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Models for crowd dynamics are presented and compared. Well posedness results allow to exhibit the existence of optimal controls in various situations. A new approach not based on partial differential equations is also briefly considered.

1. Introduction. From a macroscopic viewpoint, a moving crowd can be described through its density ρ = ρ(t, x), a function of time t ∈ R + and space x ∈ R 2 attaing values in [0, 1]. In standard situations, the number of pedestrians is conserved, so that R 2 ρ(t, x) dx is independent of t. Hence, it is natural to use the conservation law ∂ t ρ + div x (ρ V ) = 0 .

(1) Any model of this kind depends on the speed law that defines the velocity V of the crowd as a function of t, x, ρ, . . . A simple version of (1) is obtained assigning

V = v(ρ) v(x) with v ∈ C 2 ([0, 1]; R + ) non increasing and v(1) = 0 , v ∈ C 2 (R 2 ; S 1 ) . (2) 
In this case, Kružkov Theorem [24, Theorem 1] applies and ensures that the Cauchy problem for (1)-( 2) has a unique solution in C 0,1 R + ; L 1 (R 2 ; [0, 1]) which depends Lipschitz continuously from the data and, by [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF]Theorem 2.6], also from v and v.

According to [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF], at time t the pedestrian at x moves along a prescribed trajectory, an integral curve of v, with a speed v(ρ) that depends on ρ evaluated at point x and time t. On the contrary, Section 2 is devoted to [START_REF] Amadori | The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions[END_REF] with the speed of the individual at x depending on an average of the density ρ in a neighborhood of x. The resulting model has a rich analytical structure, the solutions being also differentiable with respect to the data and to the speed law.

In Section 3 the direction chosen by the pedestrian at x depends from an average of the density gradient ∇ρ around x, while his/her speed depends from ρ evaluated at x. The resulting solutions display qualitative properties usually seen in context where individuals have a proper volume such as the Braess paradox [START_REF] Braess | Über ein Paradoxon aus der Verkehrsplanung[END_REF] and the formation of queues [START_REF] Helbing | Self-organizing pedestrian movement[END_REF].

If the various individuals have different destinations then it is possible to subdivide the crowd under consideration into different, say n, populations with densities ρ 1 , . . . , ρ n , each having a different destination. The resulting model

∂ t ρ i + div x (ρ i V i ) = 0 i = 1, . . . , n (3) 
consists of a system of conservation laws that, when n = 1, reduces to [START_REF] Amadori | The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions[END_REF]. The results in both Section 2 and Section 3 can be extended to this more general setting. Finally, Section 4 approaches the problem of driving a crowd with a few moving individuals. First, a model based on (1) is recalled and then an approach based on differential inclusions is presented. The latter approach, developed following [START_REF] Bressan | Differential inclusions and the control of forest fires[END_REF][START_REF] Bressan | Control problems for a class of set valued evolutions. Set-Valued and Variational Analysis[END_REF], neglects the crowd internal dynamics and allows for a simpler analytical framework.

We refer for instance to [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF] for an account of the fast development of the recent macroscopic modeling of crowd dynamics. Moreover, measure valued conservation laws were considered in [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF][START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF]; the results in [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] deal with constrained velocity models; various 1D attempts are found in [START_REF] Amadori | The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions[END_REF][START_REF] Colombo | Pedestrian flows and non-classical shocks[END_REF][START_REF] Colombo | Existence of nonclassical solutions in a pedestrian flow model[END_REF][START_REF] Di Francesco | On the Hughes' model for pedestrian flow: the one-dimensional case[END_REF][START_REF] El-Khatib | On entropy weak solutions of Hughes model for pedestrian motion[END_REF]. Throughout, for the basic results in the theory of conservation laws we refer to [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF].

2. NonLocal Speed Choice. Consider (1) with the nonlocal speed law

V (ρ) = v ρ(t) * η v . (4) 
Here, the speed v at time t of the pedestrian at x depends on the averaged density ρ(t) * η (x) = R 2 ρ(t, xy) η(y) dy. The direction of the velocity is given by the (fixed) vector v(x).

For simplicity, we state the results below in R 2 . However, the case where the region available to the crowd is constrained by, say, walls or doors can be easily recovered in the present framework, along the technique used in [START_REF] Colombo | Non-local crowd dynamics[END_REF][START_REF] Colombo | A class of non-local models for pedestrian traffic[END_REF] As is typical whenever Kružkov techniques apply, space dimension 2 plays no role and the results below can be extend to R n .

