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Ranking from pairwise comparisonsin the belief
functions framework

Marie-Helene Masson and Thierry Denoeux

Abstract The problem of deriving a binary relation over alternativased on paired
comparisons is studied. The problem is tackled in the frapnkewf belief functions,
which is well-suited to model and manipulate partial andastan information.
Starting from the work of Tritchler and Lockwood [8], the geyproposes a general
model of mass allocation and combination, and shows howdotigally derive a
complete or a partial ranking of the alternatives. A smadlraple is provided as an
illustration.

1 Introduction

The aim of the paper is to study the task of constructing alimeder, or a rank-
ing, of n alternatives, based on paired comparisons. Paired expetsnconsist in
presenting two objects to one or several judges and askerg tb choose the best
alternative among the pair. Each paired comparison is sgmpto provide uncer-
tain pieces of evidence on the ranking relation, and thevaléon of a linear order
is considered as an information fusion problem. Uncertassjbilistic preferences
have been already considered e.g. in [2]. In this paper, ribldlgm is tackled in the
framework of belief functions.

A first work using belief functions to describe the unceriabout the com-
parisons has been proposed in [8]. Unfortunately, this wenkains essentially the-
oretical and gives very few tools for practical applicaso@ur paper synthesizes
their main results in Section 3 and extends them in Sectiontdree ways: a more
general model of mass allocation is proposed, a linear progring approach for
determining the most plausible ranking is introduced, ahéuwristic procedure for
choosing only a partial order, starting from the most plalesranking, is given.
A small example in Section 5 illustrates the proposed methmde that, due to
space limitations, basic knowledge on belief functiond bl assumed. The reader
is referred, in particular, to [3, 6].
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2 Basic notions on relations

LetO={04,02,...,0n} be a set ofi alternatives. We recall that a strict ordeon O
is a binary relation for which the following properties hdda all o;, o; andoy € O:

e if (0;,0j) € Rthen(oj,0i) ¢ R (asymmetry);
e if (0,0;) € Rand(oj,0x) € Rthen(o;,0¢) € R (transitivity);

If the order is complete (eith€n;,0;) € Ror (0j,0;) € R), itis a linear (or total)
order, otherwise it is a partial order.(i6;,0;) € Ror (0j,0;) € Rtheno; ando; are
comparable, otherwise they are said incomparable.

A linear orderL is called a linear extension of a partial ordeif P C L (V
(0,0j) € P, then(o;,0j) € L). To each partial order can thus be associated the set
of its linear extensions. Conversely, any collect®of total orders defines a partial
orderH as follows:(0;,0j) € H iff (0j,0;) belongs to all linear order i@. One then
says thaH is realized byC. Note that two subsets can realize the same partial order.

Any relationR can be conveniently represented by a directed graph witesod
O. Two nodes; ando; are connected by an arc in the graplaif,0;) € R.

3 Pairwise comparisonsin the framework of belief functions

Combining pairwise comparisons in the framework of beligfdtions has been al-
ready addressed by Tritchler and Lockwood [8]. This sedtilows their presenta-
tion and synthetizes the most useful notions. They consiéeyfor each paifo;, 0;)

of alternatives inO (1 <i < j < n), an expert expresses its preference betwgen
andoj using a mass functiom®i quantifying the uncertainty in the evaluation. This
mass function is defined on the frame of discernen@nt= {o; > 0j,0; > 0;}: the
singletono; - 0; means that; should be ranked befog and the singleton; - o;
thato; should be ranked first. Tritchler and Lockwood propose tosusienple sup-
port mass function: the expert chooses one of the singletithsmassai; and the
rest of the mass is allocated &;. The valueq;; is interpreted as the reliability of
the choice.

Let @; denote a focal element ai®i . Each focal elemery; has a graph repre-
sentation which consists of two nodeg.andoj, with one arc if@; is a singleton
element, and no arc if the focal elemen€is.

The problem is to derive from the(n— 1)/2 mass functions a ranking of the
alternatives. This task may be seen as an information fyssiem and Dempster’s
rule of combination [3] can be used to this end. Lelenote the sef(i, j) |1 <i <
j <n} and letO(l) denote the product space:

@(|) = @12 X @13 X ... X O(nfl)n

O(l) consists of all complete asymmetric relations (or graplk§ydd on the sed.
Before being combined, pieces of evidence from all pairetabe expressed on
the same frame of discernement, namely the product spéice This is achieved
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by applying the vacuous extension operation [3, 5] to eaéh. This operation,
denoted, transfers each mase®i (@;) to @; x (1 — {(i,j)}). The symbol®
representing Dempster’s rule of combination, the expoessi the combination can
thus be formally written as:

mP() = P21 gy P11 oy g m@(n—l)nT@(l)’ (1)
or, using the commonalities:

qe(l): I‘l q@uT@(l). 2)
(i.)el

The focal elements of®() are of the formp = @12 x @13 % ... X @n_1)n, Whereq;
is a focal element of®i and the mass resulting from the combination is:
mP) () = m?12(@u2)m®2(qy)... P10 (@) 3)

