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Particle methods: an efficient tool for direct
numerical simulations of a high Schmidt number

passive scalar in turbulent flow

By J. B. Lagaert†, G. Balarac†, G.-H. Cottet‡ AND P. Bégou†

In this work, an efficient way to predict the dynamics of a scalar at high Schmidt
numbers, advected by a turbulent flow, is presented. For high Schmidt numbers, the
spatial resolution required for the scalar field has to be finer than the resolution required
for the velocity field, leading to a significant computational cost due to the Courant-
Friedrichs-Lewy (CFL) constraint. We propose here a remeshed particle method coupled
to a spectral flow solver to overcome this computational cost limitation. This allows us
to perform a systematic analysis of flows over a wide range of Reynolds and Schmidt
numbers. For high enough Reynolds and Schmidt numbers, the results presented here
recover the spectral behavior predicted by theory. First, the classic k−5/3 law (where k
is the wave number) is found for the inertial-convective range. At intermediate scales,
the viscous-convective range exhibits a k−1 law for Schmidt numbers higher than unity.
Finally, the numerical results indicate that the dissipation range agree well with the
Kraichnan model for high Schmidt numbers.

1. Introduction

The prediction of the dynamics of a scalar advected by a turbulent flow is an important
challenge in many applications. The scalar field can be used to describe the temperature
field, the concentration of chemical species or a level-set function to capture the interface
in multiphase flows. For a passive scalar, Z, the transport equation is an advection-
diffusion equation,

∂Z

∂t
+ u · ∇Z = ∇ · (κ∇Z) (1.1)

where κ is the molecular scalar diffusivity and u the turbulent velocity field. Similar to
the Kolmogorov scale, η, which describes the smallest scale of turbulence motions be-
fore viscosity dominates, the Batchelor scale, ηB, describes the smallest length scale of
fluctuations in scalar concentration that can exist before being dominated by molecular
diffusion. The phenomenology of passive scalar diffusion is dependent on the molecular
Schmidt numbers, the viscosity-to-diffusivity ratio, Sc = ν/κ. Thus, for high Schmidt
number, the Batchelor scale is smaller than the Kolmogorov scale. This means that scalar
dynamics can occur at scales smaller than the smallest eddy. An important theoretical
result is the influence of the Schmidt number on the scalar variance spectrum behavior.
For a Schmidt number larger than one, Batchelor (1959) explained thus that the classi-
cal Corrsin-Obukhov cascade associated with a k−5/3 law (where k is the wave number)
for the scalar variance spectrum (Corrsin 1951; Obukhov 1949) is followed by a viscous-
convective range with a k−1 power law. This viscous-convective range is followed by the
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dissipation range, where various theoretical scalings have been proposed for the spec-
trum (Batchelor 1959; Kraichnan 1968). Some recent results from Donzis et al. (2010)
seem to show that the k−5/3 law appears only for very high Reynolds numbers. Thus,
additional work is needed to systematically study the k−5/3-k−1 transition in function
of the Reynolds and Schmidt numbers. Moreover, direct numerical simulations (DNS)
databases of scalar mixing will be useful to better understand the Schmidt number in-
fluence on subgrid-scale models in the context of large-eddy simulation (LES) of passive
scalars (You & Moin 2009; Brun et al. 2008).

For numerical simulations, the dependance of the Batchelor scale on the Schmidt num-
ber suggests that the prediction of scalar dynamics for high Schmidt numbers is more
demanding in terms of spatial resolution than the prediction of momentum. Classical ad-
vection schemes for the scalar equation impose a CFL condition which requires adapting
the time step to the finest scales, adding to the computational cost. To overcome this
limitation, we propose to use a remeshed particle method in order to capture all scalar
scales while keeping a reasonable computational cost. In particular, we take advantage
of the fact that particle methods are not constrained by CFL conditions. This technique
has been introduced in Cottet et al. (2009) in the context of LES simulations of homoge-
neous isotropic turbulence (HIT) where both the momentum and scalar equations were
solved by particle methods at different resolutions. Following this work, the purpose of
the present study is the development and application of an efficient parallel implemen-
tation of a hybrid particle/spectral solver to perform DNS of the scalar and momentum
transports on different grid resolutions reflecting the different scalar and momentum
spectra.

