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Faddeev eigenfunctions for multipoint

potentials ∗

P.G. Grinevich † R.G. Novikov‡

Abstract

We present explicit formulas for the Faddeev eigenfunctions and
related generalized scattering data for multipoint potentials in two
and three dimensions. For single point potentials in 3D such formulas
were obtained in an old unpublished work of L.D. Faddeev. For single
point potentials in 2D such formulas were given recently in [10].

1 Introduction

Consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ R
d, d = 2, 3, (1.1)

where v(x) is a real-valued sufficiently regular function on R
d with sufficient

decay at infinity.
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91128, Palaiseau, France; e-mail: novikov@cmap.polytechnique.fr

1



Let us recall that the classical scattering eigenfunctions ψ+ for (1.1) are
specified by the following asymptotics as |x| → ∞:

ψ+ = eikx − iπ
√
2πe−

iπ
4 f

(

k, |k| x|x|

)

ei|k||x|
√

|k||x|
+ o

(

1
√

|x|

)

, d = 2, (1.2)

ψ+ = eikx − 2π2f

(

k, |k| x|x|

)

ei|k||x|

|x| + o

(

1

|x|

)

, d = 3, (1.3)

x ∈ R
d, k ∈ R

d, k2 = E > 0, where a priori unknown function f(k, l),
k, l ∈ R

d, k2 = l2 = E, arising in (1.2), (1.3), is the classical scattering
amplitude for (1.1). In addition, we consider the Faddeev eigenfunctions ψ
for (1.1) specified by

ψ = eikx (1 + o(1)) as |x| → ∞, (1.4)

x ∈ R
d, k ∈ C

d, Im k 6= 0, k2 = k21 + . . . + k2d = E; see [5], [13], [8]. The
generalized scattering data arise in more precise version of the expansion
(1.4) (see also formulas (2.3)-(2.8)). The Faddeev eigenfunctions have very
rich analytical properties and are quite important for inverse scattering (see,
for example, [6], [12], [8]).

In the present article we consider equation (1.1), where v(x) is a finite
sum of point potentials in two or three dimensions (see [4], [1] and references
therein). We will write these potentials as:

v(x) =
n
∑

j=1

εjδ(x− zj), (1.5)

but the precise sense of these potentials will be specified below (see Section 3)
and, strictly speaking, δ(x) is not the standard Dirac delta-function (in the
physical literature the term renormalized δ-function is used).

It is known that for these multipoint potentials the classical scattering
eigenfunctions ψ+ and the related scattering amplitude f can be naturally
defined and can be given by explicit formulas (see [1] and references therein).
In addition, for single point potentials explicit formulas for the Faddeev eigen-
functions ψ and related generalized scattering amplitude h were obtained in
an old unpublished work by L.D. Faddeev for d = 3 and in [10] for d = 2.

In the present article we give explicit formulas for the Faddeev functions
ψ and h for multipoint potentials in the general case for real energies in two
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and three dimensions (see Theorem 3.1 from the Section 3). Let us point
out that our formulas for ψ and h involve the values of the Faddeev Green
function G for the Helmholtz equation, where

G(x, k) = − 1

(2π)d
eikx

∫

Rd

eiξx

ξ2 + 2kξ
dξ, (1.6)

(∆ + k2)G(x, k) = δ(x), x ∈ R
d, k ∈ C

d, Im k 6= 0. (1.7)

In the present article we consider G(x, k) as some known special function.
In addition, basic formulas and equations of monochromatic inverse scat-

tering, derived for sufficiently regular potentials v, remain valid for the Fad-
deev functions ψ and h of Theorem 3.1. Thus, basic formulas and equations
of monochromatic inverse scattering are illustrated by explicit examples re-
lated to multipoint potentials. We think that the results of the present work
can be used, in particular, for testing different monochromatic inverse scat-
tering algorithms based on properties of the Faddeev functions ψ and h (see
[2] as a work in this direction).

It it interesting to note also that explicit formulas for ψ and h for mul-
tipoint potentials show new qualitative effects in comparison with the one-
point case. In particular, the Faddeev eigenfunctions for 2-point potentials in
3D may have singularities for real momenta k, in contrast with the one-point
potentials in 3D (see Statement 3.1).

