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Elliptic Singular Fourth Order Equations

Mohammed Benalili and Kamel Tahri

Abstract. Using a method developped in [1] and [2], we prove the
existence of weak non trivial solutions to fourth order elliptic equations
with singularities and with critical Sobolev growth.

1. Introduction

Fourth order elliptic equations have been widely studied these last years
because of their importance in the analysis on manifolds particularly those
involving the Paneitz - Branson operators. Many works have been devoted
to this subject ( see [1], [2], [3], [4],[5], [6], [7], [8], [9] [10], [13] and [16]
). Di¤erent techniques have been used for the resolution of the fourth or-
der equations as example the variational method which was developed by
Yamabe to solve the problem of the prescribed scalar curvature. Let (M; g)
a compact smooth Riemannian of dimension n � 5 with a metric g. We
denote by H2

2 (M) the standard Sobolev space which is the completed of the
space C1 (M) with respect to the norm

k'k2;2 =
k=2X

k=0

DDDrk'
DDD
2
.

H2
2 (M) will be endowed with the suitable equivalent norm

kukH2
2 (M) = (

Z

M

�
(�gu)

2 + jrguj2 + u2
�
dvg)

1
2 .

In 1979, [17], M. Vaugon has proved the existence of real � > 0 and a non
trivial solution u 2 C4 (M) to the equation

�2gu� divg (a(x)rgu) + b(x)u = �f(t; x)

2000 Mathematics Subject Classi�cation. Primary 58J05.
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2 MOHAMMED BENALILI AND KAMEL TAHRI

where a, b are smooth functions on M and f(t; x) is odd and increasing
function in t ful�lling the inequality

jf(t; x)j < a+ b jtj
n+4
n�4 .

D.E. Edminds, D. Fortunato and E. Jannelli [14] have shown that the only
solutions in Rn to the equation

�2u = u
n+4
n�4

are positive, symmetric, radial and decreasing functions of the form

uF(x) =

�
(n� 4)n(n2 � 4)F4

�n�4
8

(r2 + F2)
n�4
2

.

In 1995, [15] Van Der Vorst obtains the same results as D.E. Edminds, D.
Fortunato and E. Jannelli to the following problem

(
�2u� �u = u juj

8
n�4 in A;

�u = u = 0 on @A;

where A is a bounded domain of Rn.
In 1996, [9] F. Bernis, J. Garcia-Azorero and I.Peral have obtained the
existence at least of two positive solution to the following problem

(
�2u� �u jujq�2 = u juj

8
n�4 in A;

�u = u = 0 on @A;

where A is bounded domain of Rn,1 < q < 2 and � > 0 in some interval.
In 2001, [12], D. Cara¤a has obtained the existence of a non trivial solution
of class C4;B, B 2 (0; 1) to the following equation

�2gu�rB (a(x)rBu) + b(x)u = �f(x) jujN�2 u
with � > 0, �rst for f a constant and next for a positive function f on M .

Recently the �rst author [4], has shown the existence of at least two
distinct non trivial solutions in the subcritical case and a non trivial solution
in the critical case to the following equation

�2gu�rB (a(x)rBu) + b(x)u = f(x) jujN�2 u
where f is a changing sign smooth function and a and b are smooth func-
tions. In [6] the same author proved the existence of at least two non trivial
solutions to

�2gu�rB (a(x)rBu) + b(x)u = f(x) jujN�2 u+ jujq�2 u+ "g(x)
where a, b, f , g are smooth functions on M with f > 0, 2 < q < N , � > 0
and F > 0 small enough. Let Sg denote the scalar curvature of M . In 2010,
[8], the authors proved the following result
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Theorem 1. Let (M; g) be a compact Riemannian manifold of dimen-
sion n � 6 and a, b, f smooth functions on M , � 2 (0; ��), 1 < q < 2
such that
1) f(x) > 0 on M .
2) At the point xE where f attains its maximum, we suppose, for n = 6

Sg(xE) + 3a(xE) > 0

and for n > 6
 �
n2 + 4n� 20

�

2(n+ 2)(n� 6)Sg(xE) +
(n� 1)

(n+ 2)(n� 6)a(xE)�
1

8

�f(xE)

f(xE)

!

> 0 .

Then the equation

�2gu+ divg (a(x)rgu) + b(x)u = � jujq�2 u+ f(x) jujN�2 u
admits a non trivial solution of class C4;B (M), B 2 (0; 1).

Recently, F. Madani [14], has considered the Yamabe problem with sin-
gularities which he solved under some geometric conditions. The �rst author
in [7] considered fourth order elliptic equation with singularities of the form

(1) �2u�ri (a(x)riu) + b(x)u = f jujN�2 u
where the functions a and b are in Ls(M), s > n

2 and in L
p(M), p > n

4

respectively, N = 2n
n�4 is the Sobolev critical exponent in the embedding

H2
2 (M) ,! LN (M). He established the following result. Let (M; g) be

a compact n-dimensional Riemannian manifold, n � 6, a 2 Ls(M), b 2
Lp(M), with s > n

2 , p >
n
4 , f 2 C1(M) a positive function and xo 2 M

such that f(xo) = maxx2M f(x).

Theorem 2. For n � 10, or n = 8; 9 and 2 < p < 5, 94 < s < 11or

n = 7, 72 < s < 9 and
7
4 < p < 9 we suppose that

n2 + 4n� 20
6 (n� 6) (n2 � 4)Sg (xo)�

n� 4
2n (n� 2)

�f(xo)

f(xo)
> 0.

For n = 6 and 3
2 < p < 2, 3 < s < 4, we suppose that

Sg(xo) > 0.

Then the equation (1) has a non trivial weak solution u in H2
2 (M). Moreover

if a 2 Hs
1 (M), then u 2 C0;C (M), for some C 2

�
0; 1� n

4p

�
.

In this paper, we are concerned with the following problem: let (M; g)
be a Riemannian compact manifold of dimension n � 5. Let a 2 Lr(M),
b 2 Ls(M) where r > n

2 , s >
n
4 and f a positive C1-function on M ; we

look for non trivial solution of the equation

(2) �2gu+ divg (a(x)rgu) + b(x)u = � jujq�2 u+ f(x) jujN�2 u
where 1 < q < 2 and N = 2n

n�4 is the critical Sobolev exponent and � > 0 a
real number. Our main result states as follows
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Theorem 3. Let (M; g) be a compact Riemannian manifold of dimen-
sion n � 6 and f a positive function. Suppose that Pg is coercive and at a
point xo where f attains its maximum the following conditions

(C)8
><

>:

�f(xo)
f(xo)

<

 
n(n2+4n�20)

3(n+2)(n�4)(n�6)
1

(1+kakr+kbks)
4
n
� n�2

3(n�1)

!