Existence and uniqueness of a solution to the Cauchy problem for (1)-( 4) follow from the next result.

Theorem 2.1. [9, Proposition 4.1], [10, Theorem 2.2] Let v ∈ (C 2 ∩ W 2,∞ )(R; R), ν ∈ (C 2 ∩ W 2,1 )(R 2 ; R 2 ), η ∈ (C 2 ∩ W 2,∞ )(R 2 ; R). Assume ρ o ∈ (L 1 ∩ L ∞ ∩ BV)(R 2 ; R + ).
Then, (1)-( 4) with initial condition ρ o admits a unique weak entropy solution ρ ∈ C 0 R + ; L 1 (R 2 ; R + ) . Furthermore, we have the estimate ρ(t) L ∞ ≤ ρ o L ∞ e Ct , where the constant C depends on v, ν and η.

The definition of weak entropy solutions is based on Kružkov notion [24, Definition 1], see also [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF][START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF]. The proof relies on a contraction argument based on the key estimates provided by [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF]Theorem 2.6].

Another contraction argument, based on tools from optimal transport theory, allows to extend the above result to the measure valued setting in [START_REF] Crippa | Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow[END_REF]. (Below,

M + (R + ) is the set of positive Radon measures on R 2 ). Theorem 2.2. [17, Theorem 1.1] Assume v ∈ (L ∞ ∩ Lip)(R; R), ν ∈ (L ∞ ∩ Lip)(R 2 ; R 2 ), η ∈ (L ∞ ∩ Lip)(R 2 ; R + ). Let ρ o ∈ M + (R 2 ). Then, there exists a unique weak measure valued solution ρ ∈ L ∞ (R + ; M + (R 2 )) to (1)-(4) with initial condition ρ o . If furthermore ρ o ∈ L 1 (R 2 ; R + ), then ρ ∈ C 0 R + ; L 1 (R 2 ; R + ) .
In general, in (1)-( 4) no a priori uniform L ∞ bound on the density is possible. Indeed, assume that the density is 1 all along the trajectory of the pedestrian at x. The averaged density around x may well be less than 1, forcing the pedestrian to proceed and, hence, leading to a increase in the density. This behavior can be related to the rise of panic, see [START_REF] Colombo | Pedestrian flows and non-classical shocks[END_REF][START_REF] Colombo | Existence of nonclassical solutions in a pedestrian flow model[END_REF]. In the literature, values of ρ of up to 10 individuals per square meter were measured, see for instance [START_REF] Helbing | Dynamics of crowd disasters: An empirical study[END_REF].

Aiming at preventing the insurgence of these phenomena, it is natural to consider control problems where functionals of the density of the type

J T (ρ o ) = T 0 Ω f ρ(t, x
) dx dt where ρ solves ( 1)-( 4) with datum ρ o [START_REF] Bressan | Differential inclusions and the control of forest fires[END_REF] have to be minimized. Here, Ω is the region where the density needs to be controlled and f is a C 1 function weighing 0 on acceptable densities and quickly increasing when ρ approaches dangerous values. Necessary conditions for the minima of ( 5) are available once the differentiability of the solution to ( 1)-( 4) with respect to the initial datum is proved. This motivates the following result.

Theorem 2.3. [9, Theorem 4.2] [10, Theorem 2.2] Let ρ o ∈ (W 2,∞ ∩W 2,1 )(R 2 ; R + ), r o ∈ (W 1,1 ∩L ∞ )(R 2 ; R). Assume v ∈ (C 4 ∩W 2,∞ )(R; R), ν ∈ (C 3 ∩W 2,1 )(R 2 ; R 2 ), η ∈ (C 3 ∩ W 2,∞ )(R 2 ; R + ).
Then, there exists a unique weak entropy solution r ∈ C 0 (R + ; L 1 R 2 ; R) to the Cauchy problem

∂ t r + div (r v(ρ * η) ν(x)) = -div (ρ v ′ (ρ * η) ν(x)) , r(0) = r o . (6) 
Furthermore, for all

ρ o ∈ (W 2,1 ∩ W 2,∞ )(R 2 ; R + ) and r o ∈ (W 1,1 ∩ L ∞ )(R 2 ; R), call ρ h the solution to (1)-(4) with initial datum ρ o + hr o . Then, for all t ∈ R + , lim h→0 ρ h (t) -ρ(t) h -r(t) L 1 = 0 (7) 
i.e., the solution ρ to (1)-( 4) is Gâteaux differentiable in ρ o along any direction r o .