Besides, functions ψ and h of Theorem 3.1 for d = 2 illustrate a very rich
family of 2D potentials with spectral singularities in the complex domain.
Let us recall that monochromatic 2D inverse scattering is well-developed
only under the assumption that such singularities are absent at fixed energy
(see [11]and [10] for additional discussion in this connection). We hope that
the aforementioned examples and quite different examples from [7], [16] will
help to find correct analytic formulation of monochromatic inverse scattering
in two dimensions in the presence of spectral singularities.

2 Some preliminaries

It is convenient to write
ψ = eikxµ, (2.1)

where ψ solves (1.1), (1.4) and µ solves

−∆µ− 2ik∇µ+ v(x)µ = 0, k ∈ C
d, k2 = E. (2.2)
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In addition, to relate eigenfunctions and scattering data it is convenient
to use the following presentations, used, for example, in [15] for regular po-
tentials:

µ+(x, k) = 1−
∫

Rd

eiξxF (k,−ξ)
ξ2 + 2(k + i0k)ξ

dξ, k ∈ R
d\0, (2.3)

µγ(x, k) = 1−
∫

Rd

eiξxHγ(k,−ξ)
ξ2 + 2(k + i0γ)ξ

dξ, k ∈ R
d\0, γ ∈ Sd−1, (2.4)

µ(x, k) = 1−
∫

Rd

eiξxH(k,−ξ)
ξ2 + 2kξ

dξ, k ∈ C
d, Im k 6= 0, (2.5)

where ψ+ = eikxµ+ are the eigenfunctions specified by (1.2), (1.3), ψ = eikxµ
are the eigenfunctions specified by (1.4), µγ(x, k) = µ(x, k + i0γ), k ∈ R

d\0.
The following formulas hold:

f(k, l) = F (k, k − l), k, l ∈ R
d, k2 = l2 = E > 0, (2.6)

hγ(k, l) = Hγ(k, k − l), k, l ∈ R
d, k2 = l2 = E > 0, γ ∈ Sd−1, (2.7)

h(k, l) = H(k, k − l), k, l ∈ C
d, Im k = Im l 6= 0, k2 = l2 = E, (2.8)

where f is the classical scattering amplitude of (1.2), (1.3), hγ, h are the
Faddeev generalized scattering data of [6].

We recall also that for regular real-valued potentials the following for-
mulas hold (at least outside of the singularities of the Faddeev functions in
spectral parameter k):

∂

∂k̄j
ψ(x, k) = −2π

∫

Rd

ξjH(k,−ξ)ψ(x, k + ξ)δ(ξ2 + 2kξ)dξ, (2.9)

∂

∂k̄j
H(k, p) = −2π

∫

Rd

ξjH(k,−ξ)H(k + ξ, p+ ξ)δ(ξ2 + 2kξ)dξ, (2.10)

j = 1, . . . , d, k ∈ C
d\Rd, x, p ∈ R

d,

ψγ(x, k) = ψ+(x, k) + 2πi

∫

Rd

hγ(k, ξ)θ((ξ− k)γ)δ(ξ2 − k2)ψ+(x, ξ)dξ, (2.11)
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hγ(k, l) = f(k, l) + 2πi

∫

Rd

hγ(k, ξ)θ((ξ − k)γ)δ(ξ2 − k2)f(ξ, l)dξ, (2.12)

γ ∈ Sd−1, x, k, l ∈ R
d, k2 = l2,

where δ(t) is the Dirac δ-function, θ(t) is the Heaviside step function;

µ(x, k) → 1 for |k| → ∞, x ∈ R
d, (2.13)

H(k, p) → 1

(2π)d

∫

Rd

v(x)eipxdx for |k| → ∞, p ∈ R
d, (2.14)

|k| =
√

|Re k|2 + | Im k|2,
see [6], [3], [12] and references therein.