Sg (xo) in case n > 6

Sg(xE) > 0 in case n = 6.

are true.
Then there is �� > 0 such that for any � 2 (0; ��), the equation (2) has

a non trivial weak solution.

For �xed R 2M , we de�ne the function � on M by

(3) �(Q) =

�
d(R;Q) if d(R;Q) < E(M)
E(M) if d(R;Q) � E(M)

where E(M) denotes the injectivity radius of M .
For real numbers � and �, consider the equation in the distribution sense

(4) �2u�ri( a
��
riu) +

bu

��
= � jujq�2 u+ f(x) jujN�2 u

where the functions a and b are smooth on M ,

Corollary 1. Let 0 < � < n
r
< 2 and 0 < � < n

s
< 4. Suppose that

8
><

>:

�f(xo)
f(xo)

< 1
3

 
(n�1)n(n2+4n�20)
(n2�4)(n�4)(n�6)

1

(1+kakr+kbks)
4
n
� 1
!

Sg (xo) in case n > 6

Sg(xE) > 0 in case n = 6.

Then there is �� > 0 such that if � 2 (0; ��), the equation (4) possesses
a weak non trivial solution u�;� 2M�.

In the sharp case � = 2 and � = 4, letting K(n; 2; D) the best constant
in the Hardy-Sobolev inequality given by Theorem 6 we obtain the following
result

Theorem 4. Let (M; g) be a Riemannian compact manifold of dimen-
sion n � 5. Let

�
u�m;�m

�
m
be a sequence in M� such that

�
J�;�;�(u�m;�m

) � c�;�
rJ�(u�;�)� ��;�r��(u�;�)! 0

.

Suppose that

c�;� <
2

n K
n
4
o (f(xE))

n�4
4

and

1 + a�max (K(n; 2; �); A ("; �)) + b�max (K(n; 2; �); A ("; �)) > 0
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then the equation

�2u�r�( a
�2
r�u) +

bu

�4
= f jujN�2 u+ � jujq�2 u

in the distribution has a weak non trivial solution.

2. Existence of solutions

In this section we focus on the existence of solutions to equation (1); we
use a variational method so we consider on H2

2 (M) the functional

J�(u) =
1

2

Z

M

�
j�guj2 � a(x) jrguj2 + b(x)u2

�
dvg�

�

q

Z

M

jujq dvg�
1

N

Z

M

f(x) jujN dvg.

First, we put

��(u) = hrJ�(u); ui
hence

��(u) =

Z

M

�
(�gu)

2 � a(x) jrguj2 + b(x)u2
�
dvg��

Z

M

jujq dvg�
Z

M

f(x) jujN dvg.

We let

M� =
�
u 2 H2

2 (M) : ��(u) = 0 and kuk � � > 0
	
.

The operator Pg(u) is said coercive if there exits � > 0 such that for any
u 2 H2

2 (M) Z

M

uPg(u)dvg � � kuk2H2
2 (M) :

Proposition 1. kuk = (
R
M
j�guj2 � a(x) jrguj2 + b(x)u2dvg)

1
2 is an

equivalent norm to the usual one on H2
2 (M) if and only if Pg is coercive.

Proof. If Pg is coercive there is � > 0 such that for any u 2 H2
2 (M),

Z

M

Pg(u)udvg � � kuk2H2
2 (M)

and since a 2 Lr(M) and b 2 Ls(M) where r > n
2 and s >

n
4 , by Hölder�s

inequality we get
Z

M

uPg(u)dvg � k�guk22 + kakn2 krguk
2
2� + kbkn4 kuk

2
N

where 2� = 2n
n�2 .

The Sobolev�s inequalities lead to : for any � > 0

krguk22� � max((1 + �)K(n; 1)
2; A�)

Z

M

�CCr2gu
CC2 + jrguj2

�
dvg

whereK(n; 1) denotes the best Sobolev�s constant in the embeddingH2
1 (R

n) ,!
L

2n
n�2 (Rn), and for any F > 0

kuk2N � max((1 + ")Ko; B") kuk
2
H2
2 (M)
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where in this latter inequality Ko is the best Sobolev�s constant in the em-

bedding H2
1 (M) ,! L

2n
n�2 (M) and BF the corresponding see ( see [3]). Now

by the well known formula (see [3], page 115)
Z

M

CCr2gu
CC2 dvg =

Z

M

�
j�guj2 �Rijriurju

�
dvg

where Rij denote the components of the Ricci curvature, there is a constant
C > 0 such that

Z

M

CCr2gu
CC2 dvg �

Z

M

j�guj2 + C jrguj2 dvg

so we get

krguk22� � (C + 1)max((1 + �)K(n; 1)
2; A�)

Z

M

�
j�guj2 + jrguj2 + u2

�
dvg

and we infer thatZ

M

Pg(u)udvg � kuk2H2
2 (M)+(C+1) kakn

2
max((1+�)K(n; 1)2; A�) kuk2H2

2 (M)+

kbkn
4
max((1 + ")Ko; B") kuk2H2

2 (M) .

HenceZ

M

uPg(u)dvg � max
�
1; kbkn

4
max((1 + ")Ko; B"); (C + 1) kakn

2
max((1 + ")K(n; 1)2; A")

�

| {z }
>0

kuk2H2
2 (M) .

. �

Lemma 1. The set M� is non empty provided that � 2 (0; �E) where

�E =

�
2q�2 � 2q�N

�
�
N�q
N�2

V (M)(1�
q
N
) (maxx2M f(x))

2�q
N�2 (max((1 + ")K (n; 2) ; A"))

N�q
N�2

.

Proof. The proof of Lemma 1 is the same as in ([8]), but we give it
here for convenience. Let t > 0 and u 2 H2

2 (M)�f0g. Evaluating �� at tu,
we get

��(tu) = t
2 kuk2 � �tq kukqq � tN

Z

M

f(x) jujN dvg.

