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BOUNDARY VALUES OF RESOLVENTS OF
SELF-ADJOINT OPERATORS IN KREIN SPACES

V. GEORGESCU, C. GERARD, AND D. HAFNER

ABSTRACT. We prove in this paper resolvent estimates for the boundary values
of resolvents of selfadjoint operators on a Krein space: if H is a selfadjoint
operator on a Krein space H, equipped with the Krein scalar product (-|-), A
is the generator of a Co—group on H and I C R is an interval such that:

1) H admits a Borel functional calculus on I,

2) the spectral projection 17 (H) is positive in the Krein sense,

3) the following positive commutator estimate holds:

Re(u|[H,iAJu) > c(u|u), u € Ranl;(H), ¢ > 0.

then assuming some smoothness of H with respect to the group eif4, the
following resolvent estimates hold:

sup  |[(A)"5(H — 2)"HA) T < o0, s> l
z€I+i]0,v] 2
As an application we consider abstract Klein-Gordon equations
07 6(t) — 2ike(t) + ho(t) =0,
and obtain resolvent estimates for their generators in charge spaces of Cauchy
data.

1. INTRODUCTION

30 years ago, E. Mourre showed that a local in energy positive commutator estimate
for a selfadjoint operator H entails a limiting absorption principle for this operator
and thus the absence of singular continuous spectrum, see [M1]. This result had a
very deep impact in scattering theory leading in particular to asymptotic complete-
ness results for quantum N — particle systems. Among many other applications we
mention applications to Quantum Field Theory or sccattering problems in General
Relativity. A lot of efforts had been made to weaken the original hypotheses in
the work of Mourre, see e.g. [ABG]. A central requirement remained however that
the hamiltonian H is a selfadjoint operator on a Hilbert space. Whereas this is
a very natural requirement for the Schrodinger equation, it turns out that it is in
general not fulfilled for the Klein-Gordon equation when this equation is coupled
to an electric field or associated to a lorentzian metric which is not stationary. The
natural setting in this situation seems to be the one of a selfadjoint operator on a
so called Krein space (which is a generalization of a Hilbert space). The present
paper is devoted to the proof of weighted estimates for boundary values on the real
line of selfadjoint operators on Krein spaces. Our result generalizes the result of
Mourre to the Krein space setting. Applications to the Klein-Gordon equation are
given. Let us now briefly describe the results and methods of this work.
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1.1. Selfadjoint operators on Krein spaces. A Krein space is a hilbertizable
Banach space H equipped with a non-degenerate hermitian form (u|v), u,v € H
called a Krein scalar product. Orthogonals to vector subspaces and adjoint of linear
operators on H are defined with respect to (-|-).

In contrast to Hilbert spaces, the hermitian form is not assumed to be positive
definite. Note however that the notion of positivity of a subspace K C H resp. of
an operator A on H still makes sense, by requiring that (u|u) > 0 for all u € K
resp. (u|Au) > 0 for all u € DomA.

Of special interest are selfadjoint operators on Krein spaces. Typically a selfadjoint
operator H on a Krein space arises as the generator of a Cho—group {ef},cg
preserving the quadratic quantity (u|u).

In general, not much of interest can be said about the spectrum, functional calculus
or the behavior of the resolvent of selfadjoint operators on a Krein space. Namely
the spectrum is invariant under complex conjugation, the functional calculus is
limited to the Dunford-Taylor functional calculus, and the behavior of the resolvent,
both near the real axis of near infinity, can be arbitrary.

However, there is a class of selfadjoint operators, called definitizable, first defined
and studied by Langer [La], which admit a rich (i.e. Borel outside a finite subset of
R) functional calculus. A selfadjoint operator H on H is definitizable if its resolvent
set p(H) is not empty and if there exists a (real) polynomial p such that p(H) > 0.
Real zeroes of p in the spectrum of H are called critical points.

1.2. Positive comutator method. If H is definitizable and I C R is a bounded
interval with 0I disjoint from the critical points of H, then the spectral projection
1;(H) is well defined and bounded on H. Moreover if I does not contain any critical
point, then 1;(H) is definite in the Krein sense, i.e. 1;(H) > 0 or —1;(H) > 0.

This local definiteness of the Krein scalar product opens the way for an extension
to the Krein space framework of the well-known positive commutator method, which
is a standard way to prove weighted resolvent estimates for usual selfadjoint oper-
ators on a Hilbert space. In the Hilbert space framework, the positive commutator
method introduced by Mourre [M1] relies on an estimate

(1.1) 1, (H)[H, A1 (H) > ¢l (H), ¢ > 0,

where H is the selfadjoint operator under study, I C R is an interval, and A is an-
other selfadjoint operator, called a conjugate operator. From (1.1), assuming some
regularity of H with respect to the unitary group e'*, one obtains the resolvent
estimates:

(12) sup LAY =) (A4) 7 <0, 8 > 5,

2€14i1]0,400] 2
see [M1], [PSS], [ABG]. The original proofs relied on differential inequalities. Some
years ago another proof, based on energy estimates was given in [Ge|. The argument
in [Ge] is closer to a method of Putnam [P2], which was an ancestor of the positive
commutator method. It turns out that the proof of [Ge] can be adapted to the
Krein space framework.

Several difficulties must be faced before an estimate like (1.2) can be obtained for a
selfadjoint operator on a Krein space. First of all H should have a Borel functional
calculus in order to be able to define spectral projections. Second the conjugate
operator A is in general not unitary for a compatible Hilbert space structure on H.
In particular the definition of (4)~* = (A% + 1)~%/2 is not obvious.
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However on a Krein space, an estimate like (1.1) has still a meaning, if it is under-
stood formally as

(1.3) Re(u|[H,iAlu) > c{u|u), v € Ranl;(H), ¢ > 0.

The main result of this paper, Thm. 7.9, states that if H is a selfadjoint operator
on a Krein space, which is of class C* with respect to A for some o > 3/2, and
I C R is an interval such that:

1) H admits a Borel functional calculus near I, 1;(H) > 0,
2) the Mourre estimate (1.1) holds,

then the resolvent estimates (1.2) hold, possibly replacing A by €A for 0 < e < 1
and restricting z to I+i]0, v] for some v > 0, due to the possible presence of complex
eigenvalues. We also prove a wvirial theorem, which has the same consequences as in
the Hilbert space case.

1.3. Abstract Klein-Gordon equations. In a subsequent paper [GGH1], we
apply the abstract results of this paper to the generators of abstract Klein-Gordon
equations

97 o(t) — 2ike(t) + ho(t) = 0,
where ¢ : R — H, H is a Hilbert space and h, k are self-adjoint, resp. symmetric
operators on H. The simplest example is the Klein-Gordon equation on Minkowski
space minimally coupled with an external electric field:

(1.4) (0 — 10(2))?¢(t, x) — Dyg(t, @) +mPe(t, x) = 0,

for which # = L*(R%,dz), h = —A, + m? —v2(z), k = v(x) is a (real) electric
potential and m > 0 is the mass of the Klein-Gordon field.

In contrast to Schrédinger equations, there is no preferred topology on the space

of Cauchy data ( i_lqﬁa(t(; () > It turns out that two spaces of Cauchy data are
t

natural, the energy space £ = (h)~2H®H and the charge space Ki/a = (h)~"Y*H o
(R4 (see Subsect. 8.1 for the notation). In [GGH1] resolvent estimates are
proved on the energy space, and then extended to the charge space by duality and
interpolation.

In this paper we give another application of Thm. 7.9 by directly proving resolvent
estimates on the charge space. We also discuss in details various realizations of the
Klein-Gordon generator starting from the dual space £ = H @ (h)2H, and the
functional calculus of ’free’ Klein-Gordon generators, corresponding to k& = 0.

1.4. Plan of the paper. We now briefly describe the plan of this paper. In Sect.
2 we describe some basic results on the smooth and Borel functional calculus for
linear operators on Banach spaces. The Dunford-Taylor functional calculus for a
linear operator H can be extended to smooth functions on an interval I C R if the
resolvent (H — z)~! is of polynomial growth near the real axis. If this functional
calculus is continuous for the sup norm, then it uniquely extends to bounded Borel
functions on 1.

In Sect. 3 we recall basic results on K —spaces, which are natural generalizations of
Krein spaces. Sect. 4 is devoted to the construction of a Borel functional calculus
for definitizable selfadjoint operators on Krein spaces. Although various versions
of this construction can be found in the literature (see in particular [La], [J1],
or more recently [Wr]), we believe our presentation might have some interest. In
particular we precise the optimal class of admissible functions, namely bounded
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Borel functions on R having a precised asymptotic expansion at each critical point
of H.

In Sect. 5 we collect some rather standard facts on the smoothness of an operator
with respect to a Cop—group. In the usual Hilbert space framework, the Cy—groups
of practical interest for the Mourre method are unitary, with selfadjoint generators.
In this case a very comprehensive study can be found in [ABG]. In our applica-
tions to Krein spaces, no natural Hilbert space structure is present and part of the
formalism has to be generalized.

These results are used in Sect. 6 to prove commutator expansions. Roughly speak-
ing if H is an operator and A the generator of a Cy—group on a Banach space
H, we need to expand the commutator [H,if(A)] for some class of functions f as
f'(A)[H, iA] + R with a careful estimate of the error term R. Again in the Hilbert
space case, such commutator expansions are a basic tool of spectral and scattering
theory, see among many other references [GolJe].

In Sect. 7 we prove the main result of this paper, Thm. 7.9, by adapting the Hilbert
space proof in [Ge] to the Krein space framework. In the last section of this paper,
Sect. 8, we discuss abstract Klein-Gordon operators.

2. BOUNDARY VALUES OF RESOLVENTS AND FUNCTIONAL CALCULUS

In this section we present some results on the smooth and Borel functional calculus
for linear operators on Banach spaces, under some general assumptions on the
growth of their resolvents near the real axis.

2.1. Notations. If H is a Banach space we denote H* its adjoint space, i.e. the set
of continuous anti-linear functionals on H equipped with the natural Banach space
structure. The canonical anti-duality between H and H* is denoted (u, w) = w(u),
where v € H and w € H*. So (-,-) : H x H* — C is anti-linear in the first argument
and linear in the second one. On the other hand, we denote by (-|-) hermitian forms
on H, again anti-linear in the first argument and linear in the second one.

We say that H is Hilbertizable if there is a scalar product on H such that the norm
associated to it defines the topology of #H; such a scalar product and the norm
associated to it will be called admissible. Scalar products are denoted by (-|-).

If H is a reflexive Banach space then the canonical identification H** = H is
obtained by setting u(w) = w(u) for u € H and w € H*. In other terms, the
relation H** = H is determined by the rule (w,u) = (u, w).

Let G, H be reflexive Banach spaces and & = G®H. The usual realization (GOHH)* =
G* ® H* of the adjoint space will not be convenient later, we shall rather identify
E* = H* & G* in the obvious way. For example, if H = G*, so H* = G, the adjoint
space of £ =G ® G* is identified with itself £ = £.

If S is a closed densely defined operator on a Banach space H, we denote by p(S),
o(9) its resolvent set and spectrum.

We use the notation (a) = (1 + a2)? if a is real number or an operator for which
this expression has a meaning.

2.2. Polynomial growth condition. Let H be a closed densely defined operator
on a Banach space H. We first give a meaning to the boundary values R(A +1i0) of
the resolvent of H as B(H)-valued distributions on a certain real open set defined
by a growth condition on ||[R(A +iu)|| as g L 0. We recall that if B is a Banach
space then a B-valued distribution on a real open set I is a continuous linear map
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T : Cg°(I) — B. We often use the formal notation T'(x) = [T(A\)x(\)d\ for
x € C§°(I). The topology on this space of distributions is deﬁned as in the scalar
case.

Lemma 2.1. Assume that I C R is open with I +1]0,v] C p(H) for some v > 0
and that there exists n € N and C' > 0 such that

(2.1) |R(2)|| < C|lmz|'™", z € I £i]0,v].

Then the boundary values R(\ £1i0) := lim, o R(\ £ ip) exist as B(H)-valued dis-
tributions of order n on I. More explicitly, if x € Cy(I) and we set

X(ny (A +1p) = Zx(k) FIEL A € R,

S ROVHI0)x(A)dA

- fR( A+ )X () (A +iv) + fo”R(Hm)%X(n)(A))dA.

Proof. We use a well-known elementary argument, valid for any holomorphic func-
tion, cf [H, Thm. 3.1.11] and the comment after its proof: make a Taylor expansion
up to order n of the function p — R(X + ix) on the interval [e,v] with 0 < e < v
and note that - R()\ +ip) = iL R(X\ + ip) by holomorphy. The remainder is the
derivative of order n of a bounded function hence we may let ¢ — 0 and get

n

— vk : on [ . dp
(2.3) A +10) :Zk_ (—i0x)" R\ +iv) + (—idy) /0 R()\—I—IM)W

as B(H)-valued distributions on I. This relation is equivalent to (2.2). O

In the next definition we define the maximal open real set on which the distributions
R(- 4+ i0) make sense.

Definition 2.2. Let S(H) be the set of A € R such that there is a real open
neighborhood I of \ and there are numbers v > 0,n € N,C > 0 such that

|R(2)|| < C|Tmz|*~", 2z € I +£i]0,v].

The boundary values R(X\ +10) = lim, o R(A & ip) of the resolvent of H are well
defined B(H)-valued distributions on B(H).

Remark 2.3. If 2" is a Banach space such that B(#) is continuously embedded
in 2" then R(-+10) may be viewed as 2 -valued distributions on S(H). It may
happen that on some open set I C S(H) these 2 -valued distributions are defined
by locally bounded 2 -valued functions: this is the case if the limiting absorption
principle holds on I relatively to 27, i.e. if [|[R(2)]|2 < C for z € I £i]0,v] for
some v > 0.

The usual strategy (adopted here) is to construct Banach spaces K with K C H
continuously and densely, which allows one to take 2" = B(K,K*), such that
R(\ £1i0), when viewed as a B(K, K*)-valued distributions, is well defined and a
continuous function of \.

2.3. Smooth functional calculus. We now describe an elementary functional
calculus which makes sense under very general conditions. In the self-adjoint case
these techniques were introduced in [HeSj]. A detailed presentation may be found
in [Dal] and an extension to non self-adjoint operators in [Da2].
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Under the conditions of Lemma 2.1 then for any x € C(I) we define a bounded
operator on H by

(2.4) X(H)

The right hand side above can be made quite explicit by using (2.3) and a similar
relation for R(\ — i0).

Note that the map x — x(H) is an algebra morphism. Indeed, linearity is obvious
and in order to prove that it is multiplicative it suffices to show that R(z)x(H) =
(r.x)(H) for Imz # 0, where r,(\) = (A — z)~!. For this it suffices to note that
R(z)R(A£1i0) = (R(z) — R(A £10))r.(A).

The Helffer-Sjostrand version of the formula for x(H) may be obtained with the
help of an almost analytic extension of x as in [HeSj] (or see [Dal, p. 24]). For
example, choose 6 € C°(R) with O(\) = 1 if |A\| < v/2 and O(A) =0 if |\ > v. If
for z = A + i we define Y(2) = 0(1/(A))x(n)(2) and we set 0 = (9 + i9,)/2 then
9x(z) = O(|u|") and

1

- / (R(A+10) — R(A —10)) x(\)dA.

(2.5) X(H) = L/(C]-E(z)_)Z(z:)dz/\dE.

omi

2.4. Borel functional calculus. The functional calculus (2.4) introduced under
the conditions of Lemma 2.1 is a priori well defined only for x € CZ(I) but often
it extends to larger classes of functions by continuity.

We shall say that H admits a C°-functional calculus on I if I C B(H) and
IX(H)|| < Csupyey|x(A)| for some finite number C' and all x € C§°(I). Then
clearly the smooth functional calculus has a unique continuous extension to an al-
gebra morphism Cy(I) — B(H). If H is reflexive one can extend the functional
calculus to Borel functions, as shown in Thm. 2.4 below.

Let B(I) be the set of bounded Borel functions on I. A sequence of functions
¢n on I is boundedly convergent if sup,, \ |¢n(A)| < oo and lim, p,(A) = p(A)
exists VA € I. Note that ¢ € B(I) if ¢, € B(I) V n. The following result is a
straightforward application of the Riesz theorem, see [Wr, Cor. 9.1.10] for example.

Theorem 2.4. Assume that H is a reflexive Banach space and let Fy : Co(I) —
B(H) be a norm continuous algebra morphism. Then Fy extends uniquely to an
algebra morphism F : B(I) — B(H) such that: @, — ¢ boundedly = F(p,) —
F(p) weakly.

Remark 2.5. If H is a self-adjoint operator on a Krein space (see Def. 3.1) and if
H admits a C%-functional calculus on I then it is clear that x(H)* = X(H) for all
bounded Borel functions x on I.

3. K —SPACES

In this section, we discuss K —spaces, a generalization of Krein spaces, cf. [B].