Let us define the following varieties:

ΣE = {k ∈ C
d : k2 = E}, (2.15)

ΩE,p = {k ∈ ΣE : 2kp = p2},
{

p = 0 for d = 2,
p ∈ R

3 for d = 3,
(2.16)

ΩE = {k ∈ ΣE, p ∈ R
d : 2kp = p2}, (2.17)

ΘE = {k, l ∈ C
d : Im k = Im l, k2 = l2 = E}. (2.18)

Note that in the present article we consider the Faddeev functions ψ, H,
h and ψγ, Hγ, hγ for multipoint potentials for fixed real energies E only, for
simplicity. In this connection we consider

ψ on R
d × (ΣE\ReΣE), H on ΩE\ReΩE, h on ΘE\ReΘE,

ψγ(x, k), Hγ(k, p), hγ(k, l) for

γ ∈ Sd−1, x, k, p, l ∈ R
d, p2 = 2kp, k2 = l2 = E, kγ = 0.

In addition, we also consider the forms

∂̄kψ =
d
∑

j=1

∂

∂k̄j
ψ(x, k)dk̄j, ∂̄kH =

d
∑

j=1

∂

∂k̄j
H(k, p)dk̄j,

on the varieties ΣE, ΩE,p, respectively, where the ∂/∂k̄j derivatives of µ, H
are given by (2.9), (2.10).

In addition, we recall that formulas (2.9)-(2.14) give a basis for monochro-
matic inverse scattering for regular potentials in two and three dimensions,
see [3], [8], [9], [11], [12], [13], [14], [15].
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3 Main results

By analogy with [4] we understand the multipoint potentials v(x) from (1.5)
as a limit for N → +∞ of non-local potentials

VN(x, x
′) =

n
∑

j=1

εj(N)uj,N(x)uj,N(x
′), (3.1)

where

(VN ◦ µ)(x) =
n
∑

j=1

εj(N)

∫

Rd

uj,N(x)uj,N(x
′)µ(x′)dx′, (3.2)

uj,N(x) =
1

(2π)d

∫

Rd

ûj,N(ξ)e
iξxdξ, ûj,N(ξ) =

{

e−iξzj |ξ| ≤ N,

0 |ξ| > N,
(3.3)

x, x′, zj ∈ R
d, zm 6= zj for m 6= j, εj(N) are normalizing constant specified

by (3.15) for d = 3 and (3.16) for d = 2. It is clear that

uj,N(x) = u0,N(x− zj), where û0,N(ξ) =

{

1 |ξ| ≤ N,

0 |ξ| > N.

For v = VN equation (2.2) has the following explicit Faddeev solutions:

µN(x, k) = 1 +
1

(2π)d

∫

Rd

µ̃N(ξ, k)e
iξxdξ, (3.4)

µ̃N(ξ, k) = −

n
∑

j=1

cj,N(k)ûj,N(ξ)

ξ2 + 2kξ
, (3.5)

x ∈ R
d, ξ ∈ R

d, k ∈ C
d, Im k 6= 0, where cN(k) = (c1,N(k), . . . , cn,N(k)) is

the solution of the following linear equation:

AN(k)cN(k) = bN , (3.6)

where AN(k) is the n× n matrix and bN is the n-component vector with the
following elements:

Am,j,N(k) = δm,j + εm(N)
1

(2π)d

∫

Rd

ûm,N(−ξ)ûj,N(ξ)
ξ2 + 2kξ

dξ, (3.7)
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bm,N = εm(N). (3.8)

In addition, equation (2.2) has the following classical scattering solutions:

µ+
N(x, k) = µN(x, k + i0k), x ∈ R

d, k ∈ R
d\0, (3.9)

arising from

µ̃+
N(ξ, k) = µ̃N(ξ, k + i0k), ξ ∈ R

d, k ∈ R
d\0. (3.10)

Let us consider the following Green functions for the operator ∆+2ik∇:

g(x, k) = − 1

(2π)d

∫

Rd

eiξx

ξ2 + 2kξ
dξ, x ∈ R

d k ∈ C
d, Im k 6= 0, (3.11)

gγ(x, k) = − 1

(2π)d

∫

Rd

eiξx

ξ2 + 2(k + i0γ)ξ
dξ, x ∈ R

d k ∈ R
d\0, γ ∈ Sd−1,

(3.12)

g+(x, k) = − 1

(2π)d

∫

Rd

eiξx

ξ2 + 2(k + i0k)ξ
dξ, x ∈ R

d k ∈ R
d\0. (3.13)

