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Introduction

Consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R d , d = 2, 3, (1.1) 
where v(x) is a real-valued sufficiently regular function on R d with sufficient decay at infinity.

Let us recall that the classical scattering eigenfunctions ψ + for (1.1) are specified by the following asymptotics as |x| → ∞:

ψ + = e ikx -iπ √ 2πe -iπ 4 f k, |k| x |x| e i|k||x| |k||x| + o 1 |x| , d = 2, (1.2) ψ + = e ikx -2π 2 f k, |k| x |x| e i|k||x| |x| + o 1 |x| , d = 3, (1.3) x ∈ R d , k ∈ R d , k 2 = E > 0,
where a priori unknown function f (k, l), k, l ∈ R d , k 2 = l 2 = E, arising in (1.2), (1.3), is the classical scattering amplitude for (1.1). In addition, we consider the Faddeev eigenfunctions ψ for (1.1) specified by

ψ = e ikx (1 + o(1)) as |x| → ∞, (1.4 
) [START_REF] Faddeev | Growing solutions of the Schrödibger equation[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF]. The generalized scattering data arise in more precise version of the expansion (1.4) (see also formulas (2.3)-(2.8)). The Faddeev eigenfunctions have very rich analytical properties and are quite important for inverse scattering (see, for example, [START_REF] Faddeev | Inverse problem of quantum scattering theory[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF]).

x ∈ R d , k ∈ C d , Im k = 0, k 2 = k 2 1 + . . . + k 2 d = E; see
In the present article we consider equation (1.1), where v(x) is a finite sum of point potentials in two or three dimensions (see [START_REF] Berezin | Remark on Schrödinger equation with singular potential[END_REF], [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF] and references therein). We will write these potentials as: v(x) = n j=1 ε j δ(x -z j ), (1.5) but the precise sense of these potentials will be specified below (see Section 3) and, strictly speaking, δ(x) is not the standard Dirac delta-function (in the physical literature the term renormalized δ-function is used). It is known that for these multipoint potentials the classical scattering eigenfunctions ψ + and the related scattering amplitude f can be naturally defined and can be given by explicit formulas (see [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF] and references therein). In addition, for single point potentials explicit formulas for the Faddeev eigenfunctions ψ and related generalized scattering amplitude h were obtained in an old unpublished work by L.D. Faddeev for d = 3 and in [START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF] for d = 2.

In the present article we give explicit formulas for the Faddeev functions ψ and h for multipoint potentials in the general case for real energies in two and three dimensions (see Theorem 3.1 from the Section 3). Let us point out that our formulas for ψ and h involve the values of the Faddeev Green function G for the Helmholtz equation, where

G(x, k) = - 1 (2π) d e ikx R d e iξx ξ 2 + 2kξ dξ, (1.6) 
(∆ + k 2 )G(x, k) = δ(x), x ∈ R d , k ∈ C d , Im k = 0. (1.7)
In the present article we consider G(x, k) as some known special function.

In addition, basic formulas and equations of monochromatic inverse scattering, derived for sufficiently regular potentials v, remain valid for the Faddeev functions ψ and h of Theorem 3.1. Thus, basic formulas and equations of monochromatic inverse scattering are illustrated by explicit examples related to multipoint potentials. We think that the results of the present work can be used, in particular, for testing different monochromatic inverse scattering algorithms based on properties of the Faddeev functions ψ and h (see [START_REF] Badalyan | Scattering by acoustic boundary scattering with small wave sizes and their reconstruction[END_REF] as a work in this direction).

It it interesting to note also that explicit formulas for ψ and h for multipoint potentials show new qualitative effects in comparison with the onepoint case. In particular, the Faddeev eigenfunctions for 2-point potentials in 3D may have singularities for real momenta k, in contrast with the one-point potentials in 3D (see Statement 3.1).

