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Elliptic Singular Fourth Order Equations

Mohammed Benalili and Kamel Tahri

ABSTRACT. Using a method developped in [1] and [2], we prove the
existence of weak non trivial solutions to fourth order elliptic equations
with singularities and with critical Sobolev growth.

1. Introduction

Fourth order elliptic equations have been widely studied these last years
because of their importance in the analysis on manifolds particularly those
involving the Paneitz - Branson operators. Many works have been devoted
to this subject ( see [1], [2], [3], [4],[5], [6], [7], [8], [9] [10], [13] and [16]
). Different techniques have been used for the resolution of the fourth or-
der equations as example the variational method which was developed by
Yamabe to solve the problem of the prescribed scalar curvature. Let (M, g)
a compact smooth Riemannian of dimension n > 5 with a metric g. We
denote by H2(M) the standard Sobolev space which is the completed of the
space C* (M) with respect to the norm

k=2
Iellae =D ||V, -
k=0

H2(M) will be endowed with the suitable equivalent norm

D=

full g = (] ((Qo?+ 9l + %) doy)
M

In 1979, [17], M. Vaugon has proved the existence of real A > 0 and a non
trivial solution u € C* (M) to the equation

Alu — divg (a(z)Vgu) + b(z)u = Af(t,z)
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where a, b are smooth functions on M and f(¢,x) is odd and increasing
function in ¢ fulfilling the inequality

n+4
lf(t,x)] <a+blt|—=.

D.E. Edminds, D. Fortunato and E. Jannelli [14] have shown that the only
solutions in R™ to the equation

A%y = u%rjll
are positive, symmetric, radial and decreasing functions of the form

n—4
(n—4)n(n? — 1)) =
uﬁ(x) - n—4
(r24€2)z
In 1995, [15] Van Der Vorst obtains the same results as D.E. Edminds, D.
Fortunato and E. Jannelli to the following problem

Azu—)\u:ulu|% in Q,
Ay =u =0 on 91,

where (2 is a bounded domain of R".
In 1996, [9] F. Bernis, J. Garcia-Azorero and I.Peral have obtained the
existence at least of two positive solution to the following problem

A2y —dufu|T? =u |u|ﬁ in Q,
Ay =u =0 on 01,

where € is bounded domain of R",1 < ¢ < 2 and A > 0 in some interval.
In 2001, [12], D. Caraffa has obtained the existence of a non trivial solution
of class C*®, « € (0,1) to the following equation

Agu — V (a(x)Vau) + blz)u = A (2) [u¥ 2 u

with A > 0, first for f a constant and next for a positive function f on M.

Recently the first author [4], has shown the existence of at least two
distinct non trivial solutions in the subcritical case and a non trivial solution
in the critical case to the following equation

Alu—V* (a(z)Vau) + b(z)u = f(z) lul¥ 2y

where f is a changing sign smooth function and @ and b are smooth func-
tions. In [6] the same author proved the existence of at least two non trivial
solutions to

Alu—V* (a(2)Vau) + b(x)u = f(@) [ul¥ 2 u+ ul!™ u+ eg(w)

where a, b, f, g are smooth functions on M with f > 0,2 <q¢< N, A >0
and € > 0 small enough. Let S, denote the scalar curvature of M. In 2010,
[8], the authors proved the following result
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THEOREM 1. Let (M,g) be a compact Riemannian manifold of dimen-
sion n > 6 and a, b, f smooth functions on M, A € (0,\), 1 < ¢ < 2
such that
1) f(z) >0 on M.

2) At the point x, where f attains its mazimum, we suppose, for n =6

Sg(xo) + 3a(zs) > 0
and forn > 6

(n? + 4n — 20) &am ~ 1Af(z0)
<2(n—|—2)(n—6) g($0)+(n+2)(n—6) () 8 f(xo) ) >0

Then the equation
A2y + divg (a(z)Vgu) + b(@)u = Mu|'u + f(2) [ul¥ " u
admits a non trivial solution of class C** (M), a € (0,1).

Recently, F. Madani [14], has considered the Yamabe problem with sin-
gularities which he solved under some geometric conditions. The first author
in [7] considered fourth order elliptic equation with singularities of the form
(1) A%y — Vi (a(z)Viu) + b(x)u = fulV2u

where the functions a and b are in L*(M), s > § and in LP(M), p > ¥
2n

respectively, N = =/ is the Sobolev critical exponent in the embedding

H2 (M) — LY (M). He established the following result. Let (M,g) be
a compact n-dimensional Riemannian manifold, n > 6, a € L*(M), b €
LP(M), with s > 5, p > %, f € C°°(M) a positive function and z, € M
such that f(z,) = maxgzens f(2).
THEOREM 2. For n > 10, orn = 8,9 and 2 < p < 5, % < s < 1lor
n:7,%<3<9 and£<p<9 we suppose that
n? +4n — 20 n—4 Af(z,)
Sg (wo) —
6(n—6)(n%—4) 2n(n—2) f(x,)
Forn=26 and%<p<2, 3 < s < 4, we suppose that
Sg(xo) > 0.
Then the equation (1) has a non trivial weak solution u in H2 (M). Moreover
ifa € H{ (M), then u € C%P (M), for some 3 € (0, 1- %).