One can see that G(x, k) = eikxg(x, k), where G(x, k) was defined by (1.6).
Note also that for d = 3 the Green function g+(x, k) can be calculated
explicitly:

g+(x, k) = − 1

4π

e−ikxei|k||x|

|x| . (3.14)

Theorem 3.1 Let d=2, 3,

εj(N) = αj

(

1− αjN

2π2

)−1

, αj ∈ R, j = 1, . . . , n, for d = 3, (3.15)

εj(N) = αj

(

1− αj

2π
ln(N)

)−1

, αj ∈ R, j = 1, . . . , n, for d = 2, (3.16)

Then:

1. The limiting eigenfunctions

ψ(x, k) = eikx lim
N→+∞

µN(x, k), x ∈ R
d, k ∈ C

d\Rd, k2 = E ∈ R,

(3.17)
are well-defined (at least outside the spectral singularities).

7



2. The following formulas hold:

ψ(x, k) = eikx

[

1 +
n
∑

j=1

cj(k)g(x− zj, k)

]

, k ∈ C
d\Rd, k2 = E ∈ R,

(3.18)

where c(k) = (c1(k), . . . , cn(k)) is the solution of the following linear
equation:

Ã(k)c(k) = b̃(k), (3.19)

where Ã(k) is the n × n matrix, b̃(k) is the n-component vector with
the following elements for d = 3:

Ãm,j(k) =

{

1, m = j

−αm

(

1− αm

4π
| Im k|

)−1
g(zm − zj, k), m 6= j,

(3.20)

b̃m(k) = αm

(

1− αm

4π
| Im k|

)−1

; (3.21)

and with the following elements for d = 2:

Ãm,j(k) =

{

1, m = j

−αm

(

1− αm

2π
(ln(|Re k|+ | Im k|)

)−1
g(zm − zj, k), m 6= j,

(3.22)

b̃m(k) = αm

(

1− αm

2π
(ln(|Re k|+ | Im k|)

)−1

. (3.23)

In addition, for limiting values of ψ the following formulas hold:

ψγ(x, k) = ψ(x, k + i0γ) = eikx

[

1 +
n
∑

j=1

cγ,j(k)gγ(x− zj, k)

]

, (3.24)

x ∈ R
d, k ∈ R

d\0, γ ∈ Sd−1, kγ = 0,

where cγ(k) = (cγ,1(k), . . . , cγ,n(k)) is the solution of the following linear
equation:

Ãγ(k)cγ(k) = b̃γ(k), (3.25)

where
Ãγ(k) = Ã(k + i0γ), b̃γ(k) = b̃(k + i0γ). (3.26)
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3. The Faddeev generalized scattering data for the limiting potential v =
lim

N→+∞
VN , associated with the limiting eigenfunctions ψ, ψγ, are given

by:

h(k, l) =
1

(2π)d

n
∑

j=1

cj(k)e
i(k−l)zj , (3.27)

k, l ∈ C
3, Im k = Im l 6= 0, k2 = l2 = E ∈ R,

where cj(k) are the same as in (3.18), (3.19);

hγ(k, l) =
1

(2π)d

n
∑

j=1

cγ,j(k)e
i(k−l)zj , (3.28)

k, l ∈ R
d\0, k2 = l2 = E, γ ∈ Sd−1, kγ = 0,

where cγ,j(k) are the same as in (3.24), (3.25).

Note that if ‖b̃(k)‖ = ∞ then we understand (3.18)-(3.26) as (4.9), (4.11)-
(4.13), (4.23), (4.25)-(4.27).

