
HAL Id: hal-00748266
https://hal.science/hal-00748266v1

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel TLM simulation of MPSoC on SMP
workstations: Influence of communication locality

Isaac Maïa Pessoa, Aline Vieira de Mello, Alain Greiner, François Pêcheux

To cite this version:
Isaac Maïa Pessoa, Aline Vieira de Mello, Alain Greiner, François Pêcheux. Parallel TLM simulation
of MPSoC on SMP workstations: Influence of communication locality. ICM 2010 - 22nd International
Conference on Microelectronics, Dec 2010, Cairo, Egypt. pp.359-362, �10.1109/ICM.2010.5696160�.
�hal-00748266�

https://hal.science/hal-00748266v1
https://hal.archives-ouvertes.fr

Parallel TLM Simulation of MPSoC on SMP

Workstations: Influence of Communication Locality

Isaac Maia Pessoa, Aline Mello, Alain Greiner, François Pêcheux

Lip6 - Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie

4,place Jussieu - Paris - France

Email: {Isaac.Maia,Aline.Vieira-de-Mello,Alain.Greiner,Francois.Pecheux}@lip6.fr

Abstract— Simulation speed is a key issue in virtual proto-
typing of Multi-Processors System on Chip (MPSoCs). SystemC
TLM2.0 (Transaction Level Modeling) is now commonly used
to accelerate the simulation. However, the standard SystemC
simulation engine uses a centralized scheduler that is clearly
a bottleneck to parallelize the simulation of architectures con-
taining hundreds of processor cores, and involving hundreds
of SC THREADs to be scheduled. In this paper, we describe
a general modeling strategy for shared memory MPSoCs and
associated tools for the parallel TLM simulation of these ar-
chitectures. The proposed approach is based on the Parallel
Discrete Event Simulation principles, and our parallel version
of the SystemC kernel (named SystemC-SMP) that can run
advantageously on multiprocessor workstations. As the speedup
obtained by parallel simulation depends on the communication
pattern between the parallel tasks, we study the influence
of various locality characteristics for the software application
running on the simulated MPSoC.

I. INTRODUCTION

The emergence of multicore technologies in modern PCs

and workstations has brought an incredible parallelism po-

tential on our desks. On the other hand, Massively Parallel

MPSoC (MP2SoC) will soon integrate in a multi-layered

structure hundreds of processor cores, and the simulation of

these complex architectures could benefit from the intrinsic

parallelism of these multi-core workstations.

The Figure 1(a,b) presents a shared-memory, typical cluster-

ized MP2SoC architecture. Each tile (or cluster) can contain

a local interconnect, one or several processor cores, one or

several memory bank, various peripherals, and a network

interface controller to access a hierarchical network on chip.

An embedded software application running on such a mas-

sively parallel multi-processor architectures (MP2SoC) is gen-

erally designed as a set of parallel software tasks cooperating

in a shared address space (see Figure 1a). The performance

of the embedded application running on the MP2SoC relies

on both the optimal mapping of the software tasks on the

processors, and the optimal mapping of the software data

(communication buffers, execution stacks, etc.) on the physical

memory banks. As the cost of a remote access (to a remote

memory in another cluster) is much higher than the cost of a

local access (to a local memory in the same cluster), both the

performance and the power consumption strongly depend on

the quality of the mapping. For a given software application, a

good indicator of the mapping quality is the ratio between the

CLUSTER 0

LOCAL
INTERCONNECT

RAM
00

PROC
00

PROC
01

RAM
01

T0

T1

T2

T3

T4

T5
T6

PROC
02

RAM
02

GLOBAL
INTERCONNECT

CLUSTER 1

LOCAL
INTERCONNECT

RAM
10

PROC
10

RAM
11

RAM
12

CPU 0

Tasks(1,2,3)
mapped
to Procs(0,1,2)
of Cluster 0

PROC
11

PROC
12

Cluster 0
Affinity to

CPU 0

FIFO mapped
to RAM 0
of Cluster 1

SMP Workstation Hardware

EMBEDDED
APPLICATION

Task
Fifo

CPU 1 CPU 2 CPU 3

Cluster 1
Affinity to

CPU 3

a)

b)

c)

MP2SoC Hardware Architecture

Fig. 1. TLM-DT Platform Example

number of intra-cluster (local) transactions, and the number of

inter-cluster (global) transactions.