> 0.

In this paper, we are concerned with the following problem: let (M, g)
be a Riemannian compact manifold of dimension n > 5. Let a € L"(M),
be L*(M) where r> 4,5 > %2 and f a positive C*°-function on M; we
look for non trivial solution of the equation

(2) A2y + divg (a(z)Vgu) + b(@)u = Mu|'u + f(2) [ul¥ 2 u

where 1 < g<2and N = % is the critical Sobolev exponent and A > 0 a

real number. Our main result states as follows
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THEOREM 3. Let (M,g) be a compact Riemannian manifold of dimen-
stonn > 6 and f a positive function. Suppose that Py is coercive and at a
point x, where f attains its maximum the following conditions

(©)

Af(wo) n(n?+4n—20) 1 _n2 :
f(zo) < <3(n+2)(n—4)(n—6) (1+Ha|| bl >% 3(77,-1)) Sg (CUO) m casen > 6
Sg(xo) >0 in case n = 6.
are true.

Then there is \* > 0 such that for any X € (0, \*), the equation (2) has
a non trivial weak solution.

For fixed R € M, we define the function p on M by

[ d(R,Q) if  d(R,Q)<dM)
(3) p(Q)—{ §(M) if  d(R,Q) > (M)

where (M) denotes the injectivity radius of M.
For real numbers ¢ and p, consider the equation in the distribution sense

. b
(4) A2y — v%(%viu) + pi: =Ml u+ @) N2

where the functions a and b are smooth on M,
COROLLARY 1. Let 0 <o <% <2 and 0 < pu < % < 4. Suppose that
Af(xo) 1 (n—1)n(n?+4n—20) 1 B .
7o) <3 <(”2—4><”—4>(”—6> Gy F ) o) casen >
Sg(zo) >0 in case n = 6.

Then there is A\ > 0 such that if X € (0, \y), the equation (4) possesses
a weak non trivial solution uq , € M.

In the sharp case 0 = 2 and pu = 4, letting K (n,2,~) the best constant
in the Hardy-Sobolev inequality given by Theorem 6 we obtain the following
result

THEOREM 4. Let (M,g) be a Riemannian compact manifold of dimen-
sionn > 5. Let (ucm’um)m be a sequence in M)y such that

JAvavﬂ(uomme) S CU?/"
VJ,\(uUM) — ,ua?MV@A(uU’H) —0

Suppose that

co'vll' < n—4

n K (f(z0) "5

and

14+ a max(K(n,2,0),A(e,0)) + b max (K(n,2,u),A(e, 1)) >0
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then the equation

b
A%y — V“(%Vuu) + pij = FluN 2w+ A fulf 2

i the distribution has a weak non trivial solution.

2. Existence of solutions

In this section we focus on the existence of solutions to equation (1); we
use a variational method so we consider on H2(M) the functional

1 A
I =5 [ (180l = al@) Vgl + b)) dog=2 [ ity — [ gl av,

First, we put
Pr(u) = (VA (u), u)
hence
O (u) = / <(Agu)2 — alz) |Vyul® + b(a:)u2) dvg—)\/ |uqdvg—/ Fl@) Jul™ do,.
M M M
We let
My={ue HZ(M): ®\(u) =0and |ul| > 7> 0}.

The operator Py(u) is said coercive if there exits A > 0 such that for any
u€ H3(M)

2
| uPatwydvy = Afulign
M
PROPOSITION 1. ul| = ([, |Agul? — a(z) |Vaul® + b(m)u2dvg)% is an
equivalent norm to the usual one on H3(M) if and only if P, is coercive.

PRrROOF. If P, is coercive there is A > 0 such that for any u € H3(M),

|| Putwudn, > Alullznn

and since a € L"(M) and b € L*(M) where r > § and s > %, by Holder’s
inequality we get

2 2 2
/M uPy(u)dvg < [[Agully + llalln [Vgullze + 10l 2 [[ully

where 2% = TLQ—”

The Sobolev’s inequalities lead to : for any n > 0

|V gu

2, < max((1+n)K(n,1)% A,) /M (|V§u|2 + !Vgu\Q) dug

where K (n, 1) denotes the best Sobolev’s constant in the embedding H? (R") —
2n
L»=2 (R™), and for any € > 0

lully < max((1+ &) Ko, Be) l[ullzz )
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where in this latter inequality K, is the best Sobolev’s constant in the em-
2n

bedding H? (M) «— L»-2 (M) and B, the corresponding see ( see [3]). Now

by the well known formula (see [3], page 115)

/M ‘Vguf dvg = /M <\Agu]2 — Rijviuvju> dvg

where R;; denote the components of the Ricci curvature, there is a constant
B > 0 such that

2
/M }Vgu| dvg < /M |Agul? + 8|V ul? dv,
so we get
IVull < 8+ Dmax((1+m)K (02 Ay) [ (1800l + (9,0 + o)
and we infer that
|| Patwyudu, < ol an+(51) ol max((-0m K (n, D2, A [l oy +

[l max((1+ ) Ko, Be) [ull 320y

Hence

/M uP(u)dug < max (1, bl max((1+ ) Ko, B), (6 + 1) lall  max((1+)K (0,12, A2)) [ullFz )