3.1. Definition of K —spaces.

Definition 3.1. A K—space is a Banach space H equipped with a continuous
hermitian form (-|-) such that for any continuous linear form @ on H there is a
unique u € H such that ¢ = (u|-). The form (-|-) is called the Krein structure. If
H is Hilbertizable then H is called a Krein space.
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Let J : H — H* be the linear continuous map defined by Ju = (-|u), so that
(ulv) = (u, Jv). Since (-|-) is hermitian, we have (u, Jv) = (v, Ju). The topological
non-degeneracy condition imposed on (-|-) above means that J is bijective. Thus
the Krein structure (-|-) allows us to identify H* and H with the help of J.

Proposition 3.2. A K—space is reflexive.

Proof. Let I : H — H** the canonical injection. Since J : H — H* is an isomor-
phism, so are J* : H** — H* and (J*)"toJ : H — H**. We note then that
(J) toJ=1. |

Remark 3.3. One may also say that a K —space structure on a reflexive Banach
space H is a hermitian isomorphism J : H — H*. A Hilbert structure is a positive
Krein structure, i.e. a positive isomorphism J : H — H*.

Remark 3.4. Assume that (-|-) is a hermitian form on a complex vector space
‘H which is algebraically non-degenerate, i.e. u = 0 if (ujv) = 0 for all v € H.
Then there is at most one normed space topology on H such that the conditions of
Definition 3.1 be satisfied. Indeed, any such norm on H is complete because H* is
always a Banach space. And if the adjoint spaces associated to two complete norms
on H are equal then the corresponding classes of bounded sets are identical by the
uniform boundedness principle, hence the norms are equivalent. See [B, p. 60-67]
for better results of this nature.

3.2. Adjoints on K-spaces. If T' € B(#) then the adjoint 7" € B(H*) of T in
the Banach space sense is defined on H* as usual and then we may transport it on
‘H with the help of J. In other terms, the Krein structure (-|-) allows us to define an
involution 7' — T* on B(H) such that (T*u|v) = (u|Tv). This definition extends
as usual to closed densely defined operators.

Clearly B(H) becomes a x-algebra with a continuous involution. The self-adjoint
operators are defined as usual by the relation S* = S, where S may be unbounded.
We say that S is positive and we write S > 0 if (u|Su) > 0 for all u € DomS. If S
is bounded and S > 0 then T*ST > 0 for all T € B(#), but the identity operator
is not positive unless H is a Hilbert space. So T*T > 0 holds only in exceptional
cases. To each positive bounded operator S we associate a semi-norm on H, namely
[lulls = +/(u|Su), which satisfies |(u|Sv)| < ||ulls||v]|s-

We say that a linear subspace K is a Hilbert subspace of H if (IC, <~|~>|;CX,C) is a
Hilbert space. Equivalently, this means that /C is a closed subspace of H such that
(u|lu) > c|jul|? for some number ¢ > 0 and all u € K. We equip such a subspace
with the natural Hilbert norm |lul|x = +/(u|u) which is equivalent to || - |||x.

3.3. Projections on K-spaces. A projection on H is an element IT € B(H) such
that I12 = II. A self-adjoint projection is also called an orthogonal projection. A
positive projection is a projection II such that II > 0. In particular, IT will be
orthogonal. For the proof of the following fact, see [B].

Proposition 3.5. The range of a positive projection is a Hilbert subspace of H.
Reciprocally, if IC is a Hilbert subspace of H then there is a unique self-adjoint
projection I1 such that TIH = KC and this projection is positive.

If 1T is a positive projection then ||u|ln = |Ju||ny for all uw € TIH. If S € B(H) we
denote ||S||rr the norm of the operator ILSII on the Hilbert space IIH. If S = S*
then ||.S||n = sup{|[{u|Su)| | v € IIH, (ulu) = 1}. It follows that if S € B(H) and
S = 5" then

(3.1) + (M| STIu) < [|S||n(TTu|Tlu), v e H.
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3.4. Phase spaces. A typical construction of K—spaces starts with a reflexive
Banach space G thought as configuration space of a system. Then the phase space
of Gis H =G ® G* and its K —space structure is

(32)  (ulv) = vi(uo) + u1(vo) = (uo, v1) + (u1,ve), u= (1), v= (%) € H.

Recall that according to the convention adopted in Subsect. 2.1 we identify H* =
G ®G" = H. Thus J is the identity operator and (3.2) satisfies the required
topological non-degeneracy condition.

Note that we think of elements of H as column matrices hence we may represent
operators on H as matrices
a b

wherea: G — G, b:G* -G, c:G— G* d:G* — G*. A computation gives

(33) 5 = ( v )

C a

hence
(3.4)
S:S*C)S:(ZJ (f*) with a€ B(G), b=b":G" =G, c=c":G—>G".

Lemma 3.6. An operator S : H — H is positive if and only if it is as in (3.4) with
b>0,c>0, and

(3.5) [(auo|ur)|? < (us|bur)(ug|cuo)  for all ug € G,uy € G*.

If G is a Hilbert space and G* = G then this means a,b,c € B(G) with b,c > 0 and
le=12ab= 12| < 1.

Proof. The symmetric operator S as given in (3.4) is positive if and only (u|Su) > 0
for all v € ‘H with

(u]Su) = 2Re{aug|ur) + (u|bui) + {(uglcug).

Taking successively ug = 0 and u; = 0 we see that b > 0 and ¢ > 0 are necessary
conditions. Then by changing u; in —wuy with w = (auo|ui)|{aue|ui)| =" if the
denominator is not zero and w = 1 otherwise, we see that positivity of .S is equivalent
to 2[{aug|ur)| < (ui|bur) + (uglcug) for all ug € G and uy; € G*. Replace ug, uy
by 51/2u0 and £71/24; with € > 0. If one of the terms in the right hand side is
zero then we get (auplu;) = 0 by making ¢ — 0 or ¢ — oco. If not then ¢ =
(uolcuo) '/ (uy buy ) ~1/? gives (3.5). O

Remark 3.7. If G is a Hilbert space identified with its adjoint space G* with the
help of the Riesz isomorphism then on the phase space H = G @& G we have the
direct sum Hilbert structure (u|v)g = (uolvo) + (u1]vr) and the Krein structure
(ulv) g defined by (3.2). Clearly (ulv)x = (u|Jv)g with J = (9}). Observe that
now we have two natural ways of identifying H with its adjoint space, namely by
using (+|-)z (i.e. the Riesz isomorphism) or (:|-)x. In our framework it is more
convenient to use the second one which could be called Krein isomorphism. This
is coherent with the convention (X ¢ Y)* = Y* @& X* adopted in Subsect. 2.1.



BOUNDARY VALUES OF RESOLVENTS 9

4. DEFINITIZABLE OPERATORS ON KREIN SPACES

The definitizable operators on a Krein space are remarkable because they admit
a functional calculus almost as rich as that of self-adjoint operators on a Hilbert
space. In fact the functions ¢ for which ¢(H) may be given a natural meaning can
be arbitrary bounded Borel functions outside a finite set of “critical points”. In this
section we shall consider only continuous functions because, thanks to Thm. 2.4,
this is sufficient to our needs. The main point in the approach we present below is
the estimate in Prop. 4.10 due to P. Jonas [J1, Thm. 1]. Another presentation of
the Langer-Jonas functional calculus may be found in [Wr, Ch. 9].

4.1. Definitizable operators. In this section we fix a Krein space H = (H, (-|-)).

Definition 4.1. A self-adjoint operator H on H is definitizable if p(H) # 0 and
there is a real polynomial p # 0 such that p(H) > 0, d.e. (ulp(H)u) > 0 for all
u € DomH"™ where n is the degree of p. Such a p is called a definitizing polynomial
for H.

Remark 4.2. The assumption p(H) # ) is important, natural self-adjoint opera-
tors on a Krein space have empty resolvent set, see [B, p. 148]. For example, let
‘H be the phase space of a Hilbert space G (cf. Remark 3.7) and let b be a positive
injective operator on G. If b or ¢ := b~! is unbounded, then (9 §) is strictly positive,
i.e. (u|Hu) > 0 for all u # 0 in the domain of H, and p(H) = 0.

The next result gives informations on the non-real spectrum of a definitizable op-
erator. The proof is easy, see [J1, Lemma 1].

Proposition 4.3. Let H be definitizable. Then:

(1) If z € o(H)\R then p(z) = 0 for each definitizing polynomial p.

(2) There is a definitizing polynomial p such that o(H) \ R is exactly the set of
non-real zeroes of p.

(3) Moreover, this p may be chosen such that if X\ &€ R is a zero of multiplicity k
of p then X\ is an eigenvalue of H of Riesz index k.

(4) The non-real spectrum of H consists of a finite number of eigenvalues of finite
Riesz index distributed symmetrically with respect to the real axis.

The following consequence is easily proved with the help of the Riesz projection
associated to the finite set o(H) \ R. A Krein subspace of H is a closed subspace
which is a Krein space when equipped with the hermitian form induced by (:|-).

Corollary 4.4. There are Krein subspaces Hi,Ho of H such that H = Hq & Ha,
where the sum is direct and orthogonal with respect to the Krein structure of H,
such that H = Hy @& Hy with Hy a bounded self-adjoint operator in Hy with finite
spectrum and Hy a definitizable operator in Ho with o(Hsz) C R.

The above decomposition is canonical in a sense easy to make precise. Thus for
any “reasonable” function ¢ we should have p(H) = ¢(Hy) & ¢(Hz). Since the
definition of ¢(Hj) is rather obvious, when we discuss the functional calculus of a
definitizable operator it suffices to consider the case when it has only real spectrum.

4.2. Rational functional calculus. Before going on we make a general remark
concerning the rational functional calculus associated to an arbitrary closed oper-
ator H with non-empty resolvent set on a Banach space . This makes things
completely elementary and avoids the use of the (analytic) Dunford calculus. In
the sequel we denote by (f:, R the one-point compactifications of C, R.
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Denote Ry the set of rational functions whose poles belong to p(H) and which are
bounded near infinity. This space is an unital algebra. If p(H) = p(H), as in the
case of a self-adjoint operator on a Krein space, then Ry becomes a x-algebra if

we define the adjoint @ of ¢ by B(\) = o()).

Lemma 4.5. There is a unique unital algebra morphism Ry > ¢ — @(H) € B(H)
with o(H) = (H — 2)7 Y if o(\) = (A — 2)7L for some z € p(H). If H is a Krein
space and H is self-adjoint then o — p(H) is a *-morphism.

Proof. Let Q C C x N be the set of couples w = (z,s) with z € p(H) and s € N* or
w = (00,0) = o0. For w € Q we set:

Pu(N)i=(A=2)""ifwe p(H) x N*, p,(A) :=1if w = (00,0).
Then {p., }weq is a vector space basis in Ry. Hence there is a unique linear map
¢ — p(H) from Ry into B(H) which sends p,, into ¢(H) = (H — z)7* if w # o0
and 1 into the identity operator. From the first resolvent identity it follows that

this map is an algebra morphism. In the Krein space case note that o(H)* = p(H)
for any ¢ follows from the fact that the adjoint of (H — 2)~!is (H —z)~ L. O

4.3. C'* functional calculus. The set R of bounded rational functions ¢ : R — C
is a unital x-algebra for the usual algebraic operations. By Lemma 4.5 if H is
a definitizable operator with only real spectrum then there is a unique unital *-
morphism ¢ +— p(H) of R into € B(H) such that o(H) = (H — z)~! if p()\) =
(A —2)7! with 2 € C\ R. We now extend this calculus to a class of continuous
functions ¢ : R — C which have a certain degree of regularity at a finite set of real
points and/or at infinity.

Definition 4.6. Let w = (£,s) e Rx N and ¢ : R — C.

(1) If £ € R, then ¢ is of class C® at & if there is a polynomial P such that
p(x) = Pz — &) + o|z — &|°).

(2) ¢ is of class C* at infinity if there is a polynomial P such that o(x) = P(1/z)+
oflz|™*).

Denote C*(R) = {p € C(R) | ¢ is of class C* at £}, for w = (£, s)

Under the conditions of the definition, the terms of degree < s of P are uniquely
determined hence if £ € R there is a unique polynomial 7.7 ¢ of degree < s such
that o(z) = TS p(x) + o(|z — £]*) and if &€ = co there is a unique rational function
of the form T;F p(z) = 3, -, arz " such that o(z) = T, p(2) +o(|z|~*). Some new
notations will allow us to write this in a more convenient form.

Equip R x N with the following order relation: < v means p = (£, s) and v = (1, 1)
with £ =nand s <t. If w= (& s) € R x N let y,, be the rational function defined
by Xw(x) = (x — €)* if € € R and Y, () = 27% if £ = 0c0. Set p, = x*

Now it is clear that there is a unique sequence of complex numbers {d,(¢)},<w
such that T =37 o, 6u(0)xu- Set Tup =3, 0u(p)xu and

(4.1) R, = pu(e —Tue) hence ¢ =T, + xwRue.

Since C* C C" if p < w the quantity [|¢llo = >_, <, sup [R,p| is a well defined real
number if ¢ € C*.

An element w € RxN may be thought as a function R — N with support containing
at most one point. More generally, consider functions with finite support « : RN ,
which we also call order functions. We write w < a if w = (§,5) € R x N and
s < a(f). Then w < a means w < a and s < ), «(n).
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Lemma 4.7. If o is an order function then C*(R) = Ny<oC¥(R) is an involutive
Banach algebra with unit for the usual algebraic operations and the norm ||¢|lo =
SUpy, <o [|9llw- The space R is a dense x—sub-algebra of C¥.

The proof is elementary and will not be given. Next we show that the functional
calculus for definitizable operators extends to an algebra of the form C*(R). We
start by associating an order function « to each definitizable operator.

Definition 4.8. Let H be a definitizable operator on H with o(H) C R.

(1) To each definitizing polynomial p for H we associate an order function 5 as
follows: if £ € R then () is the multiplicity of & as zero of p and B(c0) =0
if p is of even degree and (o) =1 if p is of odd degree.

(2) The order function ay of H is the infimum over all definitizing polynomials
for H of the above functions 3.

Theorem 4.9. Let H be a self-adjoint definitizable operator on the Krein space
H with o(H) C R.Then there is a unique linear continuous map ¢ — @(H) from
C*1(R) into B(H) such that if o(A) = (A — 2)~! for 2 € C\R then p(H) =

(H — z)~L. This map is a morphism of unital x-algebras.

The theorem follows from the next proposition and Lemma 4.7.

Proposition 4.10. There is a constant C' such that ||e(H)|| < C|l¢lla V ¢ € R.

The rest of this section is devoted to the proof of this proposition. We begin with
three simple observations concerning the x-algebra R.

Lemma 4.11. If ¢ € R then ¢ > 0 as function on R if and only if there is ) € R
such that ¢ = Y.

Proof. We have ¢ = P/Q where P, are polynomials, ) has no real zeroes, and
the degree of P is less or equal to that of Q. Since ¢ = PQ/QQ, we may assume
@ > 0. Then the degree of @ is 2n and one may write @ = @OQO where Qg is
a polynomial of degree n whose zeroes are exactly the zeroes of @) in the upper
half-plane. If ¢ > 0 then P is a positive polynomial hence its degree is 2m with
m < n and one may similarly factorize P = PyP; (the real zeroes of P being of
even multiplicity). Then we take ) = Py/Qo. O]

As a consequence, if 0 is a positive linear form on R then [0(¢)| < (1) sup |¢|. The
following version of this assertion is more convenient for our purposes.

Lemma 4.12. Let H be a complex vector space equipped with a positive sesquilinear
form (-,-) and the associated semi-norm |u| = (u,u)*/?. Let M : R — L(H) be a
unital algebra morphism such that (u, M(p)v) = (M(@)u,v). Then |M(p)u|] <
sup |o||u| for all o € R and v € H.

Proof. 1t suffices to show that |M (p)ul®> = (u, M(|¢|*)u) < (u,u) if sup|p| = 1.
We have 1 —|p|? > 0 as function on R and 1 — |p|?> € R hence by Lemma 4.11 there
is ¢ € R such that 1 — |¢|? = ¢1). Since M(1) = 1 we obtain (u, (1 — M(|¢|*)u) =
(u, M (p)u) = |M (¥)u|? > 0 which proves the assertion. 0

The third observation is an analogue of the division algorithm in the algebra R. To
each ¢ € R we associate an order function a.; by defining av, (€) as the multiplicity
of £ as zero of 9. In other terms, ay () = k means that the limit limy_,¢ ¥(A)pw (A)
exists in C and is not zero for w = (£, k). The proof of the next lemma is quite
elementary and we skip the details.
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Lemma 4.13. Let ¢ € R with only real zeros and set o = vy, Then there are
numbers a,, € C and functions b, € R such that for each ¢ € R we have:

(42) Y = P Z auRo,p + Z 5w(90)b

w=xa w<a

Proof of Prop. 4.10. By a simple argument its suffices to show that |o(H)| <
Cl¢|la where a is the order function of a definitizing polynomial p with only real
zeros. Let n be the degree of p, define m = [2EL], let A € C\ R, and let ¢(z) =
p(z)(x — X\)"™(x — X\)~™. Then ¢ € R and (u|u) := (ulyy(H)u) > 0 for all u € H.
Set |u| = (ulu)!/2. Since the rational functional calculus is an algebra morphism
we get from (4.2):

(4.3) p(H) = ¥(H) Y aul )+ >l , pER.

