k)
or the point (rf(s(")), k). Taking a subsequence if necessary, this sequence of sets converges to an interval
with non-empty interior included in {r} x S'. This interval is necessarily pointwise fixed by ©|GonGR:

this is a contradiction.

Let us come back to our proof. There exists a sequence (Z,),en of points of the band [0,1] x R
converging to the point (r.,1) such that, for any n, the point Z,, belongs to the curve 7, and is not an
endpoint of this curve. Let x,, = 7(Z,). For any integer n, there exists a unique real number r,, € (0,1)
such that the point z;, is the unique fixed point of the group ¢(Go NG, ) on the curve v,. For any n, take
a point ¢, on the curve 4, such that the sequence (), converges to a point p which is not a point of the
form (ro, k), where k is an integer. Then it is not a limit point of a sequence of endpoints of the curve
n- As above, we denote by 7/, € (0,1) the real number associated to the point y, = 7(g,). Consider a
strictly increasing map s : N — N such that the sequences (ry(,))nen and (T;(n))nEN converge respectively
to R and R’. Take a homeomorphism f in Gy which sends the point R of the circle to the point R’ of the
circle. Let 2z, = ¢(f)(zn). Then, for any n, the real number associated to the point zy(,) is necessarily
f(rsmny) and the sequence (f(75(n)))n converges to R'. By the claim above, the sequence (z(,))n has the
same limit as the sequence (Ys(n))n. By continuity, this homeomorphism of the annulus sends the point
(reo,0) to the point p = 7(p). This is not possible as the point (r,0) of the annulus is fixed by the group
¢(Go). O

Lemma 4.13. The diameter of the curve ¢, tends to 0 as n tends to +oo.

Proof. This proof is similar to the proof of the above lemma. Suppose that the sequence of diameters of
¢, does not converge to 0. Let us denote by ¢, the lift of the curve ¢,, whose origin is the point (rf("),()).
There exists a subsequence ¢,(,) of this sequence which converges (for the Hausdorff topology) to an
interval with non-empty interior. As the projection of this interval on the annulus is invariant under the
action ¢|q,, this compact set projects onto the whole circle {7} x S!. Therefore, there exists a sequence
(Zn)nen, where the point Z,, belongs to ¢, which converges to a point of the form (r., k) with k& # 0
(which is not the limit of a sequence of endpoints of éy(,)). There also exists a sequence (f,)nen, Where
the point Z,, belongs to ¢,(,), which converges to a point § which is not of the form (7., k), where k is an
integer. As in the proof of the above lemma, let us denote r, € (0,1) (respectively /) the real number
associated to the point x,, = m(Z,) (respectively y, = 7(g,)). Taking a subsequences if necessary, we may
suppose that the sequences (ry,), and (r7,), converge respectively to the real numbers R and R’. As in
the proof of the above lemma, R # R’ and both these numbers are different from 0 and 1. Take then a
homeomorphism f in Gy which sends the point R to the point R’. Then the homeomorphism ¢(f) sends
the point (r,0) to the point p = 7(p) # (re,0), which is not possible as the point (r,0) is fixed by the
group ¢(Go). O
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Now, let us prove that ¢, = h([r}, 5] x {0}) for n sufficiently large, which proves the continuity of
the map 7 by the above lemma (because the endpoints of these curves converge to the point 7(r«. Let us

denote by ¢/, the curve among h([r{,r%] x {0}) and h({(r, f— o=y <y < rg}) which is not equal

n_
Ty~

to ¢,. As the homotopy class of this curve ¢}, is not the homotopy class of [r},75] x {0}, the diameter
of ¢, is bounded from below by % Hence, for n sufficiently large (say for n > N), the diameter of ¢, is
smaller than the diameter of ¢},.

Fix now n > N. The orientation of the circle defines an order on S! — {0}. Take a homeomorphism
f # Id in Gy such that, for any 6 # 0, f(6) > 0. Then the restriction of ¢(f) to h([r}, 5] x {0}) and to

h({(r, 0 — Trﬂ—;{; ),rp <r< ré‘}) defines on orientation on both curves (the orientation such that an arc
2 1

from a point = to its image by o(f) is positively oriented). If d} < d, the interior of the curve ¢, is
equal to the curve g, ((0,1) x {0}): this is the only simple curve in (77,7%) x S! which is invariant under
©|c, and which is oriented from the point (r,0) to the point (r%,0). Moreover, the only simple curve in
(r7,7%) x ST which is invariant under the action pk ), restricted to Go which is oriented from the point
(r},0) to the point (ry,0) is the curve (r7,r%) x {0}. Finally, as the homeomorphism / is continuous on
[r, 78] x St and ho gk \, = @ o h, we have h([r?,r5] x {0}) = ¢,,. If d,; < d, the interior of the curve
¢y is equal to the curve g, ({(r, —7),0 < r < 1}): this is the only simple curve in (r7,7%) x S! which is
invariant under ¢|g, and which is oriented from the point (r%,0) to the point (r,0). Moreover, the only
simple curve in (rf,7%) x S' which is invariant under the action gk , restricted to G which is oriented
from the point (r§,0) to the point (r},0) is the curve (r},75) x {0}. Moreover, as the homeomorphism h
is continuous on [r{, %] x St and h o ¢k 5, = ¢ o h, we have h([r{, 73] x {0}) = c,.