Besides, functions ψ and h of Theorem 3.1 for d = 2 illustrate a very rich family of 2D potentials with spectral singularities in the complex domain. Let us recall that monochromatic 2D inverse scattering is well-developed only under the assumption that such singularities are absent at fixed energy (see [START_REF] Grinevich | Two-dimensional 'inverse scattering problem' for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF]and [START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF] for additional discussion in this connection). We hope that the aforementioned examples and quite different examples from [START_REF] Grinevich | Rational solitons of the Veselov-Novikov equations are potential reflectionless at fixed energy[END_REF], [START_REF] Taimanov | Faddeev eigenfunctions for twodimensional Schrodinger operators via the Moutard transformation[END_REF] will help to find correct analytic formulation of monochromatic inverse scattering in two dimensions in the presence of spectral singularities.

Some preliminaries

It is convenient to write ψ = e ikx µ, (2.1) 
where ψ solves (1.1), (1.4) and µ solves

-∆µ -2ik∇µ + v(x)µ = 0, k ∈ C d , k 2 = E. (2.2)
In addition, to relate eigenfunctions and scattering data it is convenient to use the following presentations, used, for example, in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] for regular potentials:

µ + (x, k) = 1 - R d e iξx F (k, -ξ) ξ 2 + 2(k + i0k)ξ dξ, k ∈ R d \0, (2.3) 
µ γ (x, k) = 1 - R d e iξx H γ (k, -ξ) ξ 2 + 2(k + i0γ)ξ dξ, k ∈ R d \0, γ ∈ S d-1 , (2.4) µ(x, k) = 1 - R d e iξx H(k, -ξ) ξ 2 + 2kξ dξ, k ∈ C d , Im k = 0, (2.5) 
where ψ + = e ikx µ + are the eigenfunctions specified by (1.2), (1.3), ψ = e ikx µ are the eigenfunctions specified by (1.4),

µ γ (x, k) = µ(x, k + i0γ), k ∈ R d \0.
The following formulas hold:

f (k, l) = F (k, k -l), k, l ∈ R d , k 2 = l 2 = E > 0, (2.6) 
h γ (k, l) = H γ (k, k -l), k, l ∈ R d , k 2 = l 2 = E > 0, γ ∈ S d-1 , (2.7) 
h(k, l) = H(k, k -l), k, l ∈ C d , Im k = Im l = 0, k 2 = l 2 = E, (2.8) 
where f is the classical scattering amplitude of (1.2), (1.3), h γ , h are the Faddeev generalized scattering data of [START_REF] Faddeev | Inverse problem of quantum scattering theory[END_REF]. We recall also that for regular real-valued potentials the following formulas hold (at least outside of the singularities of the Faddeev functions in spectral parameter k):

∂ ∂ kj ψ(x, k) = -2π R d ξ j H(k, -ξ)ψ(x, k + ξ)δ(ξ 2 + 2kξ)dξ, (2.9) 
∂ ∂ kj H(k, p) = -2π R d ξ j H(k, -ξ)H(k + ξ, p + ξ)δ(ξ 2 + 2kξ)dξ, (2.10) j = 1, . . . , d, k ∈ C d \R d , x, p ∈ R d , ψ γ (x, k) = ψ + (x, k) + 2πi R d h γ (k, ξ)θ((ξ -k)γ)δ(ξ 2 -k 2 )ψ + (x, ξ)dξ, (2.11) h γ (k, l) = f (k, l) + 2πi R d h γ (k, ξ)θ((ξ -k)γ)δ(ξ 2 -k 2 )f (ξ, l)dξ, (2.12) γ ∈ S d-1 , x, k, l ∈ R d , k 2 = l 2 ,
where δ(t) is the Dirac δ-function, θ(t) is the Heaviside step function;

µ(x, k) → 1 for |k| → ∞, x ∈ R d , (2.13) 
H(k, p) → 1 (2π) d R d v(x)e ipx dx for |k| → ∞, p ∈ R d , (2.14) |k| = | Re k| 2 + | Im k| 2 ,
see [START_REF] Faddeev | Inverse problem of quantum scattering theory[END_REF], [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF] and references therein.