>0
(]

LEMMA 1. The set M)y is non empty provided that A € (0, o) where

A\ — (2q72 — ZQ*N) A%
T VD) (maxeens f(2)VE (max((1 4+ £)K (n,2), A))NS

PROOF. The proof of Lemma 1 is the same as in ([8]), but we give it
here for convenience. Let t > 0 and u € H3(M) — {0}. Evaluating ®) at tu,

we get
Dy (tu) = 2 ]2 — M7 [ufl? — ¢V / £(@) [uf™ o,
M
Put
a(t) = Jul® - N2 / £(@) 1ul™ dog)
M
and

Bt) = M2 [lull?;
by Sobolev’s inequality, we get

N _
alt) = [lull* ~ max f(z)(max((1 + €)Ko, 4c))2 llzzz ary V2.
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By the coercivity of the operator P, = Ag —divg (aV4)+b there is a constant
A > 0 such that
alt) > lul* ~ A% mave £ () (max((1+ ) Ko, A0) ¥ [Jull™ V2.
BAS
Letting
(1) = [Jull® = A~ % mae /(@) (max((1 + ) Ko, A2)) ¥ [Ju ¥ 12
€T
Holder and Sobolev inequalities lead to
B(t) < AV (M) (max((1+ &) Ko, 40)) ullfz 17
H3 (M)
and the coercivity of P, assures the existence of a constant A > 0 such that
B(t) < M2V(M)~ %) (max((1 + €) Ko, A:))? ||ul|? 972,
Put
B1(t) = MV (M) O (max((1 + £) Ko, Ae)) [lu]? 1972,
Let ¢, such a;(t,) =0 i.e.

N
A2(N-2)
to =

] (maxaenr £(2)) 72 (max((1 + &) Ko, Ac)) 232

Now since «(t) is a decreasing and a concave function and 3 (t) is a de-
creasing and convex function, then

. to _
min  ay(t) = a1(—) = lul?(1-22"N)>0
t €0, L 2
and .
min B (t) = B1(<) > 0
t €0, &2 2
where

22-a )V (M) AR |y

to )
5) =N =2
(max((1 4 ¢)Ko, Ac)) V-2 (maxzen f(z)) V-
Consequently @ (tu) = 0 with ¢ € (0, %] has a solution if
t

min  «i(t) > max [(t)
t€(0, L t €(0, 2]

Ba(

2
N

that is to say

z

q—

=
N

(2072 = 20-N) (maxyen f(@)) ¥77 (max((1 +2)Ko, Ac))

0<AL N—a = Ao
AN=2 V(M) R)

Let ¢t1 € (0, %] such that ®,(tju) = 0. If we take u € H3 (M) such that

Jul > £ and v = tju we get @x(v) = 0 and ||[v|| = 1 |lul| > pie. v € M,

provided that A € (0, \o). O
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3. Geometric conditions of J)
The following lemmas whose proofs are the same as in [8] will be useful.

LEMMA 2. Let (M,g) be a Riemannian compact manifold of dimension
n>5. Forallu € My and all X € (0,min (Ao, \1)) there is A > 0 such that
Jr(u) > A >0 where

N—-2 q
g(N—)qu"’

V(M) % (max((1 + €)K (n,2), A.)) 2792

AL =

LEMMA 3. Let (M,g) be a Riemannian compact manifold of dimension
n > 5. The following assertions are true:

(i) (V®y(u),u) <0 for all u € My and for all A € (0,min(\o, \1)).

(i) The critical points of Jy are points of M.

4. Existence of non trivial solution in M)

In this section, first we show that J) satisfies the Palais-Smale condition
on M) provided that A > 0 is sufficiently small.

LEMMA 4. Let (M,g) be a compact Riemannian manifold of dimension
n > 5. Let (um),, be a sequence in My such that

{ In(um) <c
VI\(um) — yy, VO () — 0

Suppose that

c <

2
n n—4
n Kg' (f(zo))
then there is a subsequence (uyy,),, converging strongly in H3(M).
PRrROOF. Let (uy),, C M)

N -2 N —q

_ - 2 q
JA(um) ~ ToN ||um|| A Ng |um| dvg
As in the proof of Lemma 2, we have
N -2 N — _q _q q

Talitm) 2 =55 [P A 5 ATV (M) (max((142) K, A0)E |

N —2 N —
In(tm) > [um]| ( AL IN 3y (M) R (max((14e) Ko,y A))37972) > 0

oN Ngq
g

and since 0 < )\ <

VO (1 (r2) Az 21 ) < € we get

CZJ)\(um)
N —2 N —q

> S~ A e AV D (max((1 4 2) Ko, A7) | > 0
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SO

2 C
[t <

N2 = AIATEV (M) (max((1 + £) Ko, Ac)) 3792

< +00.

