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Ranking from pairwise comparisons in the belief
functions framework

Marie-Hélène Masson and Thierry Denœux

Abstract The problem of deriving a binary relation over alternativesbased on paired
comparisons is studied. The problem is tackled in the framework of belief functions,
which is well-suited to model and manipulate partial and uncertain information.
Starting from the work of Tritchler and Lockwood [8], the paper proposes a general
model of mass allocation and combination, and shows how to practically derive a
complete or a partial ranking of the alternatives. A small example is provided as an
illustration.

1 Introduction

The aim of the paper is to study the task of constructing a linear order, or a rank-
ing, of n alternatives, based on paired comparisons. Paired experiments consist in
presenting two objects to one or several judges and asking them to choose the best
alternative among the pair. Each paired comparison is supposed to provide uncer-
tain pieces of evidence on the ranking relation, and the derivation of a linear order
is considered as an information fusion problem. Uncertain possibilistic preferences
have been already considered e.g. in [2]. In this paper, the problem is tackled in the
framework of belief functions.

A first work using belief functions to describe the uncertainty about the com-
parisons has been proposed in [8]. Unfortunately, this workremains essentially the-
oretical and gives very few tools for practical applications. Our paper synthesizes
their main results in Section 3 and extends them in Section 4 in three ways: a more
general model of mass allocation is proposed, a linear programming approach for
determining the most plausible ranking is introduced, and aheuristic procedure for
choosing only a partial order, starting from the most plausible ranking, is given.
A small example in Section 5 illustrates the proposed method. Note that, due to
space limitations, basic knowledge on belief functions will be assumed. The reader
is referred, in particular, to [3, 6].
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2 Basic notions on relations

Let O= {o1,o2, ...,on} be a set ofn alternatives. We recall that a strict orderRonO
is a binary relation for which the following properties holdfor all oi , o j andok ∈O:

• if (oi ,o j) ∈ R then(o j ,oi) 6∈ R (asymmetry);
• if (oi ,o j) ∈ R and(o j ,ok) ∈ R then(oi ,ok) ∈ R (transitivity);

If the order is complete (either(oi ,o j) ∈ Ror (o j ,oi) ∈ R), it is a linear (or total)
order, otherwise it is a partial order. If(oi ,o j) ∈ R or (o j ,oi) ∈ R thenoi ando j are
comparable, otherwise they are said incomparable.

A linear orderL is called a linear extension of a partial orderP if P ⊆ L (∀
(oi ,o j) ∈ P, then(oi ,o j) ∈ L). To each partial order can thus be associated the set
of its linear extensions. Conversely, any collectionC of total orders defines a partial
orderH as follows:(oi ,o j) ∈H iff (oi ,o j) belongs to all linear order inC. One then
says thatH is realized byC. Note that two subsets can realize the same partial order.

Any relationR can be conveniently represented by a directed graph with nodes
O. Two nodesoi ando j are connected by an arc in the graph if(oi ,o j) ∈ R.

3 Pairwise comparisons in the framework of belief functions

Combining pairwise comparisons in the framework of belief functions has been al-
ready addressed by Tritchler and Lockwood [8]. This sectionfollows their presenta-
tion and synthetizes the most useful notions. They considerthat, for each pair(oi ,o j)
of alternatives inO (1≤ i < j ≤ n), an expert expresses its preference betweenoi

ando j using a mass functionmΘi j quantifying the uncertainty in the evaluation. This
mass function is defined on the frame of discernementΘi j = {oi ≻ o j ,o j ≻ oi}: the
singletonoi ≻ o j means thatoi should be ranked beforeo j and the singletono j ≻ oi

thato j should be ranked first. Tritchler and Lockwood propose to usea simple sup-
port mass function: the expert chooses one of the singletonswith massα i j and the
rest of the mass is allocated toΘi j . The valueα i j is interpreted as the reliability of
the choice.

Let φi j denote a focal element ofmΘi j . Each focal elementφi j has a graph repre-
sentation which consists of two nodes,oi ando j , with one arc ifφi j is a singleton
element, and no arc if the focal element isΘi j .