Since the b,,(H) are bounded operators, there is a constant C' such that for any
u,v € H:

(44)  Nulpto)l < | (u] Y au(Rup)(H)) |+ C 3 10u(@) Iulllloll, ¢ € R,
w=a w<a

where we used the positive scalar product (f|g) := (f|¥(H)g) introduced above. Tt
is easy to prove that Y [0u(#)] < [|¢]la. On the other hand, by Cauchy-Schwarz
inequality and Lemma 4.12 we get:

(u > au(Rop)(H)w)| < sup| 3 auRouse|ullo] < Cllglallulllv])
wXa w=a

Thus [(u|e(H)v)| < C||¢|lal|ul|||v]], which finishes the proof of Prop. 4.10. O

From Thm. 4.9 we can deduce an optimal estimate of the resolvent of a definitizable
operator. We first introduce some terminology.

Definition 4.14. We set oc(H) := o(H)\R. We set ¢(H) :={w € R : ay(¢) #
0}. The set c(H) is called the set of critical points of H.

Let H be a definitizable operator. Recall that ay is defined in Def. 4.8.

Proposition 4.15. With the preceding notations, there exists ¢ > 0 such that

(4.5)

dH=2)7 < S =g O imaf T (14 Y [z =g O 4 |2jon(=))
E€oc(H) §€c(H)

for all z ¢ o. UR. Note that apr(00) is either 0 or 1.

Proof. Tt is clearly sufficient to assume that the spectrum of H is real. If z ¢ R
and p(z) = (z — 2)~! then ¢ € R and thus [|(z — H) 7| < C||¢|lay by Thm. 4.9.
To simplify notations we set g (§) = ke and Tie ) = Tgk. Since p(00) = 0 we have

I pllar < sup |+ sup Y sup |p(x) — TE(z)| [z — £ + g (00) sup |zp()].
EUTkSksz z€eR

We have sup |p| = |[Imz|~! and sup |zp(z)| = |2|[Imz|~! hence it remains to esti-
mate (¢(x) — Tgkcp(:c))(:c —&)~F. We shall prove the following extension of the first
order resolvent identity:

(4.6) p(2) = Tép(a) = (z = O " (o)  ifa,&# 2.

This implies the next estimate, which proves the proposition:

sup () — T¥p(a)||z — €|7" = sup |z — €| 7" |z — 27" = |z — ¢ 7" |Imz| 7",
x x
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Observe that (4.6) is trivial if k = 0 because Tp = 0 and is just the first order

resolvent identity if ¥ = 1. Now assume (4.6) holds for k. Since p*) = klF+! we
have

1
T o) = Tep(a) + 6™ ()@ = 8 = Tep(@) + ¢ (@ - &),
which when used in (4.6) gives the same identity with k replaced by k + 1. [l

Remark 4.16. The interpretation of the points £ € R with g (§) > 0 as “critical
points” of H is misleading from the point of view of the functional calculus. For
example, the operator of ¢ of multiplication by z in the Krein space L?(R, signz dz)
is positive and a4 has value 1 at 0 and oo but the functional calculus extends

continuously from the algebra C“e to C(R) defined by the order function oo = 0.

5. Cp-GROUPS AND REGULAR OPERATORS

In this section we collect some standard facts on smoothness of operators with
respect to Cp—groups.

5.1. C*(A) classes of bounded operators. Let W = {W;} be a Cy-group on
a Banach space H with generator A defined such that W; = e'*4. Then there are
numbers M > 1 and v > 0 such that

(5.1) |We|| < Me' for all t e R.

The spectrum of the operator A is included in the strip {z € C| [Imz| < v} and
it could be equal to this strip.

One may naturally associate to A three operators acting on the Banach space B(H),
namely left multiplication by A, denoted Ay, right multiplication by A, denoted
A, and commutation by A, denoted A and defined by A(T) = [T, A], so that
A=A, — Ay. Since A is unbounded, it is convenient to define these operators as
generators of one parameter groups of bounded operators on B(H). More precisely,
ift e Rand T € B(H) we have:

(52) eit.A[ (T) _ eitAT, eit.AT (T) _ TeitA, eit.A(T) _ efitATeitA = T(t)

These operators commute in the sense that the elements of the groups they generate

are pairwise commuting, and A = A, — Ay i.e. el = e~ 1tAltA

These are Cy-groups if we equip B(H) with the strong operator topology. If we
g g g

assume (5.1) then

5.3 et A < MM ||t < M ||t < M2e M for all ¢ € R.

( < ; < ; <

Let 0 < o < 1. We say that S € B(H) is of class C*(A), and we write S € C*(A),
if the map R > t + S(t) = e'*AS € B(H) is of class C* (i.e. is Holder continuous
of order «) for the strong operator topology of B(#). By the uniform boundedness
principle, this is equivalent to ||S(t) — S| < C|¢t|* for |t] < 1 and from this estimate
we easily get that

(5.4) 1S(t) — S(s)|| < Ce® M|t — s, for [t —s| < 1.

We say that S € B(H) is of class C1(A) if t — S(t) is of class C! for the strong
operator topology. If H is reflexive then S € C1(A) if and only if ¢ — S(¢) is locally
Lipschitz (this property holds in the strong topology if and only if it holds in the
norm topology). Then we may define

d
(55) S/ = ES(t)lt:()
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so that S(b) — S(a) = f; S'(t)dt in the strong sense. Note that S € C1(A) if and
only if SDomA C DomA and the operator [S,iA] with domain DomA extends to a
bounded operator on H which is exactly S’. For this reason we often abuse notation
and denote S" =145 = [S,14].

If 1 < a <2, we say that S is of class C%(A) if S € C'(A) and S’ € C~1(A).
The class C*(A) is similarly defined for a > 2. Note however that for integer « it
would be more natural to define this class in terms of Zygmund type conditions.
The next lemma follows easily from the fact that e are automorphisms of B(H).

Lemma 5.1. The following properties hold for any number o > 0:

(1) the classes C*(A) are sub-algebras of B(H),

(2) A is a derivation of B(H), i.e. (S182) = 5152+ 5185 if Si,S52 € CH(A),

(3) if S € B(H) is boundedly invertible and S € C%(A) then S=' € C*(A).
Moreover if S € C*(A) then (S7') = -S715'5~1.

5.2. C*(A) classes of unbounded operators. In this subsection we fix 0 <
a < 2 and S a closed, densely defined operator on H with p(S) # (. We set
R(z) = (S — 2)~! for z € p(9).

We say that S is regular if there is a sequence (z,,) € p(S) with lim|z,| = +o0 and
(S — 2n) Y| € Clza|™'  for some constant C > 0.

Note that this is not an innocent condition, some natural realizations of the free
Klein-Gordon operator considered later do not have this property: if S = Hy as in
Remark 8.10 we may have (S) =R and (S — 2)7!| > 1 for all 2z ¢ R.

Definition 5.2. We say that S € C*(A) for 0 < a < 2 if R(z9) € C*(A) for some
20 € p(S’)
Lemma 5.3. (1) if R(z0) € C*(A) for some zy € p(S) then R(z) € C*(A) for
all z € p(9S),
(2) If S € C*(A) then
[A, R(z)] = (S — 20)R(2)[A, R(20)]R(2)(S — 20), 20,2 € p(S).

(3) If S € C'(A) then the space D := R(z)DomA is independent on z € p(S),
included in DomA N DomS' and is a core for S.
(4) If moreover S is reqular, then D is dense in DomA N DomS.

Proof. (1) follows from (3) of Lemma 5.1 and the first resolvent formula. Then (2)
follows from (2) of Lemma 5.1 and again the first resolvent formula. Let us prove
(3). Since DomA is dense in H, the set D, := R(z)DomA is a core for S. By
Subsect. 5.1 we know that D, C DomA. Using the first resolvent formula, we see
that D,, C D,, for all 21,22 € p(S), hence D, is independent on z.

If S is regular, then J,, := —z,R(z,) tends strongly to the identity in H and in
DomS. Let u € DomANDomS. Then u,, := J,u € D and u,, — v in DomS. From
(2) we obtain that:

[A, Jn] = (S — 20)R(2n)[A, R(20)]Jn(S — 20).

Since S is regular, we see that (S — z9)R(z,) — 0 strongly on H. So [A,J,] = 0
strongly on ‘H hence u,, — u in DomA and D is dense in DomA N Dom.S. [

We now assume that the Banach space H is reflexive. Then
[ull = supyeps =1 (0, w)| if ueH,

(5.6) :
S]] = suPyer,wens julj=fw|=1 [{w, Su)| if S € B(H).
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From (5.6) we obtain that for S € B(H) we have S € C*(A4) & S* € C*(A*). This
extends to S closed and densely defined. Moreover, if S is closed densely defined
and regular, then so is S™*.

We consider the sesquilinear form:
[A, S)(w,u) := (A*w, Su) — (S*w, Au), u € DomSNDomA, w € DomS*NDomA*.
We equip DomS and DomS™* with their graph norms.

Proposition 5.4. Let S be reqular. Then the following are equivalent:

(1) S is of class C*(A),
(2) the following three conditions are satisfied:
(1) 1[4, S)(w, u)] < Cllw||poms*||¢][Doms, v € DomS NDomA, w € DomS* N
DomA*,
(ii) {u € DomA : R(z)u € DomA} is a core for A for some z € p(S),
(i) {w € DomA* : R(z)*w € DomA*} is a core for A* for some z € p(S).

For the proof, see [GGM, Props. 2.19, 2.21].

Assume that S € C*(A) is regular. Then by Lemma 5.3 DomA N DomS is dense in
DomsS and DomA* N DomS™* in DomS*. As in the proof of [GGM, Prop. 2.19] we
see that [A, S] uniquely extends to a bounded sesquilinear form [A, S]° on DomS™ x
DomS and [A, R(z)] = —R(2)[A, S]°R(z). Here, the left R(z) acts on H* as R(z)*.

Remark 5.5. On a Krein space (see Sect. 3.1), if S = S* and if the Krein structure
is of class C*(A), (see Subsect. 5.5), then (iii) follows from (ii), because we can
consider S*, A* as operators on H and A — A* is bounded.

We now give some regularity properties with respect to A of a function of S.

Lemma 5.6. If S € C“(A) then x(S) € C*(A) for any x € C5°(5(S5)).

Proof. We prove more, namely that [ R(A £10)x(A)dA are of class C*. From the
definition of 5(5) (see Def. 2.2) and using a partition of unity, we may assume that
the assumptions of Lemma 2.1 are fulfilled. We begin with the case 0 < a < 1. We
claim first that

(5.7) e R(2) — R(2)|| < C|Tmz|~2"|t|*, 0 < |t| < 1, z € T +1]0, ).
This implies the lemma if 0 < o < 1 using (2.2) with n replaced by 2n.

We now prove (5.7). If T € B(H) with T~' € B(H) then from e #AT~1 =
(eAT) ™1 we get

(5.8) ATt =T < O T~ YP[le™AT — T, [¢] < 1.
The same argument gives for 71, T € B(H):
(5.9) [T\ To) = VTl < C||Ta|[|e" T = Tol| + C||To ||| Ty = Ta ), |t < 1.
For zp € p(S) and z € I 4]0, v] we have:
R(2) = R(20)(1 + (2 — 20)R(20)) "
Applying (5.8), (5.9) and the hypothesis that R(zp) € C*(A), we obtain
le**R(2) — R(2)|| < CIR(2)[?|t]*, 0 < [¢] < 1,

which proves (5.7). Note that in the case o = 1 the formula (2.2) gives an explicit
expression for the commutator [ [ R(A 4 10)x(A)d\, A] involving expressions of the
form R(z)[S, A]°R(z). In the case 1 < a < 2 we repeat the same arguments applied
to the first derivative, using again (2.2). O
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5.3. Some Fourier transforms. For simplicity of future notation, we normal-
ize the Fourier transform of tempered distributions in such a way that f(r) =
fe”tf t)dt. We set

(5.10) fs(7) = f(s7), f €S'(R), seR.

Then f(t) = s~ f(s~1t). If § := 7L then f, = e " f for s = e7!. We will set

(5.11) f(r):=6f(r) =71f'(1), feS'R).

We denote by S?(R) for o € R the space of functions f € C°°(R) such that
[F ()] < Cufr)7™", m €N,

Lemma 5.7. The classes S° have the following properties:

(1) If f € S°(R) then fe C>(R\{0}) and
7] < Cult)™ in |t] > 1, ¥ n e N.

(2) If f € S°(R) for o <0 then f € L'(R),
(3) If f € S°(R) for —1 < o <0 then

[t R (#)] < Cilt| 77, Y ke N.

These facts are well known. The typical example of a symbol in S™7(R) is the
function (-)~7 whose Fourier transform is the Bessel potential G,. For all t # 0,
G, (t) is given by the following absolutely convergent integral (see e.g. [S, Sect.
V.3)):

(5.12) G, (t) = _ /+oo o t?/r—r/4 (o—1)/24r
' o\ = 90 /iT(0/2) " r

The following lemma is easy.

Lemma 5.8. The distributions G, have the following properties:
(1) G, (t) = CotGo_2(t), t #0, 0 €R,

2) [FGP (1) < Crolt|”, t#0, 0 €R, k€N,

(3) |G (1)) < Crolt/be 172, |t] > 1,0 €R, k€N,

(4) eltls*G, € L'(R), 0 >0, c< 3, k€N,

(5)

5) elGL € LY(R), 0 > 1, ¢ < 3.

Proof. We get (1) by differentiating (5.12) under the integral sign. Relation (2) for
k = 0 follows from

e—t2/r—7‘/4 < e—tz/r.
Using (1) we obtain (2) for arbitrary k. Similarly using the inequality
/A= t/241/2r +1/8, |t > 1,

and the fact that the integral fOJrOO e~ V/2r=r/8p(e=1)/2dr 5 finite for all ¢ € R we
obtain (3) for k = 0, and then for arbitrary k& using (1). Finally, (4) and (5) follow
from (2) and (3).
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5.4. Functional calculus associated to A. Let us fix a Co—group W on the
Banach space H with generator A.

Let M, be the set of functions f : R — C whose Fourier transforms are complex
measures such that:

(5.13) 1 llae = / | 71t < oo

M is a unital Banach x-algebra for the usual operations of addition and multipli-
cation and the involution f*(7) = f(—7). Such functions f admit a holomorphic
extension in the strip {7 : |Im7| < 7}, in particular do not have compact support.
We define

£(A) = / A F(t)dt

and note that M > f — f(A) € B(H) is a linear multiplicative map. Clearly
feM,=fseM,if0<s<1and

(5.14) [f(sA) < M| fllm, where f(sA) = fi(A).

By Lemma 5.8 we see that if o > 0 then ()77 € M., if v < 1/2 hence (sA)™7 is a
well defined bounded operator on H if 0 < 2svy < 1.

A similar assertion holds for a large class of analytic symbols of strictly negative
order but the problem of the boundedness of the operator f(A) for symbols of class
5% which are not Fourier transforms of measures is much more delicate.

We will be interested in the apparently trivial case when the derivative of f satisfies
f'(7) = (r)~7 with ¢ > 1. To understand the nature of the problem note that for
such an f the operator f(P) with P = 71% is bounded in LP(R) if 1 < p < oo but
not in L1(R), L>°(R), or Cy(R).