Current modeling approaches for MP2SoCs are mostly

based on SystemC, a library of C++ classes that allows

description of MP2SoC hardware at various levels of ab-

straction, ranging from synthesizable RTL (most accurate,

very slow) to Transactional Level Modeling or TLM (less

accurate, very fast). However, when it comes to simulate a

tiled architecture containing hundreds of processors, even the

simulation speedup brought by TLM is not enough.

Unfortunately, the standard SystemC simulation kernel dis-

tributed by the OSCI consortium is sequential, and cannot

exploit the parallelism of multi-cores workstations. In this

paper we propose a new modeling style optimised for parallel

execution, called TLM-DT, we present a new parallel simula-

tion engine called SystemC-SMP, and we study the influence

of the mapping of the embedded application tasks running on

the MP2SoC processors, on the speedup obtained by parallel

simulation.

This paper is composed of six sections. After this introduc-

tion, section II present the state of the art regarding SystemC

parallel simulation. Section III introduces the principles of

the PDES algorithm and describes the proposed TLM-DT

approach (Transaction Level Model with Distributed Time).

Section IV details the parallel simulation kernel and the

implementation of the critical synchronization primitives in

a multicore environment. Section V presents the experimental

results obtained for a 40 clusters architecture (640 processors).

Section VI comments these first results and provides some

perspectives on ongoing researches.

II. RELATED WORK

Cox[?] developed a parallel implementation of the SystemC

simulation kernel: RITSim. Cox proposes to integrate the

parallel/distributed simulation engine into the SystemC kernel.

Performance results are presented for a distributed simulator

running on a cluster of machines connected over both a

100 Mb/s and 1000 Mb/s networks. The results show that a

speedup is obtained if and only if a large amount of data is

exchanged in a transaction. This is generally not the case in

shared memory architectures.

Chopard et al.[?] proposed another implementation of Sys-

temC. The approach requires that the user determines which

modules are executed by which processors. For that purpose,

the approach extends the SystemC library with a new class

sc node module, which is only used to create a hierarchical

module. The implementation has a centralized thread used by

all the other threads for the synchronization tasks and does

not implement any kind of lookahead. The centralized thread

determines which threads are to be executed in parallel. There

is a significant synchronization overhead that is discussed in

[?].

In 2007 Bouzouzou[?] presented a parallel implementation

of SystemC using the pthreads library. The parallel engine is

executed on a SMP workstation, and not on a network of work-

stations. This implementation uses a centralized scheduler. An

average 3x speedup is obtained on a highly parallel model run-

ning on a quad core workstation. However, the method is not

convenient when the simulated architecture contains hardware

components that are used by multiple initiator components,

which is the case in shared memory architectures.

All these and others tentatives to parallelize the SystemC

simulation engine are limited by the SystemC centralized

scheduler, and the centralised representation of time associated

to the event-driven simulation paradigm. In TLM simulation,

this simulation paradigm causes numerous context switches

between the SC THREADs describing the various hardware

components of the simulated MP2SoC. To reduce the penalties

associated to the context switches, the Loosely-Timed TLM

(TLMLT)[?] approach introduces the interesting notion of

quantum keeper that allows a simulated processor to run ahead

of the global simulation clock but even in this case, the

simulator is able to run only one SC THREAD representing

one hardware activity at a time.

We believe that the parallelization of SystemC implies

a change of perspective. To remove the central scheduler

bottleneck, one must accept to shift to a new, distributed,

simulation paradigm, where each SC THREAD is handling

its own private local clock, and the various SC THREADs

synchronize with each other, according to the PDES (Parallel

Discrete Event Simulation) principles.