Let us define the following varieties:

Σ E = {k ∈ C d : k 2 = E}, (2.15 
)

Ω E,p = {k ∈ Σ E : 2kp = p 2 }, p = 0 for d = 2, p ∈ R 3 for d = 3, (2.16 
)

Ω E = {k ∈ Σ E , p ∈ R d : 2kp = p 2 }, (2.17) 
Θ E = {k, l ∈ C d : Im k = Im l, k 2 = l 2 = E}. (2.18) 
Note that in the present article we consider the Faddeev functions ψ, H, h and ψ γ , H γ , h γ for multipoint potentials for fixed real energies E only, for simplicity. In this connection we consider

ψ on R d × (Σ E \ Re Σ E ), H on Ω E \ Re Ω E , h on Θ E \ Re Θ E , ψ γ (x, k), H γ (k, p), h γ (k, l) for γ ∈ S d-1 , x, k, p, l ∈ R d , p 2 = 2kp, k 2 = l 2 = E, kγ = 0.
In addition, we also consider the forms

∂k ψ = d j=1 ∂ ∂ kj ψ(x, k)d kj , ∂k H = d j=1 ∂ ∂ kj H(k, p)d kj ,
on the varieties Σ E , Ω E,p , respectively, where the ∂/∂ kj derivatives of µ, H are given by (2.9), (2.10).

In addition, we recall that formulas (2.9)-(2.14) give a basis for monochromatic inverse scattering for regular potentials in two and three dimensions, see [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF], [START_REF] Grinevich | Inverse scattering problem for the twodimensional Schrodinger operator, ∂ -method and nonlinear equations[END_REF], [START_REF] Grinevich | Two-dimensional 'inverse scattering problem' for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF], [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF].

Main results

By analogy with [START_REF] Berezin | Remark on Schrödinger equation with singular potential[END_REF] we understand the multipoint potentials v(x) from (1.5) as a limit for N → +∞ of non-local potentials

V N (x, x ′ ) = n j=1 ε j (N )u j,N (x)u j,N (x ′ ), (3.1) 
where

(V N • µ)(x) = n j=1 ε j (N ) R d u j,N (x)u j,N (x ′ )µ(x ′ )dx ′ , (3.2) 
u j,N (x) = 1 (2π) d R d ûj,N (ξ)e iξx dξ, ûj,N (ξ) = e -iξz j |ξ| ≤ N, 0 |ξ| > N, (3.3) 
x, x ′ , z j ∈ R d , z m = z j for m = j, ε j (N ) are normalizing constant specified by (3.15) for d = 3 and (3.16) for d = 2. It is clear that

u j,N (x) = u 0,N (x -z j ), where û0,N (ξ) = 1 |ξ| ≤ N, 0 |ξ| > N. For v = V N equation (2.
2) has the following explicit Faddeev solutions:

µ N (x, k) = 1 + 1 (2π) d R d μN (ξ, k)e iξx dξ, (3.4 
) μN (ξ, k) = - n j=1 c j,N (k)û j,N (ξ) ξ 2 + 2kξ , (3.5) 
x ∈ R d , ξ ∈ R d , k ∈ C d , Im k = 0, where c N (k) = (c 1,N (k), . . . , c n,N (k))
is the solution of the following linear equation:

A N (k)c N (k) = b N , (3.6) 
where A N (k) is the n × n matrix and b N is the n-component vector with the following elements:

A m,j,N (k) = δ m,j + ε m (N ) 1 (2π) d R d ûm,N (-ξ)û j,N (ξ) ξ 2 + 2kξ dξ, (3.7) 
b m,N = ε m (N ).