Put

B(t) = kuk2 � tN�2
Z

M

f(x) jujN dv(g)

and

C(t) = �tq�2 kukqq ;
by Sobolev�s inequality, we get

B(t) � kuk2 �max
x2M

f(x)(max((1 + ")KE; A"))
N
2 kukNH2

2 (M) t
N�2.
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By the coercivity of the operator Pg = �
2
g�divg (arg)+b there is a constant

� > 0 such that

B(t) � kuk2 � ��N
2 max
x2M

f(x)(max((1 + ")KE; A"))
N
2 kukN tN�2:

Letting

B1(t) = kuk2 � ��
N
2 max
x2M

f(x)(max((1 + ")KE; A"))
N
2 kukN tN�2

Hölder and Sobolev inequalities lead to

C(t) � �V (M)(1�
q
N
)(max((1 + ")KE; A"))

q
2 kukq

H2
2 (M)

tq�2

and the coercivity of Pg assures the existence of a constant � > 0 such that

C(t) � ���
q
2V (M)(1�

q
N
)(max((1 + ")KE; A"))

q
2 kukq tq�2.

Put

C1(t) = ��
� q
2V (M)(1�

q
N
)(max((1 + ")KE; A"))

q
2 kukq tq�2.

Let to such B1(to) = 0 i.e.

tE =
�

N
2(N�2)

kuk (maxx2M f(x))
1

N�2 (max((1 + ")KE; A"))
N

2(N�2)

Now since B1(t) is a decreasing and a concave function and C1(t) is a de-
creasing and convex function, then

min
t 2(0; tE

2
]
B1(t) = B1(

tE

2
) = kuk2 (1� 22�N ) > 0

and

min
t 2(0; tE

2
]
C1(t) = C1(

tE

2
) > 0

where

C1(
tE

2
) =

22�q�V (M)(1�
q
N
)�

q�N
N�2 kuk2

(max((1 + ")KE; A"))
q�N
N�2 (maxx2M f(x))

q�2
N�2

.

Consequently ��(tu) = 0 with t 2 (0; tE2 ] has a solution if
min

t 2(0; tE
2
]
B1(t) � max

t 2(0; tE
2
]
C1(t)

that is to say

0 < � <

�
2q�2 � 2q�N

�
(maxx2M f(x))

q�2
N�2 (max((1 + ")KE; A"))

q�N
N�2

�
N�q
N�2V (M)(1�

q
N
)

= �E

Let t1 2 (0; tE2 ] such that ��(t1u) = 0. If we take u 2 H2
2 (M) such that

kuk � �
t1
and v = t1u we get ��(v) = 0 and kvk = t1 kuk � � i.e. v 2 M�

provided that � 2 (0; �E). �
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3. Geometric conditions of J�

The following lemmas whose proofs are the same as in [8] will be useful.

Lemma 2. Let (M; g) be a Riemannian compact manifold of dimension
n � 5. For all u 2M� and all � 2 (0;min (�E; �1)) there is A > 0 such that
J�(u) � A > 0 where

�1 =

(N�2)q
2(N�q)�

q
2

V (M)1�
q
N (max((1 + ")K(n; 2); A"))

q
2 � q�2

.

Lemma 3. Let (M; g) be a Riemannian compact manifold of dimension
n � 5. The following assertions are true:

(i) hr��(u); ui < 0 for all u 2M� and for all � 2 (0;min(�E; �1)):
(ii) The critical points of J� are points of M�:

4. Existence of non trivial solution in M�

In this section, �rst we show that J� satis�es the Palais-Smale condition
on M� provided that � > 0 is su¢ciently small.

Lemma 4. Let (M; g) be a compact Riemannian manifold of dimension
n � 5. Let (um)m be a sequence in M� such that

�
J�(um) � c

rJ�(um)� �mr��(um)! 0
.

Suppose that

c <
2

n K
n
4
o (f(xE))

n�4
4

then there is a subsequence (um)m converging strongly in H2
2 (M).

Proof. Let (um)m �M�

J�(um) =
N � 2
2N

kumk2 � �
N � q
Nq

Z

M

jumjq dvg

As in the proof of Lemma 2, we have

J�(um) �
N � 2
2N

kumk2��
N � q
Nq

��
q
2V (M)1�

q
N (max((1+")Ko; A"))

q
2 kumkq

J�(um) � kumk2 (
N � 2
2N

��N � q
Nq

��
q
2V (M)1�

q
N (max((1+")Ko; A"))

q
2 � q�2) > 0

and since 0 < � <
(N�2)q
2(N�q)

�
q
2

V (M)1�
q
N (max((1+")K(n;2);A"))

q
2 �q�2

and J�(um) � c, we get

c � J�(um)

� [N � 2
2N

� �N � q
Nq

��
q
2V (M)1�

q
N (max((1 + ")Ko; A"))

q
2 � q�2] kumk2 > 0
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so

kumk2 �
c

N�2
2N � �N�q

Nq
��

q
2V (M)1�

q
N (max((1 + ")Ko; A"))

q
2 � q�2

< +1.

(um)m is a bounded in H2
2 (M). By the compactness of the embedding

H2
2 (M) � Hk

p (M) (k = 0; 1; p < N) we get a subsequence still denoted
(um)m such that

um ! u weakly in H2
2 (M)

um ! u strongly in Lp(M) where p < N
rum ! ru strongly in Lp(M) where p < 2� = 2n

n�2
um ! u a.e. in M:

On the other hand since 2s
s�1 < N = 2n

n�4 , we obtain
CCCC

Z

M

b(x) jum � uj2 dvg
CCCC � kbks kum � uk

2
2s
s�1

� kbks
�
(KE + F) k�(um � u)k22 +AF kum � uk

2
2

�
.

Now taking account of

(K) KE =
16

n(n2 � 4) (n� 4)!
n
4
n

< 1

we get Z

M

b(x) (um � u)2 dvg � kbks k�(um � u)k
2
2 + o (1) .

By the same procedure as above we get
Z

M

a(x) jr (um � u)j2 dvg � kakr k�(um � u)k
2
2 + o (1) .

By Brezis-Lieb lemma we write
Z

M

(�gum)
2 dvg =

Z

M

(�gu)
2 dvg +

Z

M

(�g(um � u))2 dvg + o(1)

and alsoZ

M

f(x) jumjN dvg =
Z

M

f(x) jujN dvg +
Z

M

f(x) jum � ujN dvg + o(1).

Now we claim that �m ! 0 as m ! +1
Testing with um we obtain

hrJ�(um)� �mr��(um); umi = o(1)
= hrJ�(um); umi| {z }

=0

� �m hr��(um); umi = o(1)

hence

�m hr��(um); umi = o(1).
By Lemma 3, we get lim supm hr��(um); umi < 0 so

�m ! 0 as m! +1.
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Our last claim is that um ! u strongly in H2
2 (M), indeed

J�(um)� J�(u)

=
1

2

Z

M

(�g(um � u))2 dvc �
1

N

Z

M

f(x) jum � ujN dvg + o(1).