If W is a bounded Cy-group and H is Hilbertizable then || f(A4)|| < Csup |f| because
such a group is unitary for an admissible Hilbert norm. In our applications this is
not sufficient because W is of exponential growth. But we have:

Proposition 5.9. If H is Hilbertizable and f is holomorphic on the strip {z
Imz| < ~'} for some ~' >~y then
(5.15) [f(A<C  sup  [f(2)]
ReH]—",7/[
For the proof, see [ABG, Prop. 3.7.1]. The hilbertizability assumption is rather
annoying but we expect that the result remains true in UMD spaces.
One may define f(A) for unbounded functions f by allowing j?to be a distribution
of exponential decay instead of a measure. In other terms, f may be a sum of
derivatives of exponentially decaying measures, or f a sum of functions in M,
multiplied by polynomials. We assume v < 1/2 and explain this in detail only for
the functions f(7) = (7)® with 0 < s < 1 which are important here. Let us set
o =2—s,so0 that 1 < ¢ < 2. Note that from
()™ =(n" =1 —in) (1 +in)7,
identity valid in the algebra M., we get by the already defined functional calculus
(A=A =1+ AH =1 —iA) (1 +id)~ L
Thus B = (A)79(1 + A?) is a well defined operator on DomA? and there we have
(A)~*B = B{A)~® = 1. Hence we must define (A)® as the closure of B. Then we

have on DomAZ:
(5.16)

(A)° = / (1+ A2)elt 4G, (t)dt = / (1= 22)e) Gy (1)t = / e (Go(t) = G (1)) dt
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where we interpret the derivatives in the sense of distributions. If we set P = —i-%

dt
as operator acting on H-valued distributions then we may write
(A)°u = (A)y"u— /eitAuGg(t)dt = /Wtu (1 + PG, (t)dt,, u € DomA?.
This representation gives the following useful estimate:

Proposition 5.10. If v < 1/2 and 0 < s < m < 1 then there exists C > 0 such
that

(5.17) [{A)*ull < Clluf| + Csupyy <[]~ (W () = Lul|

Proof. Let 6 be a C*° function such that 0(¢) = 1 for |¢t| < 1 and 6(¢t) = 0 if [¢] > 2.
Set V(t) = 6(t)Wiu. Then

(A)su = /V(t) (14 P*)G,(t)dt + /(1 — O)Wiu(l + P?)G, (t)dt.

By Lemma 5.8 (3) the second term is bounded by C||ul|. Since V is a continuous
function with compact support, for any s < u < m we have:

/V(t) (1 + PHG,(t)dt = /<P>“V(t) (P)2TEG,(t)dt.
Since Pf(t) = tf(t) and o = 2 — s we have (P)2""G, = G,,_,, hence
H/V(t) a +P2)G,,(t)dtH - ’ /(P)“V(t)-GH_S(t)dt’

where we used that 4 — s > 0 and Lemma 5.8 (4). Then it remains to note that
[{PY*V Lo < C||V]lem if 0 < p < m < 1,V has compact support, and

Vilem = sup [V ()l + sup [t = s~V (&) = V(s)]-

<P VLl Grsllzrs

This is easy to prove by a standard Littlewood-Paley type argument. [l

5.5. Cy-groups on K—spaces. In this subsection H is a K —space equipped with
the hermitian form (-|). Since H is reflexive W* = {W;} is also a Cy-group of
operators on H whose generator is —A*. In other terms, W; = e itA"  Clearly
[Wy|| < M’e*l with the same y hence the operators A, A* admit an M., functional
calculus and we have f(A)* = f(A*) for all f € M.. For example, ((cA)~7)* =
(eA*)~7 for € > 0 small enough.

We shall say that the Krein structure is of class C*(A) if the conditions of the next
proposition are verified.

Proposition 5.11. The following assertions are equivalent:

(1) the function t — (Wyu|Wiu) is derivable at zero for each u € H,
(2) the function t — (Wyu|Wyu) is of class Ct for each u € H,

(3) the map t — W;W; is locally Lipschitz,

(4) A* = A+ B where B is a bounded operator.

Proof. For u,v € DomA we have
d

_1E<Wtu|Wtu> = <WtU|AWtU> — <AWtU|WtU>

If the derivative in the left hand side exists at zero for each u,v € ‘H then the map
t — WiW; is weakly differentiable at ¢ = 0, hence by the uniform boundedness
principle the derivative is a bounded operator and so there is a number C' such
that |[(u|Av) — (Aulv)| < Cl|ull||v] for all u,v € DomA. Thus if we fix v € DomA
then |(Au|v)| < C'||ul| for all uw € DomA hence v € DomA* and |(u|(A — A*)v)| <

(5.18)
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Cllull||v]| for u,v € DomA. Thus DomA C DomA* and ||(A — A*)v|| < C”||v|| for
v € DomA. If we denote Aj the restriction of A* to DomA then we get A5 = A+ B
for a bounded operator B. If a > 0 is large enough then

Ay +ia= (A+ia) + B =[1+ B(A+ia)"'|(A +ia)

and ||B(A + ia)7!|| < 1 hence A} + ia : DomA — H is bijective. But A* + ia :
DomA* — H is also bijective for large a, so DomA = DomA* and A* = A + B.
This proves (1) = (4). Then (4) = (2) = (1) follows from

to
(519) <Wt2u|Wt2’U> — <Wt1U|Wt1’U> = 1/ (<WtU|AWt’U> — <AWtU|WtU>)dt

t1
which holds for u,v € DomA and extends to all u,v € H under the assumption
(4). Finally, (2) = (3) follows from uniform boundedness principle and (3) = (2)
follows from (5.19) and a density argument. 1

Remark 5.12. Note that B = i%Wt*Wth:O.

Remark 5.13. If A is self-adjoint for a Hilbert norm (-|-)/? and (ulv) = (u|Jv)
then (4) means J € C1(A).

Corollary 5.14. If the Krein structure is of class C'(A) then the Besov scales
Hs,p associated to the groups W and W* coincide for —1 < s < 1.

Proof. We have DomA = DomA* by (4) of Prop. 5.11. The spaces Hﬁp with
0 < s < 1 associated to W are obtained by interpolation between DomA and H
and similarly for W*, hence H?,p = H?,; if 0 < s < 1. Then /Hﬁp = Hﬁ; follows by
duality if —1 < s < 0 (supplemented by an obvious density argument if p = co).
The case s = 0 is covered by interpolating between Hf/?,p and Hél/zp' |

Proposition 5.15. If the Krein structure is of class C*(A) then for 0 < o < 1
and € > 0 small we have:

(5.20) [[(eA)Y — (eA")? || < Ck,

(5.21) (eA)™7 —(eA") 7 =(cA)"7 — (<5A>_‘7)* = (eA) 70(e)(cA)"°.

Proof. Set for simplicity of notation H, = Hég. From (5.16) we get
ite A __ ite A"

(eA) — (A" — & / e H(Gao 1)~ G ()t

This holds in B(#H1,H_1) by Corollary 5.14. Using that |[e!*?4 —el=tA" || < C|et|e!]
since A— A* is bounded, and the estimates for Ga_, in Lemma 5.8, we obtain (5.20).
This implies || (e A)7u|| < ¢||[(eA*)7u| hence by using a similar estimate with A and
A* interchanged and then taking adjoints we obtain:

[{eA){eA™) 77| < O, [{eA™)7(eA)~7[| < C,
[(eA) ™ {eAm)?| < G, [[(eA™) "7 (e A)7[| < C,
where the number C is independent of . The left hand side of (5.21) is
(gAY 7 ((eA*)7 — (A)7) (eA*) 7,
and so if we use (5.20) and (5.22) we get (5.21). 0

(5.22)

6. COMMUTATOR EXPANSIONS

In this section we prove some results on commutator expansions. These results are
well-known in the Hilbert space setting. In the Banach space setting considered
here they seem to be new.
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6.1. Functional calculus associated to 4. We now discuss the functional cal-
culus associated to the operator A acting on B(#H) introduced in (5.2). By (5.3)
the operator f(A) = feitAf(t)dt is well defined if f € My, and f — f(A) is a
linear multiplicative map with values in the Banach algebra of bounded operators
on B(H) such that

(6.1) 1F A < M2 fll s, -

Let N be the set of functions whose Fourier transforms are measures supported in
|t| < 1. Then N is a linear subspace of Ms., which contains the constants, is stable
under derivations, and:

(6.2) 1 follats, <M Fllrey, s €R, f EN.
Below we use the notation f introduced in (5.11).
Lemma 6.1. (1) If f € N then
If(sA)|| < Ce®*l s eR.
(2) If f,fE N and T € C¥(A) for some 0 < o < 1 then
£ (s2A)T — f(s1 AT < Clsy — s1]|e®51! for |so — s1] < 1.
Proof. (1) follows from (6.1), (6.2). Let us now prove (2). We first claim that if
T € C*(A) and g € N with g(0) = 0 then:
(6.3) lg(sAT|| < CJt|*eH t € R.
In fact since ||(e™ — 1)T'|| < CJt|*e®*l if T € C*, we have:

oA = lg(sAT = gOAT = | [ (¢4 = 1)Tg(e)at]

< [ = nriigide < ¢ [ st g < €'sfe L
We write now

2 q 2 2 gs
f(s2A) — f(s1.A) :/ Ef(sA)ds :/ Af’(sA)ds:/ f(sA)?.

S1

Since f € N and f(0) = 0 we get || f(sA)T| < C|s|*e*"!5l by (6.3). Soif 0 < s; <
So < s1 + 1:

[ f(s2A)T — f(s1A)T| g/

S1

C c
< E(sg‘ R A E(SQ — 51)%2V (14D,

52

~ 52
Fear| S < [ clsiens
S 5 S

If s1 < s2 < 0 the argument is similar. The case s; < 0 < so follows from the
preceding ones. H

The next lemma will be needed later on.

Lemma 6.2. Let B a normed vector space. Let & = On where 0 : R — B with
0(0) =0 and n : R\ {0} — C is a function of class C*. Assume that for some real
numbers a,b, B, m, p satisfying 0 < m < 8 <1 and p > 3v we have:

(6.4) 10(s1) — O(s2)|| < a|sy — sao|Pe2V151lif |51 — sy <1,
(6.5) In(s)| + [7i(s)| < bls|~™ e rIl,
Then:

/kﬂBWas+t>fs@nwssChmﬂMﬂ&”%lﬂ<1-
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Proof. Tt suffices to consider the case 0 < ¢t < 1. From [|£(s)| < ab|s|®~™~! and
since f —m > 0 we get:

[l -g@las<2 [ e)lds < 2ab(5 - m) 30"
s <ot js/<3t
We estimate next f;oo, the integral f__fot is treated similarly. Clearly

/ €5 + 1) — £(s)]|ds
2t

< oG 0) — 006 lats + lds + [ e 06 s + 1) — n(s)lds

t 2t
s+t
/ ' (y)dy

The first integral is less than abm~'t?~™ and the last integral is less than
ab [ fj” sBe3rsy=m 26" dyds

< ab [y $PTmds < =8 (20)P

o0 o
Sab/ e"’stﬂems(s + t)—m—le—u(s—i-t)ds + a/ o8B 27s ds.
t 2t

= ngmabtﬁfm.
This completes the proof of the lemma. |

In the next lemma we will use Lemma 6.2 for B = B(H).

Lemma 6.3. Assume that either K € N with K(0) = 0 and K € N or that
K(1) = 1—e™I". Let ¢ be a complex function in C*(R\{0}) such that |C(s)|+|¢(s)] <
Cls|~™e=Hel with 0 < m < 1 and p > 3. Set

VA /eiESATK(SSA)C(s)% for 0<e<1.

Then for T € CP(A) with m < B < 1 we have J.(T) € B(H) and
IT(T) (W (et) = 1)|| < C2Jt)P~™, Jt] < 1.
In particular || J-(T){eA)*|| < CeP if s < B —m and 2ey < 1.

Proof. The function K is such that K(0) = 0 and
K (s1.A)T — K (55 A)T|| < Clsy — 1?11l

if [s1 — s1] < 1. Indeed, this follows from Lemma 6.1 for the first choice of K and
is obvious in the second case. Since K(0) = 0 we obviously get ||K(sA)T|| <
C|s|?e* sl for any s. Then

e 4K (es A)(T)¢(s)]| < Cels|mmeloln=3em),

hence the integral defining J.(T') is absolutely convergent in norm and ||J:(7")|] <
CeP. Then we put &(s) = K(esA)(T)((s)/s and we write

I = ) = | [ etspetasterta - 1) = | [ (6ts-+0) - e)omas

which is less than [eVlsl||¢(s +t) — £(s)||/ds. Now we apply Lemma 6.2 with
0(s) = K(esA)(T) and n(s) = ((s)/s. The last assertion follows from Prop. 5.10
by using the estimates || 7-(T)|| < Cef and | J-(T)(W (et) — 1)|| < CP|t|S~™ for
lt] < 1.
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6.2. Commutator expansions. Our proof of Thm. 7.9 is based on the strategy
introduced in [Ge] and involves two ingredients: a version of the Putnam argument,
cf. Props. 7.3 and 7.6 below, and a commutator expansion estimate, cf. [Ge, Sec.
2], which we discuss in this and next subsections.

More precisely, we are interested in developing the commutator [S, f(A)] in terms of
iterated commutators A’(S) with estimates on the remainder for “nice” functions
f:R — C. If Ais self-adjoint such results were obtained in [GoJe] using the Helffer-
Sjostrand formula (2.5) (with H replaced by A). If A is the generator of a Cy-group
then f(A) cannot be expressed by a relation of the type (2.5) (the imaginary part
of the spectrum of A may be too large) but a version of the Dunford functional
calculus could certainly be used. On the other hand, the method we use below
is quite classical and elementary (a detailed presentation in the case of groups of
polynomial growth may be found in [ABG, Sect. 5.5]).

In this section we make some general remarks on commutator expansions. We first
discuss the “truncated exponentials” Ej defined for any k € N as follows:
1 i N
)

The following properties are easy to check.

(6.6) Ey(1) =

3

1 ir —9)k1 1 ir —0)k
Ex(r) = [y e 6(%kfz)! g =—[ye ed(lk?)

iE), = kEyq1 — Ex,

0F, = Ex_1 — kEy, for 1<k, whered =70,

TOIE, = > " Ot (n)Ey—j, for each 0 <m <k, and C}"(n) € N,
TN E, € N, for m € N..

Proof. For example, (3) is clearly true if & = 0,1 and the function defined by the
right hand side of (3) satisfies the induction relation (2), hence (3) holds for any k.
To prove (6) observe first that 707 = S, b7*6¢ for some integers b}* and then
use (5). Since Ej € N because of (3), we get (7). O
We write [S, f(A)] = (f(Ay) — f(A¢))(S) and develop the operator f(A,) — f(Ay)
acting on B(H) in terms of powers of A = A, — A, by using a Taylor expansion.
The class of functions f : R — C for which this makes sense is easy to specify and
depends only on the behavior for large ¢ of the group e*4, for example f could be
the Fourier transform of an exponentially decaying distribution.

Lemma 6.5. For any integer k > 1 we have

(6.7) FA) = > A FOA) /5 + AR (FP),
0<j<k

where

(6.8) Rulg) = / A B (£ AVG(2) dt.

Proof. We use the notation:

Agi= Ay, Ay = A, Agi=Ag+0A=(1—0)A+0A,.
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We have the following Taylor formula for f (Al) = f(Ao+ A):

(6.9) fA) =) A.—!jf (Ao) — / FE(Ag) d(1 - 0)".

0<j<k

This is easy to prove by induction: if £ =1 then

(610)  f(A) = F(A) + [ G+ 04000 = FA) + [0 Adp

and to pass from the k to the k& + 1 step of the induction process it suffices to
integrate by parts the last term in (6.9). If we set g = f*) we get (6.7) with

1 ~pyk—1
(6.11) Rk(g)z/o Q(Ae)%de

From Ag = Ay + 0.A we get
g(AG) — /eitAgg(t) dt — /eitAoeiGtAa(t) dt

which inserted in (6.11) gives (6.8). This proves the lemma. Another easy proof
by induction follows from Ry (g) = 759(Ao) + ARy41(¢g’) which is an immediate
consequence of the definition (6.8) and of the relation (2) in Lemma 6.4. O

We now explain how to estimate an operator like Ry (g)T when T' € B(H); in our
case T = A*S for some bounded operator S of class C¥(A). Observe that Ry (g)
looks like the Fourier transform of the function ¢ — Ej(tA)g(t) evaluated at the
point Ay. Hence we expect that decay of Ry (g) with respect to A, follows from
regularity of the function ¢t — Fj(t.4)g(t). In fact, an integration by parts argument
which can easily be justified under convenient conditions on g gives:

(1A Ru(g) = [ ((-07e ) Btz de = [ @407 (Bt de

i S(j—m)
=> C, | B (tA)gi(t) dt
m=0 " e

with EJ"(1) = 7m0 E),. We saw before that E* € N if m < k and then
|Ef (tA)| < Ce*'"l by Lemma 6.1. The exponential decay of g/~ (¢) will com-
pensate the divergence of this factor hence there are no problems at infinity if 7 < m.
Only the singularity at 0 of gl— m)( )t—™ could make the integral divergent.

Our main purpose in the next subsection is to show that ||(A)*X (A)*|| is finite for
some X = Ry(g)T € B(H) and 0 < s < 1. For this it suffices to prove that X
sends H_, 1 into H, o for a number p with s < p < 1. If H is reflexive then this
is a consequence of an estimate of the form ||(ei*4 — 1)T'(e!¥4 —1)| < C|x|*|y|* for
small z,y. Hence (e/*4¢ — 1)(e'¥A — 1)R}(g) is the object one has to estimate.

6.3. First order estimates. The main results of this subsection concern estimates
of the remainders in some commutator expansions of interest later on. We will
denote O(g) any bounded operator on ‘H depending on the parameter € > 0, defined
at least for small e, and such that ||O(e)|| < Ce.