(3.8)

In addition, equation (2.2) has the following classical scattering solutions:

µ + N (x, k) = µ N (x, k + i0k), x ∈ R d , k ∈ R d \0, (3.9) 
arising from

μ+ N (ξ, k) = μN (ξ, k + i0k), ξ ∈ R d , k ∈ R d \0. (3.10)
Let us consider the following Green functions for the operator ∆ + 2ik∇:

g(x, k) = - 1 (2π) d R d e iξx ξ 2 + 2kξ dξ, x ∈ R d k ∈ C d , Im k = 0, (3.11) 
g γ (x, k) = - 1 (2π) d R d e iξx ξ 2 + 2(k + i0γ)ξ dξ, x ∈ R d k ∈ R d \0, γ ∈ S d-1 , (3.12 
)

g + (x, k) = - 1 (2π) d R d e iξx ξ 2 + 2(k + i0k)ξ dξ, x ∈ R d k ∈ R d \0. (3.13) 
One can see that G(x, k) = e ikx g(x, k), where G(x, k) was defined by (1.6). Note also that for d = 3 the Green function g + (x, k) can be calculated explicitly:

g + (x, k) = - 1 4π
e -ikx e i|k||x| |x| .

(3.14)

Theorem 3.1 Let d=2, 3, ε j (N ) = α j 1 - α j N 2π 2 -1
, α j ∈ R, j = 1, . . . , n, for d = 3, (3.15)

ε j (N ) = α j 1 - α j 2π ln(N ) -1
, α j ∈ R, j = 1, . . . , n, for d = 2, (3.16)

Then:

1. The limiting eigenfunctions

ψ(x, k) = e ikx lim N →+∞ µ N (x, k), x ∈ R d , k ∈ C d \R d , k 2 = E ∈ R, (3 
.17) are well-defined (at least outside the spectral singularities).

2. The following formulas hold:

ψ(x, k) = e ikx 1 + n j=1 c j (k)g(x -z j , k) , k ∈ C d \R d , k 2 = E ∈ R, (3.18)
where c(k) = (c 1 (k), . . . , c n (k)) is the solution of the following linear equation:

Ã(k)c(k) = b(k), (3.19) 
where Ã(k) is the n × n matrix, b(k) is the n-component vector with the following elements for d = 3:

Ãm,j (k) = 1, m = j -α m 1 -αm 4π | Im k| -1 g(z m -z j , k), m = j, (3.20) bm (k) = α m 1 - α m 4π | Im k| -1 ; (3.21)
and with the following elements for d = 2:

Ãm,j (k) = 1, m = j -α m 1 -αm 2π (ln(| Re k| + | Im k|) -1 g(z m -z j , k), m = j, (3.22) bm (k) = α m 1 - α m 2π (ln(| Re k| + | Im k|) -1
.

(3.23)

In addition, for limiting values of ψ the following formulas hold:

ψ γ (x, k) = ψ(x, k + i0γ) = e ikx 1 + n j=1 c γ,j (k)g γ (x -z j , k) , (3.24) x ∈ R d , k ∈ R d \0, γ ∈ S d-1 , kγ = 0, where c γ (k) = (c γ,1 (k), . . . , c γ,n (k))
is the solution of the following linear equation:

Ãγ (k)c γ (k) = bγ (k), (3.25) 
where V N , associated with the limiting eigenfunctions ψ, ψ γ , are given by:

Ãγ (k) = Ã(k + i0γ), bγ (k) = b(k + i0γ). ( 3 
h(k, l) = 1 (2π) d n j=1 c j (k)e i(k-l)z j , (3.27) k, l ∈ C 3 , Im k = Im l = 0, k 2 = l 2 = E ∈ R,
where c j (k) are the same as in (3.18), (3.19);

h γ (k, l) = 1 (2π) d n j=1 c γ,j (k)e i(k-l)z j , (3.28) k, l ∈ R d \0, k 2 = l 2 = E, γ ∈ S d-1 , kγ = 0,
where c γ,j (k) are the same as in (3.24), (3.25). 1. For the classical scattering eigenfunctions ψ + the following formulas hold:

Note that if b(k) =

ψ + (x, k) = e ikx 1 + n j=1 c + j (k)g + (x -z j , k) , (3.29) 
where c + (k) = (c + 1 (k), . . . , c + n (k)) is the solution of the following linear equation:

Ã+ (k)c + (k) = b+ (k), (3.30) 
where Ã+ (k) is the n × n matrix, and b+ (k) is the n-component vector with the following elements for d = 3:

Ã+ m,j (k) = 1 m = j -α m 1 + iαm 4π |k| -1 g + (z m -z j , k), m = j, (3.31) b+ m (k) = α m 1 + iα m 4π |k| -1 ; (3.32)
and with the following elements for d = 2:

Ã+ m,j (k) = 1 m = j -α m 1 + αm 4π (πi -2 ln |k|) -1 g + (z m -z j , k), m = j, (3.33) b+ m (k) = α m 1 + α m 4π (πi -2 ln |k|) -1 ; (3.34) 2.
For the classical scattering amplitude f the following formula holds: Proposition 3.1 Formulas (2.9),(2.10) in terms of ∂k µ, ∂k H, on Σ E , Ω E,p , formulas (2.11), (2.12) with kγ = 0 and formula (2.13) for | Im k| → ∞ are fulfilled for functions ψ = e ikx µ, ψ γ , ψ + , h, h γ of Theorem 3.1, at least for x = z j , j = 1, . . . , n. 

f (k, l) = 1 (2π) d n j=1 c + j (k)e i(k-l)z j , (3.35) k, l ∈ R d , k 2 = l 2 = E ∈ R,
Statement 3.1 Let d = 3, n = 2, E = E fix > 0. Then for appropriate α 1 , α 2 ∈ R\0, z 1 , z 2 ∈ R 3 there are real spectral singularities k = k ′ + i0γ ′ with γ ′ ∈ S 2 , k ′ ∈ R 3 , (k ′ ) 2 = E fix , k ′ γ ′ = 0,

Let us recall that dim

C Σ E = 1, dim R Σ E = 2 for d = 2.
In addition, it is known that for a fixed real energy E = E fix the spectral singularities of ψ and H on Σ E \ Re Σ E are zeroes of a real-valued determinant function (for real potentials). Thus, one can expect that these spectral singularities on Σ E fix for generic real potentials are either empty or form a family of curves Γ j , j = ±1, ±2, . . . ± J . The problem of studying the geometry of these spectral singularities on Σ E fix was formulated already in [START_REF] Grinevich | Two-dimensional 'inverse scattering problem' for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF]. In addition, it was expected in [START_REF] Grinevich | Two-dimensional 'inverse scattering problem' for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF] that the most natural configuration of curves is a "nest"

[Γ -J ⊂ Γ -J+1 ⊂ . . . ⊂ Γ -1 ⊂ S 1 ⊂ Γ 1 ⊂ . . . ⊂ Γ J ],
(3.36) see [START_REF] Grinevich | Two-dimensional 'inverse scattering problem' for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF] for details. Figures Fig. 1-Fig. 4 show these spectral singularities for 2-point potentials for some interesting cases. These figures show that the geometry of the singular curves Γ j may be different from the "nest". In Figures 1234the surface Σ E is shown as C\0 with the coordinate λ, where the parametrization of Σ E is given by the formulas:

k 1 = 1 λ + λ √ E 2 , k 2 = 1 λ -λ i √ E 2 , λ ∈ C\0. (3.37) 
The coordinate axes Im λ = 0, Re λ = 0 and the unit circle |λ| = 1 in C are shown in bold. This unit circle corresponds to Σ E ∩ R 2 , i.e. to real (physical) momenta k = (k 1 , k 2 ). The other black sets inside the rectangles in Figures 1234show singular curves Γ j .