Remark 3.1 Let the assumptions of Theorem 3.1 be fulfilled. Then:

1. For the classical scattering eigenfunctions ψ+ the following formulas
hold:

ψ+(x, k) = eikx

[

1 +
n
∑

j=1

c+j (k)g
+(x− zj, k)

]

, (3.29)

where c+(k) = (c+1 (k), . . . , c
+
n (k)) is the solution of the following linear

equation:
Ã+(k)c+(k) = b̃+(k), (3.30)

where Ã+(k) is the n× n matrix, and b̃+(k) is the n-component vector
with the following elements for d = 3:

Ã+
m,j(k) =

{

1 m = j

−αm

(

1 + iαm

4π
|k|
)−1

g+(zm − zj, k), m 6= j,
(3.31)

b̃+m(k) = αm

(

1 +
iαm

4π
|k|
)−1

; (3.32)
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and with the following elements for d = 2:

Ã+
m,j(k) =

{

1 m = j

−αm

(

1 + αm

4π
(πi− 2 ln |k|)

)−1
g+(zm − zj, k), m 6= j,

(3.33)

b̃+m(k) = αm

(

1 +
αm

4π
(πi− 2 ln |k|)

)−1

; (3.34)

2. For the classical scattering amplitude f the following formula holds:

f(k, l) =
1

(2π)d

n
∑

j=1

c+j (k)e
i(k−l)zj , (3.35)

k, l ∈ R
d, k2 = l2 = E ∈ R,

where c+j (k) are the same as in (3.29), (3.30). In a slightly different
form formulas (3.29) - (3.35) are contained in Section II.1.5 and Chap-
ter II.4 of [1]. In addition, the classical scattering functions ψ+ and
f for d = 3 are expressed in terms of elementary functions via (3.29)-
(3.35).

Proposition 3.1 Formulas (2.9),(2.10) in terms of ∂̄kµ, ∂̄kH, on ΣE, ΩE,p,
formulas (2.11), (2.12) with kγ = 0 and formula (2.13) for | Im k| → ∞ are
fulfilled for functions ψ = eikxµ, ψγ, ψ

+, h, hγ of Theorem 3.1, at least for
x 6= zj, j = 1, . . . , n.

Statement 3.1 Let d = 3, n = 2, E = Efix > 0. Then for appropriate
α1, α2 ∈ R\0, z1, z2 ∈ R

3 there are real spectral singularities k = k′ + i0γ′

with γ′ ∈ S2, k′ ∈ R
3, (k′)2 = Efix, k

′γ′ = 0, of the Faddeev functions ψ, h
of Theorem 3.1.

Remark 3.2 In connection with Statement 3.1, note that for the case d = 3,
n = 1, studied in the old unpublished work of Faddeev, there are no real
spectral singularities of the Faddeev functions ψ, h. In addition, in [10] it
was shown that for the case d = 2, n = 1, α ∈ R\0 the Faddeev functions
always have some real spectral singularities (see Statement 3.1 of [10] for
details).

Let us recall that dimC ΣE = 1, dimR ΣE = 2 for d = 2. In addition, it
is known that for a fixed real energy E = Efix the spectral singularities of ψ

10



and H on ΣE\ReΣE are zeroes of a real-valued determinant function (for
real potentials). Thus, one can expect that these spectral singularities on
ΣEfix

for generic real potentials are either empty or form a family of curves
Γj, j = ±1,±2, . . . ± J . The problem of studying the geometry of these
spectral singularities on ΣEfix

was formulated already in [11]. In addition, it
was expected in [11] that the most natural configuration of curves is a “nest”

[Γ−J ⊂ Γ−J+1 ⊂ . . . ⊂ Γ−1 ⊂ S1 ⊂ Γ1 ⊂ . . . ⊂ ΓJ ], (3.36)

see [11] for details.
Figures Fig. 1–Fig. 4 show these spectral singularities for 2-point poten-

tials for some interesting cases. These figures show that the geometry of the
singular curves Γj may be different from the “nest”.