III. TLM-DT APPROACH

A TLM[?] model is generally a collection of communicating

SC THREADs describing hardware components of the simu-

lated architecture. These SC THREADs are good candidates

to be executed in parallel on multi-core workstations. The

main difficulty for the parallel simulation is that the OSCI

SystemC simulation kernel defines a central scheduler which

contains a list of time-ordered events and a global variable

representing the simulation time. This central scheduler is

clearly the bottleneck for parallel simulation.

The TLM-DT approach implements the PDES principles[?],

where the system is described as a set of logical processes

that execute in parallel and communicate via point-to-point

channels. In this approach, the global simulation time does not

exist anymore. Each logical process has its own local time, and

the processes synchronize themselves through timed messages.

In the conservative PDES, a logical process is allowed to

increase its local time if and only if it has the guarantee that

it cannot receive on any of its input channels a message with

a timestamp smaller than its local time. This constraint can

be violated in the optimistic PDES, but a rollback mechanism

is needed to restore a process into a previous state in case

of violation. This rollback mechanism is very expensive and

cannot be used for a shared memory MP2SoC, that is a

strongly coupled parallel system. To solve this issue, the

conservative PDES algorithm uses null messages, that contain

no data, but only timing information. The null messages must

be sent by each process at regular and bounded time intervals

in order to prevent deadlocks.

The proposed TLM-DT simulation models are fully com-

pliant with the TLM2.0 standard[?]. The models use generic

payload and phase, the initiator and target sockets, and the non

blocking transport functions defined by the TLM2.0 standard.

However shifting from global time to distributed time intro-

duces some major differences. In TLM2.0, the synchronization

between the hardware components is accomplished by yielding

control to the SystemC central scheduler, that executes se-

quentially each process, respecting the general evaluate-update

paradigm[?] associate to the event-driven algorithm. In TLM-

DT, the synchronization between timed processes is distributed

by annotating all messages with timing information. Each

SC THREAD has an absolute local time and sends it as the

third argument of the transport interface methods, as suggested

by the TLM2.0. This absolute local time must be increased

during simulation. It can still be interpreted as an offset relative

to the SystemC global time because this global variable is

not used, and never incremented during execution. A TLM-

DT model uses only two basic synchronization primitives

(wait(event) & event.notify()), and it can be simulated using the

standard SystemC kernel and the standard TLM2.0 package,

provided by the OSCI consortium.

A. Components Modeling

For a shared memory MPSoC as shown in Figure 1(b), the

TLM-DT model contains three types of hardware components:

initiator, target and interconnect. For each hardware compo-

nent, the corresponding TLM-DT simulation model contains

one SC THREAD and a local sc time member variable.

A TLM-DT initiator runs freely until it reaches a synchro-

nization point (corresponding to a read or write transaction) or

when it has consumed a predefined time quantum. In case of

an explicit data transaction, the corresponding SC THREAD

is blocked (descheduled), waiting for response. When the

response is received, the local time of the initiator is updated,

and the SC THREAD is resumed. Whenever the local time is

updated, the TLM-DT initiator checks if its time quantum has

been reached. If this is the case, it sends a null message with

its current local time and is descheduled.

A TLM-DT target is reactive, i.e. the SC THREAD remains

sleeping until it receives a read or write transaction. When this

is the case, the transaction is processed, the target local time is

set to the transaction time value, and the response transaction

is returned to the initiator.

A TLM-DT interconnect is modeled as two fully indepen-

dent crossbars for requests and responses respectively. The

request crossbar has two functionalities: (1) it performs the

conservative PDES algorithm (transactions must be processed

in a strictly time-ordered manner), and (2) it implements the

routing function (the transaction address field is decoded, and

the transaction is routed to the proper target). The request

crossbar implements a centralized data structure (called PDES

buffer) that contains a slot for each input channel. When all

slots contain at least one request, a time filtering is performed

to select the request with the smallest timestamp, and the

selected transaction is transmitted to the proper target. In

order to avoid dead-locks, the contention is not handled in the

response crossbar, and there is neither SC THREAD nor time

filtering, but only a routing function to route the response to

the proper initiator. In hierarchical interconnects, the local and

the global interconnect have the same structure and behavior.