In terms of graph, each focal elemepbf m®(V) can be represented by a directed
graph formed by the union of individual graphs. Since e@glis equal either to a
singleton or to®;j, each focal elemenp is a subset composed of complete asym-
metric relations or©, whose graphs contain the arcsgf

The combination described above allocates masses on saeétsiof asymmetric
relations defined om®. A first objective is to find a linear ordering a@ that is
the most compatible with the pairwise evaluations. This lbamone by imposing
conditions on the set in which the solution has to be fountl. ¥elenote the set of
all linear orders defined 0@ which is a subset a®(1). To impose the nature of the
solution, it is proposed in [8] to condition the mas8(") with respect ta%”:

mPO[Z] =P amy, (4)

with m¢ a categorical mass function definedry (.¢) = 1.
Expressed using the commonalities, the whole combinatorbe written as:

1
oy = —_q, [ g0
a7 1_Kq,¢(i|;|€|q' : (5)

whereK is the conflict resulting from the combination o) with my. K can

be interpreted as an index of the internal coherence of thli&tions. Its practical
computation will be explained when dealing with partial ensl

4 Practical use

We consider in this section a general form of mass allocatefimed by:
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mi (o >—Oj) = qQijj,
{maj(0j>0i):Bij7 (6)
mi (@) =1 aij — Bj.

This mass allocation may come from a single expert who iscagkprovide, for
each(i, j) € I, the above mass function, or from the combination of theuatains
of several experts. In that case, for edch) €I, severamfIj are available and they
have to be fused to provide®i. The choice of the combination rule depends on the
hypotheses made on the dependence between the exper¢y. ¢hit be considered
as independent, Dempster’s rule should be chosen. Otlesrtlis cautious rule [1]
may be preferred.

4.1 Most plausible ranking

Let L € .Z be a strict linear ordering 0@. L being a singleton of the frame of
discernement, one has’@{L}) = 1 and, with the mass allocation (6), one has:

qtON({L}) =1-p; if (a,0) €L, @)
@il ({L}) =1—a;j if (0,0) € L.
Let us introducen(n— 1)/2 binary variables;; ((i, j) € I) defined byljj = 1 if
(0i,0j) € L and 0 otherwise. Using (7) and (5), the commonality, or, ejantly,
the plausiblity ofL can be written as:

POLZ(LY) = pPOLZ)(LY) = T Na-ha-ais @
i,je

whereK is the conflict resulting from the combination w") with mZ. To find
the most plausible ranking of the alternatives, it is notassary to enumerate all
possible linear orderings. We propose to solve the problengua linear program-
ming approach. Maximizing expression (8) is equivalent txximize its logarithm
so that, omitting the constant term dependingkgrthe most plausible ranking
can be found as the solution of the following linear program:

max lijIn (1_[3” ), 9)
'iie{o’l}(i,j - 1 ajj

subject to:
lij +1jk =L <lix, Vi < j <k,
{|ik§|ij+ljk, Vi< <k (10)
The constraints are used to insure thdielongs ta?: if ljj = 1 andlx = 1 then

lix=1.1fljj =0 andljk =0 thenly =0.
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Remark 1 Note that the general form of mass allocation (6) allows uske natu-
rally into account tied evaluations. If the comparison betw ¢ and g results in a
tie, we letaj; = Bj. Then, it can be easily seen that the p@if, 0;) does not appear
any more in the objective function.

4.2 Plausibility of a partial ranking

In some situations, it may be also interesting to computeliaesiblity of a partial
order. When working in the set of asymmetric relations as ddflyy Tritchler and
Lockwood, it not possible to provide an analytical expressHowever, some re-
sults from [8] make it possible to use simple algorithms Hase graph theory to
compute the plausibility of any partial order. The follogitheorem is proved in

(8l:

Theorem 1 (Tritchler and L ockwood (1991)) Let K be the conflict between the
two mass functions #') and m?.

1. K=y m®1) (@) where the summation is over every focal element¥fnwhose
graph contains a cycle;

2. Let H be a partial order realized by a focal eleméhit of m@(')[.f]. Thenby is
the set of all linear extensions of H{ is the largest subset & which realizes
H).

3. P[] (6n) = 12 3 mP1) (), where the summation is over every focal ele-
mentg of () such that the transitive closure of(@), G'(¢), is equal to H.

To compute the plausiblity of any partial order, one has tm $le masses as-
sociated to all focal elements with a non null intersectiathvhis partial order.
The following lemma helps to recognize the focal elementklvntersect a given
partial order:

Lemma 1 (Tritchler and L ockwood (1991)) Let G and G be two subsets o
realizing the partial orders HHand H. Then GNC, #£ 0 if and only if HH UH; is
acyclic.

Computing the plausibility of any partial order is thus achieved by summing
the masses of all focal sefy, such thaH’ UH is acyclic. .