(tm),, is a bounded in H3(M). By the compactness of the embedding
H3(M) C HF(M) (k =0,1; p < N) we get a subsequence still denoted
(Um),, such that

Uy, — u weakly in H2(M)

U — u strongly in LP(M) where p < N

Vi, — Vu strongly in LP(M) where p < 2* = 2
Um — U a.e. in M. )
n

On the other hand since 527781 < N = =, we obtain

2 2
/ b(x) |um — u|” dvg| < ||b||, l|tm — u||%2s
M s-1

< bl (Ko +€) 1 (tm = )3+ Ac fum = ull3) -
Now taking account of

(K) K. — 16 <1

n(n?—4)(n—4) wg

we get
/M b() (t — )2 dvg < [[bl], A (i — w)|2+ 0 (1).

By the same procedure as above we get

/ a(@) |V (um — u)|* dvg < [lall, A (um —u)]3 +o0(1).
M

By Brezis-Lieb lemma we write

/M (Agu)? dvy = /M (Agu)? dv, + / (D (1t — w))? du, + o(1)

M
and also

@l vy = [ 5@l g+ [ ) =l v, o),
Now we claim that u,, — 0 as m — +o00
Testing with w,,, we obtain
<VJ)\(um) - :U’qu))\(um)a Um) = 0(1)
= (VJx(um), um) =t (VA (Um), um) = o(1)

=0
hence

i (VO (), ) = 0(1).
By Lemma 3, we get limsup,,, (VP (um), um) < 0 so

ty, — 0 as m — 4-o00.
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Our last claim is that u,, — u strongly in H22(M ), indeed

Ia(um) — Jx(u)
1

= / (Ag(t — u))? du, — / F() |t — ul™ dug + o(1).
2 Jm

Since uy, — u — 0 weakly in H2(M), we test with V.Jy(uz) — VJy(u)

(V I\ () — VI (u), um — u) = o(1)

5) = /M (gt — )2 dly — /M £ (@)t — )™ dvg = o(1)

and get

[t ) dvy = [ @) — ¥ oy + 0(1)
M M
and taking account of (5) we obtain

InCm) =I5 = 5 [ (Bl =) vy~ [ (Bl =) o)
In(n) = ) = = [ Byl = )y + of0).

Independently, by the Sobolev’s inequality we have

©) =l < 0K, [ Byl =)o+ o(1),
Since

[ @) =l doy < e 12 =l
we infer by (6) that

[ @) b=l oy < (140075 e @ [y = )5 + o)
and appealing equality (5)
1) 2 [y ot — )3 — (14 )75 mas F(@)E 1Ayt — )| + (1)

> (| Ag(tm — w3 (1 — (1 +¢)7a gé%};f(x)f@i‘ 1A (um — w)[132) + o(1)
so if

. 1

(8) lim sup [|Ag(tm, — u)Hg < —5 )
m—+00 K (maxgen f(x))4

then u,, — u strongly in H2 (M). The condition (8) is fulfilled since by

Lemma 2 Jy(u) > 0 on M) with X is as in Lemma 2 and by hypothesis

2

2 I () > () = @) == [ (8, = )P
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and
2

c< - .
n K (max,en f(w))f_l

=3

It is obvious that
®y\(u) =0 and |jul| >T
ie. u € M. U

Now we show the existence of a sequence in M) satisfying the conditions
of Palais-Smale.

LEMMA 5. Let (M,g) be a compact Riemannian manifold of dimension
n > 5, then there is a couple (um, it,,) € My X R such that VJy(um) —
U VO () — O strongly in (H2(M))* and Jy (um) is bounded provide that
A € (0, \y) with Ax = {min(Ao, A1), 0}.

PROOF. Since Jy is Gateau differentiable and by Lemma 1 bounded
below on M) it follows from Ekeland’s principle that there is a couple
(Umy ) € My x R such that VJy\(um) — b, VOA(tr,) — 0 strongly in
(H3(M))" and Jy (up,) is bounded i.e. (U, fiy,)m is a Palais-Smale sequence
on M. O

Now we are in position to establish the following generic existence result.

THEOREM 5. Let (M, g) be a compact Riemannian manifold of dimen-
stonn > 5 and f a positive function. Suppose that P, is coercive and

(C1) c< i 2 —
n Ko (f(zo)) T

Then there is \* > 0 such that for any X\ € (0, \*), the equation (2) has a
non trivial weak solution.

PROOF. By Lemma 4 and 5 there is u € H5 (M) such that

Ia(u) = Jnin IA(¢)-

By Lagrange multiplicative theorem there is a real number p such that for
any ¢ € H3 (M)
(9) (VIa(u), ) = p(V®A(u), ¢)
and letting ¢ = u in the equation (9), we get
Pa(u) = (VJx(u),u) = p(VEr(u), u) .

By Lemma 3 we get that p = 0 and by equation (9), we infer that for any
p € H3 (M)

<VJ)\(U), QO) =0
hence u is weak non trivial solution to equation (2) and since by Lemma 2
critical points of Jy, we conclude that u € M. O
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5. Application
Let P € M, we define a function on M by

[ d(P,Q) if d(P,Q) < §(M)
(10) Pp(Q) = { §(M) if d(P,Q) > 6(M)

where §(M) is the injectivity radius of M. For brevity we denote this func-
tion by p. The weighted LP (M, pY) space will be the set of measurable
functions u on M such that p? |u|’ are integrable where p > 1. We endow
LP (M, p7) with the norm

Y p 117
lull,, = /Mp P do,

In this section we will be in need of the following Hardy-Sobolev inequality
and Releich-Kondrakov embedding respectively whose proofs are given in

([7])-

THEOREM 6. Let (M, g) be a Riemannian compact manifold of dimen-

stonn > 5 and p, q , v are real numbers such that % = % — % — 2 and
2<p< 2
For any € > 0, there is A(e,q,7) such that for any u € H3(M)

(11) ull? 0 < (1+ K (n,2,9)* | Agulls + Ale, q.7) Jul3

where K(n,2,7) is the optimal constant.