5 Case of the torus

Let ¢ : Homeog(S') — Homeog(T?) be a one-to-one continuous group morphism (if such a group
morphism is not one-to-one, it is trivial). In this section, we prove the following theorem and its corollary:

Theorem 5.1. For any point x of the circle, the image under the morphism ¢ of the group G, admits a
global fized point.

Corollary 5.2. The action ¢ admits an invariant essential circle: the study of this action reduces to the
study of an action on an annulus.

Here, essential means non-separating so that the surface obtained by cutting along this curve is an
annulus. Using the first part of Theorem 2.1 which was proved in last section, this corollary implies
directly the second part of this theorem. Let us first see why this theorem implies the corollary.

Proof of the corollary. First, the image under the morphism ¢ of the group S' of rotations of the circle is
conjugate to the subgroup of rotations of the torus of the form:

T2 =S'xS' — T2
(01,02) — (01,02+a)’

where o € S!. Therefore, after possibly conjugating, we may suppose that the morphism ¢ sends the
rotation of the circle of angle v on the rotation (61,602) — (61,02 + «).

Fix a point xg on the circle. If p is a fixed point for the group ¢(G,), then the essential circle
{©(Ra)(p), o € S'} is invariant under the action ¢. The proof of this last claim is similar to the proof of
Lemma 4.1. [l

Proof of Theorem 5.1. Let us begin by giving a sketch of the proof of this theorem. First, we prove that
the diameters of the images of the fundamental domain [0, 1]? under lifts of homeomorphisms in the image
of ¢ are uniformly bounded. Then we prove that the restriction of the morphism ¢ to a subgroup of
the form G, lifts to a group morphism ¢, : G, — Homeoy2(R?), where this last group is the group of
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homeomorphisms of R? which commute to the integral translations. We prove that the action @, can be
chosen so that it has a bounded orbit. Using these facts, we find a connected subset of R? with empty
interior which is invariant under the action of .. Using prime ends, we can prove that the action ¢¢,
has a fixed point on the projection of this connected set.

For a homeomorphism g in Homeog(T?), we denote by g the lift of g to Homeoz: (R?) (this means that
mog=gom where m : R? — T? = R?/Z? is the projection ) with g(0) € [~1/2,1/2) x [-1/2,1/2). Let
us denote by D C R? the fundamental domain [0, 1]? for the action of Z? on R

Lemma 5.3. The map Homeog(S') — Ry which associates, to any homeomorphism f in Homeog(S'),

the diameter of the image under o(f) (or equivalently under any lift of o(f)) of the fundamental domain
D is bounded.

Proof. The proof of this lemma is almost identical to the proof of Lemma 4.4. O

Let ¢ be a point of the circle.

Lemma 5.4. There exists a group morphism oy, : G, — Homeog: (R?) such that:
— for any homeomorphism f in G, o gy, (f) = ©(f), where II : Homeog: (R?) — Homeog(T?) is
the projection;
— the subset {Qz, (f)(0), f € Gg,} is bounded.

Moreover, the morphism @z, is continuous.

Proof. Let G = ¢(G,,). Observe that the map

GxG — 72
(f,9) — fg (F@G0)

defines a 2-cocycle on the group G (see [4] or [7] for more about the cohomology of groups). Moreover,
by Lemma 5.3, this cocycle is bounded. However, as the group G is isomorphic to the group Homeo.(R),
the group HZ(G,Z?) is trivial (see [9] and [12]). This implies that there exists a bounded map b : G — Z?
such that:

Y9 €G, fg (F(§0)) = b(f) +blg) — b(fg).

It suffices then to take for ¢, the composition of the morphism |, ~with the morphism

G — Homeoz:(R?)
[ f+of)

For this action, the orbit of 0 is bounded by construction. It suffices now to prove that this action is
continuous. As the topological space Gy, is contractible and the map II : Homeoz: (R?) — Homeog(T?)
is a covering, there exists a (unique) continuous map 7 : G, — Homeog: (RQ) which lifts the map P|Gay
and sends the identity to the identity. Then the map

Gyo X Gzy — Homeog: (R?)

(f,9) — n(fg)""'n(f)nlg)

is continuous and its image is contained in the discrete space of integral translations: it is constant and
the map 7 is a group morphism. Two group morphisms which lift the group morphism PGy differ by a
group morphism G, — Z2. However, as the group G, is simple (hence perfect), such a group morphism
is trivial and n = g, . O

We can now complete the proof of Theorem 5.1. Let us denote by F' the closure of the set

U @elf) (=00, 0] x R).

FEGL,
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By the two above lemmas, there exists M > 0 such that F' C (—oo, M] x R. Denote by U the connected
component of the complement of F' which contains the open subset (M, +00) x R. Denote by U’ the image
of U under the projection ps : R x R — R x R/Z and by v, the action on the annulus R x R/Z defined
by

Vf € Homeoy(S"), 1, (f) © p2 = P2 © Py (f)-
Notice that p1 0 ¢, = ¢|G,, ©p1, Where py : R X R/Z — R/Z x R/Z = T?.