Lemma 1 and Theorem 1 allow us to propose two simple procedares exact,
one approximate) for computing the plausibility of a giveart@al order. The two
procedures are detailed in Algorithms 1 and 2.

4.3 Heuristic search for a partial ranking

If the plausibility of the most plausible ranking is too loivcan be preferable to
provide the user with only a partial ranking of the altervedi The algorithms de-
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Algorithm 1 Plausibility of a partial ordeH
1. K<0
2: pl(H) —0
3: for all 9= @2 x gz ¥ ... X @p_1)n dO

4: Compute the transitive closu@ (@) of G(¢@)
5: Compute the masa= m®")(¢) by equation (3)
6: if G'(@) contains a cycléhen
7: K=K+m
8: elseif G(H) UG!(g) is acyclicthen pl(H) = pl(H) + m
9: end if
10: end for

11: pl(H) «— ﬁpl(H)

Algorithm 2 Approximate computation by a Monte-Carlo approach

1 Ny <0
2: N <0
3: for rep— 1,N do
4: G0
5: for each(i, j) €1 do
6: With probability m®i (@j), randomly select a focal elemeqt from the focal ele-
ments ofm®i
7 if @; is a singleton, add the corresponding arGto
8: end for
9: Compute the transitive closu@ of G
10: if G! contains a cycl¢hen
11: Nk =Nk +1
12: elseif G(H) UG is acyclicthen Ngj = Npj + 1
13: end if
14: end fﬁr
L K
15: K= N L n
. pl
16: pl(H) T RN

scribed in the previous section allow us to compute the [iditg of any partial
order. Instead of exploring every possible partial ordetgch would be practically
intractable, we propose a heuristic procedure based omaie of hierarchical
clustering. We start from the most plausible ranking (seti®@4.1). Then, at the
first step of the procedure, we compute the plausibility argwpartial orders ob-
tained by removing one pair of adjacent alternatives fromttital order relation.
The most plausible partial order is retained and the coomdipg pair of alterna-
tives is “merged”. The process is repeated until all altévea have been merged
into a single one. It is easy to see that the sequence of plhtysvalues is mono-
tonically increasing. Finally, a partial order with the gled level of plausibility can
be chosen by the user.
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5 Example

We illustrate the methods described above using an examgtéréd from [8]. In
a study conducted at the Ontario Cancer Institute, subyeets asked to give their
preferences about four scenarios describing ethical dilamin health care. The
preferences for all six possible scenario pairs were obthifihe experts were also
asked to rate the reliability of their evaluations. The prefces of a subject can
be represented by a directed graph in which the verticesharedenarios and the
edges represent the relation “is preferred to”. The valuethe edges represent the
reliability given by the expert. The graphs of the experesgiven in Figure 1. The
fact that graph 1 (left) contains a cycle (ADB) shows thatdixaluations of expert 1
are not fully consistent. There is no cycle in graph 2 (righti the degrees of belief
are weaker than for expert 1. The evaluations of each experhadelled using the
mass allocation expressed by equation (6) with eithgor §;; equal to zero.

Applied individually to each expert, the procedure for diexyj a complete rank-
ing of the alternatives (Section 4.1) gives the ranking D - B - C with a plausib-
lity of 0.8070 for the first expert, and the rankiAg- C >~ D > B with a plausibility
equal to 1 for the second one. The plausiblities thus reflexiriternal coherence
of the experts. The evaluations of the experts can also béioech before search-
ing for a complete ranking. The results of the combinatiangi®empster’s rule of
combination can be found in Table 1.

DF0

0.94 0747007 [093
b0

Fig. 1 Graph representation of the evaluations; (left) : expert ighty : expert 2.

Tablel Mass assignment using Dempster’s rule of combination

(0i,0j) 0, >~ 0j 0j =0 G

(A,B) 0.3056 0.3056 0.3889
(A,C) 09991 0 0.0009
(AD) 09964 0 0.0036
(B,C) 0.7266 0.2187 0.0547
(B,D) 0 0.9324 0.0676
(C,D) 0.0594 0.0094 0.9312

The most plausible total ranking derived from Table Ais D > B - C with a
plausibility equal to 0.8893. Applying the heuristic prdoee using the masses of
Table 1 for determining a partial ranking gives the resudispnted in Figure 2. The
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dendrogram can be cut at the desired level of plausibility.@xample, the partial
orderA > D > {B,C} reaches a plausibility of almost 0.96.

0.99
0.98]
0.97|
0.96|

o Plausibility

©
=2

4

©
Pl
O

I:"AlternativesE

Fig. 2 Dendrogram obtained from Table 1.

6 Conclusion

In this paper, we have has shown how to use the framework aflighctions to
model paired comparisons and how to derive from these iddalijudgements a
total or a partial ranking of the alternatives. The lineateasris obtained by solving a
linear program maximizing the plausibility of the relatigaheuristic procedure has
been proposed to provide only a partial order when the gdingiof the linear order
is too low. This work offers several perspectives, amongtiie application of the
approach to machine learning problems like instance ot talp&ing problems.
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