An outline of this paper is as follows. In section 2, we first describe the remeshed particle
method used for the simulation of the scalar, the coupling approach to combine a Navier-
Stokes spectral solver with a particle scalar solver, and the parallel implementation of
the hybrid particle/spectral method. We then show and discuss in section 3 numerical
results for a wide range of Reynolds and Schmidt numbers, exhibiting spectra decay in
the large, intermediate and small scales as predicted by the theory. Section 4 is devoted
to concluded remarks and directions for future work.

2. Numerical method

2.1. Remeshed particles methods

Particle methods have long been used for the simulation of advection driven phenomena.
The idea is to concentrate advected quantities on a set of particles which are advected
by the local velocity field. The method is conservative by nature, and does not suffer the
usual stability constraints of grid-based methods: for constant velocity fields, the solution
provided by particle methods is exact, independently of the the time-step and spacing
between particles.

Quantitative information can be recovered from particles by interpolating particle
strengths on a grid or by using regularized version of particles. Practical and numerical
analyses show that to obtain accurate results it is necessary that regularized particles
satisfy an overlapping condition. This overlapping is difficult to enforce in case of large
flow distortion, unless very large regularization parameters are used, something which
leads to excess numerical cost.

To overcome this shortcoming of totally grid-free particle methods, one possible strat-
egy is to remesh particles frequently on regular grid. Remeshing is done through high
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order interpolation formula which conserve the moments of the particle distribution up to
a desired level. Conserving up to the third moment ensures that no net dissipation results
from particle remeshing. The time-scale on which particles have to be remeshed is given
by the strain of the flow. A similar time-scale is used in practice to choose the time step
to advance particles. This often leads to remeshing particles at every time-step, leading
to forward versions of semi-Lagrangian methods. With this strategy, particle methods
have been used with success in a number of cases. Comparisons of remeshed particle
methods with spectral methods for the simulation of the Navier-Stokes equation in vor-
ticity formulation have been performed to assess their accuracy (Cottet et al. 2002; van
Rees et al. 2011).

A series of recent works has allowed us to interpret remeshed particle methods in terms
of high order finite-difference methods. In particular the analysis in Magni & Cottet
(2012) allow us to derive new remeshing formulas and give, for these formula, rigorous
bounds for the time-step, in terms of the velocity strain, to obtain a desired order of
convergence. It also suggests a time-splitting implementation of particle methods, where
particles are successively advected and remeshed in each direction. One advantage of this
approach is that it allows the use of high order remeshing formulas, with large stencils,
at a reduced cost compared to traditional multi-dimensional remeshing schemes. For a
stencil of 6 points in each direction, like the one we are using in this paper, the cost
of remeshing is O(18N) in a splitting approach instead of O(216N) for a 3D remeshing
formula.

The remeshing schemes and analyzed in Magni & Cottet (2012) are based on mini-
mal stencils (5 points for a 4th order formula giving a 3rd order particle method) with
local corrections to ensure consistency in zones where the local CFL numbers at parti-
cle locations cross integer values. In the present work we use instead a formula with a
larger stencil of 6 points for a 4th order remeshing (Bergdorf & Koumoutsakos 2006).
This formula leads to a 4th order method for constant velocity field, locally 3rd order
for non-constant velocity field. We have checked in a number of experiments that it
gives results similar to those obtained for the 4th order formula analyzed in Magni &
Cottet (2012), for a simpler implementation and a comparable computational cost. This
remeshing scheme is given by the following formula:

Zi =
∑

p

vpZpΛ(xi − xp),

where xp (resp xi) denote the particle locations (resp grid points), Zp (resp Zi) the scalar
weights (scalar grid value) and Λ is given by

Λ(x) =
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(2.1)

The maximal time-step to be used for the remeshed particle algorithm using this remesh-
ing kernel is given by

∆t =
1

4(max |∇u|)
(2.2)

where max |∇u| is evaluated by finite differences on the grid of the velocity components
along the corresponding directions.