1
In case v = 0, K(n,2,0) = K(n,2) = K7 is the best constant in the
Sobolev’s embedding of HZ(M) in LY (M) where N = -2

n—4-

THEOREM 7. Let (M,g) be a compact Riemannian manifold of dimen-
sionmn > 5 and p, q , v are real numbers satisfying 1 < g <p < n’i—%q , v <0
and |l =1,2.

If% =n (é—%)—l then the inclusion H' (M) C LP(M, p7) is continuous.
If% >n (% - 1%) — 1 then inclusion H'(M) C LP(M, p") is compact.

We consider the following equation

(12) A?]u + divg (CLI(()f)Vgu) + bf)?u = Mu|"2u+ f(z) [ulN 2 u

where a and b are smooth function and p denotes the distance function
defined by (10), A > 0 in some interval (0,A,), 1 < ¢ < 2, o, p will be
precise later and we associate to (12) on H2(M) the functional

i = [ (@ = 2wl 502 ) o2 [ ltang [ gl o,

If we put
P (u) = (VIr(u), u)
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we get

Dy (u) = /M (Agu)ZCL[()? |Vgu|2+b£i)u2dvg)\/M |u|? dvg/M Fx) |ul™ do,.

THEOREM 8. Let 0 <o < % <2 and0 < pu< % < 4. Suppose that
2
sup Sy o pu(u) < = —
uEH2Z (M) n K3 (f(xo))T

then there is A\ > 0 such that if X € (0, \&), the equation (12) possesses
weak non trivial solution uy , € M.

s}

PROOF. Let a = % and b = %, so if ¢ € (0,min (2,2)) and p

S

(0, min(4, ), obliviously a € L*(M), b € LP(M), where s > 5 and p > %

.Theorem 8 is a consequence of Theorem 5. U
6. The critical cases 0 =2 and u =4

By section four, for any ¢ € (0,min (2,%)) and p € (0, min(4, ), there
is a solution uq, € M) of equation (2). Now we are going to show that the
sequence (Uou), , is bounded in H3 (M). Evaluating J) ;. ,, at g,

1 , 1 N 1
Inaptr) = 5 ol = 5 [ @) ol oy = 2 [ ity

and taking account of u, , € M), we infer that

N —2 2 N —q
J)\,a,,u(uo,,u) = W Hucr,,u ‘ - A Nq /M ‘uff,#‘q d’l}g.
For a smooth function a on M, denotes by a~ = min (0, mingeps(a(z)).

Let K(n,2,0) the best constant and A (e, 0) the corresponding constant in
the Hardy- Sobolev inequality given in Theorem 6.

THEOREM 9. Let (M, g) be a Riemannian compact manifold of dimen-

sionn > 5. Let (um),, = (Uo,,u,,),, be a sequence in My such that

J)\,a,u(um) < Co,n
Vi (um) — p,, Ver(um) — 0

Suppose that

2
CO’,;}, < n n—4
n K (n,2)* (maxzen f(2)) 1
and
1+a max(K(n,2,0),A(e,0)) + b max (K(n,2,u),Ae,p)) >0
then the equation

b
A2y — w(%v#u) + pi;f = FluN 2+ M u" 2

has a non trivial solution in the distribution.
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PROOF. Let (up),, C Mo u,

N —2 N —q
Inopu(Um) = ON ||um||2 - ATq /M || dvg

As in proof of Theorem 5, we get

N—-2 N-gqg, -4
Trart) 2 | (S5 A 200 V(D' (max((1+2) K (n,2) 423172 > 0
atend,
V(M) N (max((14+€) K (n,2),A.)) S ra—2
First we claim that

where 0 < A <

lim inf A, , > 0.
(o,)—(27,47)

Indeed, if v14 denotes the first nonzero eigenvalue of the operator P, =
2 : a

Ay — div (p—gvg) pu,

lim(, ) (2-4-)inf Ay = 0, then liminf, )0~ 4-) V1,0, = 0. Indepen-

dently, if uy ,, is the corresponding eigenfunction to vy, we have

a|V bu?
=3+ [ a1 [ M,

Vul? 2
[Vl _/ u—udvg
M P

where ¢~ = min (0, mingeps a(x)) and b~ = min (0, mingeps b(x)). The
Hardy- Sobolev’s inequality given by Theorem 6 leads to

then clearly A, , > V1. Suppose by absurd that

(13) > [|Aullz +

Vu
/' 4 g, < OOV [Tl + [9ul)
M P°
and since )
19 1942 < V2] < [|Au]? + B [Vl

where 8 > 0 is a constant and it is well known that for any € > 0 there is a
constant ¢ () > 0 such that

2 2 2
IVul” < e |Aul]” + cflu]”