Fig. 1
E = 4, z2 − z1 = (0.5 , 0),

α1 = 5, α2 = 6

Fig. 2
E = 6, z2 − z1 = (0.5 , 0),

α1 = 5, α2 = 6

Fig. 3
E = 5, z2 − z1 = (10 , 0),

α1 = 6, α2 = 6

Fig. 4
E = 5, z2 − z1 = (10 , 0),

α1 = 6, α2 = 6.8
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In Figures 1-4 the surface ΣE is shown as C\0 with the coordinate λ,
where the parametrization of ΣE is given by the formulas:

k1 =

(

1

λ
+ λ

)

√
E

2
, k2 =

(

1

λ
− λ

)

i
√
E

2
, λ ∈ C\0. (3.37)

The coordinate axes Imλ = 0, Reλ = 0 and the unit circle |λ| = 1 in C

are shown in bold. This unit circle corresponds to ΣE ∩ R
2, i.e. to real

(physical) momenta k = (k1, k2). The other black sets inside the rectangles
in Figures 1-4 show singular curves Γj.

4 Sketch of proofs

To prove Theorem 3.1 we proceed from formulas (3.3)-(3.8). We rewrite (3.6)
as

(

I + Λ−1
N (k)BN(k)

)

cN(k) = Λ−1
N (k) bN , (4.1)

where ΛN(k) and BN(k) are the diagonal and off-diagonal parts of AN(k),
respectively. One can see that

(Λ−1
N (k) bN)m =

εm(N)

1 + εm(N) 1
(2π)d

∫

Rd

ûm,N (−ξ)ûm,N (ξ)

ξ2+2kξ
dξ
, (4.2)

(Λ−1
N (k)BN(k))m,j = (1− δm,j)

εm(N) 1
(2π)d

∫

Rd

ûm,N (−ξ)ûj,N (ξ)

ξ2+2kξ
dξ

1 + εm(N) 1
(2π)d

∫

Rd

ûm,N (−ξ)ûm,N (ξ)

ξ2+2kξ
dξ
. (4.3)

In addition, for N → +∞:

1

(2π)d

∫

Rd

ûm,N(−ξ)ûj,N(ξ)
ξ2 + 2kξ

dξ → −g(zm−zj, k), j 6= m, for d = 2, 3, (4.4)

εm(N)
1

(2π)d

∫

Rd

ûm,N(−ξ)ûm,N(ξ)

ξ2 + 2kξ
dξ → αm

1− αm

4π
| Im k| for d = 3, (4.5)

εm(N)
1

(2π)d

∫

Rd

ûm,N(−ξ)ûm,N(ξ)

ξ2 + 2kξ
dξ → αm

1− αm

2π
(ln(|Re k|+ | Im k|) for d = 2,

(4.6)
k ∈ C

d\Rd, k2 = E ∈ R.
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One can see that (4.4) follows from (3.11) and the definition of ûj,N in
(3.3). In turn, formulas (4.5), (4.6) follow from (3.15), (3.16), the definition
of ûj,N and the following asymptotic formulas for N → +∞:

∫

ξ∈Rd, |ξ|≤N

eiξx

ξ2 + 2kξ
dξ = 4πN − 2π2| Im k|+O(N−1) for d = 3, (4.7)

∫

ξ∈Rd, |ξ|≤N

eiξx

ξ2 + 2kξ
dξ = 2π lnN−2π ln(|Re k|+ | Im k|)+O(N−1) for d = 2,

(4.8)
where k ∈ C

d\Rd, k2 = E ∈ R.
Formulas (3.17)-(3.23) follow from (3.3)-(3.5), (4.1)-(4.6).
Formulas (3.24)-(3.26) follow from (3.18)-(3.23).
Formulas (3.27)-(3.28) follow from the relations ψ = eikxµ, ψγ = eikxµγ,

and formulas (2.4), (2.5), (2.7), (2.8), (3.11),(3.12), (3.18), (3.24).
This completes the sketch of proof of Theorem 3.1.
To prove Proposition 3.1 we rewrite (3.18)-(3.23), (3.27) in the following

form:

ψ(x, k) = eikx +
n
∑

j=1

Cj(k)G(x− zj, k), (4.9)

H(k, p) =
1

(2π)d

n
∑

j=1

Cj(k)e−ikzjeipzj , (4.10)

AC = B, (4.11)

Am,m(k) = α−1
m − (4π)−1| Im k|, d = 3,

Am,m(k) = α−1
m − (2π)−1 ln(|Re k|+ | Im k|), d = 2, (4.12)

Am,j(k) = −G(zm − zj, k), m 6= j,

Bm(k) = eikzm , (4.13)

where k ∈ C
d\Rd, k2 = E ∈ R, p ∈ R

d, p2 = 2kp, G is defined by (1.6).
Here

Cj(k) = eikzjcj(k).