When simulated with the standard SystemC simulation

engine, a TLM-DT model combines the advantages of both the

loosely-timed style (simulation speed), and the approximately-

timed (high accuracy) proposed by TLM2.0. But the main

advantage of the TLM-DT approach is that it does not use

anymore the SystemC global simulation time, and it becomes

possible to use a truly parallel simulation engine.

IV. SYSTEMC-SMP : PARALLEL SIMULATION OF

TLM-DT

SystemC-SMP is an implementation of a new simulation

kernel optimized to take advantage of the TLM-DT modeling

approach for parallel simulation on SMP (multiprocessor)

workstations. SystemC-SMP is dedicated to the TLM-DT

coding style and does not require any modification in the

simulation models that can still be simulated with the stan-

dard (sequential) SystemC[?], [?] simulation kernel and the

standard TLM2.0 package.

From the simulation kernel viewpoint, a TLM-DT platform

can be seem as a set of communicating SC THREADs (simula-

tion tasks) that use sc event objects to synchronize themselves.

A TLM-DT platform uses only three synchronization primi-

tives that must be implemented by the SystemC-SMP kernel:

• wait(sc event e) : The calling sc thread is blocked, and

enters a waiting state on event e

• e.notify(SC ZERO TIME) : notifies the event e

• wait(SC ZERO TIME) : The calling sc thread is blocked

but its state is not modified

A. Architecture and Implementation

SC_THREAD
Group

Simulation
Scheduler

O.S
POSIX
Thread

Physical
CPU

TLM-DT
Layer

Simulator
Layer

Operating
System
Layer

SMP
Worstation
Hardware

SC_THREAD
Group

Simulation
Scheduler

O.S
POSIX
Thread

Physical
CPU

SC_THREAD
Group

Simulation
Scheduler

O.S
POSIX
Thread

Physical
CPU

Fig. 2. SystemC-SMP Architecture

SystemC-SMP uses a gang-scheduling [?][?] approach by

scheduling related neighboring SC THREADs on the same

physical CPU of the multi-core workstation.

To control the placement of the SC THREADs on the CPUs,

SystemC-SMP kernel creates one Operating System POSIX

thread (PT)[?] per CPU and attach each PT to a given CPU

using affinity functions from PT user interface. A statically

defined set of SC THREADs is controlled by each POSIX

thread. There is actually one local scheduler for each set

(group) of SC THREADs (i.e. one scheduler per CPU of the

SMP workstation). The Figure 2 shows this scenario.

Statically defined placement of the SC THREADs is used

in order to exploit the cache locality [?]. The communication

graph is fully determined by the MP2SoC hardware architec-

ture and can be statically analysed by the system designer

(see dashed rectangles in Figure 1(a,b)). For example, each

SC THREAD associated with a hardware component within a

cluster can be scheduled in turn on the same CPU, as shown in

Figure 1(c). The SC THREAD mapping is explicitly controlled

by the system designer through a configuration file.

For synchronization SystemC-SMP re-implements the stan-

dard SystemC event class (sc event). In this new implemen-

tation an event has only one state variable with two possible

values (WAITING and NOTIFIED). This state variable is used

by the local scheduler to evaluate the next task to execute. With

this simple synchronization approach the simulator kernel does

not use any blocking mechanism such as spinlocks, mutex or

barriers.

V. EXPERIMENTAL RESULTS

This section analyses the influence of the communications

locality on the parallel simulation speedup. The experiment

can be described by the triplet: Embedded Software Appli-

cation (ESA), SoC Hardware Architecture (SHA), and SMP

Workstation (SMP). The ESA is a synthetic application that

we can adjust the ratio between local (intra-cluster) and

global (inter-cluster) communications. The SHA is a shared-

memory NUMA (Non Uniform Memory Architecture) clus-

tered architecture with a 2D mesh topology. It contains 40

clusters, and each cluster contains 16 initiators, 16 memory

banks, and a local interconnect. This SHA totalizes 1321

SC THREADs. The SMP machine on which the simulation

takes place is an Intel Xeon Quad Core Processor 3GHz with

512K L1 cache and 2MB L2 cache performing on Linux 2.6.18

Operating System. The simulations use up to four CPUs of the

workstation.