Hence

(14) / dvg <C(1+e) |Aul® + Ae) [lul®

Now if K (n,2,0) denotes the best constant in inequality (14) we get for any
e>0

2
(15) / Np ul dvg < (K(n,2,0)2 —i—e) HAuH2 + Al(g,0) HuH2
M

By the inequalities (11), (13) and (15), we have
Vg 2 (1+a max (K(n,2,0), A (e,0)) + b~ max (K (n,2,1), A (5,1))) (| Attoul> + 110,
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So if

1+a max(K(n,2,0),A(e,0)) + b max (K(n,2,u), Ae,p)) >0
then we get lim, ,, (us ) = 0 and |Jug 4| = 1 a contradiction.
The reflexivity of H3(M) and the compactness of the embedding H3(M) C
HI'f(M) (k =0,1; p< N ), imply that up to a subsequence we have

Uy, — u weakly in H2(M)

U — u strongly in LP(M), p < N

Vi, — Vu strongly in LP(M), p < 2* = %

Um — W a.e. in M.

The Brézis-Lieb lemma allows us to write

/M (Ayu)? dvy = /M (Agu)? dv, + /M (D (1t — w))? du, + o(1)

and also

N = N 7UN v [0} .
/Mf(fﬂ)\uml dv, = /Mf<w>|u| du, + /Mf(-’r)lum N dv, + o(1)

Now by the boundedness of the sequence (uy,)m, we have that u,, — u
weakly in H3(M),

Vi, — Vu weakly in L2(M, p~2) and u,, — u weakly in L?(M, p~?)
i.e. for any ¢ € L2(M)

/G(?Vungodvg:/ @VUV@dvg—i—o(l)
M P M P

and
b(x) / b(x)
—— L Umpdv, = —updvg + o(1).
/M p* 7 v Pt ! M
For every ¢ € H3(M) we have
(16)

- (alx) b(z) . —2 N2
/M (A?]um + divg <pamvgum> p— ) pdvg = /M ()\ [T U + f() [t um) pdvy.

By the weak convergence in H5(M) we have immediately

/ PN dvg = / PA2udvg + o(1)
M M

and

/ (a(x)vgum - a(f)vgu) ddv, = / (“ff)vgum + @ (Vgtim — Vgtin) — a(f)vgu> v,
M\ pom p a \ pom p p

Then

(20 5) ]

'/M <Z§fi) Vtim a:?g) 9“m> ¢dvg ' / <() - a;f)vgu> $dv,
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< [ la@ov / 0 ) .

The weak convergence in LQ(M , p‘2) and the Lebesgue’s dominated conver-
gence theorem imply that the second right hand side of (17) goes to 0. For
the third term of the left hand side of (15), we write

(S0 = [ (K= 0, 1)
y / (<> )

p
/ |b(x —|dv +‘/Mb§j)(um—u)¢dvg.

Here also the weak convergence in L2(M , p~%) and the Lebesgue’s dominated
convergence allows us to affirm that the left hand side of (18) converges to
0.

— | dvg +

It remains to show that u,, — 0 as m — 400 and u,, — u strongly in
H2 (M) but this is the same as in the proof of Theorem 5 which implies also
u € M. O

7. Test Functions

In this section, we give the proof of the main theorem to do so, we con-
sider a normal geodesic coordinate system centred at z,. Denote by S, (p)
the geodesic sphere centred at z, and of radius p ( p < d =the injectivity
radius). Let d©2 be the volume element of the n — 1-dimensional Euclidean
unit sphere S"~! and put

G(p

/\/7dﬂ

wnl

where w;,_1 is the volume of S"~! and ]g(a:)] the determinant of the Rie-
mannian metric g. The Taylor’s expansion of G(p) in a neighborhood of z,

is given by
Sy(xo
G(p)=1- 96(71)02 +o(p?)
where Sg(x,) denotes the scalar curvature of M at xo.

Let B(z,,d) be the geodesic ball centred at z, and of radius § such that
0 < 26 < d and denote by 1 a smooth function on M such that

1 on B(z,,9)
n(w) = { 0 on M — B(z,,20)

Consider the following radial function
(n—4n(? — )t \uzs  n(p)
f(zo) ((p0)* + €)%

ue(w) = (
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with )

0 = (L+ lall, +[loll)~
where p = d(z,, ) is the distance from z, to = and f(z,) = max,enr f(2).
For further computations we need the following integrals: for any real posi-
tive numbers p, g such that p — ¢ > 1 we put

I o d
= t
=) w

and the following relations are immediate

p—q—1 +1 g+l
e Ii and Ip+1_p7—q—1p+1'

q —
Ip—l—l -

8. Application to compact Riemannian manifolds of dimension
n > 6

THEOREM 10. Let (M, g) be a compact Riemannian manifold of dimen-
sion n > 6. Suppose that at a point x, where f attains its maxzimum the
following condition

A 1{(n—1n(n?+4n—20 1
f($o> - ( - )4 ( 1 ) e 1 Sg ($o)
(0* =4 (n =4 (0 =6) (1 4 Jjall, + o]l )"

[ (o) = 3

holds . Then the equation (1) has a non trivial solution with energy
1

K3 (maxeen f(z)i

PrOOF. The proof of Theorem 10 reduces to show that the condition
(C1) of Theorem 5 is satisfied and since by Lemma 1 there is a t, > 0 such
that toue € My for sufficiently small A, so it suffices to show that

1
sup Jy (tue) < —5 —.
t>0 K& (maxgen f(z)1 !