We recall the formulas (see [12])
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∂

∂k̄j
G(x, k) = − 1

(2π)d−1

∫

Rd

ξje
i(k+ξ)xδ(ξ2 + 2kξ)dξ, j = 1, . . . , d. (4.14)

G(x, k + ξ) = G(x, k), for ξ ∈ R
d, ξ2 + 2kξ = 0, (4.15)

where k ∈ C
d\Rd.

We will use also the following formula:

∂̄kAm,m(k) =
1

(2π)d−1

∫

Rd

(

d
∑

j=1

ξjdk̄j

)

δ(ξ2+2kξ) dξ on ΣE\ReΣE, E ∈ R.

(4.16)
The proof of the ∂̄-equation (2.9) for ∂̄kψ(x, k) on ΣE\ReΣE can be

sketched as formulas (4.17)-(4.22) on ΣE\ReΣE as follows.
We have

∂̄kψ(x, k) =
n
∑

j=1

Cj(k)(∂̄kG(x− zj, k)) +
n
∑

j=1

(∂̄kCj(k))G(x− zj, k). (4.17)

Using (4.10), (4.14) one can see that:

n
∑

j=1

Cj(k)(∂̄kG(x−zj, k)) = −2π

∫

Rd

(

d
∑

s=1

ξsdk̄s

)

H(k,−ξ)ei(k+ξ)xδ(ξ2+2kξ)dξ.

(4.18)
Taking into account (4.9), (4.10), (4.17), (4.18) one can see that to prove
equation (2.9) it is sufficient to verify the following ∂̄ equation:

∂̄kCm(k) = −(2π)d−1

∫

Rd

(

d
∑

s=1

ξsdk̄s

)[

n
∑

j=1

Cj(k)e−i(k+ξ)zjCj(k + ξ)

]

δ(ξ2+2kξ)dξ.

(4.19)
In turn, (4.19) follows form the following formulas:

(∂̄kC)A+ C (∂̄kA) = 0, (4.20)

∂̄kAm,j(k) =
1

(2π)d−1

∫

Rd

(

d
∑

s=1

ξsdk̄s

)

ei(k+ξ)zme−i(k+ξ)zjδ(ξ2+2kξ)dξ, (4.21)
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(A−1∂̄kA)m,j(k) =
1

(2π)d−1

∫

Rd

(

d
∑

s=1

ξsdk̄s

)

Cm(k + ξ)e−i(k+ξ)zjδ(ξ2 + 2kξ)dξ.

(4.22)
The ∂̄-equation (2.10) for ∂̄kH on ΣE\ReΣE follows from formula (2.5)

and the ∂̄-equation (2.9) for ∂̄kψ on ΣE\ReΣE.
To verify (2.11) with kγ = 0 we rewrite (3.24)-(3.26), (3.28) and (3.29)-

(3.35) in a similar way with (4.9)-(4.13):

ψγ(x, k) = eikx +
n
∑

j=1

Cγ,j(k)Gγ(x− zj, k), (4.23)

hγ(k, l) =
1

(2π)d

n
∑

j=1

Cγ,j(k)e−ilzj , (4.24)

Aγ Cγ = Bγ, (4.25)

Aγ,m,m(k) = α−1
m , d = 3,

Aγ,m,m(k) = α−1
m − (2π)−1 ln(|k|), d = 2, (4.26)

Aγ,m,j(k) = −Gγ(zm − zj, k), m 6= j,

Bγ,m(k) = eikzm , (4.27)

where γ ∈ Sd−1, k, l ∈ R
d\0, kγ = 0, Gγ(x, k) = G(x, k + i0γ);

ψ+(x, k) = eikx +
n
∑

j=1

C+
j (k)G

+(x− zj, k), (4.28)

f(k, l) =
1

(2π)d

n
∑

j=1

C+
j (k)e

−ilzj , (4.29)

A+ C+ = B+, (4.30)

A+
m,m(k) = α−1

m + i(4π)−1|k|, d = 3,

A+
m,m(k) = α−1

m + (4π)−1(πi− 2 ln(|k|)), d = 2, (4.31)

A+
m,j(k) = −G+(zm − zj, k), m 6= j,

B+
m(k) = eikzm , (4.32)

15



where k, l ∈ R
d\0.