170 Lagaert et al.

2.2. Coupling a particle method with a pseudo-spectral scheme

Remeshed particle methods easily lend themselves to coupling strategies. In our case we
wish to couple the advection of a scalar by a remeshed particle method with a pseudo-
spectral method to solve the Navier-Stokes equations. Both particle and spectral solvers
are run in parallel, with different grid resolutions to account for the different diffusion
coefficients for the scalar and momentum. Thus, the velocity field is solved by a clas-
sic pseudo-spectral solver with a second-order explicit Runge-Kutta time-advancement
scheme. A classic 3/2 rule is used for dealiasing the non-linear convection term and the
viscous terms are treated exactly. At the beginning of every time-step the velocity ob-
tained from the Navier-Sokes solver is interpolated in spectral space to obtain particle
velocities. These particle velocities are used to push particles along each direction (see
Algorithm 1 below).

In practice the Navier-Stokes solver uses a coarser grid resolution ∆xu than the particle
solver. The time step used for both the particle and spectral solver is given by the CFL
condition related to the grid spacing ∆xu to ensure a CFL number not exceeding 0.5. It
can be checked that this time step satisfies the condition (2.2). Depending on the ratio
between ∆xu and ∆xZ this time step can be significantly larger than what would be
needed if a spectral solver was used for the scalar advection.

2.3. Parallel efficient implementation

The challenge is to perform direct numerical simulations of high Schmidt number passive
scalars advected by a fully turbulent flow. A very fine spatial resolution is therefore
required. Such a resolution increases both the CPU cost and the required memory. It
is mandatory to develop a parallel algorithm. It allows us to benefit from the speed-up
provided by our approach and to reach higher Schmidt numbers. The solver library is
designed for runs from 100 to 1000 CPUs thanks to the MPI tools. Running simulations
on so many CPUs decreases of course the computational cost of the simulations and
additionally increases the total amount of distributed memory. But there is still risk of
memory saturation for the finest spatial resolutions. Some other memory optimizations
(fine memory management, data compression, etc.) are added to facilitate the study of
higher Schmidt numbers.

2.3.1. Parallel design of the particle method

If the remeshing facilitates the coupling of the particle method with the pseudo-spectral
solver (as fields are discretized on mesh points at the start and at the end of the advection
solvers), some difficulties specific to Lagrangian description have to be overcome in the
parallelization work. There are two different ways to design parallel strategy. On the one
hand, each processor unit could be attached to a given geometric subdomain. A particle
which moves from one subdomain to another is then exchanged between the two related
MPI-processes. On the other hand, the unit could be associated with a set of particles
and follow them during a complete time step. A subdivision of the 3D geometry is still
used to define this particle set: an MPI-process is associated with particles depending
on their initial positions. With the first choice, the number of particles contained by
each process could change during the advection step, while on the opposite this number
is strictly constant with the second choice. As the computational cost of the particle
method is directly related to the number of particles, the second choice ensures a better
computation balance. At present, implementation follows this last strategy.

The simplest parallel algorithm that could be used to solve advection along one direc-
tion is described below (see algorithm 1). By using dimensional splitting it provides a
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numerical solver for the 3D transport term. Of course, many optimizations are performed

Algorithm 1 Advection of a particle line.

1: for each (1D-) line along the current direction do

2: Create a particle on each mesh point and initialize its position: pi
n = i · dt.

3: Compute the middle positions for each particle: pi
n+1/2

= pi
n + dt

2
vi

n.

4: Compute the integer truncation lin of
(

pi
n+1/2

)

/dx.
5: for m = 0 to 1 do

6: Compute the rank Rm(i, n) of the process which stored the velocity on node
Ii
n + m.