The problem is to derive from then(n− 1)/2 mass functions a ranking of the
alternatives. This task may be seen as an information fusionproblem and Dempster’s
rule of combination [3] can be used to this end. LetI denote the set{(i, j) | 1≤ i <
j ≤ n} and letΘ(I) denote the product space:

Θ(I) = Θ12×Θ13× ...×Θ(n−1)n

Θ(I) consists of all complete asymmetric relations (or graphs) defined on the setO.
Before being combined, pieces of evidence from all pairs have to be expressed on
the same frame of discernement, namely the product spaceΘ(I). This is achieved
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by applying the vacuous extension operation [3, 5] to eachmΘi j . This operation,
denoted↑, transfers each massmΘi j (φi j ) to φi j ×Θ(I −{(i, j)}). The symbol⊕
representing Dempster’s rule of combination, the expression of the combination can
thus be formally written as:

mΘ(I) = mΘ12↑Θ(I)⊕mΘ13↑Θ(I)⊕ ...⊕mΘ(n−1)n↑Θ(I), (1)

or, using the commonalities:

qΘ(I) = ∏
(i, j)∈I

qΘi j ↑Θ(I). (2)

The focal elements ofmΘ(I) are of the form:φ = φ12×φ13× ...×φ(n−1)n, whereφi j

is a focal element ofmΘi j and the mass resulting from the combination is:

mΘ(I)(φ) = mΘ12(φ12)m
Θ13(φ13)...m

Θ(n−1)n(φ(n−1)n). (3)

In terms of graph, each focal elementφ of mΘ(I) can be represented by a directed
graph formed by the union of individual graphs. Since eachφi j is equal either to a
singleton or toΘi j , each focal elementφ is a subset composed of complete asym-
metric relations onO, whose graphs contain the arcs ofφ.

The combination described above allocates masses on various sets of asymmetric
relations defined onO. A first objective is to find a linear ordering onO that is
the most compatible with the pairwise evaluations. This canbe done by imposing
conditions on the set in which the solution has to be found. Let L denote the set of
all linear orders defined onO which is a subset ofΘ(I). To impose the nature of the
solution, it is proposed in [8] to condition the massmΘ(I) with respect toL :

mΘ(I)[L ] = mΘ(I)⊕mL , (4)

with mL a categorical mass function defined bymL (L ) = 1.
Expressed using the commonalities, the whole combination can be written as:

qΘ(I)[L ] =
1

1−K
qL ∏

(i, j)∈I

qΘi j ↑Θ(I), (5)

whereK is the conflict resulting from the combination ofmΘ(I) with mL . K can
be interpreted as an index of the internal coherence of the evaluations. Its practical
computation will be explained when dealing with partial orders.

4 Practical use

We consider in this section a general form of mass allocationdefined by:
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mΘi j (oi ≻ o j) = α i j ,
mΘi j (o j ≻ oi) = βi j ,
mΘi j (Θi j ) = 1−α i j −βi j .

(6)

This mass allocation may come from a single expert who is asked to provide, for
each(i, j) ∈ I , the above mass function, or from the combination of the evaluations

of several experts. In that case, for each(i, j)∈ I , severalm
Θi j
k are available and they

have to be fused to providemΘi j . The choice of the combination rule depends on the
hypotheses made on the dependence between the experts. If they can be considered
as independent, Dempster’s rule should be chosen. Otherwise, the cautious rule [1]
may be preferred.

4.1 Most plausible ranking

Let L ∈ L be a strict linear ordering onO. L being a singleton of the frame of
discernement, one has qL ({L}) = 1 and, with the mass allocation (6), one has:

{

qΘi j ↑Θ(I)({L}) = 1−βi j if (oi ,o j) ∈ L,

qΘi j ↑Θ(I)({L}) = 1−α i j if (o j ,oi) ∈ L.
(7)

Let us introducen(n−1)/2 binary variablesl i j ((i, j) ∈ I ) defined byl i j = 1 if
(oi ,o j) ∈ L and 0 otherwise. Using (7) and (5), the commonality, or, equivalently,
the plausiblity ofL can be written as:

qΘ(I)[L ]({L}) = plΘ(I)[L ]({L}) =
1

1−K ∏
(i, j)∈I

(1−βi j )
l i j (1−α i j )