To prove this theorem, first the well posedness of ( 6) is obtained and then the limit (7) is computed. In both steps, the estimates in [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF] play a key role. At present, no analog to Theorem 2.3 is available in the setting of Theorem 2.2. Indeed, a good definition of Gâteaux differentiability on the set of probability measures equipped with the Wasserstein distance of order 1 is, to our knowledge, not available.

NonLocal Route Choice. Consider (1) with the nonlocal speed law

V (ρ) = v(ρ) ν(x) + I(ρ) . (8) 
Here, the individual in x at time t moves at the speed v ρ(t, x) that depends on the density ρ(t, x) evaluated at the same time t and x. The vector ν(x) ∈ R 2 is the preferred direction of the pedestrian at x, while I(ρ)(x) describes how the pedestrian at x deviates from the preferred direction, given that the crowd distribution is ρ. Thus, the individual at time t in x is assumed to move in the direction of the vector ν(x) + I ρ(t) (x). The basic well posedness result for (1)-( 8) is the following. Theorem 3.1. [8, Theorem 2.1, Theorem 2.2] Let the following conditions hold:

(v): v ∈ C 2 (R; R) is non increasing, v(0) = V and v(R) = 0 for fixed V, R > 0. ( ν): ν ∈ (C 2 ∩ W 1,∞ )(R 2 ; R 2 ) is such that div ν ∈ (W 1,1 ∩ W 1,∞ )(R 2 ; R). (I): I ∈ C 0 L 1 (R 2 ; [0, R]); C 2 (R 2 ; R 2
) satisfies the estimates: (I.1) There exists an increasing

C I ∈ L ∞ loc (R + ; R + ) such that, for all r ∈ L 1 (R 2 ; [0, R]), I(r) W 1,∞ ≤ C I ( r L 1 ) and div I(r) L 1 ≤ C I ( r L 1 ).

(I.2) There exists an increasing

C I ∈ L ∞ loc (R + ; R + ) such that, for all r ∈ L 1 (R 2 ; [0, R]), ∇ div I(r) L 1 ≤ C I ( r L 1 ). (I.
3) There exists a constant K I such that for all r 1 , r 2 ∈ L 1 (R 2 ; [0, R]),

I(r 1 ) -I(r 2 ) L ∞ ≤ K I • r 1 -r 2 L 1 , I(r 1 ) -I(r 2 ) L 1 + div (I(r 1 ) -I(r 2 )) L 1 ≤ K I • r 1 -r 2 L 1 .
Choose any ρ o ∈ (L 1 ∩ BV)(R 2 ; [0, R]). Then, there exists a unique weak entropy solution ρ ∈ C 0 R + ; L 1 (R 2 ; [0, R]) to (1)- [START_REF] Colombo | A class of non-local models for pedestrian traffic[END_REF]. Moreover, ρ satisfies the bounds

ρ(t) L 1 = ρ o L 1 , for a.e. t ∈ R + , TV (ρ(t)) ≤ TV (ρ o ) e kt + π 4 te kt N q L ∞ ([0,R]) ∇ div ν L 1 + C I ( ρ o L 1 )
,

where k = (2N + 1) q ′ L ∞ ([0,R]) ∇ ν L ∞ + C I ( ρ o L 1 )
. If also the speed law

V ′ (ρ) = v ′ (ρ) ν ′ (x) + I ′ (ρ) (9) 
satisfies the same assumptions, then the solution ρ to (1)-( 8) and ρ ′ to (1)-( 9),

with data ρ o , ρ ′ o ∈ (L 1 ∩ BV)(R 2 ; [0, R]), satisfy ρ 1 (t) -ρ 2 (t) L 1 ≤ 1 + C(t) ρ 0,1 -ρ 0,2 L 1 + C(t) q 1 -q 2 W 1,∞ + d (I 1 , I 2 ) +C(t) ν 1 -ν 2 L ∞ + div ( ν 1 -ν 2 ) L 1 where d(I 1 , I 2 ) = sup I 1 (ρ) -I 2 (ρ) L ∞ + div I 1 (ρ) -I 2 (ρ) L 1 : ρ ∈ L 1 (R 2 ; [0, R]) .
The map C ∈ C 0 (R + ; R + ) vanishes at t = 0 and depends on TV (ρ 0,1 ), ρ 0,1