7: if my MPI-rank is different from Rm(i, n) then

8: Send a MPI message to process Rm to ask for the velocity on node Ii
n + m.

9: Receive the velocity on node Ii
n + m from process Rm(i, n).

10: end if

11: end for

12: Interpolate the velocity on position pi
n+1/2

from velocity on node Ii
n and (Ii

n + 1)

{as pi
n+1/2

∈
[

Ii
n; Ii

n + 1
]

}.

13: Compute the final particles positions: pi
n+1 = pi

n + dt
2

vn(pi
n+1/2

).
14: Remesh all the line inside a buffer and redistribute it to the concerned processes.
15: end for

in order to improve performance and the parallel scalability. It is well known that it is
generally interesting to limit communication numbers by gathering them (if possible).
Also, the final algorithm does not include the “for” loop of line 1 but computes particle
position and remeshing directly on a group of such lines. In this way, the needed commu-
nications for each line are performed together. In the same spirit, the communications
performed on line 2.3.1 (respectively on line 2.3.1) inside the loop on m are gathered.
Finally, each time step requires only four communications for each MPI-process. Two
communications are performed to interpolate the velocity: a map of the velocity field
to exchange between processes (see line 2.3.1 of the algorithm) and the exchange of the
velocity field itself (line 2.3.1). Two communications are done to remesh particles (see
line 2.3.1), one to map the buffer redistribution and another to send part of this buffer.

The amount of data corresponding to the two mapping processes is also reduced thanks
to mathematical results (considering stability conditions, particles remain in the same
order and follow each other) and using compression tools (a naive description of the
geometry described by the map involves many redundancies). Finally some tricks allow
us to achieve these four communications as four point-to-point communications.There is
no need of any synchronization and it allows us to recover communication by computation
thanks to non-blocking protocol. Since MPI provides a better management of its internal
buffer for the point-to-point communication, memory needs are also diminished.

2.3.2. Parallel design of the pseudo-spectral solver and of the coupling

The pseudo-spectral solver uses a classical parallel design based on two-dimensional
subdivisons. The 3D fast Fourier transform (FFT) is split in three mono-dimensional fast
Fourier transforms. These 1D FFT are based on 1D summations. Thus the parallelization
is done by subdividing the 3D geometry along only 2 directions: along Y and Z in the real
space and along X and Y on the spectral space. For instance, consider a run on n2 MPI-
processes of a simulation performed with a resolution of Nx, Ny and Nz grid points along
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Number of CPUs Time per iteration on Intel Time/iteration on Blue-Gene/P

128 55s -
256 27.5s 56.4s
512 14.4s 30.0s
1024 - 15.5s

Table 1. Setup and iteration time for different number of CPUs

X-axis, Y-axis and Z-axis, respectively. Then the subdomain of each process contains Nx,
NY /n and Nz/n grid points along X, Y and Z. The 3D FFT is performed by algorithm
2. A similar algorithm is used to perform the inverse transform. Note that computations

Algorithm 2 Parallel fast Fourier transform.

1: Compute 1D FFT along X {as there is not domain subdivision along X, no commu-
nication is needed}.

2: Perform communication in order to re-organize data in order to only have domain
subdivision along X and Z.

3: Perform 1D FFT along Y {no communication is needed}.
4: Perform communication in order to re-organize data in order to only have domain

subdivision along X and Y.
5: Perform 1D FFT along Z {no communication is needed}.

on real and spectral spaces do not require any communication. All the communications
are performed during the FFT and the inverse-FFT and the key point is to obtain an
efficient algorithm for these three-dimensional transforms. Mono-dimensionnal FFT are
performed thanks to the classical FFTW library. In order to achieve the coupling between
the two solvers, the domain subdivision used for the particle method implementation
is the same the one used inside the pseudo-spectral library in the real space. As the
particle solver deals only with real fields, data-reorganization (and thus communication)
are avoided in the interface of the two solvers. This should enable easier coupling of the
particle solver with general flow solvers based on various numerical methods.