Since um � u! 0 weakly in H2
2 (M), we test with rJ�(um)�rJ�(u)

hrJ�(um)�rJ�(u); um � ui = o(1)

(5) =

Z

M

(�g(um � u))2 dvg �
Z

M

f(x) jum � ujN dvg = o(1)

and get
Z

M

(�g(um � u))2 dvg =
Z

M

f(x) jum � ujN dvg + o(1)

and taking account of (5) we obtain

J�(um)�J�(u) =
1

2

Z

M

(�g(um � u))2 dvg�
1

N

Z

M

(�g(um � u))2 dvg+o(1)

i.e.

J�(um)� J�(u) =
2

n

Z

M

(�g(um � u))2 dvg + o(1).

Independently, by the Sobolev�s inequality we have

(6) kum � uk2N � (1 + ")Ko
Z

M

(�g(um � u))2 dvg + o(1).

Since Z

M

f(x) jum � ujN dvg � max
x2M

f(x) kum � ukNN
we infer by (6) that
Z

M

f(x) jum � ujN dvg � (1 + ")
n

n�4 max
x2M

f(x)K
n

n�4
E k�g(um � u)kN2 + o(1)

and appealing equality (5)

o(1) � k�g(um � u)k22 � (1 + ")
n

n�4 max
x2M

f(x)K
n

n�4
o k�g(um � u)kN2 + o(1)

� k�g(um � u)k22 (1� (1 + ")
n

n�4 max
x2M

f(x)K
n

n�4
E k�g(um � u)kN�22 ) + o(1)

so if

(8) lim sup
m!+1

k�g(um � u)k22 <
1

K
n
4
E (maxx2M f(x))

n
4
�1

then um ! u strongly in H2
2 (M). The condition (8) is ful�lled since by

Lemma 2 J�(u) > 0 on M� with � is as in Lemma 2 and by hypothesis

c � J� (um) > (J� (um)� J� (u)) =
2

n

Z

M

(�g(um � u))2 dvg
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and

c <
2

n K
n
4
E (maxx2M f(x))

n
4
�1
:

It is obvious that

��(u) = 0 and kuk � �
i.e. u 2M�. �

Now we show the existence of a sequence inM� satisfying the conditions
of Palais-Smale.

Lemma 5. Let (M; g) be a compact Riemannian manifold of dimension
n � 5, then there is a couple (um; �m) 2 M� � R such that rJ�(um) �
�mr��(um)! 0 strongly in (H2

2 (M))
� and J� (um) is bounded provide that

� 2 (0; ��) with �� = fmin(�E; �1); 0g.
Proof. Since J� is Gateau di¤erentiable and by Lemma 1 bounded

below on M� it follows from Ekeland�s principle that there is a couple
(um; �m) 2 M� � R such that rJ�(um) � �mr��(um) ! 0 strongly in

(H2
2 (M))

0

and J� (um) is bounded i.e. (um; �m)m is a Palais-Smale sequence
on M�. �

Now we are in position to establish the following generic existence result.

Theorem 5. Let (M; g) be a compact Riemannian manifold of dimen-
sion n � 5 and f a positive function. Suppose that Pg is coercive and

(C1) c <
2

n K
n
4
o (f(xE))

n�4
4

.

Then there is �� > 0 such that for any � 2 (0; ��), the equation (2) has a
non trivial weak solution.

Proof. By Lemma 4 and 5 there is u 2 H2
2 (M) such that

J�(u) = min
'2M�

J�(').

By Lagrange multiplicative theorem there is a real number � such that for
any ' 2 H2

2 (M)

(9) hrJ�(u); 'i = � hr��(u); 'i
and letting ' = u in the equation (9), we get

��(u) = hrJ�(u); ui = � hr��(u); ui .
By Lemma 3 we get that � = 0 and by equation (9), we infer that for any
' 2 H2

2 (M)

hrJ�(u); 'i = 0
hence u is weak non trivial solution to equation (2) and since by Lemma 2
critical points of J�, we conclude that u 2M�. �
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5. Application

Let P 2M , we de�ne a function on M by

(10) �
P
(Q) =

�
d(P;Q) if d(P;Q) < E(M)
E(M) if d(P;Q) � E(M)

where E(M) is the injectivity radius of M . For brevity we denote this func-
tion by �. The weighted Lp (M;�D) space will be the set of measurable
functions u on M such that �D jujp are integrable where p � 1. We endow
Lp (M;�D) with the norm

kukp;� =
�Z

M

�D jujp dvg
� 1

p

.

In this section we will be in need of the following Hardy-Sobolev inequality
and Releich-Kondrakov embedding respectively whose proofs are given in
([7]).

Theorem 6. Let (M; g) be a Riemannian compact manifold of dimen-
sion n � 5 and p, q , D are real numbers such that D

p
= n

q
� n

p
� 2 and

2 � p � 2n
n�4 .

For any F > 0, there is A(F; q; D) such that for any u 2 H2
2 (M)

(11) kuk2p;�D � (1 + F)K(n; 2; D)2 k�guk
2
2 +A(F; q; D) kuk

2
2

where K(n; 2; D) is the optimal constant.

In case D = 0, K(n; 2; 0) = K(n; 2) = K
1
2
o is the best constant in the

Sobolev�s embedding of H2
2 (M) in L

N (M) where N = 2n
n�4 .

Theorem 7. Let (M; g) be a compact Riemannian manifold of dimen-
sion n � 5 and p, q , D are real numbers satisfying 1 � q � p � nq

n�2q , D < 0

and l = 1,2.
If D

p
= n (1

q
� 1
p
)�l then the inclusion Hq

l (M) � Lp(M;�D) is continuous.
If D

p
> n (1

q
� 1

p
)� l then inclusion Hq

l (M) � Lp(M;�D) is compact.

We consider the following equation

(12) �2gu+ divg

�
a(x)

��
rgu

�
+
b(x)

��
u = � jujq�2 u+ f(x) jujN�2 u

where a and b are smooth function and � denotes the distance function
de�ned by (10), � > 0 in some interval (0; ��), 1 < q < 2, �, � will be
precise later and we associate to (12) on H2

2 (M) the functional

J�(u) =
1

2

Z

M

�
(�gu)

2 � a(x)
��

jrguj2 +
b(x)

��
u2
�
dvg�

�

q

Z

M

jujq dvg�
1

N

Z

M

f(x) jujN dvg.