L 1 , ν 1 L ∞ , div ν 1 W 1,1 , q 1 W 1,∞ , q 2 W 1,∞ .
In operation research, Braess paradox states that adding extra capacity to a network can, in some cases, reduce the overall performance of the network, see [START_REF] Braess | Über ein Paradoxon aus der Verkehrsplanung[END_REF]. A relevant problem in the design of escape routes is the planning of suitable devices that reduce the exit time. The model ( 1)-( 8) allows to show that the careful introduction of suitable obstacles in suitable locations does indeed reduce the exit time. In fact, these obstacles reduce congested areas at the sides of the door jambs. 

v(ρ) = 6(1 -ρ) , η(x) = 1 -x1 r 2 3 1 -x2 r 2 3 ×χ [-r,r] 2 (x), ρ o (x) = 0.75 χ [2,7]×[-2,2] (x) , r = 0.6 , ε = 0.4 . ( 10 
)
Figure 1. Initial datum and room geometry, without obstacles.

We consider a room with an exit, as in Figure 1. The vector ν = ν(x) is the unit vector tangent at x to the geodesic connecting x to the exit and [START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF]. 1)-( 8)-( 10) with ε = 0.2, at times t = 4.438, 6.253, 11.396. On the first line, no obstacle is present. On the second line, 4 columns direct the crowd flow. The exit time in the latter case is shorter than in the former one, see [START_REF] Colombo | Non-local crowd dynamics[END_REF].

I(ρ) = -ε ∇(ρ * η) 1 + ∇(ρ * η) 2 , see
The careful positioning of obstacles as in the second line of Figure 2 diminishes the size of the congested region and, with the chosen initial datum, gives an exit time lower than that with the room free from any obstacle, see Figure 2. 4. Individuals Driving a Population. We finally introduce a model describing the situation in which a discrete set of isolated individuals interacts with a continuum crowd. Examples can be a (group of) predator(s) running after their preys, shepherd dogs driving a herd of sheep, or a leader attracting a group of followers to a given region. Let ρ ∈ R + be the population density and p ≡ (p 1 , . . . , p k ) ∈ R 2k be the positions of the k individuals. Following [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF], the interaction is described by

   ∂ t ρ + div ρ V t, x, ρ(t, x), p(t) = 0 , ṗ = ϕ t, p(t), ρ(t) . (11) 
Here, ϕ is typically nonlocal, meaning that the individuals p react to averages of quantities depending on ρ. The well posedness of ( 11) is proved in [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF]Theorem 2.2], by means of Kružkov theory, the estimates in [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF] and tools from the stability of ordinary differential equations. As a first illustrating example, assume that the vector p ∈ R 2 is the position of a leader (e.g. a magic piper) and ρ is the density of the followers (e.g. rats). We are thus lead to consider [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF] with

V (t, x, ρ, p) = v(ρ) (p -x) e -p-x ϕ(t, π, ρ) = 1 + (ρ * η) p(t) ψ(t) . (12) 
The function v essentially describes the speed of the followers and is, as usual, a smooth decreasing function vanishing at, say, ρ = 1. The follower located at x moves along p(t)x toward the leader, with a speed exponentially decreasing with the distance px between leader and follower. The speed of the leader increases with the averaged density ρ * η, computed at the leader's position. Indeed, we expect the leader to wait for the followers to join him when the followers' density around him is small. The direction ψ of the leader is chosen a priori. See Figure 3 for a numerical integration of ( 11)-( 12) and [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF] for further details. As a further example, consider n shepherd dogs, located in p i (t) ∈ R 2 for i ∈ {1, . . . , n} and a group of sheep of density ρ. The dogs have to confine the sheep 11)-( 12), from [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF]. within a given area. We are thus lead to consider [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF] with

V (t, x, ρ, p) = v(ρ) ν(x) + n i=1 (x -p i )e -pi-x ϕ(t, π, ρ) = (ρ * ∇η) ⊥ (pi(t)) 1+ ρ * ∇η(pi (t)) 2 ,
for i ∈ {1, . . . n} .

As above, the speed of the sheep is given by the decreasing function v(ρ) that vanishes in ρ = 1. The direction of a sheep located at x is a sum of two terms. The first one is the sheep's preferred direction ν(x); the second one is the vector n i=1 (xp i (t))e -pi-x representing the repulsive effects of the dogs on the sheep. Each dog runs around the flock along the direction perpendicular to the gradient of the sheep average density.

5.