1−l i j , (8)

whereK is the conflict resulting from the combination ofmΘ(I) with mL . To find
the most plausible ranking of the alternatives, it is not necessary to enumerate all
possible linear orderings. We propose to solve the problem using a linear program-
ming approach. Maximizing expression (8) is equivalent to maximize its logarithm
so that, omitting the constant term depending onK, the most plausible rankingL
can be found as the solution of the following linear program:

max
l i j∈{0,1}

∑
(i, j)∈I

l i j ln

(

1−βi j

1−α i j

)

, (9)

subject to:
{

l i j + l jk−1≤ l ik, ∀i < j < k,
l ik ≤ l i j + l jk, ∀i < j < k.

(10)

The constraints are used to insure thatL belongs toL : if l i j = 1 andl jk = 1 then
l ik = 1. If l i j = 0 andl jk = 0 thenl ik = 0.
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Remark 1 Note that the general form of mass allocation (6) allows us totake natu-
rally into account tied evaluations. If the comparison between oi and oj results in a
tie, we letα i j = βi j . Then, it can be easily seen that the pair(o j ,o j) does not appear
any more in the objective function.

4.2 Plausibility of a partial ranking

In some situations, it may be also interesting to compute theplausiblity of a partial
order. When working in the set of asymmetric relations as defined by Tritchler and
Lockwood, it not possible to provide an analytical expression. However, some re-
sults from [8] make it possible to use simple algorithms based on graph theory to
compute the plausibility of any partial order. The following theorem is proved in
[8]:

Theorem 1 (Tritchler and Lockwood (1991)) Let K be the conflict between the
two mass functions mΘ(I) and mL .

1. K = ∑mΘ(I)(φ) where the summation is over every focal element of mΘ(I) whose
graph contains a cycle;

2. Let H be a partial order realized by a focal elementθH of mΘ(I)[L ]. ThenθH is
the set of all linear extensions of H (θH is the largest subset ofL which realizes
H).

3. mΘ(I)[L ](θH) = 1
1−K ∑mΘ(I)(φ), where the summation is over every focal ele-

mentφ of mΘ(I) such that the transitive closure of G(φ), Gt(φ), is equal to H.

To compute the plausiblity of any partial order, one has to sum the masses as-
sociated to all focal elements with a non null intersection with this partial order.
The following lemma helps to recognize the focal elements which intersect a given
partial order:

Lemma 1 (Tritchler and Lockwood (1991)) Let C1 and C2 be two subsets ofL
realizing the partial orders H1 and H2. Then C1∩C2 6= /0 if and only if H1∪H2 is
acyclic.

Computing the plausibility of any partial orderH is thus achieved by summing
the masses of all focal setsθH ′ such thatH ′∪H is acyclic. .

Lemma 1 and Theorem 1 allow us to propose two simple procedures (one exact,
one approximate) for computing the plausibility of a given partial order. The two
procedures are detailed in Algorithms 1 and 2.

4.3 Heuristic search for a partial ranking

If the plausibility of the most plausible ranking is too low,it can be preferable to
provide the user with only a partial ranking of the alternatives. The algorithms de-
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Algorithm 1 Plausibility of a partial orderH
1: K← 0
2: pl(H)← 0
3: for all φ = φ12×φ13× ...×φ(n−1)n do
4: Compute the transitive closureGt(φ) of G(φ)
5: Compute the massm= mΘ(I)(φ) by equation (3)
6: if Gt(φ) contains a cyclethen
7: K = K +m
8: else if G(H)∪Gt(φ) is acyclicthen pl(H) = pl(H)+m
9: end if

10: end for
11: pl(H)← 1

1−K pl(H)

Algorithm 2 Approximate computation by a Monte-Carlo approach
1: Npl← 0
2: NK ← 0
3: for rep← 1,N do
4: G← /0
5: for each(i, j) ∈ I do
6: With probabilitymΘi j (φi j ), randomly select a focal elementφi j from the focal ele-

ments ofmΘi j

7: if φi j is a singleton, add the corresponding arc toG
8: end for
9: Compute the transitive closureGt of G