We recall the formula (see [6], [12]):

Gγ(x, k) = G+(x, k) +
2πi

(2π)d

∫

ξ∈Rd

eiξxδ(ξ2 − k2)θ((ξ − k)γ)dξ, (4.33)

where γ ∈ Sd−1, k ∈ R
d\0.

We will use also the following formula:

Aγ,m,m(k) = A+
m,m(k)−

2πi

(2π)d

∫

ξ∈Rd

δ(ξ2 − k2)θ(ξγ)dξ, (4.34)

where γ ∈ Sd−1, k ∈ R
d\0, kγ = 0.

One can see that for ψγ, ψ
+ of (4.23), (4.28) relation (2.11) with kγ = 0

is reduced to the following two relations:

n
∑

j=1

Cγ,j(k)
(

Gγ(x− zj, k)−G+(x− zj, k)
)

= (4.35)

= 2πi

∫

Rd

hγ(k, ξ)e
iξxδ(ξ2 − k2)θ(ξγ)dξ,

Cγ,j(k) = C+
j (k) + 2πi

∫

Rd

hγ(k, ξ)δ(ξ
2 − k2)θ(ξγ)C+

j (ξ)dξ, (4.36)

where γ ∈ Sd−1, k ∈ R
d\0, kγ = 0.

Relation (4.35) follows from (4.33) and (4.24). Relation (4.36) follows
from the following relations

(I + (A+)−1(Aγ −A+))Cγ = C+, (4.37)

(Aγ(k)−A+(k))m,j = − 2πi

(2π)d

∫

ξ∈Rd

eiξ(zm−zj)δ(ξ2 − k2)θ(ξγ)dξ, (4.38)

[(A+(k))−1(Aγ(k)−A+(k))]m,j = − 2πi

(2π)d

∫

ξ∈Rd

C+
m(ξ)e

−iξzjδ(ξ2 − k2)θ(ξγ)dξ,

(4.39)
and formula (4.24) for hγ.

This completes the sketch of proof of the relation (2.11).
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Relation (2.12) can be obtained using (2.3), (2.4), (2.6), (2.7), (2.11).
Formula (2.13) for | Im k| → ∞ can be obtained using (3.18)-(3.23).
Sketch of proof of Proposition 3.1 is completed.
To prove Statement 3.1 we point out that spectral singularities of ψ, h

on ΣE, E ∈ R, coincide with the zeroes of detA(k), where A(k) is defined
by (4.12) (we can always assume that all αm 6= 0). For d = 3, n = 2 we have
that

detA(k) =

[

1

α1

− | Im k|
4π

]

·
[

1

α2

− | Im k|
4π

]

−G(z1 − z2, k) ·G(z2 − z1, k).

(4.40)
We recall that G(x, k) is real-valued (see [12]) or, more precisely,

G(x, k) = G(x, k), k ∈ ΣE\ReΣE, E ∈ R. (4.41)

For k = k′ + i0γ′ of Statement 3.1 formulas (4.40), (4.41) take the form:

detA(k′ + i0γ′) =
1

α1α2

−Gγ′(z1 − z2, k
′) ·Gγ′(z2 − z1, k

′). (4.42)

Gγ′(x, k′) = Gγ′(x, k′). (4.43)

Therefore, for z1, z2 such that Gγ′(z1 − z2, k
′) · Gγ′(z2 − z1, k

′) 6= 0 one can
always choose α1, α2 ∈ R such that detA(k′ + i0γ′) = 0.

Statement 3.1 is proved.
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