Proposition 6.6. If 0 < s < 3 < 1 and S € B(H) is of class CP(A) then
[(eA) 7%, 8] = (eA)°O(eP) (e A)~*

Proof. The idea of the proof is very simple at a formal level: we write

[(eA)77, 5] = (€4)7°[S, (e4)°[(e4) ™"
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and show that [S, f(eA4)] = O(e?) for f(7) = (7)°. In order to justify this formal
computation we first take ¢ = 1 (we assume, without loss of generality, v < 1/2)
and assume S € C?(A), so that S leaves invariant DomA?%. If B = (A)~7(1 + A?)
with o = 2 — s (see Subsect. 5.4) then on DomA? we have:

[(A)7°, 5] = (A)7"SB(A) > — (A)°BS(A)™* = (A)7°[5, BI(4) ™",
Then by (5.16) we have [S, B] = [[S,e!*](G,(t) — G(t))dt on DomA? hence

(6.12) [(A)~°,S]=(A4)"° </[S, Gy (t)dt — /[S,t_leitA]tGg(t)dt) (A)™2,
where G, (t) is the Bessel potential considered in Subsect. 5.3. By Lemma 5.8,
(tGY(t)] < Ct|=* for t # 0 and [tG"(t)| < C|t|>e™ /2 for |¢| > 1.

We observe next that the relation (6.12) remains valid for any bounded operator S
of class C#(A). Indeed using

[S, eitA] _ eit.A[ (eit.A o I)S,

and (5.3), we have ||[S, e'*4]|| < Celtl/8|t|# and it is easy to construct a sequence of
operators S,, € C?(A) satisfying a similar estimate uniformly in n and [|S,, —S|| — 0
as n — co. We apply (6.12) to each S,, and then pass to the limit.

Replacing A by €A in (6.12) and using
11, ¢~ e < Ce 1P pg)o,
we complete the proof of the proposition. |

We set now

E(r):= Ei(1) = ei;;l = [Leittdt,
(6.13) J 0
F(r):= E(r)—1=%==7,
From Lemma 6.4 we know that E, F € N. Moreover F(7) = 7F'(7) = " — E(1)
so FeN.

Proposition 6.7. Let S € C*(A) for 3 < a <2 and set S’ = [S,iA]. Then for any
number s such that 1/2 < s < a — 1 and any function f such that f'(1) = (r)=2¢
we have

(6.14) [S,if (eA)] = (eA)™° (8’ + O(e®)) (e A) ™.

In the usual Hilbert space setup when A is a self-adjoint operator and S is of class
C?(A), this proposition was proved in [Ge, Prop. 2.4] using a general commutator
expansion due to Golénia and Jecko [GolJe].

Proof. Since s > 1/2 the function f is bounded. We assume, without loss of
generality, 6y < 1 and 0 < ¢ < 1. To simplify notations we set g(7) = (7)~* and
fe = f(eA), g- = g(cA). Assume that we have proved that:

(6'15) [S, ifa] = g?ESl + gaO(Ea)ga-

If 3 =a —1 then S’ € C?(A) hence from Prop. 6.6 we get [g.,S"] = g-0(c?)ge.
By using ¢25" = g-5'g. + gc[ge, S’] we then obtain (6.14). Thus it remains to prove
(6.15).
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As before, we first include € in A, so we take ¢ = 1, and then discuss the dependence
on . Obviously:

(6.16)  F(A) — fF(A) = / eitAf%(eitA—l)f’(t)dt: / et AB(LA) (1)t

(6.17) = (74 + / AP (L A) T (1)dt) A,

Thus if S is a bounded operator of class C'(A) we get the first order commutator
expansion with remainder

6.18)  [S,if(A)] = F(A)S +R(S) with R — / oA (1 A) P () dt.
We have |leA¢|| < Me!!l and ||F(tA)| < Ce*!l by Lemma 6.1. On the other
hand, f’ decays like e~!!1/2, so there is no convergence problem at infinity and the
integral defining R(S’) is norm convergent. Then
(6.19)  [S.if(eA)] = ef'(cA)S + eR(S') with R® = / et (et A) (1) dt
and (6.15) follows if we prove that (recall that 3 =a —1 > 3):
1

(6.20) (A RE(T)(cA)®|| < CeP, T e CP(A), 5 <s5<B
We shall in fact prove a stronger estimate, namely
(6.21) [(1 —ieA)R*(T)(eA)¥|| < CEP.
We set 1(t) := f/(t) = Gas(t) and recall from Lemma 5.7 (4) that since 2s > 1:

1
(6.22) ety ecltlg®yy e LYR), 0< ¢ < 5 keN.

Using A, = A, — A we get:

(1 —icA)RE =R — / (ieim‘f) F(etA)yp(t)dt

dt
_ /eistA/z (F(stA) (ty(t)) + &(t)) + ﬁ(EtA)w(t)) %
_ /eiatAT (Fy (st A)ibr (1) + Fg(stA)w(t))%

where Fy (1) = e TF (1), Fo (1) = e " F(7), and )y (t) = (ty(t) + 1;(15)) By taking
into account the explicit expressions given in (6.13) for F, F we obtain Fi(7) =
F(-7) 4+ (1 —e ") and Fy(7) = —F(—7). In order to justify the integration by
parts argument we have used the estimates on 1) recalled in (6.22).

Thus we see that (1 —icAy)Re is a linear combination of terms of the form J. =
[ eStA K (et A)((t) 2 with K(7) equal to one of the functions F(—7) or 1 —e~"
and ((t) either ¢ (t), or ti)(t), or di(t).

In all three cases the function ¢ verifies [((t)| + [5¢(t)] < Cpe™"!l for any p < 1/2,
and K (7) satisfies the conditions in Lemma 6.3. We now apply Lemma 6.3 where
m > 0 may be taken as small as we wish. This proves (6.21) and completes the
proof of the proposition. |
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7. BOUNDARY VALUES OF RESOLVENTS

In this section we prove the main result of this paper, described in Thm. 7.9. We
show that if H is a self-adjoint operator on a Krein space K, satisfying a positive
commutator estimate in the Krein sense on some interval, then weighted resolvent
estimates near the real axis (analogous to the well-known Hilbert space case) hold
on this interval.

7.1. Putnam argument and beyond. To get a better perspective on the positive
commutator methods we make some preliminary comments in the context of a
theorem due to Putnam, see [P1] or [P2, Thm. 2.2.4]. In this subsection we assume
that H is a Hilbert space and H is a self-adjoint operator on it. We denote 1;(H)
the spectral projections of H and set R(z) = (H — z)~ L.

Putnam discovered that if one may construct a (bounded) self-adjoint operator B
such that [H,iB] > 0 (in form sense) then H has a rich absolutely continuous spec-
trum. We recall here his argument [P2, p. 20]. This is the proof of the implication
(7.1) = (7.2) below and is very simple but gives only an estimate on the imaginary
part of the resolvent ImR(z) for 2 = A +iu, u L 0. Next we explain how to modify
it such as to control the whole resolvent R(z).

Proposition 7.1. Let B = B* and C be bounded operators and let us consider the
following assertions:

(7.1) CC* <[H,iB] as quadratic forms on DomH,
(7.2) C*1;(H)C < ||BJ||J|  for any Borel set J,
(7.3) C*(ImR(2))C < ||B||  for all z with Imz > 0,

where |J| is the Lebesgue measure of J. Then we have (7.1) = (7.2)& (7.3).

Proof. If J an interval with midpoint A then
1,(H)CC*1,(H) < 1,(H)[H — A\,iB|1,(H) = 2Re (1, (H)(H — \)iB1,(H))
hence for any u € H we have
|C* Ly (HYull? < 2Re((H — Ny (H)uliB1, (H))u)
< T (H)ul| | BL (H))ull < | J|| B[ (H)ul*.
This is equivalent to
1, (H)CC1,(H) < || BI|J|1,(H) < |B]|J],

hence ||C*1;(H)||*> < ||BJ||J]. Obviously, if (7.2) holds for intervals then it holds
for any Borel set. Note also that (7.2) can be stated as ||1;(H)C| < ||B|*/?|.J]|"/2.

Now we prove (7.3) < (7.2). If E, is the measure E,(J) = (u|1;(H)u) then

1 1 W

-1 R(A+1i =— | —————dE,(x).

Sl RO+ i) =+ [ B, (@)
Now clearly Im(u|R(z)u) < M holds for all z with Imz > 0 if and only if E,, is an
absolutely continuous measure with derivative E/ (X\) < M for a.e. \. O

Remark 7.2. The relation (7.3) says that the imaginary part of the holomorphic
function C*R(z)C' in Imz > 0 is bounded, and this is equivalent to the boundedness
of the boundary value C* (ImR()\ + iO))C. Unfortunately, from the boundedness
of the imaginary part of a function holomorphic in the upper half-plane it is not
possible to deduce the boundedness of the real part, hence of the function, because
the Hilbert transform is not bounded in L>(R). However, if C*(ImR(A + i0))C is
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a Holder continuous function of A on a real open set J, then C*R(z)C extends to
a Holder continuous function on the union of the upper half-plane and .J.

We now modify Putnam’s argument such as to estimate C*R(z)C and not only the
imaginary part. This is related to the energy estimate as presented in [Ge)].

Proposition 7.3. Let B = B* and C, D be bounded operators with BC'= C'D and

(7.4) CC* < [H,iB] as quadratic forms on DomH.
Then we have
(7.5) IC"R(2)C| < 2([| Bl + [|D[[) 4 Tmz # 0.

A bounded operator D such that BC = CD exists if and only if B leaves the range
of C invariant.

Proof. Let Imz > 0 and b = —||B]| (if Imz < 0 let b = || B||). Denote R = R(z) and
L = C*RC. Then
L*L=C"R*CC*"RC < C*R*[H,iB]RC = C*R*[H — z,i(B + b)|RC
=C"R"(H — 2)i(B+b)RC — C*R*i(B +b)(H — z)RC
=C*"I(B+b)RC+ C*R*(z — 2)i(B+b)RC — C*R*i(B +b)C
= 2Im(C*R*(B + b)C) 4+ C*R*(2Imz)(B + b)RC
= 2Im(C*R*C(D + b)) + C*R*(2Imz)(B + b) RC.
Since (2Imz)(B + b) < 0 we get with a = ||L||/||D + b|:
L*L < 2Im(L(D+b)) < aL*L+a~ (D+b)? < a|[L[4+a~"| D+b||? = 2] LI|| D+b]
which is better than (7.5). For the last assertion note that by the closed graph
theorem we may take D = C;y ' BC with Cy = C|(Ker C)*, ¢f. [Do, Thm. 1]. [

Prop. 7.3 and ideas from [Ge] give the following extension of Mourre’s theorem
[M2].

Theorem 7.4. Let A be a self-adjoint operator on the Hilbert space H such that H
is of class C*(A) for some oo > 3/2 and let I be a real bounded open interval such
that

E(I)[H,iA]E(I) > aE(I)
for some number a > 0. Then for each compact interval J C I and each s > 1/2
there is a number C' such that

(7.6) [{A)"°R(2)(A)~*|| < C if Reze€ J and Imz # 0.

If some ¢ € C§°(R) with ¢(\) = X near I is fized, then C' depends only on a and
on an upper bound for the C*(A) norm of ¢(H).

We sketch only the main idea of the proof to explain the role of Prop. 7.3; details
are given in a more general context in Subsect. 7.3. Note that it suffices to prove
sup, g [|[(A) *R(2)§(H)*(A)~*| < C'if £ € C§°(I) real. Clearly one may replace
here A by €A with ¢ > 0. Let f be a function with f’(1) = (7)72%. Then (7.4)
is satisfied by B = 2Z&(H)f(cA)E(H) and C = £(H)(eA)™* if € is small and
1/2<s<1.

Remark 7.5. In [M2] it is assumed that a = 2 and e*4DomH = DomH for all
t. The extension from C?(A) to C“(A) with o > 3/2 is not really significant in
applications (o > 1 is the natural condition and such an improvement would be
practically relevant). We included, however, this generalization because it is rather
surprising that the method of [Ge] allows one to pass from the class C%(A) to the
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class C%(A) with a > 3/2 without any change in the strategy of the proof. Indeed,
the case @ > 1 as treated in [ABG] requires a rather substantial modification of the
“method of differential inequalities” of Mourre, while here the restriction o > 3/2
comes only from the proof of (6.14).

7.2. Positive commutators in Krein spaces. We now extend the techniques
and results of Subsect. 7.1 to the Krein space setting. We begin with a Putnam
type assertion.

Proposition 7.6. Let H be a self-adjoint operator with p(H) # () on the K—space
H. Let Il be a positive projection which commutes with H and let B, C, D be bounded
operators such that

(1) B=B* C=IIC,
(2) BC =CD,
(3) CC* <U[H,iB] as quadratic forms on DomH.
Then the operator L(z) = C*R(z)C satisfies
(L(2)ulL(z)u) < (B + IDDILEullull for ueH, =€ p(H),
where ¢ depends only on H and II.

Proof. Set R = R(z), L = L(z) and assume that Imz > 0 (the proof is similar
Imz < 0). Note that if z € p(H) then z € p(H) and R* = (H —z)~!. For b € R we
have:

R*[H,iB]R = R*[H — 2,i(B +b)]R =i(B + b)R — R*i(B + b) + (2Imz)R*(B + b)R
= 2Im(R*(B + b)) + (2Imz)R*(B + b)R.
Since (B + b)C = C(D +b) we get
(7.7) C*R*[H,iB]RC = 2Im(C*R*C(D + b)) + (2Imz)C*R*(B + b)RC.
Since C' = IIC and II commutes with H we have
C*R*(B 4+ b)RC = C*R*TI(B + b)IIRC.

Using (3.1) we may choose b = —|| B||1 such that (2Imz)C*R*(B+b)RC < 0, hence
from (7.7) we get:
C*R*[H,iB]RC < 2Im(L*(D +b)).
Now observe that C*R*[H,iBJRC = C*R*II[H,iB]IIRC hence from hypothesis
(3), we get
L*L = C*R*CC*RC < 2Im(L*(D +b)).
This yields for u € H, with a constant m depending only on #:
(Lu|Lu) < 2Im(Lu|(D + bju) < m||Lul[[[(D + b)ull < m|[Lul[(|[ D] + || Bllm) |u|,

using that b = —||B||i. Since || B||n < d||B||, for some constant d depending only
on II, this gives the required estimate for ¢ = max(m, md). [

Remark 7.7. If H is a Krein space then there is a bounded operator D such
that hypothesis (2) in Prop. 7.6 is satisfied if and only if B leaves the range of
C' invariant, cf. [Do, Thm. 1]. Indeed, since H is Hilbertizable, we may choose a
closed subspace K in H such that H = Ker C @ K; then take D = CngC where
Co = CIK.
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Corollary 7.8. Let ‘H be a Krein space and Il a positive projection which com-
mutes with H. Assume that B,C are bounded operators with B = B*,C = IIC,
and such that B leaves invariant the range of C. If the inequality I[H,iB|Il > CC*
holds in quadratic form sense on DomH and if we set L(z) = C*R(z)C then
(L(z)u|L(2)u) < c||L(z)ull||u|| Yu € H, where the number ¢ depends only on 11, B, C.

7.3. Boundary value estimates. We refer to Definition 2.2 for the open real
set B(H) on which H admits a smooth functional calculus. For example, if H is a
definitizable operator on a Krein space then by Proposition 4.15 we have 5(H) = R.

The following theorem is the main result of our work.

Theorem 7.9. Let H be a Krein space and A the generator of a Cy-group on H
such that the Krein structure is of class C1(A). Let H be a self-adjoint operator
on H and Il a positive projection which commutes with H such that the following
conditions are satisfied:

(1) H is of class C*(A) for some o > 3/2, in particular H' = [H,iA] is well
defined;

(2) there is ¢ € C§°(B(H)) real with p(\) =1 on a neighborhood of a compact
interval J such that o(H)II = ¢(H) and:

(7.8) p(H)(ReH")p(H) > ap(H)?, a> 0.
Then if s > 1/2 and € > 0 is small enough, we have
(7.9) Sup 440, 11(e4) P R(2)(eA) || < 00, for some v > 0.

Even though our framework is much more general than the familiar Hilbertian
one, we will adopt the usual terminology and call an estimate like (7.8) a Mourre
estimate.

Remark 7.10. In applications one often assumes that H admits a Borel functional
calculus on an interval I D J and that II = 1;(H). If 1;(H) < 0 then the
assumption (7.8) should be replaced by

@(H)(ReH")p(H) < ap®(H), a > 0.

Multiplying the Krein structure by —1 one is then reduced to the situation of the
theorem.

Proof. Let I be a neighborhood of J on which ¢(A) = 1. We notice that it suffices
to show

sup [(eA) ™" R(2)§(H)*(eA) || < o0
for each real £ € C§°(I). Indeed, if Rez € J and we choose & such that 0 < &
and {(A\) = 1 when X is at distance less then v of J, then R(z) = R(2){(H)
R(2)(1 — &(H)?) and ||R(2)(1 — £(H)?)|| < v=F for some finite number k.