The parallel scalability has been tested on different architectures. Table 1 presents
results on a Blue-Gene/P cluster (“Babel” from the French institute IDRIS) and on
Intel-based “Certainty” cluster (quad-cores with Intel Westmere-EP processors). The
scalar grid size is 10243 points and the velocity is discretized on a 1283 grid in both tests.

3. Results

3.1. Flow configuration and numerical set-up

In order to numerically observe the Schmidt and Reynolds number influence on the mix-
ing scalar dynamics, various simulations have been performed in the context of homoge-
nous isotropic turbulence (HIT), in a 3D periodic box with a length 2π. The velocity field
is solved by using a classic pseudo-spectral code, whereas the scalar field is solved using
particles method, as already described. A statistical steady flow is achieved by using a
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Nxu Rλ ∆z
partt ∆u

t Nxz Sc ∆z
spect

128 80 2.0e-1 6.2e-2
128 0.7 6.2e-2
512 8 1.6e-2
512 16 1.1e-2

256 130 4.3e-2 1.2e-2
256 0.7 1.2e-2
768 4 5.8e-3
1024 8 4.0e-3

512 160 1.0e-2 3.0e-3
512 0.7 6.2e-2
1024 4 3.1e-2

Table 2. Setup and time step for different simulations performed

forcing term (Alvelius 1999). The scalar field is initialized between 0 and 1 according to
the procedure proposed by Eswaran & Pope (1988). To achieve a steady state for the
scalar, a forcing scheme is also applied to low wave number modes in Fourier space. For
the velocity field, resolutions from 1283 to 5123 grid points are used to allow simulations
with Taylor-scale Reynolds number, Rλ, varying from 80 to 160. For the scalar field,
resolutions up to 10243 grid points are used to obtain results for a Schmidt number until
16. All the simulations parameters are reported in Table 2. Further simulations were per-
formed with refinement strategies to ensure that the simulations reported in this work
are indeed converged results. This table also reports the imposed time-step to solve the
velocity field with the classic pseudo-spectral approach, ∆u

t , and the imposed time-step to
solve the scalar field with particles method, ∆z

partt. The theoretical time-step for a scalar
field solved by spectral method, ∆z

spect, is also reported for comparison. As expected,
the time-step for the particle method is much larger than for the spectral method at
the same resolution. This efficiency has allowed the performance of all these simulations
during the CTR program on the “Certainty”cluster (quad-core with Intel Westmere-EP
processors).

3.2. Influence of Reynolds and Schmidt numbers on the scalar variance spectrum

The behaviors of the scalar variance spectrum are now studied at large, intermediate
and small scales from this DNS database and compared with theoretical predictions (for
a review see Lesieur 2008). First, at the largest scales, the classical Corrsin-Oboukhov
cascade is expected to characterize the inertial-convective range. Similarly to the inertial
range of the kinetic energy spectrum, it is expected that this cascade follows a k−5/3

law, with k the wave number (Obukhov 1949; Corrsin 1951). Figure 1 (a) confirms this
first cascade. In this figure the spectra are compensated by k5/3 and the wave numbers
are multiplied by the Taylor scale, λ. As expected, the results show that this range is
independent of the Schmidt number, with a self-similarity of this part of the spectra
for all simulations at the same Reynolds number. This range also occurs for the kinetic
energy (not shown) and increases with the Reynolds number. At Rλ = 80, this range
does not appear clearly because the flow is not fully turbulent. Note that the Taylor
scale appears as a good boundary for the end of this range. After this range, for Schmidt
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Figure 1. Spectrum shape at large and intermediate scales. (a) Scalar variance spectrum pre-

multiplied by k5/3. The wave numbers are premultiplied by the Taylor micro-scale, λ. Arrows
show direction of the increasing Schmidt number, Sc. (b) Scalar variance spectrum premultiplied
by k. The wave numbers are premultiplied by the Kolmogorov scale, η. Arrows show direction
of the increasing Reynolds number, Rλ. Spectra are shifted for easier reading.
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Figure 2. Normalized scalar variance spectra for all runs with a Schmidt number larger than
unity. The results are compared with the scalings coming from Batchelor (1959) (dotted line)
and from Kraichnan (1968) (dashed line).