If we put
��(u) = hrJ�(u); ui
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we get

��(u) =

Z

M

(�gu)
2�a(x)

��
jrguj2+

b(x)

��
u2dvg��

Z

M

jujq dvg�
Z

M

f(x) jujN dvg:

Theorem 8. Let 0 < � < n
s
< 2 and 0 < � < n

p
< 4. Suppose that

sup
u2H2

2 (M)

J�;�;�(u) <
2

n K
n
4
o (f(xE))

n�4
4

then there is �� > 0 such that if � 2 (0; ��), the equation (12) possesses a
weak non trivial solution u�;� 2M�.

Proof. Let ~a = a(x)
��

and ~b = b(x)
��
, so if � 2 (0;min

�
2; n

s

�
) and � 2

(0;min(4; n
p
)), obliviously ~a 2 Ls(M), ~b 2 Lp(M), where s > n

2 and p >
n
4

.Theorem 8 is a consequence of Theorem 5. �

6. The critical cases � = 2 and � = 4

By section four, for any � 2 (0;min
�
2; n

s

�
) and � 2 (0;min(4; n

p
)), there

is a solution u�;� 2M� of equation (2). Now we are going to show that the
sequence (u�;�)�;� is bounded in H

2
2 (M). Evaluating J�;�;� at u�;�

J�;�;�(u�;�) =
1

2
ku�;�k2 �

1

N

Z

M

f(x) ju�;�jN dvg �
1

q
�

Z

M

ju�;�jq dvg

and taking account of u�;� 2M�, we infer that

J�;�;�(u�;�) =
N � 2
2N

ku�;�k2 � �
N � q
Nq

Z

M

ju�;�jq dvg.

For a smooth function a on M , denotes by a� = min (0;minx2M (a(x)).
Let K(n; 2; �) the best constant and A ("; �) the corresponding constant in
the Hardy- Sobolev inequality given in Theorem 6.

Theorem 9. Let (M; g) be a Riemannian compact manifold of dimen-
sion n � 5. Let (um)m =

�
u�m;�m

�
m
be a sequence in M� such that

�
J�;�;�(um) � c�;�

rJ�(um)� ��;�r��(um)! 0
.

Suppose that

c�;� <
2

n K (n; 2)
n
4 (maxx2M f(x))

n�4
4

and

1 + a�max (K(n; 2; �); A ("; �)) + b�max (K(n; 2; �); A ("; �)) > 0

then the equation

�2u�r�( a
�2
r�u) +

bu

�4
= f jujN�2 u+ � jujq�2 u

has a non trivial solution in the distribution.
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Proof. Let (um)m �M�;�;�,

J�;�;�(um) =
N � 2
2N

kumk2 � �
N � q
Nq

Z

M

jumjq dvg

As in proof of Theorem 5, we get

J�;�;�(um) � kumk2 (
N � 2
2N

��N � q
Nq

�
� q
2

�;�V (M)
1� q

N (max((1+")K (n; 2) ; A"))
q
2 � q�2) > 0

where 0 < � <
(N�2)q
2(N�q)

�
q
2
�;�

V (M)1�
q
N (max((1+")K(n;2);A"))

q
2 �q�2

.

First we claim that

lim
(�;�)!(2�;4�)

inf ��;� > 0.

Indeed, if �1;�;� denotes the �rst nonzero eigenvalue of the operator Pg =

�2g � div
�
a
��
rg
�
+ b

��
, then clearly ��;� � �1;�;�. Suppose by absurd that

lim(�;�)!(2�;4�) inf ��;� = 0, then lim inf(�;�)!(2�;4�) �1;�;� = 0. Indepen-
dently, if u�;� is the corresponding eigenfunction to �1;�;� we have

�1;�;� = k�uk22 +
Z

M

a jruj2
��

dvg +

Z

M

bu2

��
dvg

(13) � k�uk22 + a�
Z jruj2

��
dvg + b

�

Z

M

u2

��
dvg

where a� = min (0;minx2M a(x)) and b
� = min (0;minx2M b(x)). The

Hardy- Sobolev�s inequality given by Theorem 6 leads to
Z

M

jruj2
��

dvg � C(kr jrujk2 + kruk2)

and since
kr jrujk2 �

DDr2u
DD2 � k�uk2 + C kruk2

where C > 0 is a constant and it is well known that for any " > 0 there is a
constant c (") > 0 such that

kruk2 � " k�uk2 + c kuk2 .
Hence

(14)

Z

M

jruj2
��

dvg � C (1 + ") k�uk2 +A (") kuk2

Now if K(n; 2; �) denotes the best constant in inequality (14) we get for any
" > 0

(15)

Z

M

jruj2
��

dvg �
�
K(n; 2; �)2 + "

�
k�uk2 +A ("; �) kuk2 .

By the inequalities (11), (13) and (15), we have

�1;�;� �
�
1 + a�max (K(n; 2; �); A ("; �)) + b�max (K(n; 2; �); A ("; �))

� �
k�u�;�k2 + ku�;�k2

�
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So if

1 + a�max (K(n; 2; �); A ("; �)) + b�max (K(n; 2; �); A ("; �)) > 0

then we get lim�;� (u�;�) = 0 and ku�;�k = 1 a contradiction.
The re�exivity of H2

2 (M) and the compactness of the embedding H
2
2 (M) �

Hk
p (M) ( k = 0,1; p < N ), imply that up to a subsequence we have

um ! u weakly in H2
2 (M)

um ! u strongly in Lp(M), p < N
rum ! ru strongly in Lp(M), p < 2� = 2n

n�2
um ! u a.e. in M .
The Brézis-Lieb lemma allows us to write
Z

M

(�gum)
2 dvg =

Z

M

(�gu)
2 dvg +

Z

M

(�g(um � u))2 dvg + o(1)

and also
Z

M

f(x) jumjN dvg =
Z

M

f(x) jujN dvg +
Z

M

f(x) jum � ujN dvg + o(1).

Now by the boundedness of the sequence (um)m, we have that um ! u

weakly in H2
2 (M),

rum ! ru weakly in L2(M;��2) and um ! u weakly in L2(M;��4)
i.e. for any ' 2 L2(M)

Z

M

a(x)

�2
rumr'dvg =

Z

M

a(x)

�2
rur'dvg + o(1)

and Z

M

b(x)

�4
um'dvg =

Z

M

b(x)

�4
u'dvg + o(1).