By construction, the open set U’ is invariant under the action ,, (a fundamental domain far on the
right must be sent in U’ by any homeomorphism in the image of #,,, by the two above lemmas). Now,
this action can be extended to the set of prime ends of U’, giving a continuous action 1) of the group
G, (which is isomorphic to the group Homeo.(R)) on the topological space of prime ends of U’, which is
homeomorphic to S!.

By Proposition 3.9, this last action admits a fixed point. Moreover, for any closed interval I whose
interior contains the point zg, the set of fixed points of this action contains an open interval and hence
an accessible prime end. Therefore, the intersection of the set F of fixed points of the action ¢, g, with
[0, M] x R/Z is non-empty. Therefore, the set of fixed points of 1,,, which is the intersection of the F’s,
is non-empty. Theorem 5.1 is proved. |

6 Case of the sphere and of the closed disc

In this section, we discuss Conjecture 2.2. The following proposition is a first step toward this conjecture
and was communicated to me by Kathryn Mann.

Proposition 6.1 (Mann). Fiz a morphism ¢ : Homeog(S!) — Homeoy(S?) (respectively ¢
Homeog(S!) — Homeog(D?)). Then the action ¢ has exactly two global fived points on the sphere (respec-
tively one global fized point on the closed disc).

Proof. The case of the disc is almost identical to the case of the sphere and is left to the reader.

Identify the sphere with {(z,y,2) € R, 2% 4+ y* + 2% = 1}. By a theorem by Kerekjarto (see [2]), the
restriction of 1 to the group of rotations of the circle S* C Homeog(S!) is topologically conjugate to an
action of the form:

S'' — Homeog(S?)
0 — (z,9,z) = (cos(8)x — sin(f)y, sin(f)x + cos(0)y, z)

The action of the circle induced by ¢ has hence exactly two fixed points which we denote by IV and S.
We prove now that the set {N, S} is preserved under any element of the image of Homeog(S!) under the
morphism ¢. Consider the subset A C Homeog(S!) consisting of homeomorphisms which commute with a
nontrivial finite order rotation of the circle. Then any element of ¢(A) preserves the set of fixed points of
the image under ¢ of a nontrivial finite order rotation. This last set is equal to {N, S}. By the following
lemma, each element of the group ¢(Homeog(S!)) preserves the set {N, S}.

Lemma 6.2. The set A generates the group Homeog(S'), i.e. any homeomorphism in Homeog(S') can
be written as a product of elements of A.

Now, the action 1 restricted to the set {N, S} induces a morphism Homeog(S') — Z/2. As the group
Homeog(S!) is simple, such a morphism is trivial: Proposition 6.1 is proved. ([l

Proof of Lemma 6.2. By the fragmentation lemma (see [3] Theorem 1.2.3), any homeomorphism in
Homeog(S!) can be written as a product of homeomorphisms each supported in an interval whose length is
smaller than 1/6 (where the length of the circle is equal to 1). Moreover, any homeomorphism supported
in the interior of an interval I C S! can be written as a commutator:

f=hffiit
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where f1 and fo are homeomorphisms of the circle supported in I (see [13] Lemma 4.6). Thus it suffices
to prove that any commutator of homeomorphisms supported in a same interval whose length is smaller
than 1/6 can be written as a product of elements of A.

Take an interval I C S! whose length is smaller than 1/6 and let f; and fo be two homeomorphisms
supported in I. Let us denote by Ry the rotation of the circle of angle 8. For ¢ = 1,2, let g; be the
homeomorphism defined by g;; = fi , gijr, (1) = R% fiR7", and g;(z) = z elsewhere. Notice that the
homeomorphisms ¢g; and g2 commute with the rotation R% and hence belong to the set A. Take a
homeomorphism £ in A which commutes with the order 3 rotations such that h(Ry (1)) N ) =

Ry(I
and hj; = Id; (such a homeomorphlsm h exists as the length of the interval I is small enough). Then
the homeomorphism [g1, hgah~!] is equal to [g1, ga] = [f1, fo] on I, to [Id, hgoh™!] = Id on h(R %( ), t
[91,1d) = Id on Ry (I) and to the identity elsewhere. Hence:

[fla f2] = [gla thh_l]

and Lemma 6.2 is proved. |

It is natural now to try to adapt the proof of Section 4 to prove Conjecture 2.2. As in the case of the
annulus, we can find an invariant lamination by circles but there is a problem when this lamination does
not accumulate on one of the global fixed point of this action: one has to study the actions of the group
of orientation-preserving homeomorphisms of the circle on the open annulus or on the half-open annulus
such that the groups of the form Gy have no fixed point in the interior of these surfaces. If we try to
adapt the proof of Subsection 4.2, we are confronted with a problem: Lemma 4.4 is false in this case (it
is easy to find counter-examples) and it seems difficult to adapt it in our situation. However, this lemma
seems to be the only problematic step for a proof of this conjecture.
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