Sketch of proofs

To prove Theorem 3.1 we proceed from formulas (3.3)-(3.8). We rewrite (3.6) as

I + Λ -1 N (k) B N (k) c N (k) = Λ -1 N (k) b N , (4.1) 
where Λ N (k) and B N (k) are the diagonal and off-diagonal parts of A N (k), respectively. One can see that

(Λ -1 N (k) b N ) m = ε m (N ) 1 + ε m (N ) 1 (2π) d R d ûm,N (-ξ)û m,N (ξ) ξ 2 +2kξ dξ , (4.2) 
(Λ -1 N (k) B N (k)) m,j = (1 -δ m,j ) ε m (N ) 1 (2π) d R d ûm,N (-ξ)û j,N (ξ) ξ 2 +2kξ dξ 1 + ε m (N ) 1 (2π) d R d ûm,N (-ξ)û m,N (ξ) ξ 2 +2kξ dξ . (4.3) 
In addition, for N → +∞:

1 (2π) d R d ûm,N (-ξ)û j,N (ξ) ξ 2 + 2kξ dξ → -g(z m -z j , k), j = m, for d = 2, 3, (4.4) 
ε m (N ) 1 (2π) d R d ûm,N (-ξ)û m,N (ξ) ξ 2 + 2kξ dξ → α m 1 -αm 4π | Im k| for d = 3, (4.5) 
ε m (N ) 1 (2π) d R d ûm,N (-ξ)û m,N (ξ) ξ 2 + 2kξ dξ → α m 1 -αm 2π (ln(| Re k| + | Im k|) for d = 2, (4.6) k ∈ C d \R d , k 2 = E ∈ R.
One can see that (4.4) follows from (3.11) and the definition of ûj,N in (3.3). In turn, formulas (4.5), (4.6) follow from (3.15), (3.16), the definition of ûj,N and the following asymptotic formulas for N → +∞: 

ξ∈R d , |ξ|≤N e iξx ξ 2 + 2kξ dξ = 4πN -2π 2 | Im k| + O(N -1 ) for d = 3, (4.7) 
ψ(x, k) = e ikx + n j=1 C j (k)G(x -z j , k), (4.9) 
H(k, p) = 1 (2π) d n j=1
C j (k)e -ikz j e ipz j , (4.10)

A C = B, (4.11) 
A m,m (k) = α -1 m -(4π) -1 | Im k|, d = 3, A m,m (k) = α -1 m -(2π) -1 ln(| Re k| + | Im k|), d = 2, (4.12) A m,j (k) = -G(z m -z j , k), m = j, B m (k) = e ikzm , (4.13) 
where

k ∈ C d \R d , k 2 = E ∈ R, p ∈ R d , p 2 = 2kp, G is defined by (1.6).
Here C j (k) = e ikz j c j (k).

We recall the formulas (see [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF])

∂ ∂ kj G(x, k) = - 1 (2π) d-1 R d
ξ j e i(k+ξ)x δ(ξ 2 + 2kξ)dξ, j = 1, . . . , d. (4.14)

G(x, k + ξ) = G(x, k), for ξ ∈ R d , ξ 2 + 2kξ = 0, (4.15) 
where k ∈ C d \R d . We will use also the following formula:

∂k A m,m (k) = 1 (2π) d-1 R d d j=1 ξ j d kj δ(ξ 2 +2kξ) dξ on Σ E \ Re Σ E , E ∈ R. (4.16)
The proof of the ∂-equation (2.9) for ∂k ψ(x, k) on Σ E \ Re Σ E can be sketched as formulas (4.17)-(4.22) on Σ E \ Re Σ E as follows.

We have (4.18) Taking into account (4.9), (4.10), (4.17), (4.18) one can see that to prove equation (2.9) it is sufficient to verify the following ∂ equation:

∂k ψ(x, k) = n j=1 C j (k)( ∂k G(x -z j , k)) + n j=1 ( ∂k C j (k))G(x -z j , k).
∂k C m (k) = -(2π) d-1 R d d s=1 ξ s d ks n j=1 C j (k)e -i(k+ξ)z j C j (k + ξ) δ(ξ 2 +2kξ)dξ. (4.19)
In turn, (4.19) follows form the following formulas: 