For every � 2 H2
2 (M) we have

(16)Z

M

�
�2gum + divg

�
a(x)

��m
rgum

�
+
b(x)

�Em
um

�
�dvg =

Z

M

�
� jumjq�2 um + f(x) jumjN�2 um

�
�dvg.

By the weak convergence in H2
2 (M) we have immediately

Z

M

��2gumdvg =

Z

M

��2gudvg + o(1)

and
Z

M

�
a(x)

��m
rgum �

a(x)

�2
rgu

�
�dvg =

Z

M

�
a(x)

��m
rgum +

a(x)

�2
(rgum �rgum)�

a(x)

�2
rgu

�
�dvg

Then CCCC

Z

M

�
a(x)

��m
rgum �

a(x)

�2
rgu

�
�dvg

CCCC �
CCCC

Z

M

�
a(x)

��m
rgum �

a(x)

�2
rgum

�
�dvg

CCCC+
CCCC

Z

M

�
a(x)

�2
rgum �

a(x)

�2
rgu

�
�dvg

CCCC
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(17) �
Z

M

ja(x)�rgumj
CCCC
1

��m
� 1

�2

CCCC dvg +
CCCC

Z

M

a(x)

�2
rg (um � u)�dvg

CCCC .

The weak convergence in L2(M;��2) and the Lebesgue�s dominated conver-
gence theorem imply that the second right hand side of (17) goes to 0. For
the third term of the left hand side of (15), we write
Z

M

�
b(x)

�Em
um �

b(x)

�4
u

�
�dvg =

Z

M

�
b(x)

�Em
um �

b(x)

�4
um +

b(x)

�4
um �

b(x)

�4
u

�
�dvg

and CCCC

Z

M

�
b(x)

�Em
um �

b(x)

�4
u

�
�dvg

CCCC

(18) �
Z

M

jb(x)�umj
CCCC
1

�Em
� 1

�4

CCCC dvg +
CCCC

Z

M

b(x)

�4
(um � u)�dvg

CCCC .

Here also the weak convergence in L2(M;��4) and the Lebesgue�s dominated
convergence allows us to a¢rm that the left hand side of (18) converges to
0.

It remains to show that �m ! 0 as m ! +1 and um ! u strongly in
H2
2 (M) but this is the same as in the proof of Theorem 5 which implies also

u 2M�: �

7. Test Functions

In this section, we give the proof of the main theorem to do so, we con-
sider a normal geodesic coordinate system centred at xo. Denote by Sxo(�)
the geodesic sphere centred at xo and of radius � ( � < d =the injectivity
radius). Let dA be the volume element of the n� 1-dimensional Euclidean
unit sphere Sn�1 and put

G(�) =
1

!n�1

Z

S(�)

p
jg(x)jdA

where !n�1 is the volume of S
n�1 and jg(x)j the determinant of the Rie-

mannian metric g. The Taylor�s expansion of G(�) in a neighborhood of xo
is given by

G(�) = 1� Sg(xE)
6n

�2 + o(�2)

where Sg(xE) denotes the scalar curvature of M at xE.
Let B(xE; E) be the geodesic ball centred at xE and of radius E such that
0 < 2E < d and denote by � a smooth function on M such that

�(x) =

�
1 on B(xo; E)
0 on M �B(xo; 2E) .

Consider the following radial function

uF(x) = (
(n� 4)n(n2 � 4)F4

f(xE)
)
n�4
8

�(�)

((��)2 + F2)
n�4
2



ELLIPTIC SINGULAR FOURTH ORDER EQUATIONS 17

with

� = (1 + kakr + kbks)
1
n

where � = d(xo; x) is the distance from xo to x and f(xE) = maxx2M f(x).
For further computations we need the following integrals: for any real posi-
tive numbers p, g such that p� q > 1 we put

Iqp =

Z +1

0

tq

(1 + t)p
dt

and the following relations are immediate

I
q
p+1 =

p� q � 1
p

Iqp and I
q+1
p+1 =

q + 1

p� q � 1I
q
p+1.

8. Application to compact Riemannian manifolds of dimension

n > 6

Theorem 10. Let (M; g) be a compact Riemannian manifold of dimen-
sion n > 6. Suppose that at a point xo where f attains its maximum the
following condition

�f(xo)

f (xo)
<
1

3

 
(n� 1)n

�
n2 + 4n� 20

�

(n2 � 4) (n� 4) (n� 6)
1

(1 + kakr + kbks)
4
n

� 1
!

Sg (xo)

holds . Then the equation (1) has a non trivial solution with energy

J�(u) <
1

K
n
4
E (maxx2M f(x))

n
4
�1
.

Proof. The proof of Theorem 10 reduces to show that the condition
(C1) of Theorem 5 is satis�ed and since by Lemma 1 there is a to > 0 such
that touF 2M� for su¢ciently small �, so it su¢ces to show that

sup
t>0

J� (tuF) <
1

K
n
4
E (maxx2M f(x))

n
4
�1
.

To compute the term
R
M
f(x) juF(x)jN dvg, we need the following Taylor�s

expansion of f at the point xo

f(x) = f(xE) +
@2f(xE)

2@yi@yj
yiyj + o(�2)

and also that of the Riemannian measure

dvg = 1�
1

6
Rij(xE)y

iyj + o(�2)

whereRij(xE) denotes the Ricci tensor at xE. The expression of
R
M
f(x) juF(x)jN dvg

is well known (see for example [11] ) and is given in case n > 6 by
Z

M

f(x) juF(x)jN dvg =
��n

K
n
4
E (f(xE))

n�4
4

�
1� ( �f(xE)

2(n� 2)f(xE)
+
Sg(xE)

6(n� 2))F
2 + o(F2)

�



18 MOHAMMED BENALILI AND KAMEL TAHRI

where Ko is given by (K) and !n = 2
n�1I

n
2
�1

n !n�1 and !n is the volume of
Sn, the standard unit sphere of Rn+1 endowed with its round metric.