J,\(u) <

To compute the term [, f(z) lue(z) |V dvg, we need the following Taylor’s
expansion of f at the point x,
0% f (xo)

f(@:f(xo)‘i‘w

and also that of the Riemannian measure

y'y! +o(p?)

1 .
dvg =1 = < Rij(wo)y'y + o(p?)

where R;j(x,) denotes the Ricci tensor at . The expression of [, f(z) [ue(z) R dvg
is well known (see for example [11] ) and is given in case n > 6 by

2l (21N do :L _ Af(zo) Sg(@) 2 1 ofe2
[ oy = (1- Gt el 4 o)
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.. n_q .
where K, is given by (K) and w,, = 2" 1,7 "w,_1 and w,, is the volume of
S™, the standard unit sphere of R"*! endowed with its round metric.
Now the restriction of ’%—’ZE

to the geodesic ball B(x.,d) is computed as

follows
n—4
— 2 _ 4\ "8
aaue _ ‘vue‘ — 0—2(n_4> ((n 4)”(” 4)6 ) - P —
P 1B(z0,6) f(zo) ((5)"+ €)=
and Since a € L"(M) with r > & we have
n—4
—4)n(n? —4)e*\ * —1
[ @) Ful s < o7t a2 (PN T g,
B(zo,9) f(xo)
r—1

(tn el

Since

/ V| NdQ = wp 1 < - SQG(MPZ + 0(p2))

n

S(p)

we get
n—4
_ 2 _ 4N\ "1 1
[ e Tulny < o7t a2 (P EEIE) T g,
B(:Eo,(;) f(xo

5 2 tn—1 S, (2o G
X (/ p2 PR <1 — “’6(n)p2 + 0(/)2)))
0 ((pf)” +e€?) 1

and by the following change of variable

po .o . €
) ie p=3
we obtain
n—4
— 1 2 4 4N\ 1 .
/ a(z) |Vue2 dvy < 077 (n—4)? ((n n(n )e > lall, w 16 —(n—4)42-1
B(x0,0) f(xo)
r—1
(%)2 tﬁ-i-r% (%)2 tﬂ+r% —
X (/ 2 (n_;r dt — Sg(wo)92€2/ %dt#—o(ﬁ)
0 (t+1) on 0 (t+1) 1
letting € — 0 we get
n—4
—4)n(n? —4)e*\ * 1 n
/ a(a:)IVu6|2dvg < o l+rpg- (177)(7,& 4)2 <(n )n(n )e > HCLHTWLF_(W@M_?
B($076) f(xo)

a1 r
X (I(nz—Q)r ' 79 2= n I(n 2)'r 6 +0(€2)>

r—1 6 r—1
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Then
e —nn? —4)et\ T 1 (neayien
/ a(@) [Vucl* dvg < 27117677 (n—4)? <(n oy ) lafl wpge T
B(z0,6) f(zo)
n=2 r—1 -1 S o ny v _’IL72_'L
Xlzr—:z)zr T |:1 _ T 92 g(m )127:27);1 I(n722)7‘ r—1 62 + 0(62):| .
T r bn S =

It remains to compute the integral fB(% 95)— B(zo.5) A7) Vue|? du,.
(220)2

First we remark that
q 2(g—p+1)
/ h(t)tidt <C <1> — O2lp—a-1)
(%)2 (t + 1)p €

and since p — g =n — 4 > 3, we obtain

(220)?

74
h(t) ———dt = o(e?
(802 ( )(t+1)p 0(6 )
and then
(19) / a(z) |Vue? dvg = o(€?).
B(20,26)—B(x0,0)

Finally we get

T — 4 2 _ 4 4 % 1 N
/ a(x) [Vue? dv, < 271570777 (n—4)> <<n )n(n® —4)e > lal, w2z
M

n—1
1+n72.r71
X (I(n2)2'r T+ 0(62)> N

r—1
Letting
p(n—4) i % (Wal)) T, nea [ m=2y r \
(20) A= Ko4 27‘—1 (n(n - 4))T (I(n2—2)TT1>
T r—1
we obtain
n T A
/ o) [Vu|? dv, < €201 — —lall, (1 + ofe).
M K (f (o)) ©

Now we compute

/ b(m)ufdvgz/ b(:n)u?dvg+/ b(z)uidv,
M B(zo,0) B(20,26)—B(x0,d)

and since b € L*(M) with s > %, we have

| dayzan, < 1ol Judl
M s—1

Independently

n—4

_ (n—4)n(n? —4) ¢ =
B f (o)
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(e o)

el <(n4)n(n2 4)64) 4 /‘S
Uel|| 2s T - n s
() (e S &s =

Sg(mo)p2 —I—o(p2)> ‘

and
Q=w, 1 (1-
[ Viataian =, (1- 2
S(r)

consequently

s ((n — Dn(n

[l
s—17

)2, we get

\ ES

And putting ¢ = ( .