Clearly we may assume s < § = o — 1 < 1. We shall use the notations introduced
in the proof of Prop. 6.7: g(r) = ()%, f is a function such that f’ = g2, and
g = g(eA), f- = f(e¢A). Note that f. is a bounded operator by Prop. 5.9. For
Greek letters £, 1), etc, we often adopt the abbreviations n = n(H),& = £(H), etc.

<1
2+

If X.,Y. are bounded operators defined for small € we write X, ~ Y. if X, — Y. =
g:0(P)gr and X, < Y. if X, — Y. < ¢g.O(¢?)g?. For example, Prop. 5.15 gives
g= ~ g2 and from Prop. 6.6 we obtain £g. ~ g.£ if £ € C§°(8(9)).

Fix ¢ € C§°(R) real such that ¢(\) = 1 on a neighborhood of the support of ¢ and
set S = ¢(H). Then S is a bounded symmetric operator of class C*(A) and we
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have n.S'n = nH'n for all n € C§°(I). From Prop. 6.7 we get [S,ie " f.] ~ ¢-9'g?,
hence if we denote F. = e 'Ref. we obtain:
[S,iF] ~ g-(ReS")g?.
Then if n € C§°(I) we get:
[S,inFen]  ~nge(ReS")gin ~ g-n(ReS")ng:
= gen(ReH')ngZ = agen®gt ~ ang-gin.
If 1 is chosen such that &n = £ then we get finally

[SEFLE] > SEg-92¢

for € small enough.

In Prop. 7.6 we take B = £F.£ and C = £g.. Observe that Il = Epll = Ep = £
hence, by taking adjoints, II¢ = &II = €. To find D we note that BC = CD
means £F.£2g. = £g.D hence follows from F.£2g. = g.D so it suffices to take
D = g7'F.£%g.. This is a bounded operator because ¢ is of class C1(A4) and
0 < s <1, s0 F.£2 leaves invariant the range of g.. Now we apply Prop. 7.6 and
obtain

(LeulLeu) < K(||Bell + [ Dell) || Leul||ull
< OllLeul® + (40) (1Bl + 1D )2 lull?, w € H,
for some d > 0, where we have indicated the dependence in ¢ for clarity, in particular
L. = g*¢’ Rg.. We write this as
(Leu|Lew) < 8| Leul|* + cl|ul,
where ¢ = ¢(d, ). With the notation n; =1 — 7 we have {1, = 0 hence
n1Le =19t Rye = [g%,n)€* Rg. = g20(e)g:€” Rg. = O(e)Le.
Thus we have nL. = L. —n*L. = L. + O(e)L.. Since the projection II is positive,
there is a constant N such that N~!||v||? < (v|v) for v € IIH. Thus from n = IIn
we get:
N~YnLoul|? < (nLeulnLeu) = (Leu + O(e) Leu|Leu + O(e) Lou)
< (Leu|Leu) + O(e) [ Leul* < (6 + O(e))l| Leu]|* + c(8, &) [l
But L. = nL. + O(e)L: hence (1 — O(e))||L-u| < ||nLeu||. Inserting this above we
get for € small enough the estimate
[Leul® < 2N (6 + O(e)) || Leull* + 2Ne(8, €) Jul|.
Finally, taking both § and e small we obtain ||L.u|| < C|lu|| for some constant C.
Thus ||g2¢* Rg-ul| < Cllul| and (5.22) gives [|ge¢? Rgeul| < Cu]. O

Remark 7.11. We were forced to ask H to be a Krein space, and not an arbitrary
K —space, only because of hilbertizability assumption in Prop. 5.9.

7.4. Virial theorem. In order to check the positive commutator estimate (7.8),
one needs to extend to K-spaces some facts related to the wvirial theorem. We do
this in this subsection. Let H be a self-adjoint operator in a K —space with a not
empty resolvent set. In all this subsection we fix an open real set I on which H
admits a C°-functional calculus.

Then, as shown in Thm. 2.4, the calculus extends to a bounded Borel functional
calculus on I, so ¢(H) is well defined if ¢ is a bounded Borel function on 1.

Lemma 7.12. If A € I then ;5 (H) is the orthogonal projection onto Ker (H — \).
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Proof. lgyy(H) is a projection because ]1%)\} = Iy Recall that r, for z € p(H)
is the function 7,(z) = (z — 2z)~!. Then r,(H) = R(z) and clearly Ker (H — \)
is exactly the set of vectors u € H such that r,(H)u = r,(A)u. Since the Borel
functional calculus is multiplicative we have

rz(H) Uy (H) = Ty (H)r-(H) = (Ipayr:) (H) = (g r=(V)(H) = (M)A (H).
Thus gy (H)H C Ker (H — A). Reciprocally, if v € Ker (H — ) then r,(H)u =
r2(AN)u hence o(H)u = p(A)u for any rational function with poles only in the
resolvent set of H. From (2.4) for example, we then get o(H)u = p(N)u for any

v € C3°(I), and finally by taking limits we get it for any bounded Borel function
on I. In particular g xy (H)u = u. O

Now let A be the generator of a C%-group such that H is of class C1(A). If we
interpret H' = [H,iA] as a sesquilinear form on DomH, then we have the following
virial theorem.

Lemma 7.13. For any A € I we have N,y (H)H 1y, (H) = 0.

Proof. Let z € p(H) and R = (2 — H)~'. Then R’ = [R,iA] = RH'R and for any
bounded Borel ¢ with support in I we get o(H)H'o(H) = ¢, (H)R ¢,(H) with
vz (x) = ¢(x)(z — z). Thus we have:

T (H)H' Uy (H) = (2= 1 (H)R' Iy (H) = (2—0)? lim Ty (H)[R, Ay (H)

where A, = (e™* —1)/7. Since
Iy (H)[R, A7 ]I (H) = Ty (H)RA- G (H) — 1y (H) ARl (H)
= lpy(H)(z = M)Ay (H) = Ty (H) Az (2 = A1y (H) =0,
we get the required result. |

Corollary 7.14. Let H be a self-adjoint operator on the Krein space ‘H and let
I C B(H). Assume that for some J C I we have 1;(H) > 0 and that there is a
number a > 0 and a compact operator K such that

]L](H)H/]L](H) Z a]lJ(H) +K.

Then the point spectrum of H in J is finite and consists of eigenvalues of finite
multiplicity. Moreover, if X € J is not an eigenvalue of H and b < a then there is
a compact neighborhood I of X in J such that

1, (H)H'1;(H) > bl (H).

Proof. The range of 1;(H) is a Hilbert space (for the induced Krein structure)
stable under H, so the usual proof (see e.g. [M2]) applies. 0

We shall need one more technical fact for applications in Section 8. We write S ~ T’
if S,T are operators and S — T is compact. Recall that C%(A) C CL(A) for a > 1.

Lemma 7.15. Assume H € CL(A). Let Hy be a second operator (not necessarily
self-adjoint) of class CL(A) such that (H —2)~! ~ (Ho—2)~! for some z € p(H)N
p(Hy). If Hy admits a smooth functional calculus on J then for any ¢ € C§°(J)
we have ¢(H)H'p(H) ~ o(Ho)Hyp(Hp).

Proof. Let R= (2 — H)™', Ry = (z — Hy) ™!, and ¢, as above. Then
p(H)H'o(H) — o(Ho)Hyp(Ho) = @=(H)R' 0= (H) — ¢=(Ho) Ryp=(Ho).

The operator R' — R|, is compact as norm limit of compact operators, using that
H,Hy € CL(A), and o, (H) — ¢.(Hp) is compact by a standard argument. |
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8. KLEIN-GORDON OPERATORS

In this section we discuss various Krein spaces and operators on them associated
to the following abstract Klein-Gordon equation:

(8.1) 07 (1) — 2ik0(t) + he(t) =0,

where ¢ : R — H, H is a Hilbert space and h, k are self-adjoint, resp. symmetric
operators on H.

We first introduce an abstract setting which allows one to treat in a unified way the
charge and energy versions of the Klein-Gordon operators. We then study in details
the functional calculus of the free Klein-Gordon operators, which corresponds to
the case k = 0 in (8.1). Finally we introduce some abstract conditions under which
a Mourre estimate can be shown for the charge Klein-Gordon operator. This section
is somewhat complementary to our paper [GGH1], where resolvent estimates for
energy Klein-Gordon operators are obtained, although the method to obtain a
Mourre estimate is quite different.

8.1. Notations. We need some new notations and terminology.
Linear operators

We write f : X=>Y if X,V are sets and f : X — Y is bijective. If XY, Z are
Banach spaces with X C Y C Z continuously and densely then to each continuous
operator S : X — Z we associate a densely defined operator S acting in Y, namely
the restriction of S to the domain DomS = S~(Y). We say that S is the operator
induced by S in Y and use the same notation for S and S unless this abuse of
notations leads to confusions.

Scale of Sobolev spaces

Let H be a Hilbert space with norm || - || and scalar product (-|-). We identify H
with its adjoint space H* = H via the Riesz isomorphism. Let h be a selfadjoint
operator on H.

We can associate to it the non-homogeneous Sobolev spaces
(h)™*H := Domlh|®, (h)*H = ((h)"*H)*, s > 0.

The spaces (h) *H are equipped with the graph norm |[(h)u||. We will use the
notation

(uv), we (h)™°H, ve (h)*H, s >0,
to denote the duality bracket between (h)~*H and (h)*H.

8.2. Quadratic pencils. We fix a Hilbert space H with H* = H and consider two
operators h, k such that:

(A1 h is self-adjoint on H,
ke B((h)~2H,H) is symmetric.
The unique continuous extension of k : H — (h)2H will still be denoted by k.
We set also:
ho:=h—+k*: (h)"2H — (h)H,
p(z) =h+202k—2)=ho— (k—2)2: (h)~"2H — (h)2H for z € C.
The map z — p(z) is called a quadratic pencil.
Note that formally ¢(t) = e!*!¢ solves the Klein-Gordon equation (8.1) iff p(2)¢ = 0.
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Obviously p(z) is also a well defined operator in B({(h)"'H,H) and B(H, (h)H).
Moreover, the domain in H of the operator p(z) : (h)~2H — (h)2H is precisely
(WYY, ie. (h)"'H = p(z)"'H. Indeed, for u € (h)"2H we have p(z)u =
hu + z(2k — z)u and the last term belongs to H, hence p(z)u € H if and only if
hu € H.

Clearly p(2)* = p(z) in B((h)~2H, (h)2H). We shall prove below that this relation
also holds for the operators in H induced by p(z) and p(z).

Lemma 8.1. Assume (A1). Then the operator induced by p(z) in H is a closed
operator and its Hilbert space adjoint is the operator induced by p(Z) in H. In other
terms, the relation p(z)* = p(Z) also holds in the sense of closed operators in H.
The following sixz conditions are equivalent:

(1) p(2) : ()" *HSH; (2) p(Z) : (W) YHSH;
(3) p(z) : /H;><1h>Hf . (4) p(z) : H;><1h>H; 1
(5) p(z) : (h)"2H — (B)2H; (6) p(Z) : (h)"2H — (h)2H.
In particular, the set
(82) p(hk):={z€C|p(2): (A) THIR)TH} ={z € C|p(2): (h) "HSH}

s wnvariant under conjugation.

Proof. If we set £ = ((2k — ¢) € B((h)"2H,H) then ¢ : (h)"2H — H and its
adjoint in 7 satisfies £* D ((2k — ¢) € B((h)"2H,H). In particular, ¢ and ¢*
are h-bounded with relative bound zero, hence there is a real number n such that
[¢(h+in)~|| < 1and ||[¢*(h—in) | < 1. From h+{+in = (1+£(h+in)~")(h+in)
it follows that h+ £ +in : H'H from which we get that (h+£+in)* is a bijection
from its domain onto H, see e.g. [We, Thms. 4.17, 5.12].

Clearly (h+ ¢ +in)* D h+ ¢* — in, and an argument similar to that already used
implies i+ ¢* —in : (h)"'H->H. Thus (h+£)* = h+£* which means p(¢)* = p({).
Now the equivalence p(¢) : (W) "'H3H < p(C) : (h)"'H>H is immediate (see
again [We]). If these relations hold, then p(¢) : H-=(h)'H because this oper-
ator is the adjoint of p(¢) : (h)"'H=H, and then by interpolation we obtain
p(C) + (B)"2H(h)2H hence p(C) : ()" 2H-=3(h)2H. Reciprocally, if p(¢) :
(hy~2H=3(h)=H then p(¢) : (h)~'H=H because the domain of the operator in
H associated to p(¢) : (h)~"2H — (h)2H is (h) 1 H. O
In the sequel we will assume

(A2)  p(h, k) £ 0.
Let us state an easy lemma which allows to check (A2).
Lemma 8.2. If (A1) holds and h is bounded below, then there is co > 0 such that
{z :|Imz| > |Rez| + co} C p(h, k).
Proof. Consider p(z) as a linear operator on H with domain (h)"'H. Let ¢ be such
that h+¢2 > 1 and 6 = |[k(h + ¢2)~%||. For z = a + ib, a > 0:
Rep(z) = h+b% —a® + 2ka
> h+c2+b%—a? -2 —ad® — atk?

(1—a 6% (h+c?) + b —a® — 2 — ad?

Y

For av = 2 this yields
Rep(z) > b* — (14 6%)a* —* > ¢; >0,
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if |b| > |a] + co for ¢g > 0. If we set p := p(z) then for all u € (h)~'H we shall have
c1full* < Re(ulpu) < |lulll|pu]| hence c1juf| < [[pul| and similarly c[ul] < [[p*ul|.
Since p is closed this implies p : (h) " *H-SH. H

8.3. Spaces. The following two spaces play a fundamental role in what follows:
(8:3) E:=(h) HeH and £ :=Hao (h)IH.

One often calls € the energy space. Observe that £ C £*. As decided in Subsect.
2.1, the space £* is identified with the adjoint space of £ with the help of the
sesquilinear form:

(8.4) (ulv) = (uolv1) + (urlvo), foru=(u) €& v=_(3) €,
usually called the charge.

We identify £** = £ as in the Hilbert space case by setting (v|u) = (u|v). This
allows us to speak about symmetric or positive operators S : & — £*.

Observe that we have dense and continuous embeddings € C H & H C £* and the
identification of £* with the adjoint of £ is determined by the Krein structure of
H & H exactly as in the case of Friedrichs couples in the category of Hilbert spaces.
Note however that H @ H is not an interpolation space between £ and £* if H is

infinite dimensional (see below). In any case, by complex interpolation we get for
any 0 <o <1:

(8.5) (£, ]y = (W)TV2 @ (h)7/?H,

so we cannot obtain H & H in this way. We define the charge space of order 6 for
0<6<1/2by

(8.6) Ko = (h)™'H & (h)H.

Then £ C Ky C E* strictly and two such spaces are not comparable (if # is infinite
dimensional, which is implicitly assumed in all this work). Observe that the middle
space defined by complex interpolation

(8.7) €,y = (W) H @ () *H

equals Ky /4 and we shall see that it plays a remarkable role in the theory. If 6 # 1/4
then Ky is not an interpolation space between £ and £*: in Remark 8.14 we give
examples of bounded operators on £* which leave £ invariant but not KCg if 6 # 1/4.

Since ((h)~%H)* = (h)?H, the spaces (Ky, (:|-)) are examples of Krein spaces as in
Subsect. 3.4.

Below, when we speak of self-adjointness of operators in Ky, we refer to this Krein
structure.

Since £ C £*, the sesquilinear form (-|-) restricts to a hermitian form on €. Note
however that (&, (-|-)) is not a Krein space, since (-|-) is not non-degenerate on &.

8.4. Operators. It is easy to extend the relations from Subsect. 3.4 to the present
setting. For example, since we think of elements of £ as column matrices, we may
represent operators & — £* as matrices of operators:

a b G’GB(<h’>7%HaH)a bGB(H>a
S = ( d ) with ) ) )
c c € B((h)y 3 H, (3 H), d e B(H, (W) H).
A computation gives S* = (9. ¥.) hence S is symmetric if and only if
a b a € B((h)"2H,H), b="b* € B(H),
( N ) with

(8.8) S = ) ) )
c=c* e B((h)"iH, (h)iH), d € B(H, (h)EH).
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Lemma 3.6 also has a natural version in the present context.

We may view any S € B(E,E*) as operator on £* with domain &, hence its resolvent
set and spectrum are well defined. More precisely, the resolvent set p(S) of S is
the set of z € C such that S — 2z : &€ — £* is bijective and the spectrum of S is

a(5) = C\ p(5).