numbers higher than unity, Batchelor (1959) explained the development of the viscous-
convective range with a k−1 law. This scaling is due to the velocity small scales strain
effect on the scalar field. Figure 1 (b) confirms this behavior. In this figure the spectra are
compensated by k and the wave numbers are multiplied by the Kolmogorov scale, η. As
expected, the k−1 law does not appear for Schmidt numbers smaller than 1, whereas the
viscous-convective range increases with the Schmidt number. Note that this wave range
appears as independent of the Reynolds number, as expected from theory. These results
are consistent with the theoretical prediction of the scalar variance spectrum. Other
previous numerical works (Donzis et al. 2010) seem to find the k−5/3 Corrsin-Oboukhov
cascade only at a very high Reynolds number. The scalar forcing schemes can explain
the discrepancy of these results and future works will be devoted to better understand
the forcing influence on the scalar variance spectrum.

Finally, the form of the scalar variance spectrum in the dissipation range (following
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the viscous-convective range) is studied. Two distinct theoretical behaviors have been
proposed. First, Batchelor (1959) proposed the following form:

kηBEZ(k)

χ(ν/ǫ)1/2ηB
= α exp

(

−α(kηB)2
)

,

where α is a coefficient, χ the scalar variance dissipation rate and ǫ the kinetic energy
dissipation rate. From Kraichnan’s work (Kraichnan 1968), the following alternative form
has been proposed:

kηBEZ(k)

χ(ν/ǫ)1/2ηB
= α (1 + βkηB) exp (−βkηB) ,

where β is another coefficient (see Bogucki et al. (1997) for details). Note that this ques-
tion has some practical implications for better understanding energy transfer between
ocean and atmosphere. Indeed, the turbulent kinetic energy dissipation rate is needed to
evaluate turbulent fluxes controlling this transfer. This dissipation rate can be obtained
from the temperature dissipation spectra by using a given form for the scalar variance
spectrum in the dissipation range (Bogucki et al. 2012). Figure 2 shows the normalized
scalar variance spectra for all runs with a Schmidt number larger than unity. Both pro-
posed spectrum forms are also shown. These DNS results clearly show a good agreement
with the Kraichnan form and confirm previous works (Bogucki et al. 1997, 2012). The
systematic deviations from the Batchelor form imply that erroneous results can be ex-
pected if this form is used to compute the turbulent kinetic energy dissipation rate from
temperature dissipation spectra in oceanography applications.

4. Conclusion

Direct numerical simulation (DNS) of high Schmidt number passive scalars in highly
turbulent flows are challenging. Indeed, high Schmidt number scalars develop mixing
scales smaller to the Kolmogorov scales. This means that a finer resolution has to be
used to solve scalar transport equation than to solve Navier-Stokes equation. An ap-
proach coupling CFL-free remeshed particle solver for scalars with pseudo-spectral solver
for velocity fields has been developed. This approach is found to be an efficient way to
perform DNS at a reasonable cost. Extensive DNS have thus been performed to study
the scalar variance spectrum behavior as a function of Schmidt and Reynolds numbers.
Theoretical results have been recovered with a transition from the k−5/3 law to the k−1

law for sufficiently high Schmidt numbers. These DNS results are also in good agree-
ment with the Kraichnan spectrum shape in the dissipation region. Future works will
be devoted to a better understanding of the scalar forcing influence on these spectrum
behaviors. We also plan to couple the remeshed particle method with other solvers (as
finite-volume solver) to be able to use this approach in more general flow configurations.
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