A Different Approach. Following [START_REF] Bressan | Control problems for a class of set valued evolutions. Set-Valued and Variational Analysis[END_REF][START_REF] Colombo | Confinement strategies in a model for the interaction between individuals and a continuum[END_REF][START_REF] Colombo | On the control of moving sets: Positive and negative confinement results[END_REF], we present another framework to describe the population-individuals interactions. Initially, the population occupies the compact set K o ⊂ R 2 . If there are no individuals, the member at x of the population is free to wander in R 2 , according to the differential inclusion

ẋ ∈ B(0, c) , x(0) ∈ K o , (14) 
c being the maximal wandering speed and B(0, c) the closed ball in R 2 centered at 0 with radius c. Hence, the population fills the reachable set of [START_REF] Colombo | On the control of moving sets: Positive and negative confinement results[END_REF]. Introduce now n individuals sited at ξ ≡ (ξ 1 , ξ 2 , . . . , ξ n ) ∈ R 2n . Then, the interaction between the individuals and each population member leads to the modified differential inclusion

ẋ ∈ v x, ξ(t) + B(0, c), x(0) ∈ K o , (15) 
where the vector field v ∈ C 0,1 (R 2 × R 2n ; R 2 ) is the drift speed due to the attractive or repulsive effect that each agent has on each member of the population. Thus, given the individuals' trajectory ξ ∈ C 0,1 loc (R + ; R 2n ), the reachable set R ξ (K o , t) of ( 15) at time t is the set occupied by the population at time t under the effect of the agents. With the present assumptions, R ξ (K o , t) is non-empty and compact.

If only one agent is present (n = 1) and v is spherically symmetric, i.e., v(x, ξ) = ψ(|x -ξ|)(xξ) for a suitable ψ : R → R. [START_REF] Colombo | Existence of nonclassical solutions in a pedestrian flow model[END_REF] the next result exhibits a trajectory ξ confining the population in a given set K.

Theorem 5.1. [14, Theorem 2.8] Let c > 0. Fix a bounded ψ ∈ C 1,1 loc (R n ; R) and define v as in [START_REF] Colombo | Existence of nonclassical solutions in a pedestrian flow model[END_REF]. Assume that there exist positive R - * , R + * and R such that

1 π π 0 ψ R 2 + R 2 * -2R * R cos θ (R * -R cos θ) dθ < -c for all R * ∈ [R - * , R + * ].
Then, there exists a ξ ∈ C 0,1 loc R + ; ∂B(0, R) such that, calling K o the region initially occupied by the population, if K o ⊆ B(0, R - * ) then R ξ (t, K o ) ⊆ B(0, R + * ) for all t ≥ 0 . Note that the confining strategy t → ξ(t) above is constructed explicitly, see [START_REF] Colombo | Confinement strategies in a model for the interaction between individuals and a continuum[END_REF]Theorem 2.5]. A negative result is also available. Before stating it, recall that for a measurable function ϕ : R + → R, its non-decreasing rearrangement is the function ϕ * : R + → R, which is non-decreasing and satisfies L 1 ϕ -1

* (]-∞, a]) = L 1 ϕ -1 (]-∞, a]) for all a ∈ R. Theorem 5.2. [14, Theorem 2.7] Let c > 0. Fix a bounded ψ ∈ C 1,1 loc (R; R) and define v as in [START_REF] Colombo | Existence of nonclassical solutions in a pedestrian flow model[END_REF]. Let ϕ * be the non-decreasing rearrangement of the function

ϕ(s) = ψ ′ 2 s π 2 s π + 2 ψ 2 s π .
If the initial set K o is such that

2 c √ πσ + σ 0 ϕ * (s) ds > 0 for all σ ≥ L 2 (K o )
then, for every ξ ∈ C 0,1 loc (R + ; R kn ), the measure L 2 R ξ (t, K o ) of the reachable set R ξ (t, K o ) of (15) increases unboundedly in time, so that no confinement is possible.
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 2 Figure 2. Solution to (1)-(8)-[START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF] with ε = 0.2, at times t = 4.438, 6.253, 11.396. On the first line, no obstacle is present. On the second line, 4 columns direct the crowd flow. The exit time in the latter case is shorter than in the former one, see[START_REF] Colombo | Non-local crowd dynamics[END_REF].
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 3 Figure 3. Solution of (11)-(12), from[START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF].

We refer to the cited references for the statement of these results in arbitrary space dimension. Theorem 5.2 holds also in the case of several individuals, each acting as in (16) (see [14]).