A. Experimental setup

Each initiator corresponds to a synthetic traffic genera-

tor, which can create local and global transactions. In this

experiment the percentage of local transactions varies from

0% up to 100%. A traffic with a high percentage of local

transactions represents a good mapping of ESA on the SHA,

and the inverse represents a bad one. Regarding the mapping

of SHA onto SMP, all hardware components that belong to the

same cluster are mapped in the same CPU of the SMP. The

simulations were done using 1 up to 4 CPUs. The 40 clusters

were equally spread on the CPUs to balance the load.

B. Results

Figure 3 shows the influence of traffic locality on the

speedup. When the local transactions represent more than

80%, the speedup is almost optimal. However, the speedup

decreases when the percentage of local transactions is below

50%, because the global interconnect becomes a contention

point for the synchronization of the simulation. Additionally,

the initiator and the target of a local transaction being mapped

in the same CPU, we benefit from SMP workstation cache

locality.

VI. CONCLUSION

The results show that the performance of a parallel simu-

lation of a TLM-DT platform is given by the local/external

traffic amount between components of different clusters.

In this paper, we presented a modeling approach for timed

TLM virtual prototyping of shared memory MP2SoCs. These

TLM-DT models implement the Parallel Discrete Event Simu-

lation principles, that is well suited for parallel simulation on

multi-cores workstations because it does not use the central

SystemC scheduler and the centralised time representation.

We developed a parallel simulation kernel called SystemC-

SMP optimized for these TLM-DT models, and we shown

that a quasi-linear speedup can be obtained on a quad-core

workstation, for a shared memory clustered MP2SoC architec-

ture (containing 640 processors) as long as the communication

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

S
p

e
e

d
u

p

Percentage of Local Traffic

2 CPUs
3 CPUs
4 CPUs

Fig. 3. Local Traffic x Speedup Chart

pattern of the embedded software application has a locality

larger than 80%. All TLM-DT models and the SystemC-SMP

engine will be available as open-source software in [?].

Experiments using real applications are being developed to

evaluate the performance of both TLM-DT and SystemC-SMP.

REFERENCES

[1] Y. Bouzouzou. Semantics-Preserving Parallelization of the SystemC

Scheduler for Reduced Simulation Times. PhD thesis, Universite Joseph
Fourier de Grenoble, 2007.

[2] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Trans. on Softw.

Eng, 5(5):440–452, 1979.
[3] P. C. Chopard and J. Zory. A conservative approach to systemc

parallelization. Springer Berlin / Heidelberg, 3994:653–660, 2006.
[4] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory. Relaxing

synchronization in a parallel systemc kernel. In ISPA Symposium

Proceedings, pages 180–187, 2008.
[5] D. A. S. Committee. IEEE Std 1666 - 2005 IEEE standard SystemC

language reference manual, 2006.
[6] D. R. Cox. Ritsim: Distributed systemc simulation. Master’s thesis,

Rochester Institute of Technology, 2005.
[7] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits

for fine-grain synchronization. Journal of Parallel and Distributed

Computing, 16:306–318, 1992.
[8] IEEE. 1003.1c-1995: Information Technology — Portable Operating

System Interface (POSIX) - System Application Program Interface (API)

Amendment 2: Threads Extension (C Language). IEEE Computer
Society Press, 1995.

[9] OSCI. SystemC. http://www.systemc.org.
[10] OSCI. TLM-2.0 User Manual. http://www.systemc.org.
[11] C. Schimmel. UNIX systems for modern architectures: symmetric

multiprocessing and caching for kernel programmers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[12] SoCLib. Soclib project mainpage. http://www.soclib.fr/.
[13] W. Stallings. Operating Systems (6th ed.): Internals and Design

Principles. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2008.