( ∂k C) A + C ( ∂k A) = 0, (4.20) ∂k A m,j (k) = 1 (2π) d-1 R d d s=1 ξ s d ks e i(k+ξ)zm e -i(k+ξ)z j δ(ξ 2 + 2kξ)dξ, (4.21) (A -1 ∂k A) m,j (k) = 1 (2π) d-1 R d d s=1 ξ s d ks C m (k + ξ)e -i(k+ξ)z j δ(ξ 2 + 2kξ)dξ.
ψ γ (x, k) = e ikx + n j=1 C γ,j (k)G γ (x -z j , k), (4.23) h γ (k, l) = 1 (2π) d n j=1 C γ,j (k)e -ilz j , (4.24) 
A γ C γ = B γ , (4.25) A γ,m,m (k) = α -1 m , d = 3, A γ,m,m (k) = α -1 m -(2π) -1 ln(|k|), d = 2, (4.26) A γ,m,j (k) = -G γ (z m -z j , k), m = j, B γ,m (k) = e ikzm , (4.27) 
where

γ ∈ S d-1 , k, l ∈ R d \0, kγ = 0, G γ (x, k) = G(x, k + i0γ); ψ + (x, k) = e ikx + n j=1 C + j (k)G + (x -z j , k), (4.28) f (k, l) = 1 (2π) d n j=1 C + j (k)e -ilz j , (4.29) 
A + C + = B + , (4.30) 
A + m,m (k) = α -1 m + i(4π) -1 |k|, d = 3, A + m,m (k) = α -1 m + (4π) -1 (πi -2 ln(|k|)), d = 2, (4.31) A + m,j (k) = -G + (z m -z j , k), m = j, B + m (k) = e ikzm , (4.32) 
where k, l ∈ R d \0.

We recall the formula (see [START_REF] Faddeev | Inverse problem of quantum scattering theory[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]):

G γ (x, k) = G + (x, k) + 2πi (2π) d ξ∈R d e iξx δ(ξ 2 -k 2 )θ((ξ -k)γ)dξ, (4.33) 
where

γ ∈ S d-1 , k ∈ R d \0.
We will use also the following formula:

A γ,m,m (k) = A + m,m (k) - 2πi (2π) d ξ∈R d δ(ξ 2 -k 2 )θ(ξγ)dξ, (4.34) 
where γ ∈ S d-1 , k ∈ R d \0, kγ = 0. One can see that for ψ γ , ψ + of (4.23), (4.28) relation (2.11) with kγ = 0 is reduced to the following two relations: This completes the sketch of proof of the relation (2.11).

Relation (2.12) can be obtained using (2.3), (2.4), (2.6), (2.7), (2.11). Formula (2.13) for | Im k| → ∞ can be obtained using (3.18)-(3.23). Sketch of proof of Proposition 3.1 is completed.

To prove Statement 3.1 we point out that spectral singularities of ψ, h on Σ E , E ∈ R, coincide with the zeroes of det A(k), where A(k) is defined by (4.12) (we can always assume that all α m = 0). For d = 3, n = 2 we have that

det A(k) = 1 α 1 - | Im k| 4π • 1 α 2 - | Im k| 4π -G(z 1 -z 2 , k) • G(z 2 -z 1 , k).
(4.40) We recall that G(x, k) is real-valued (see [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]) or, more precisely, 

G(x, k) = G(x, k), k ∈ Σ E \ Re Σ E , E ∈ R.
det A(k ′ + i0γ ′ ) = 1 α 1 α 2 -G γ ′ (z 1 -z 2 , k ′ ) • G γ ′ (z 2 -z 1 , k ′ ). (4.42) G γ ′ (x, k ′ ) = G γ ′ (x, k ′ ). (4.43) 
Therefore, for z 1 , z 2 such that G γ ′ (z 1 -z 2 , k ′ ) • G γ ′ (z 2 -z 1 , k ′ ) = 0 one can always choose α 1 , α 2 ∈ R such that det A(k ′ + i0γ ′ ) = 0. Statement 3.1 is proved.
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 3 The Faddeev generalized scattering data for the limiting potential v = lim N →+∞