8.5. Klein-Gordon operators. The Klein-Gordon operator is the continuous map
K : & — &£ defined by

- (k1 o uo ) kuo + uy
(8.9) K = ( ho K ) hence K( w ) = ( houo + kus )
Formally we see that if ¢(t) is a solution of (8.1) and we set

o(t)
(8.10) (1) = ( i710ig(t) — ko(t) ) ’

then f(t) = €5 f(0), hence K (or more precisely some of its restrictions) is the
generator of the group associated to (8.1) for the parametrization (8.10) of Cauchy
data. The choice (8.10) is natural when one wants to emphasize the symplectic
aspect of the Klein-Gordon equation (8.1).

From (8.8) it follows that K is a symmetric operator and that for all u € &:
(8.11)  (u|Ku) = (uolhouo) + |[u1]|* + 2Re(kuo|u1) = (uo|huo) + ||kuo + ui]?.

Note that we may, and we shall, think of K as closed densely defined operator in
E*. There is no a priori given Krein structure on £* but various charge and energy
Klein-Gordon operators will be obtained as operators induced by K in Krein spaces
continuously embedded in £*.

Proposition 8.3. Assume (A1). Then p(K) = p(h, k) and if z € p(K) we have:

s Rae) 7= h) 5!
w12 =07 =m0 = (1, G h e )

Proof. We shall prove that K — z : E3E* < p(z) : (h)"2H3(h)2H and if these
conditions are satisfied then we shall justify the formally obvious relation (8.12).
Assume first p(z) : (h)"2H=3(h)2H. Set ¢ = p(z)~!, £ = k — z, and let G be the
right hand of (8.12), so that

_ —qt q a —q(la —b)
(8:13) G‘(Heqz zq) and G(b)_(aJrEq(Eab) :
Tklis clearly defines a continuous operator E* — £ and a simple computation gives
(K—2)G=1on&" and G(K —z)=1oné&. So G is the inverse of K —z : £ — £*.

Reciprocally, assume that K — z : E5E*. If ug € (h)"2H and uy = —lug then
uy € H and houg + luy = (ho — £2)ug = p(z)ug hence (K —z)(%) = (p(z(;ug ). Thus
if p(2)up = 0 then (K — 2)(“0) = 0 and so ug = 0. Hence p(z) : (h)"2H — (h)2H
is injective. Now let v, € (h)2H. Since (K — 2)€ = £* and () € &, there are
up € (h)"2H and u; € H such that (K — z)(%) = (), or ug +uy = 0 and
houo 4 fuy = v1, hence p(z)ug = v1. This proves that p(z)(h)~2H = (h)2H and so
p(z): (W)Y 2 H(h) 2. O
We now realize the Klein-Gordon operator as a closed densely defined operator in
other Banach spaces.
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Proposition 8.4. Let £ be a Banach space such that £ C L C £* continuously and
densely. The operator L induced by K in L is the restriction off( to DomL = {u €
& | Kue L} considered as operator in L. This is a closed densely defined operator
such that p(L) D p(h,k) and Rp(z) := (L — 2)~' = Ry (2)|L for any z € p(h, k),
in particular DomL = Ry (2)L for any such z.

Proof. Ifu e & C £ and z € p(h, k) then Ku € £ if and only if (K — z)u € £ hence
if and only if u € (K — 2)71L = Ry (2)L. Since Ry (z) is a continuous surjection
and L is dense in K*, the space DomL is dense in £, which is dense in £, hence
DomlL is also dense in £. By the closed graph theorem, the restriction of Ry (z) to
L is a continuous operator in £, so L is a closed densely defined operator in £. []

Let us now discuss several natural operators obtained from Prop. 8.4 for various
choices of L.

The largest possible choice of £ is £L = £*. In this case the operator L equals K.
When we want to stress that we look at K as closed densely defined operator in £*
we denote it by Kpax.

We have K~ = K if we consider K as an operator £ — £* but as we shall see below
Kin = K}, is a quite different object.

The smallest possible choice of £ is £L = £€. We shall denote K,,;, the operator
induced by K in £. Note that

Kmin CcLcC KmaX7
for any realization L of the Klein-Gordon operator.
In the next proposition we describe explicitly the domain of Ky, its resolvent set,
and we compute its adjoint. Recall that we identified the adjoint space of £ with £*
with the help of the sesquilinear form (8.4). In particular, if S is a closed densely
defined operator in £ then the domain of S* is the set of v € £* such that the map

u +— (Sulv) is continuous for the E-topology and then S*v is the unique w € &*
such that u — (Sulv) = (u|w) for all u € DomS.

Proposition 8.5. Assume (A1), (A2). Let Kmin be the operator induced by K in
E. Then K}, = Kmax, p(Kmin) = p(h, k) and

min

(814)  DomKuin = {(12) |uo € (W) "M, wi € H, kup +ur € ()2}

Proof. We denote by D the right hand of (8.14) and first prove DomK p;,, = D.

We have u € DomK i, if and only if u € £ and Ku €&, ie. kug+us € <h>*%7-[
and houg + kuy € H. These conditions are satisfied if © € D because hgug + ku; =
huo+k(kuo4ur) and hug € H, k(kuotur) € H. Thus D C DomK . Reciprocally,
if u € DomK iy then hug = houg — k*ug = (houo + ku1) — k(kug + u1) belongs to
H, hence ug € H!. This proves that DomK,,;, C D hence (8.14) is true.
Next we prove K = Knax. For any v € DomK i, and v € £* we have

(Kul|v) = (kug + ui|v1) + (houo + kuq|vo).

If v € & = DomK . then it is clear that the right hand side is continuous for the £-
topology and the right hand side above is just (u|Kmaxv). Therefore Ky C KX, .
Reciprocally, we would like to show that

(8.15) [(Kminulv)| < Cllulle, V u € DomK i,

implies v € €. Fix z € p(h, k) and let R = Ry (z). Then (Kuin — 2)~" = Rje by
Prop. 8.4. Note that (8.15) is equivalent to

(K — 2)ulv)| < C'||ulle ,¥ u € DomK i,
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for some constant C’ and this is equivalent to
|(wlo)] = [((K = 2)Rw|v)| < C'[|Rulle, ¥ w € E.

But R : £* — £ is continuous, so we obtain |(w|v)| < C”||wl|g+ for all w € €. Since
€ is dense in £* we see that (-|v) extends to a continuous form on £*, hence v € &.

Finally, we have p(Kmin) = p(Kmax)* = p(h, k)* = p(h, k). H

Corollary 8.6. If (A1) holds and if h is bounded from below then Kpyin and Kpax
are generators of Cy-groups.

Proof. Since K. = Kmnax it suffices to consider the case of Ky,iy. The rest of the
proof is a variation on the proof of [K, Thm. 3.2]. First we show that it suffices
to assume h > 1. Indeed, if ¢ is a number such that A + ¢ > 1 and if we replace

everywhere h by h + ¢ then hg gets replaced by hg + ¢ and we have

- k 1 0 0
K_(h0+0 k)_(c 0)

Since the last term is a bounded operator, it suffices to show that the first term
on the right hand side is a generator of Cy-group. So from now on we may assume
h > 1. Then 0 € p(h, k) and due to (8.12) we have

—h7 'k ht

-1 _

R nin = ( 1+ kh~k —kh~! >

We know that this is a bounded operator on £. On the other hand, it is easy to
check that the “energy” hermitian form (u|Ku) = (ug|hug)+ ||kuo+u1||? introduced
in (8.11) is an admissible scalar product on &, i.e. &£ equipped with this form is
a Hilbert space. Since (u|KK_ ! u) = (ulu) € R, the operator KL is symmetric,

hence Ky is a self-adjoint operator on this Hilbert space. |

Another case of interest is £L =Ky, 0 <0 < %, which we now discuss.

Proposition 8.7. Assume (A1), (A2). Let Kg be the operator induced by K in
the space Kq defined in (8.6). Then
(8.16)

DomKy = {(¥) | uo € (W) 2H, uy € H, kug+uy € (h)"°H, houg+kuy € (h)OH}.
Moreover Ky is self-adjoint on the Krein space (Kg, (-|-)) and p(Kyg) = p(h, k).

Proof. vy € (h)=%H, vy € (h)?H and (10 ) := Rz (2)(1?) then, with the notations
of the proof of Prop. 8.3, we have fug + u1 = vg and houg + fu; = v hence (3,°)
belongs to the set D defined by the right hand side of (8.16). Thus R (2)KC C D.
Reciprocally, if ug, u; are as in (8.16) then (20 ) := (K — 2)(40) belongs to Ky and

Ry (2)(W)) = (4 ), thus D C Ry (2)D. This proves (8.16).

To prove the self-adjointness of Ky it suffices to show Rk, (2)* = Rk, (Z) for some
z € p(h, k), which is not empty, by (A2). But this is obvious, see the line before
(8.8).

Since by Prop. 8.4 we know that p(h, k) C p(Kpy), it remains to prove that p(Ky) C
p(h, k). Assume that Ky — z : DomKy—+Ky and argue as in the proof of Prop.
8.3. We first show that p(z) : (h)"2H — (h)2H is injective. If ug € (h)~2H and
p(z)up = 0 set u3 = —lug. Then uy € H and

houo + Cuy = (ho — £*)ug = p(2)ug = 0,
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hence (K — 2)(4) = 0. Also:
kug 4+ u1 = lug +uy + zug = zug € (h)y"2H C (h)~H,
houg + kur =  houg + luy + zup = zuy € H C <h>767‘[

Thus (°) € DomKjy and (Ky — 2)(4?) = 0, so ug = 0. This proves the injectivity
of p(z) : (h)"2H — (h)2H. In particular, p(z) : (h) " H — H is injective.

According to Lemma 8.1, it remains to prove that this map is also surjective. Let
v; € H. Since (Ky — z)DomKy = Ky and (UO1 ) € Ky, there is u € DomKjy such that
(Ko — z)u = (UO1 ), hence lug + u; = 0 and houg + lug = vy, thus p(z)ug = v;. But
p(z) = h — 22 + 22k hence hug = vy + 2%ug — 2zkug € H so ug € (h)"'H. Thus
p(2)(h)"*H = H. O

Remark 8.8. As explained before, we have K, C Ky C Kpax for any 0 < 0 < %
and the spectrum of all these operators coincide. But for § = 1/4 we have more:
from (8.7) it follows that in this case the operator K /4 is obtained by interpolation
of order 1/2 between Kyin and Kpyax = K5, (in resolvent sense). In particular,
these operators should have similar spectral properties and functional calculus, fact
which will be confirmed by later developments.

8.6. Charge and energy operators. The self-adjoint operator Ky in the Krein
space Ky will be called charge Klein-Gordon operator, although this terminology
is often reserved to the case 6§ = 1/4.

If ¢(t) is a solution of (8.1) and we set instead of (8.10):

(5.17) s =50 )
then formally f(t) = ei*f £(0) for

: 0 1
H<h 2k>'

The choice (8.17) of Cauchy data is the standard one in the PDE literature and
is convenient when one wants to emphasize the energy conservation of the Klein-
Gordon equation (8.1).

We now show that the operator K, is isomorphic to the usual energy Klein-
Gordon operator H, which is the realization of H on £, so we could say that Ky
is the energy Klein-Gordon operator in the charge representation.

Note first that if a : <h>*%7-[ — H is a continuous symmetric map then the operator
D(a) = (L9) is a well defined continuous map £* — £* which leaves £ invariant.
Thus ®(a) is an isomorphism £* — £* with ®(—a) as inverse, which clearly implies
that ®(a) : &€ — & is also an isomorphism. Observe that ®(a) is symmetric when
considered as operator £ — £*.

Set ® = ®(k). Then
. 0 1 .
H'(h 2k>.5%6

is a continuous (not symmetric) operator and ®K = H®.

TAhe usual energy Klein-Gordon operator H is the closed operator in £ induced by
H. Clearly

DomH = (h)""H & (h)"*H and ®Kpin® " = H,
where @ is considered as an automorphism of £. Thus we immediately get p(H) =
p(h, k) and, more generally, K,,;, and H have the same spectral properties.
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Assume now that 0 € p(h, k). According to Lemma 8.1 this is equivalent to h :
(h)~2H5(h)2H hence (9 1) : E3E*. Then &, equipped with the form

(8.18) (ulv)e = (ul(} §)v) = (uolhvo) + (usvy)

is a Krein space. It is easy to check that H is self-adjoint on (&, (:|-)¢). Indeed, we
have 0 € p(H) = p(h, k) and H™! = (‘”‘flk hal ) is a bounded symmetric operator
because (u|H tu)e = 2Re(uo|u1) — 2(uo|uo)-

This is the usual energy Klein-Gordon setting. We now express it in the charge
representation, i.e. in terms of the operator Kpi,. Since ®~! : £ — £ is an

isomorphism which intertwines E and K, we see that the energy Krein structure
on & is given by (8.11) and that K,y is self-adjoint for it.

8.7. Free operators. We now discuss the free operators

- 0 1 N
Ky := < ho 0 > &€= E R
obtained for k£ = 0. In this case hop = h and we will formulate the various results

below in terms of hg.

Denote by Ly any of the operators Ko min and Ko g induced by KO in & and Ky
respectively. Note that the operator Ko max has the same properties as Ko min
because Ko max = (K0, min) "

Lemma 8.9. Set 04 (hg) := o(ho) NR* and Ry, (2) := (ho — 2)~L. Then:

(819) o(Lo) = (0 (ho)/?) U (= 04 (ho)/*) U (ilo—(ho)['/*) U ( —ilo—(ho)['/?),
ZRno(2%)  Rng(2%)

RLo(Z) - ( 1—|—z2th0(z2) ZthO(ZQ) )

_ 2Ry, (2%)  Rp,(2?) B )
B ( hOéLhU(ZQ) ZéLhO(ZQ) ) - (LO+Z)Rh0(z )

(8.20)

Proof. By Props. 8.5 and 8.7 we have o(Lg) = {z € C : 22 € o(hg)}, which
implies (8.19). Then (8.20) follows from

(Lo — 2)(Lo +2) = L3 — 2% = hy — 22,
where hg is identified with the diagonal matrix having hy on the diagonal. 1

Remark 8.10. Note that the resolvent of the operator Ky o has a rather unusual
behavior: if hg is positive and unbounded and if we equip Ky = H & H with the
Hilbert direct sum norm, then (8.20) implies ||Rx, ,(2)| > ||hoRn,(2%)| > 1 V=.

We now compute ¢(Lg) for entire functions ¢ by using the relations
L2n = ( hgn h(o)” > and L2t = ( hOSH hgn > neN.
If p(2) =>_,50an2™ and if we define
(8.21) pe(2) = 5 (p(V2) + 9(=V2)) = 3,500202",
(5.22) 0u(2) = 5= (VD) = (V) = Ezgtannns”

then by working with the set of entire vectors of the self-adjoint operator hy in H
we obtain

N =

(8.23) ¢(Lo) = < hf;i?%) 5?2223 )
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For example, if hg = €2 for some operator €, not necessarily self-adjoint, then

(8.24) oitlo _ ( cos(te) i 'sin(te) )

ie sin(te) cos(te)

Let us now assume hg = €2 for ¢ > 0. Then o(Lg) = o(e) U —o(e) and (8.23)
becomes

ple)te(=e)  ple)—p(=¢)
-~ _ p+le) p-(e)/e
(8.25)  ¢(Lo) = ( L@ o) pla)be(=) ) = (
2 2

p-(e)e  p1(e)

where
px(z) = (p(z) £ o(-12))/2,
are the even and odd parts of the function ¢. The value of (¢(x) — p(—x))/2z at
x =0is ¢'(0) by definition.
We now discuss bounds for the Borel functional calculus of Lg.
The bounds in the case of Ko min and Ko max are of a different nature than those

for Kog (unless § = 1/4). We introduce the following spaces A, Ay of bounded
Borel functions. Recall that ¢4 denote the even/odd parts of .

Definition 8.11. We denote by A, resp. Ay, the spaces of Borel functions ¢ : R —
C such that:

(8.26) [[ella := sup[p(z)] + sup ¢ (z)/z] < oo,
zeR x>0
resp.
(8.27) lellag == llella + sup lp—(2)/2] + sup lo— () ()1 < 0.
r> re

Note that A;/4 = A.

Lemma 8.12. Assume hg = €2 for some € > 0. Then there is a unique linear
map A > ¢ — ©(Komin) € B(E) such that o(Komin) = (Komin — 2) " if o(z) =
(r —2)7Y with 2 ¢ R and such that the following continuity property is satisfied:

if pn is a bounded sequence in A with oy, (z) — @(x) for each real z, then @, (Ko min) —
©(Ko,min) weakly.

The map A > ¢ — @(Komin) € B(E) is an algebra morphism and (8.25) holds.
Moreover:

(8.28) lo(Komin)llB(gy < Cllglla, C > 0.

Lemma 8.13. Assume hg = €2 for some € > 0. Then there is a unique linear map
Ao 3 ¢ o(Kop) € B(Kg) such that p(Kog) = (Kop — 2)" ! if p(x) = (z — 2)7!
with z ¢ R and such that the following continuity property is satisfied:

if ©n is a bounded sequence in Ng with ¢,(x) — @(x) for each real x, then
@n(KO,G) — QO(KO,O) weakly.