10: if Gt contains a cyclethen
11: NK = NK +1
12: else if G(H)∪Gt is acyclicthen Npl = Npl +1
13: end if
14: end for

15: K̂ =
NK

N

16: p̂l(H) =
1

1− K̂

Npl

N

scribed in the previous section allow us to compute the plausibility of any partial
order. Instead of exploring every possible partial orders,which would be practically
intractable, we propose a heuristic procedure based on a principle of hierarchical
clustering. We start from the most plausible ranking (see Section 4.1). Then, at the
first step of the procedure, we compute the plausibility of every partial orders ob-
tained by removing one pair of adjacent alternatives from the total order relation.
The most plausible partial order is retained and the corresponding pair of alterna-
tives is “merged”. The process is repeated until all alternatives have been merged
into a single one. It is easy to see that the sequence of plausibility values is mono-
tonically increasing. Finally, a partial order with the desired level of plausibility can
be chosen by the user.



Ranking from pairwise comparisons in the belief functions framework 7

5 Example

We illustrate the methods described above using an example inspired from [8]. In
a study conducted at the Ontario Cancer Institute, subjectswere asked to give their
preferences about four scenarios describing ethical dilemmas in health care. The
preferences for all six possible scenario pairs were obtained. The experts were also
asked to rate the reliability of their evaluations. The preferences of a subject can
be represented by a directed graph in which the vertices are the scenarios and the
edges represent the relation “is preferred to”. The values on the edges represent the
reliability given by the expert. The graphs of the experts are given in Figure 1. The
fact that graph 1 (left) contains a cycle (ADB) shows that theevaluations of expert 1
are not fully consistent. There is no cycle in graph 2 (right), but the degrees of belief
are weaker than for expert 1. The evaluations of each expert are modelled using the
mass allocation expressed by equation (6) with eitherα i j or βi j equal to zero.

Applied individually to each expert, the procedure for deriving a complete rank-
ing of the alternatives (Section 4.1) gives the rankingA≻D≻B≻C with a plausib-
lity of 0.8070 for the first expert, and the rankingA≻C≻D≻ B with a plausibility
equal to 1 for the second one. The plausiblities thus reflect the internal coherence
of the experts. The evaluations of the experts can also be combined before search-
ing for a complete ranking. The results of the combination using Dempster’s rule of
combination can be found in Table 1.

A 

D C 

B 
0,44 

0,06 

0,93 0,97 0.74 0.94 

A 

D C 

B 
0,44 

0,01 

0,8 0,97 0.74 0.94 

Fig. 1 Graph representation of the evaluations; (left) : expert 1 ; (right) : expert 2.

Table 1 Mass assignment using Dempster’s rule of combination

(oi ,o j ) oi ≻ o j o j ≻ oi Θi j

(A,B) 0.3056 0.3056 0.3889
(A,C) 0.9991 0 0.0009
(A,D) 0.9964 0 0.0036
(B,C) 0.7266 0.2187 0.0547
(B,D) 0 0.9324 0.0676
(C,D) 0.0594 0.0094 0.9312

The most plausible total ranking derived from Table 1 isA≻ D ≻ B≻C with a
plausibility equal to 0.8893. Applying the heuristic procedure using the masses of
Table 1 for determining a partial ranking gives the result presented in Figure 2. The
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dendrogram can be cut at the desired level of plausibility. For example, the partial
orderA≻ D≻ {B,C} reaches a plausibility of almost 0.96.

0.89

0.91

0.96
0.97
0.98
0.99

Alternatives

P
la

us
ib

ili
ty

A D B C

Fig. 2 Dendrogram obtained from Table 1.

6 Conclusion

In this paper, we have has shown how to use the framework of belief functions to
model paired comparisons and how to derive from these individual judgements a
total or a partial ranking of the alternatives. The linear order is obtained by solving a
linear program maximizing the plausibility of the relation. A heuristic procedure has
been proposed to provide only a partial order when the plausibility of the linear order
is too low. This work offers several perspectives, among which the application of the
approach to machine learning problems like instance or label ranking problems.
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