Now the restriction of
CCC@uF@�

CCC to the geodesic ball B(xE; E) is computed as
follows
CCCC
@uF

@�

CCCC
B(xE;E)

= jruFj = ��2(n� 4)
�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
8 �

(
�
�
�

�2
+ F2)

n�2
2

and Since a 2 Lr(M) with r > n
2 we have

Z

B(xE;E)
a(x) jruFj2 dvg � ��4(n� 4)2

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1

�

0

@
Z E

0

�
2r
r�1

+n�1

(
�
�
�

�2
+ F2)

(n�2)r
r�1

 Z

S(�)

p
jg(x)jdA

!

d�

1

A

r�1
r

Since Z

S(�)

p
jg(x)jdA = !n�1

�
1� Sg(xE)

6n
�2 + o(�2)

�

we get

Z

B(xE;E)
a(x) jruFj2 dvg � ��4(n� 4)2

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1

�
 Z E

0

�
2r
r�1

+n�1

((��)2 + F2)
(n�2)r
r�1

d�

�
1� Sg(xE)

6n
�2 + o(�2)

�! r�1
r

and by the following change of variable

t = (
��

F
)2 i.e. � =

F

�

p
t

we obtain
Z

B(xE;E)
a(x) jruFj2 dvg � ��n

r
r�1 (n�4)2

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1 F

�(n�4)+2�n
r

�
 Z ( E�

F
)2

0

t
n�2
2
+ r
r�1

(t+ 1)
(n�2)r
r�1

dt� Sg(xE)
6n

��2F2
Z ( E�

F
)2

0

t
n
2
+ r
r�1

(t+ 1)
(n�2)r
r�1

dt+ o(F2)

! r�1
r

letting F! 0 we get

Z

B(xE;E)
a(x) jruFj2 dvg � 2�1+

1
r ��n(1�

1
r )(n�4)2

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1 F

�(n�4)+2�n
r

�
�
I
n�2
2
+ r
r�1

(n�2)r
r�1

� ��2Sg(xE)
6n

I
n
2
+ r
r�1

(n�2)r
r�1

F2 + o(F2)

� r�1
r
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Then
Z

B(xE;E)
a(x) jruFj2 dvg � 2�1+

1
r �
�n r

r�1 (n�4)2
�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1 F

F�(n�4)+2�
n
r

�I1+
n�2
2
: r�1
r

(n�2)r
r�1

�
1� r � 1

r
�2
Sg(xE)

6n
I
n
2
+ r
r�1

(n�2)r
r�1

I
�n�2

2
� r
r�1

(n�2)r
r�1

F2 + o(F2)

�
.

It remains to compute the integral
R
B(xE;2E)�B(xE;E)

a(x) jruFj2 dvg.
First we remark thatCCCCC

Z ( 2E�
F
)2

( E�
F
)2

h(t)
tq

(t+ 1)p
dt

CCCCC
� C

�
1

F

�2(q�p+1)
= CF2(p�q�1)

and since p� q = n� 4 � 3, we obtain
Z ( 2E�

F
)2

( E�
F
)2

h(t)
iq

(t+ 1)p
dt = o(F2)

and then

(19)

Z

B(xE;2E)�B(xE;E)
a(x) jruFj2 dvg = o(F2).

Finally we get

Z

M

a(x) jruFj2 dvg � 2�1+
1
r �
�n r

r�1 (n�4)2
�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

kakr !
1� 1

r
n�1 F

�(n�4)+2�n
r

�
�
I
1+n�2

2
: r�1
r

(n�2)r
r�1

+ o(F2)

�
.

Letting

(20) A = K
n
4
E
(n� 4)n4+1 � (!n�1)

r�1
r

2
r�1
r

(n(n2 � 4))n�44
�
I
n�2
2
+ r
r�1

(n�2)r
r�1

� r�1
r

we obtainZ

M

a(x) jruFj2 dvg � F2�
n
r �
�n r

r�1
A

K
n
4
E (f(xE))

n�4
4

kakr
�
1 + o(F2)

�
.

Now we compute
Z

M

b(x)u2Fdvg =

Z

B(xE;E)
b(x)u2Fdvg +

Z

B(xE;2E)�B(xE;E)
b(x)u2Fdvg

and since b 2 Ls(M) with s > n
4 , we haveZ

M

b(x)u2Fdvg � kbks kuFk
2
2s
s�1

.

Independently

=

 
(n� 4)n

�
n2 � 4

�
F4

f(xo)

!n�4
4
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kuFk22s
s�1

;B(xo;E)
=

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

0

@
Z E

0

�n�1

((��)2 + F2)
(n�4)s
(s�1)

 Z

S(r)

p
jg(x)jdA

!

dr

1

A

s�1
s

and Z

S(r)

p
jg(x)jdA = !n�1

�
1� Sg(xE)

6n
�2 + o(�2)

�
.

consequently

kuFk22s
s�1

;B(xo;E)
=

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

!
s�1
s
n�1�

0

@
Z E

0

�n�1

((��)2 + F2)
(n�4)s
(s�1)

�
1� Sg(xE)

6n
�2 + o(�2)

�
d�

1

A

s�1
s

.

And putting t = (��
F
)2 , we get

kuFk22s
s�1

;B(xo;E)
=

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

(!n�1)
s�1
s F�n+4+4�

n
s�

0

@F
n��n

2

Z ( E�
F
)2

0

t
n
2
�1

(t+ 1)
(n�4)s
(s�1)

dt� �
�n�2Sg(xE)

12n
Fn+2

Z ( E�
F
)2

0

t
n
2

(t+ 1)
(n�4)s
(s�1)

dt+ o(Fn+2)

1

A

s�1
s

.

Letting F! 0, we get

kuFk22s
s�1

;B(xo;E)
=

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

(!n�1)
s�1
s F�n+4+4�

n
s

���n
s

s�1 (
Fn

2
)
s�1
s

0

@
Z +1

0

t
n
2

(t+ 1)
(n�4)s
(s�1)

dt� Sg(xE)
12n

F2��2
Z +1

0

t
n
2
+1

(t+ 1)
(n�4)s
(s�1)

dt+ o(F2)

1

A

s�1
s

.

Hence

kuFk22s
s�1

;B(xo;E)
=

�
(n� 4)n(n2 � 4)F4

f(xE)

�n�4
4

(!n�1)
s�1
s F�n+4+4�

n
s

���n
s

s�1 (
Fn

2
)
s�1
s

0

@
Z +1

0

t
n
2

(t+ 1)
(n�4)s
(s�1)

dt� ��2Sg(xE)
12n

F2
Z +1

0

t
n
2
+1

(t+ 1)
(n�4)s
(s�1)

dt+ o(F2)

1

A

s�1
s

.