Remark 3 . 1

 31 ∞ then we understand (3.18)-(3.26) as (4.9), (4.11)-(4.13), (4.23), (4.25)-(4.27). Let the assumptions of Theorem 3.1 be fulfilled. Then:

  where c + j (k) are the same as in (3.29), (3.30). In a slightly different form formulas (3.29) -(3.35) are contained in Section II.1.5 and Chapter II.4 of [1]. In addition, the classical scattering functions ψ + and f for d = 3 are expressed in terms of elementary functions via (3.29)-(3.35).

  of the Faddeev functions ψ, h of Theorem 3.1.Remark 3.2In connection with Statement 3.1, note that for the case d = 3, n = 1, studied in the old unpublished work of Faddeev, there are no real spectral singularities of the Faddeev functions ψ, h. In addition, in[START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF] it was shown that for the case d = 2, n = 1, α ∈ R\0 the Faddeev functions always have some real spectral singularities (see Statement 3.1 of[START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF] for details).

Fig. 1 E 6 Fig. 2 E 6 Fig. 3 E 6 Fig. 4 E

 1626364 Fig. 1 E = 4, z 2 -z 1 = (0.5 , 0), α 1 = 5, α 2 = 6

ξ∈R d , |ξ|≤N e iξx ξ 2

 2 + 2kξ dξ = 2π ln N -2π ln(| Re k|+| Im k|)+O(N -1 ) for d = 2, (4.8) where k ∈ C d \R d , k 2 = E ∈ R. Formulas (3.17)-(3.23) follow from (3.3)-(3.5), (4.1)-(4.6). Formulas (3.24)-(3.26) follow from (3.18)-(3.23). Formulas (3.27)-(3.28) follow from the relations ψ = e ikx µ, ψ γ = e ikx µ γ , and formulas (2.4), (2.5), (2.7), (2.8), (3.11),(3.12), (3.18), (3.24). This completes the sketch of proof of Theorem 3.1. To prove Proposition 3.1 we rewrite (3.18)-(3.23), (3.27) in the following form:

  (4.17) Using (4.10), (4.14) one can see that:

C

  j (k)( ∂k G(x-z j , k)) = -2π R d d s=1ξ s d ks H(k, -ξ)e i(k+ξ)x δ(ξ 2 +2kξ)dξ.

( 4 .

 4 22)The ∂-equation(2.10) for ∂k H on Σ E \ Re Σ E follows from formula (2.5) and the ∂-equation (2.9) for ∂k ψ on Σ E \ Re Σ E .To verify (2.11) with kγ = 0 we rewrite (3.24)-(3.26), (3.28) and (3.29)-(3.35) in a similar way with (4.9)-(4.13):

C

  γ,j (k) G γ (x -z j , k) -G + (x -z j , k) = (4.35) = 2πi R d h γ (k, ξ)e iξx δ(ξ 2 -k 2 )θ(ξγ)dξ, C γ,j (k) = C + j (k) + 2πi R d h γ (k, ξ)δ(ξ 2 -k 2 )θ(ξγ)C + j (ξ)dξ,(4.36)where γ ∈ S d-1 , k ∈ R d \0, kγ = 0. Relation (4.35) follows from (4.33) and (4.24). Relation (4.36) follows from the following relations(I + (A + ) -1 (A γ -A + ))C γ = C + , (4.37) (A γ (k) -A + (k)) m,j = -2πi (2π) d ξ∈R d e iξ(zm-z j ) δ(ξ 2 -k 2 )θ(ξγ)dξ,(4.38)[(A + (k)) -1 (A γ (k) -A + (k))] m,j = -2πi (2π) d ξ∈R d C + m (ξ)e -iξz j δ(ξ 2 -k 2)θ(ξγ)dξ, (4.39) and formula (4.24) for h γ .

  (4.41) For k = k ′ + i0γ ′ of Statement 3.1 formulas (4.40), (4.41) take the form:
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