The map Ao > ¢ — p(Kop) € B(Kg) is an algebra morphism and (8.25) holds.
Moreover:

(8.29) le(Ko,0)llBxcs) < Cllellay, € =0.
Proof of Lemmas 8.12, 8.13. For later use we note the following easy facts:

(8.30) sup |o(z)| ~ sup [p4 (x)] + sup [o_(z)],
zeR x>0 x>0

Sup,>q [(2) - () /2] + sup,>o [vp-(2)/(2)]

(8.31)
~  SUP,>q [0 (7)] 4+ sup,so ¢ () /7],
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sup, o | (@) o () /2] + sup, o |z () /(2) "]

~ suP,zo @- (2)] + sup,sg lo- ()¢ (2) /2] + supysg [(2) e ().
Let us first prove Lemma 8.12. We consider on £ the admissible norm defined by
llull2 = ||(e)uol|* + ||u1|*>. The diagonal matrix with coefficients (¢) and 1 is an
isometric bijection &€ — Ko = H @ H. It follows from (8.25) that if ¢ is an entire
function, bounded on R, the norm of the operator ¢(Komin) in € is equal to the
norm in Ky of the operator

(5 ?)(;"1%)5 )y
= (o090 B8 ),

with a convention as stated above for ¢_(0)/0. Hence there is a number ¢ > 0 such

that
(8:33)  cllp(Komin)lle <sup ey (2)] +sup [(z)p- (2)/x] + sup [zp_(z)/(2)]-
x>0 x>0 x>0

(8.32)

Applying (8.30), (8.31) we obtain (8.28). We extend the functional calculus from
entire functions in A to Borel functions in A in the standard way.

To prove Lemma 8.13 we argue similarly, introducing the compatible norm [|ul|3., =
()2 up|? + || () ~?%u1||? on Ky. The diagonal matrix with coefficients ()2¢ and
()72 is an isometric bijection Ky — Ko. Hence the norm of p(Kp ) in K is equal
to the norm in Ky of the operator

(98 e ) (28 2 ) (97 2)
_ ( o+(e) <e>4%_<s>/a),
()/<s> y(e)

Thus there is a number ¢ > 0 such that
(8:34)  cllo(Kog)llx < suple- ()] +sup o () /a|(2)* + sup lzo_()|/ ()"

Using (8.30), (8.32) we obtain (8.29). 0

Remark 8.14. If ¢ is not bounded we see that the lack of regularity at infinity
of the function p(z) = €' makes ¢'*0.¢ unbounded if ¢+ # 0 and 6 # 1/4. This
fact also allows us to show that the spaces Ky with 6 # 1/4 are not interpolation
spaces between £ and £*. Indeed, if ¢ # 0 then e'*®max is bounded in £*, leaves
£ invariant and induces there the bounded operator e*fmin It induces in K the
densely defined operator e*%0.¢ which is unbounded if 6 # 1/4.

Remark 8.15. One may clearly give sense to the right hand side of (8.25) as a
closed densely defined operator for a large class of functions ¢ and so to give a
meaning to ¢(Lg) as (unbounded) operator. For example, if € > 0 then

1/ 1 et
(835) ]l]Ri (LQ) = 5 ( te 1 ) = Hi

and these are the spectral projections of Lo corresponding to the half lines R*. By
the preceding lemmas or by a simple direct argument the operators g+ (K%, ) are
bounded operators on & if and only if infe > 0 while the Ip+ (K ) are bounded
operators on Ky if and only if infe > 0 and § = 1/4. In any case, the I are
projections (i.e. 12 = IIy) such that II,11_ = II_TI; = 0 and Iy +II_ = 1 at
least on dense domains. It is easy to check that Ig+ (Ko ) > 0 and Ip-(Kpg) <0
(by Lemma 3.6 in the bounded case and a direct argument in general). The case
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of II} = lg+(Koyg) for 6 # 1/4 (e.g. let & = 0 and infe > 0) is particularly
interesting: this is a positive self-adjoint operator on K which is an (unbounded)
orthogonal projection whose resolvent set is empty. Indeed, for any z # 0,1 the
operator z(Ily — 2)~! = (1 — 2) 71y — 1 is not bounded.

It is easy to compute the boundary values of the resolvent and the “spectral mea-
sure” of Ly. From (8.20) we see that if A > 0 then, in the sense of distributions,

v [ ABng(A? +10)  Rpy (A +10)
(8.36) Rpo(A +10) = ( hoRpg (A +10) ARy (A% +10)
while if A < 0 then
(8.37) Ry (A +i0) = ( hoRny (A* —10) ARy, (A2 = i0)

Recall that, if S is a self-adjoint (in the usual sense) operator with resolvent Rg
and spectral measure Fg then

ARy, (A2 —10) Ry, (A2 —i0) )

5 = 5 (RS(A +i0) - Rs(\—i0))

by which we mean ¢(S) = [@(A\)dEg()\) = [ (A A)d\ where the second equal-
ity holds in the sense of distributions for smooth go If S >0 (ie. S >0 andis
injective) then we get:

fgo JEG(A2)dA = [ 557z (A2 EG(A)dA

= 251/2 (51/2) = 251/2 f‘P 51/2()‘)3
which can be written

1
Eg(\?) = WEQW()\) 2>\E31/2 (A)-

By using this in (8.36) and (8.37) we get for A\ > 0:

) AE, (\2)  Ej, (A \ _1/( E.\ e lEL)
(8.38) ELoW(hoéZU(AQ) A520<A2>>§<5E;<A> EL(N) )
and
(8.39)
, _ “AEL (M) B, (V) 1 BN —e'EL(N)
ELO(A)< hOE;fO()\Q) —A?E;LO(V)) <—5E;(A) EE;()\) )

8.8. Conjugate operators for Ky. We now construct conjugate operators for the
free and total Hamiltonian. The treatment is cleaner for the charge Klein-Gordon
operators Ko g, Kg because they are self-adjoint for the same Krein structure so we
concentrate on this case.

Several types of conjugate operators can be considered in this context, here we shall
work only with those of scalar type. To be precise, operators of the form S = s® s,
i.e. diagonal matrices S = (§9), will be called scalar operators. We use the same
notation for an operator s in (h)?H which leaves (h) ~# invariant and the diagonal
operator S = s @ s in Ky.

We introduce the assumptions:

(®) € is a positive self-adjoint operator on H,
k : Dome — H is compact and symmetric as operator in H.

(M) { a is a self-adjoint operator on H such that e**Dome C Dome for all ¢ € R,

e and k considered as operators Dome — H are of class C(a).
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If (E) holds the quadratic form % — k% on D(e) is closed and bounded from below.
If h is the associated self-adjoint operator, h is bounded below and its spectrum
is discrete below infe?. As before, we set hy = &> and we have (h)~Y/?H =
(ho)~Y?H = Dome. This implies (h)*H = (¢)>*H for |s| < 1/2.

In particular (A1), (A2) of Sect. 8.2 are satisfied, by Lemma 8.2.

If (M) holds e'*® induces a Co-group in Dome hence in all (h)*H with |o| < 1. This
gives a meaning to the regularity condition on € and k. As before we use notations
like &’ := [g,1a], etc.

Our purpose is to study the self-adjoint operators

0 1 k1
(8.40) K079 = ( 62 0 ) and K@ = ( 62 k )
acting in the Krein space Ky. The conjugate operator will be

A:<8 2>a®a.

Clearly A is the generator of the Cy-group of scalar operators e'*4 = eft® @ ei*® on
Ko. More generally:

Lemma 8.16. Let A = a ® a. Then e = e''® @ ei*® s a Cy-group on E* which
leaves invariant the spaces £ and K and induces Cy-groups on them. The Krein
structure of Kg is of class C1(A).

In fact e'*4 is unitary on Kp, i.e. we have (e*Au|e'*Av) = (ufv) for all u,v € K.
The resolvent of Ky is the restriction of the resolvent Ry (z) : £ — & explicitly
described in (8.12) and it is easier to work with R (z). Here and below z is a fixed
point in p(h, k) N p(ho,0). Note that K — Ko = (59): & — £ is compact hence
Ry (2)=Rg () : £ — € is a compact operator too. In particular Ry, (2)— R, ,(2)
is a compact operator on Ky.

Lemma 8.17. Ky and Ko are of class CL(A).

Proof. Tt suffices to prove the stronger property that the map
R 3t Ry (2)e™ € B(E,€)

is norm differentiable. If we set K(t) = e Ke~*4 this is clearly equivalent to
the norm differentiability of ¢t — K(t) € B(£,£*). But this is obvious because
if hy = e *@hel’® and ky is defined similarly, then we have K(t) = (}IZ klt) and
hy, ks clearly are norm differentiable when considered as B((h)~2H, (h)2 ) valued
functions. U

We saw before that Ko g > 0 and o(Kpg) = () Uo(—¢). Our first purpose is to
construct a such that A be conjugate to Ky ¢ on some subsets of its spectrum. Our
choice of A does not seem convenient because
0 0
A1 Ko,iA] = .
(8 ) [ 0,6,1 ] ( [[—:2,1(1] 0 ) )
but the restriction to positive or negative energies of this commutator satisfies the

Mourre estimate. It is here that positivity properties of functions of Kyg with
respect to the Krein structure of Iy will play a role.

Lemma 8.18. Let ¢ € Ag with ¢ > 0. If o(X\) =0 for A <0 then p(Kop) > 0. If
A0 =0 for A 0 then o (Koa) <0
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Proof. In the first case we obtain from (8.25)

L owle) ele)/e )
8.42 Kop) ==
(542 e =3 ( 50 %0
while in the second case we get

Llw(=e)  —p(-e)/e >

8.43 Kop) ==
(549 =3 (5% 03
and Lemma 3.6 gives the stated results. 1

Remark 8.19. By using the “spectral projections” Iy = lp+(Hy) associated to
the intervals R* discussed in Remark 8.15 we see that the operator Hy is “scalar”
on each of the regions A > 0 and A < 0 in the following sense: if ¢ is a bounded
function with compact support in one of the regions A > 0 or A < 0 then

(8.44) Holly = +elly  and  o(Ho) = @(Ho)ls = o(+e)Ily

This is a simple computation based on (8.42) and (8.43). Note however that the
second equality above is also a direct consequence of the first one, i.e. the explicit
relations (8.42) and (8.43) are not really needed.

Remark 8.20. If infe > 0 and 6 = 1/4 then II. are bounded orthogonal pro-
jections on Ky 4 with TIL 1T = II_I14 = 0, II4 + 11 = 1, and +Ilx > 0. Then
Ky = £I1LKy/4 are Hilbert spaces (the minus sign means that we change the
sign of the scalar product), we have ;4 = K, @ K_ topologically, and the op-
erator Ky /4 leaves K1 invariant and induces there self-adjoint operators in the
usual sense. But the operators e do note leave invariant this direct sum if the
commutator [Kg 1 /4,14] is not trivial.

Lemma 8.21. Let ¢, ¢ € C§°(]0, o0]) with pp = ¢. Then
P(Ko,0) = (Ko,0)1(e) = ¥(e)p(Ko,p),
and

(8.45) P(Ko.0)[Ko.6,1A]0(Ko,6) = p(FKo,0)1h(e)e" () (Ko.0)-

Proof. Clearly

P(Ko,0) = (Ko,0)1(Ko,0)IL = (Ko,0)IL1p(e) = @(Ko,0)1(e).
Then the left hand side above is
P(Ko,0) Ko,01Ap(Ko,p) — ¢(Ko,0)iAKo,00(Ko,p)
= p(Koe)(e)eiar(e)o(Kop) — ¢(Kop)p(e)iac(e)p(Ko,p),
which is equal to (Ko )(e)[e, ial(e)p(Kog) 0

)

Lemma 8.22. Assume that 1y (e)e'ly(e) = ¢(e) Ly (e) for some open set U C R
and some ¢ € Cy(]0,00[). Then

P(Ko)Kgp(Ko) ~ o(Ko)d(Ko)p(Kp), Vi € Cg°(U).
Proof. Due to Lemma 7.15 we have o(Kp)Kpp(Kg) ~ ¢(Ko,0)K( g0(Ko,g). Let
1 € C§°(U) such that gy = p. Then Lemma 8.21 implies
P(Ko)Kyp(Kp) 2 o(Kop)v(e)e' v (e)p(Ko)
P(Ko,0)v(e)p(e)(e)p(Kop)
= ©(Ko,0)0(Ko0)p(Ko)
P(Ko)p(Ko)p(Ky). O

12
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In the next proposition, we prove a Mourre estimate for Ky, assuming that Kj is
definitizable.

Proposition 8.23. Assume that (E), (M) are satisfied and that Kg is definitizable
on Kg. Let J C|0,+o00[ be a compact interval with 1;(Kg) > 0. Assume finally that

(5.46) 1y ()T () = ()1 (0),
with U CJ0, 00] open and some ¢ € Cy(]0,00[), ¢(z) >0 on J. Then:

(1) J contains at most a finite number of eigenvalues of Ky,
(2) if X € J is not an eigenvalue of Ky then there is a number ¢ > 0 and a
neighborhood I of \ in J such that

1 (Ko)Re(K)) 1 (Kg) > clly (Kp).

Proof. If ¢ € C§°(U) then from Lemma 8.22 we get
p(Ko)Re(Kp)p(Kp) = Re(p(Ko) Ky (Kg))

~ Re(p(Ko)p(Ko)p(Ko)) = ¢(Ko)d(Kp)p(Kp).
By taking ¢ equal to 1 on J we get
ﬂ[(Kg)RG(Ké)]l](K@) ~ ¢(K9)HJK9) Z (H}f d))]lJ(Kg)

Then we apply the virial theorem proved in Corollary 7.14. [

8.9. Definitizability of charge Klein-Gordon operators. In Prop. 8.23 we
assumed that Ky was definitizable. We state here a rather standard result in
this direction, see [J2], [LNT2]. Note that the condition 0 ¢ o(g) below can be
interpreted as (strict) positivity of the mass.

Proposition 8.24. Assume (A1), (A2) of Sect. 8.2 and 0 & o(e). Then K4 is

definitizable on (Ky,4, (:|-)). Moreover the critical points of Ki,4 are eigenvalues.

Proof. The result follows directly from [J2], provided we check the hypotheses there.
Let us denote for simplicity Ky ,4, Ko,1/4 and K, /4 simply by K, Ko and K. Since
0 & o(e), we can equip K with the Hilbertian scalar product

(ulv)k = (uoleZvo) + (ur]e™2v1),
which induces the same topology on K. K is self-adjoint for (-|-)x, hence has no
singular critical points (see [J2] for this notion). Moreover since |Ko| = (§9) the
spaces M1 in [J2, Sect. 1.2] are equal to (Ko)F2#. In particular we have

(8.47) Hy =€, H_y=E"

We have K = Ko+ V, for V.= (k?). By (8.47) we see that V : Hy — H_q is
compact iff k : (¢)7'H — H is compact, which holds by (E2). Therefore we can
apply [J2, Thm. 3] to obtain the proposition. O

8.10. Examples. We now give some concrete examples. Let us consider the charged
Klein-Gordon equation on Minkowski space:

(at - lv(x))Qd)(ta :L') - AI¢(t,$) + m2¢(t,:c) = 07 in Rler-

It is an example of (8.1) for H = L%(R%,dx), k = v(x) a real electric potential, and
h =—A; +m? —v?(x), m > 0 is the mass of the Klein-Gordon field. Concerning
the electric potential we assume

(8.48) ve~ 1 is compact on L?(R%),
Let us consider the charge Klein-Gordon operator K = K /4.
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We have hg = —A, +m?2, & = (=A, +m?)? hence (E) is satisfied and e '# equals
the Sobolev space H'(R?).

As conjugate operator we take

a= (-2 + = pf(p)). with f € GF(0,50), p=i"V..

Clearly (M) is satisfied. Moreover [e,ia] = f(|p|)p?c~!. This implies that condition
(8.46) in Prop. 8.23 is satisfied for all U C R\{0}.

The operator ¢ is clearly of class C*°(a). If we assume that
(8.49) (z)*ve~! is bounded on L?(R%),

then k is of class C§(a). Therefore for a > 1 condition (M2) is satisfied. Moreover
we easily see that K is of class C%(A). Therefore if (8.49) holds for some o > 3/2
we can apply Thm. 7.9. Note that one may add in the standard way a long-range
component vj(z) to v(z), by imposing a decay condition on 0%v(z) for |a| < 2.
Note that the operator A, hence the weights (A) ™ are scalar operators. Again by
standard arguments, one obtains finally the following resolvent estimate on K, for
I a compact interval disjoint from eigenvalues of K 4:

s 1 s 1
sup ||(z) (K — 2) 1<$> HB(}C1/4) < oo, Vs > 7
2€1+i]0,v]
Note that these estimates are also obtained in [GGH1], by a different method.
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