Or

kuFk22s
s�1

=

�
(n� 4)n(n2 � 4)

f(xE)

�n�4
4 �!n�1

2

� s�1
s
F4�

n
s �
�n s

s�1

�
"�
I
n
2
(n�4)s
(s�1)

� s�1
s

� �
�2(s� 1)Sg(xE)

12n s

�
I
n
2
(n�4)s
(s�1)

�� 1
s

I
n
2
+1

(n�4)s
(s�1)

F2 + o(F2)

#
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Finally, by the same manner as in equality (19) we get

Z

M

b(x)u2Fdvg � kbks
�
(n� 4)n(n2 � 4)

f(xE)

�n�4
4

(
!n�1

2
)
s�1
s F4�

n
s �
�n s

s�1

�
 �

I
n
2
(n�4)s
(s�1)

� s�1
s

+ o(F2)

!

Putting

(21) B = K
n
4
E ((n� 4)n(n2 � 4))

n�4
4 (
!n�1

2
)
s�1
s

�
I
n
2
(n�4)s
(s�1)

� s�1
s

we get
Z

M

b(x)u2Fdvg � F4�
n
s �
�n s

s�1
kbksB

K
n
4
E (f(xE))

n�4
4

�
1 + o(F2)

�
.

The computation of
R
M
(�uF)

2 dvg is well known see for example ([11]) and
is given by
Z

M

(�uF)
2 dvg =

��n

K
n
4
E (f(xE))

n�4
4

�
1� n2 + 4n� 20

6(n2 � 4)(n� 6)Sg(xE)F
2 + o(F2)

�
.

Resuming we get
Z

M

(�uF)
2 � a(x) jruFj2 + b(x)u2Fdvg �

��n

K
n
4
E f(xE)

n�4
4

�

�
1 + F2�

n
r �
� n
r�1A kakr + F4�

n
s �
� n
s�1B kbks �

n2 + 4n� 20
6(n2 � 4)(n� 6)Sg(xE)F

2 + o(F2)

�
.

Now, we have

J� (tuF) � Jo (tuF) =
t2

2
kuFk2 �

tN

N

Z

M

f(x) juF(x)jN dvg

� ��n

K
n
4
E f(xE)

n�4
4

�
1

2
t2
�
1 + F2�

n
r �
� n
r�1A kakr + F4�

n
s �
� n
s�1B kbks

�
� t

N

N

+

��
�f(xo)

2 (n� 2) f(xo)
+
Sg (xo)

6 (n� 1)

�
tN

N
� 1
2
t2

n2 + 4n� 20
6 (n2 � 4) (n� 6)Sg (xo)

�
F2
�

+o
�
F2
�

and letting F small enough so that

1 + F2�
n
r �
� n
r�1A kakr + F4�

n
s �
� n
s�1B kbks � (1 + kakr + kbks)

4
n

and since the function '(t) = B t
2

2 � tN

N
, with B > 0 and t > 0, attains its

maximum at to = B
1

N�2 and

'(to) =
2

n
B
n
4 .
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Consequently, we get

J� (tuF) �
2��n

nK
n
4
E f(xE)

n�4
4

f1 + kakr + kbks

+

��
�f(xo)

2 (n� 2) f(xo)
+
Sg (xo)

6 (n� 1)

�
tNo
N
� 1
2
t2o

n2 + 4n� 20
6 (n2 � 4) (n� 6)Sg (xo)

�
F2
�

+o
�
F2
�
.

Taking account of the value of � and putting

R(t) =

�
�f(xo)

2 (n� 2) f(xo)
+
Sg (xo)

6 (n� 1)

�
tN

N
� 1
2

n2 + 4n� 20
6 (n2 � 4) (n� 6)Sg (xo) t

2

we obtain

sup
t�0

J� (tuF) <
2

nK
n
4
E (maxx2M f(x))

n
4
�1

provided that R(to) < 0 i.e.

�f(xo)

f (xo)
<

 
n
�
n2 + 4n� 20

�

3 (n+ 2) (n� 4) (n� 6)
1

(1 + kakr + kbks)
4
n

� n� 2
3 (n� 1)

!

Sg (xo) .

Which completes the proof. �

9. Application to compact Riemannian manifolds of dimension

n = 6

Theorem 11. In case n = 6, we suppose that at a point xo where f
attains its maximum Sg (xo) > 0. Then the equation (1) has a non trivial
solution.

Proof. The same calculations as in case n > 6 gives us
Z

M

f(x) juF(x)jN dvg =
��n

K
n
4
E (f(xE))

n�4
4

�
1� ( �f(xE)

2(n� 2)f(xE)
+
Sg(xE)

6(n� 2))F
2 + o(F2)

�
.

Also, we have
Z

M

a(x) jruFj2 dvg �
kakr A

K
n
4
E (f(xE))

n�4
4

F2�
n
r
�
�

r
r�1 �

1 + o
�
F2
��

and Z

M

b(x)u2Fdvg �
kbksB

K
n
4
E (f(xE))

n�4
4

F4�
n
s �
� s
s�1 +

�
1 + o

�
F2
��
.

where A and B are given by (20) and (21) respectively for n = 6. The

computations of the term
R
M
(�uF)

2 dvg are well known ( see for example
[11])

Z

M

(�uF)
2 dv(g) = ��n(n� 4)2((n� 4)n(n

2 � 4)
f(xE)

)
n�4
4
!n�1

2
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�
�
n(n+ 2)(n� 2)

(n� 4) I
n
2
�1

n � 2

n
��2Sg(xE)F

2 log(
1

F2
) +O(F2)

�
.

Z

M

(�uF)
2 dvg =

��n

K
n
4
E (f(xE))

n�4
4

 

1� 2 (n� 4)
n2(n2 � 4)I

n
2
�1

n

Sg(xE)F
2 log

�
1

F2

�
+O(F2)

!

.

Now resuming and letting F so that

1 + F2�
n
r �
� n
r�1A kbks + F4�

n
s �
� n
s�1B kakr � (1 + kakr + kbks)

4
n

we get

J� (uF) �
1

2
kuFk2 �

1

N

Z

M

f(x) juF(x)jN dvg

� ��n

K
n
4
E (f(xE))

n�4
4

�
t2

2
(1 + kakr + kbks)

1� 4
n � t

N

N

� n� 4
n2 (n2 � 4) I

n
2
�1

n

��2Sg(xE)t
2F2 log

�
1

F2

�#

+O(F2).

The same arguments as in the case n > 6 allow us to infer that

max
t�0

J� (tuF) <
2

n K
n
4
E (f(xE))

n�4
4

if
Sg(xE) > 0.

Which achieves the proof. �
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