9 (n —4)n(n? — 4)et
Hu€”f%1,B(aco,6)

_ 862 n_ Cn— 86\2
"f ”/(e> 5 259(%)6"*2/(6) t

(n—4)s 12n (n—4)s

0 ( 0 (t + 1) (s—1)

2 t41) G0

(n —4)n(n? —4)et

aB(zo’é) - < f(mo

Letting € — 0, we get
n—4
4 s—1 n
> — 6—n+4+4—;

e %2
s—1

n

s €7 s—1 oo t2 2 oo 2
%0 H(E) s s dt — 12n 62 — g dt +o(e 2)
0 ( 0 (t+1) -1

Hence
n—4
2 \4AN\ T . .
4)6 > (wn—l)‘ Sl 6—n+4+4—;

tz+l
(n— 4)sdt+0( )

€M el1 400 t% 400
[T gt
0 ( o) n 0 (t+1) G-
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Finally, by the same manner as in equality (19) we get

| iz, < o, (I ))T (St

(o)
X <<I(2n_4)s )
(s—1)
Putting
s—1
T n=4 Wn_1,s=1 5 s
@) B =K (e ) G (1)
s—1
we get
b||. B
/ b(z)uldv, < 7% EH I — (1+o(e?)).
M KE (flao) T

The computation of [}, (Aue)? dvg is well known see for example ([11]) and
is given by

2 _L — n? + dn — 20 To)e? 4 o(€?
/M (Aue) dvg = K%(f(xo))"%él <1 6(n274)(n—6)sg( o)€” +o( ))

Resuming we get

/ (Au6)2 —a(x) |Vu6|2 + b(m)uzdvg < ﬂein
M K f(zo) ©
2
22—ty 4-1 p— 15 __n"+4n—20 2 2
(1+€ 0 =1 Allall, + €071 B bl 6(n2—4)(n—6)sg(x°)€ +o(€7) | -
Now, we have
Iy (tue) < Jo (tue) = Hue| / f(@) Jue(x dvg
-n 1 " " N
< i {5 (L @A, et ) -
n—4 |9 r N
Kot f(xo) 1
Af(z,) Sy(mo) \ Y 1 n? + 4n — 20 9
\ew s T o) N 1 s oS )]
+o (62)

and letting e small enough so that

14+ e 79 ™ 1A||aH +et S 1B”bH (1 + flall, + ol )

and since the function ¢(t) = atz - %, with o > 0 and ¢ > 0, attains its

_1
maximum at t, = a«¥-2 and

o(to) = ai.

SN
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Consequently, we get

20"
In (tue) < —s———— {1+ |lall, + [[oll,

nKO4 f(xo)T
Af(ivo) Sg ($O) t(])V 1 9 TL2 +4n —20 )
+{<2(n2)f(xo)+6(n1) N §t06(n274)(n76)Sg($0) €
+o (62) .
Taking account of the value of 6 and putting

n2 + 4n — 20

Af(x, S, (o N1
70~ (3 0 7 ) W 250
we obtain
sup Jy (tue) < T 2 —
20 nK2 (maxgeps f(z))* "
provided that R(¢,) < 0 i.e.
Af(zo) n (n? 4+ 4n — 20) 1 n—2
Fle) (3 (n+2) (=4 (1 =6) (1 4 |af, + oll)= 3 - 1>> o)
Which completes the proof. O

9. Application to compact Riemannian manifolds of dimension
n==~6

THEOREM 11. In case n = 6, we suppose that at a point x, where f
attains its mazimum Sy (x,) > 0. Then the equation (1) has a non trivial
solution.

PrROOF. The same calculations as in case n > 6 gives us

T) | Ue\T N v :L — Af(xO) Sg(xO) 62 062
f A = (1 Gl v by s o).

Also, we have

HaH A 9 ngT T 2
a(z) |Vue|* dvy < —e" T (1+o0(e))
/M UK (fla) T
. el
b(x 2dv — 4_%97$+(1—|—0(62)).
/ K3 (f(2))"F

where A and B are given by (20) and (21) respectively for n = 6. The
computations of the term [}, (Aue)? dvg are well known ( see for example
[11))

(n—)n(n? = 4) st w0y

) ) e

/ (Aue)do(g) = 07 (n — 4)%(
M
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n(n+2)(n—2) 21
(M

= 20725, (a0) os( ) + O<62>) -

/ (Aue)Q dvg = —% v’ — | 1- 2(n — 4)2_1 Sg($0)62 log <12> + 0(62)
M K& (f(xo) T n?(n? — 4)I7 ¢

Now resuming and letting e so that

n

L+ &0 =T Alp], + €507 B Jlaf, < (1+ [lall, + llo],)

we get

Sl

1 2 l X 'LLI’N’U
Ty (ue) < = [luel? - /Mf< ) (@) dv,

o[
2

1—4 tN
(1+ lall, + oll,) % = =

—4 1
- n ﬁ710*25'9(:1:0)962 log <2> +O(€%).
n?(n2 —4) I;? €
The same arguments as in the case n > 6 allow us to infer that
2

[ n—4

n K (f(zo))

max Iy (tue) <

if
Sg(xo) > 0.
Which achieves the proof. [l
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